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Games with Infinitely Many Moves
and Slightly Imperfect Information
(Extended Abstract)

DAVID BLACKWELL

D. A. Martin in 1975 showed that all Borel Games with perfect information are
determined. Question: are all Borel games with slightly imperfect information

determined?

Let A, B be finite nonempty sets, let C = A x B, and let W be the set of all
infinite sequences w = {¢1,ca,...} from C. Any subset S of W defines a game
G(S), whose n-th move, for n =1, 2, ..., is played as follows: Player I chooses

an € A and, simultaneously, Player II chooses b, € B. Each player is then told
the other’s choice, so that they both know ¢, = (an, by).

Player I wins G(S) just if the play w = {c1,¢a,... } isin S. We say that G(5)
is determined if there is a number v such that, for every € > 0,

(a) Player I has a (random) strategy that wins for him with probability at least
v — € against every strategy of Player 11, and

(b) Player IT has a (random) strategy that restricts his probability of loss to at
most v + € against every strategy of Player I.

If S is finitary, i.e., depends on only finitely many coordinates of w, then G(S5)
is a finite game, and the von Neumann minimax theorem says that G(S) is
determined.

If S is open, i.e., the union of countably many finitary sets, then it is well-
known, and not hard to see, that G(S) is determined (and that Player II has a
good strategy).

If S is a Gs-set, that is, the intersection of countably many open sets, again
G(S) is determined, but the calculation involves countable ordinal calculations.
This complexity is probably necessary as, with a natural coordinatization of G-
sets, the value v(S) is not a Borel function of S. Whether all G5, games G(S5)
are determined is not known.
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Our restriction to finite A and B is essential. For A and B countable, the
game “choosing the larger integer” is a special case that is not determined.
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