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Error-Correcting Codes Derived from

Combinatorial Games

AVIEZRI S. FRAENKEL

Abstract. The losing positions of certain combinatorial games constitute
linear error-detecting and -correcting codes. We show that a large class
of games, which can be cast in the form of annihilation games, provides a
potentially polynomial method for computing codes (anncodes). We also
give a short proof of the basic properties of the previously known lexicodes,
which were defined by means of an exponential algorithm, and are related
to game theory. The set of lexicodes is seen to constitute a subset of the
set of anncodes. In the final section we indicate, by means of an example,
how the method of producing lexicodes can be applied optimally to find
anncodes. Some extensions are indicated.

1. Introduction

Connections between combinatorial games (simply games in the sequel) and
linear error-correcting codes (codes in the sequel) have been established in [Con-
way and Sloane 1986; Conway 1990; Brualdi and Pless 1993], where lexicodes,
and some of their connections to games, are explored. Our aim is to extend the
connection between games and codes to a large class of games, and to formu-
late a potentially polynomial method for generating codes from games. We also
establish the basic properties of lexicodes by a simple, transparent method.

Let Γ, any finite digraph, be the groundgraph on which we play the following
general two-player game. Initially, distribute a positive finite number of tokens
on the vertices of Γ. Multiple occupation is permitted. A move consists of
selecting an occupied vertex and moving a single token from it to a neighboring
vertex, occupied or not, along a directed edge. The player first unable to move
loses and the opponent wins. If there is no last move, the play is declared a
draw. It is easy to see (since Γ is finite) that a draw can arise only if Γ is
cyclic, that is, Γ has cycles or loops. Games in this class—which includes Nim
and Nim-like games for the case where Γ is acyclic—have polynomial strategies,
in general [Fraenkel ≥ 1997]. It turns out that the P -positions (positions from
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which the player who just moved has a winning strategy) of any game in this
class constitute a code.

It further turns out that, if Γ is cyclic, the structure of the P -positions is
much richer if the above described game is replaced by an annihilation game
(anngame for short). In such a game, when a token is moved onto a vertex u,
the number of tokens on u is reduced modulo 2. Thus there is at most one token
at any vertex, and when a token is moved to a vertex occupied by another, both
are removed from the game.

If Γ is acyclic, it is easy to see by game-strategy considerations (or using
the Sprague–Grundy function defined in Section 3) that the strategies of a non-
annihilation game and the corresponding anngame are identical, so both have
the same P -positions—only the length of play may be affected. Thus, for the
prospect of constructing efficient codes and for the sake of a unified treatment,
we may as well assume that all our games are anngames.

Summarizing, we can, without loss of generality, concentrate on the class of
anngames. An anngame is defined by its groundgraph Γ, a finite digraph. There
is an initial distribution of tokens, at most one per vertex. A move consists of
selecting an occupied vertex and moving its token to a neighboring vertex u along
a directed edge. If u was occupied prior to this move, the incoming and resident
tokens on u are both annihilated (disappear from play). The player first unable
to move loses and the opponent wins. If there is no last move, the outcome is a
draw.

With an anngame A played on a groundgraph Γ, we associate its annihilation
graph G = (V, E), or anngraph for short, as follows. The vertex set V is the set
of positions of A, and for u, v ∈ V there is an edge (u, v) ∈ E if and only if there
is a move from u to v in A. We review the following basic facts, which can be
found in [Fraenkel 1974; Fraenkel and Yesha 1976; 1979; 1982] (especially the
latter), [Yesha 1978; Fraenkel, Tassa and Yesha 1978].

Like any finite digraph, G has a generalized Sprague–Grundy function γ. This
function was first defined in [Smith 1966], and later expounded in [Fraenkel and
Perl 1975]. See [Fraenkel 1996, p. 20] in this volume for its definition, and
[Fraenkel and Yesha 1986] for full details. Let V f ⊂ V be the set of vertices on
which γ is finite. If we make V into a vector space over GF(2) in the obvious way,
then V f is a linear subspace, and γ is a homomorphism from V f onto GF(2)t,
for some t ∈ Z0 := {k ∈ Z : k ≥ 0}, where we identify GF(2)t with the set of
integers {0, 1, . . . , 2t − 1}. The kernel V0 = γ−1(0) is the set of P -positions of
the annihilation game. This gives very precise information about the structure
of G: its maximum finite γ-value is a power of 2 minus 1, and the sets γ−1(i)
for i ∈ {0, . . . , 2t − 1} all have the same size, being cosets of V0. Moreover,
V0 constitutes an anncode (annihilation game code). Though G has 2n vertices,
it turns out that most of the relevant information can be extracted from an
induced subgraph of size O(n4), by an O(n6) algorithm, which is often much
more efficient.
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If Γ is cyclic, γ is generally distinct from the (classical) Sprague–Grundy
function g on Γ; in fact, g may not even exist on Γ. Also, A played on a cyclic
Γ has a distinct character and strategy from the non-annihilation game played
on Γ.

Annihilation games were suggested by John Conway. Ferguson [1984] consid-
ered misère annihilation play, in which the player first unable to move wins, and
the opponent loses. A more transparent presentation of annihilation games is to
appear in the forthcoming book [Fraenkel ≥ 1997].

Section 2 gives a number of examples, illustrating connections between games,
anncodes and lexicodes, as well as exponential and polynomial digraphs and com-
putations associated with them. Section 3 gives a short proof that the Sprague–
Grundy function g is linear on the lexigraph associated with lexicodes, leading to
the same kind of homomorphism that exists for anncodes. Some natural further
questions are posed at the end of Section 3, including the definition of anncodes
over GF(q), for q ≥ 2. Section 4 indicates, by means of a larger example, how
a greedy algorithm applied to an anncode can reduce a computation of a code
by a factor of 2,000 compared to a similarly computed lexicode. The anncode
method is potentially polynomial, whereas the lexicode method is exponential.
But it is too early yet to say to what extent the potential of the anncode method
can be realized for producing new efficient codes.

2. Examples

Given a finite digraph G = (V, E), we define, for any u ∈ V , the set of
followers F (u) and ancestors F−1(u) by

F (u) = {v ∈ V : (u, v) ∈ E}, F−1(u) = {w ∈ V : (w, u) ∈ E}.
If we regard the vertices of G as game positions and the edges as moves, we
define, as usual, a P -position of the game as one from which the Previous player
can win, no matter how the opponent plays, subject to the rules of the game;
an N -position is one that is a Next-player win. Denote by P the sets of all P -
positions of a game, and denote by N the set of all N -positions. The following
basic relationships hold:

u ∈ P if and only if F (u) ⊆ N,

u ∈ N if and only if F (u) ∩ P 6= ?.

If G has cycles or loops, the game may also contain dynamically drawn D-
positions; the set D of such positions is characterized by

u ∈ D if and only if F (u) ⊆ D ∪N and F (u) ∩D 6= ?.

To understand the examples below we don’t need γ or g; it suffices to know
that P is the set of vertices on which γ or g is 0. Note that P can be recognized
by purely game-theoretic considerations, as the set on which the Previous player
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z0 z1

z2z3

0

Figure 1. An acyclic groundgraph for annihilation (see Example 2.1).

z0 z1

z2 z3

0

Figure 2. A cyclic groundgraph (see Example 2.2).

can win. In all these examples, we play an annihilation game A on the given
groundgraphs Γ.

Example 2.1. Let Γ be the digraph depicted in Figure 1. It is easy to see that
with an odd number of tokens on the zi the first player can win, and with an
even number the second player can win in A played on Γ.

In this and the following examples, think of the zi as unit vectors of a vector
space V of dimension n, where n− 1 is the largest index of the zi [Fraenkel and
Yesha 1982]. In the present example, z0 = (0001), . . . , z3 = (1000). Encoded by
the unit vectors, our anncode is

P =
{
(0000), (0011), (0101), (0110), (1001), (1010), (1100), (1111)

}
,

or, encoded in decimal, P = {0, 3, 5, 6, 9, 10, 12, 15}. Note that P is a linear code
with minimal Hamming distance d = 2.

(Recall that the Hamming distance between two vectors in GF(2)n is the
number of 1-bits of their difference. The number of 1-bits of a vector u is its
weight, and is denoted by w(u). Addition, or equivalently subtraction, over
GF(2) is denoted by ⊕.)

Example 2.2. Consider A played on the two-component graph Γ of Figure 2.
If z0 and z1 host a token each, any move causes annihilation. Therefore the



ERROR-CORRECTING CODES DERIVED FROM COMBINATORIAL GAMES 421
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Figure 3. Another cyclic groundgraph (see Example 2.3).

position consisting of one token each on z0, z1, z2 (or z3 instead of z2) is a P -
position. Using decimal encoding, we then see that P = {0, 7, 11, 12}, which is
also a linear code with minimal distance 2.

Example 2.3. Consider A played on a Nim-heap of size 5, i.e., Γ consists of the
leaf 0 and the vertices z0, . . . , z4, where (zj , zi) ∈ E(Γ) if and only if i < j and
(zi, 0) ∈ E(Γ) for i ∈ {0, . . . , 4}. It is not hard to see that then P = {0, 7, 25, 30},
which is an anncode with minimal distance 3. Precisely the same code is given
by the P -positions of the annihilation game A played on the ground graph Γ of
Figure 3.

In order to continue with our examples, we now define lexicodes precisely.
This is also needed for Section 3.

Let W be an n × n matrix over GF(2), of rank at least m, where m ≤ n

is some integer. We will count the columns of W from the right and the rows
from the bottom. Suppose the rightmost m columns of W constitute a basis of
V m, the m-dimensional vector subspace of V n over GF(2). Then there are rows
1 ≤ i1 < · · · < im ≤ n of W such that the m ×m submatrix Wm consisting of
rows i1, . . . , im and columns 1, . . . , m of W has rank m.

Construct the 2m elements of V m in lexicographic order:

V m = {0 = A0, . . . , A2m−1}.
Precisely, Ak = WK, where K is the column vector of the binary value of
k ∈ {0, . . . , 2m−1}, with the bits of K in positions i1, . . . , im, the least significant
bit in i1; and 0’s in all the other n −m positions. See Table 1 for an example
with m = n.

For given d ∈ Z+, scan V m from A0 to A2m−1 to generate a subset V ′ ⊆ V m

using the following greedy algorithm. Put V ′ ← 0. If Ai0 = 0, . . . , Aij have
already been inserted into V ′, insert Aij+1 if ij+1 > ij is the smallest integer such
that H(Ail

, Aij+1) ≥ d for l ∈ {0, . . . , j}, where H denotes Hamming distance.
The resulting V ′ is the lexicode generated by W , with minimal distance d.

We remark that in [Brualdi and Pless 1993] the term “lexicode” is reserved for
the code generated when W is the identity matrix, which is the case considered
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V m

k V ′
BIN DEC

0 0000 0 ∗
1 0001 1
2 0011 3 ∗
3 0010 2
4 0110 6 ∗
5 0111 7
6 0101 5 ∗
7 0100 4
8 1100 12 ∗
9 1101 13

10 1111 15 ∗
11 1110 14
12 1010 10 ∗
13 1011 11
14 1001 9 ∗
15 1000 8

Table 1. Generating a lexicode (see Example 2.4).

in [Conway and Sloane 1986]; and “greedy codes” is used for the codes derived
from any W whose columns constitute a basis. Actually, in both of these papers
no matrices are used, but the ordering is done in an equivalent manner. It
seems natural, in the current context, to use matrices (see the proofs in the next
section) and “lexicode” for the entire class of codes.

Example 2.4. Let
4 3 2 1

W =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


,

and d = 2, m = n = 4. We then get the ordered vector space depicted in Table 1.
The vectors marked with an asterisk in column V ′ have been selected by our
greedy algorithm, and constitute the lexicode. Note that this lexicode is precisely
the same code as that found in Example 2.1 by using a small groundgraph with
O(n2) operations rather than O(2n) for the lexicode.

Example 2.5. Let

W =




1 0 0 0
1 0 1 0
0 1 1 0
0 1 1 1


 ,
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and d = 2. The reader should verify that the lexicode generated by W is
(0, 7, 12, 11), in this order, which is identical to the code generated in Exam-
ple 2.2.

Example 2.6. Let

W =




1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1




,

and d = 3. The vector space now contains 32 entries, too large to list here. But
the reader can verify that the lexicode generated by W is precisely the same as
that generated by the two polynomial methods of Example 2.3.

3. The Truth About Lexicodes

We now study the Sprague–Grundy function of a certain game associated with
a lexicode. Given a finite acyclic digraph G = (V, E), the associated Sprague–
Grundy function g : V → Z

0 is characterized by the property

g(u) = mex g
(
F (u)

)
, (3.1)

where, for any finite subset S ⊆ Z
0, we define mex(S) = min(Z0 − S) and

g(S) =
{
g(s) : s ∈ S

}
. This function exists uniquely on any finite acyclic

digraph. See, for example, [Berge 1985, Ch. 14; 1989, Ch. 4; Conway 1976;
Berlekamp, Conway and Guy 1982]. (When G has cycles or loops, g may not
exist; a generalization of it, the γ-function mentioned in the introduction, can
be used in this case.)

With a lexicode in V m, with minimal distance d, associate a digraph G =
(V, E), called a lexigraph, as follows. The vertex set V is the set of all elements
(vectors) of V m, and (Ak, Aj) ∈ E if and only if j < k and

H(Aj , Ak) = w(Aj ⊕Ak) < d,

where, as before, H is the Hamming distance and w the weight. If (Ak, Aj) ∈ E,
we have Aj ∈ F (Ak) in the notation introduced at the beginning of Section 2.
Note that G is finite and acyclic. (For other possibilities of orienting the lexi-
graph, see the homework problem towards the end of this section.)

Play a lexigame on G by placing a single token on any vertex. A move consists
of sliding the token from a vertex to a neighboring vertex along a directed edge.
The player first unable to play loses and the opponent wins. Note that any game
with a single token on a digraph, and in particular the lexigame just introduced,
can be considered an anngame. The P -positions of the lexigame constitute the
lexicode; this is also the set of vertices of G on which g = 0. (Actually, the
lexigame is not overly interesting, because the lexigraph is “analogous” to the
game graph of a (more interesting) game played on a logarithmically smaller
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groundgraph with several tokens. The game graph of a game is not normally
constructed, but used instead for reasoning about the game. In fact, we do this
in the proof of Theorem 3.9 below.)

We point out that for lexicodes per se it suffices to consider the case m = n.
It is only in Corollary 3.7 and in Section 4, where we apply a greedy algorithm on
anncodes, that the case m < n will be important. Incidentally, Brualdi and Pless
[1993, § 2] define a function g and state, citing [Conway and Sloane 1986], that g

is the Sprague–Grundy function of an associated heap game for the case where
W is the unit matrix. It is easy to see that, in fact, g is the Sprague–Grundy
function of the lexigraph defined above, for every matrix W .

For any positive integer s, let sh denote the bit in the h-th binary position of
the binary expansion of s, where s0 denotes the least significant bit. Also, for
any a ∈ Z0, write φ(a) = {0, . . . , a− 1}.
Lemma 3.1. Let a1, a2 ∈ Z0, and let b ∈ φ(a1 ⊕ a2). Then there is i ∈ {1, 2}
and d ∈ φ(ai) such that b = aj ⊕ d for j 6= i.

Proof. Write c = a1 ⊕ a2. Let k = max{h : bh 6= ch}. Since b < c, we have
bk = 0 and ck = 1. Hence there exists i ∈ {1, 2} such that ak

i = 1. Letting
d = ai ⊕ b ⊕ c = aj ⊕ b, we have d ∈ φ(ai), since bh = ch implies dh = ah

i for
h > k, and dk = 0. �

Corollary 3.2. We have φ(a1 ⊕ a2) ⊂ a1 ⊕ φ(a2) ∪ φ(a1)⊕ a2. �

By the closure of V m, for any j and k there exists l such that Aj ⊕Ak = Al.

Lemma 3.3. We have Aj ⊕Ak = Aj⊕k.

Proof. As noted above, Aj ⊕Ak = Al for some l. Then Aj = WJ , Ak = WK,
Al = WL. Thus

WL = Al = Aj ⊕Ak = W (J ⊕K).

This matrix equation implies WmLm = Wm(Jm ⊕Km), where Wm was defined
in Section 2, and any m× 1 vector Xm is obtained from the n× 1 vector X by
retaining only the rows i1, . . . , im of X and deleting the n−m remaining rows,
which contain only 0’s for L, J and K. Since Wm is invertible, we thus get
Lm = Jm ⊕Km, so l = j ⊕ k. �

Here is the main lemma of this section.

Lemma 3.4. Let Aj , Ak ∈ V m. Then, for the lexigraph on V m,

F (Aj ⊕Ak) ⊆ Aj ⊕ F (Ak) ∪ F (Aj)⊕Ak ⊆ F (Aj ⊕Ak) ∪ F−1(Aj ⊕Ak).

Proof. Let Al ∈ F (Aj⊕Ak). By Lemma 3.3, Al ∈ F (Aj⊕k), so w(Al⊕Aj⊕k) =
w(Aj⊕k⊕l) < d and l < j ⊕ k. By Corollary 3.2, l ∈ j ⊕ φ(k) ∪ φ(j) ⊕ k. Thus
either there is k′ < k such that l = j ⊕ k′, or there is j′ < j such that l = j′⊕ k.
In the former case, w(Aj⊕k⊕l) = w(Ak⊕k′ ) < d, so Al = Aj ⊕Ak′ ∈ Aj ⊕F (Ak),
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and in the latter case we obtain, similarly, Al ∈ F (Aj) ⊕ Ak, establishing the
left inclusion.

Now let Al ∈ Aj ⊕ F (Ak) ∪ F (Aj) ⊕ Ak. Then either Al = Aj ⊕ Ak′ for
some k′ < k with w(Ak⊕k′ ) < d, or Al = Aj′ ⊕ Ak for some j′ < j with
w(Aj⊕j′ ) < d. Without loss of generality, assume the former. Then l = j ⊕ k′.
Thus w(Ak⊕k′ ) = w(Aj⊕k⊕l) < d. If l < j ⊕ k, then Al ∈ F (Aj ⊕ Ak), and if
l > j ⊕ k, then Aj ⊕Ak ∈ F (Al). �

We now show that the g-function is linear on the lexigraph G.

Theorem 3.5. Let G = (V, E) be a lexigraph. Then g(u1⊕ u2) = g(u1)⊕ g(u2)
for all u1, u2 ∈ V .

Proof. Set
F(u1, u2) = {u1} × F (u2) ∪ F (u1)× {u2}, (3.2)

so that (v1, v2) ∈ F(u1, u2) if either v1 = u1 and v2 ∈ F (u2), or v1 ∈ F (u1)
and v2 = u2: Thus F represents the set of followers in the sum game played on
G + G. Let

K =
{
(u1, u2) ∈ V × V : g(u1 ⊕ u2) 6= g(u1)⊕ g(u2)

}
,

k = min
(u1,u2)∈K

(
g(u1 ⊕ u2), g(u1)⊕ g(u2)

)
.

If there is (u1, u2) ∈ K such that g(u1 ⊕ u2) = k, then g(u1) ⊕ g(u2) > k. By
Corollary 3.2 and the mex property (3.1) of g, there is (v1, v2) ∈ F(u1, u2) such
that g(v1)⊕ g(v2) = k. Now (3.2) implies

v1 ⊕ v2 ∈ u1 ⊕ F (u2) ∪ F (u1)⊕ u2 ⊆ F (u1 ⊕ u2) ∪ F−1(u1 ⊕ u2),

where the inclusion follows from Lemma 3.4. Since g(u1 ⊕ u2) = k, it follows
that g(v1 ⊕ v2) > k, so (v1, v2) ∈ K. Let

L =
{
(u1, u2) ∈ K : g(u1)⊕ g(u2) = k

}
.

We have just shown that K 6= ? implies L 6= ?.
Here we recall that g is the γ-function for the lexigame (see the first paragraph

of this section). With a γ-function we can associate a monotonic counter function
c : V → Z

+. We now pick (u1, u2) ∈ L with c(u1) + c(u2) minimal. For
(u1, u2) ∈ L we have g(u1 ⊕ u2) > k. Then there is v ∈ F (u1 ⊕ u2) with
g(v) = k. By the first inclusion of Lemma 3.4, there exists (v1, v2) ∈ F(u1, u2)
such that v = v1 ⊕ v2. So g(v1 ⊕ v2) = k. Since g(u1)⊕ g(u2) = k, (3.2) implies
g(v1) ⊕ g(v2) > k, hence (v1, v2) ∈ K. As we saw earlier, this implies that
there is (w1, w2) ∈ F(v1, v2) such that (w1, w2) ∈ L. Moreover, by property B
in the definition of the γ-function (see [Fraenkel 1996, p. 20] in this volume),
we can select (w1, w2) such that c(w1) + c(w2) < c(u1) + c(u2), contradicing the
minimality of c(u1) + c(u2). Thus L = K = ?. �

Let Vi =
{
u ∈ V : g(u) = i

}
, for i ≥ 0. We now state the main result of this

section.
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Theorem 3.6. Let G = (V, E) be a lexigraph. Then V0 = V ′, where V ′ is a
lexicode. Moreover , V0 is a linear subspace of V . In fact , g is a homomorphism
from V onto GF(2)t for some t ∈ Z0; its kernel is V0, and the quotient space
V/V0 consists of the cosets Vi for 0 ≤ i < 2t}; in fact , t = dimV − dimV0.

Proof. By definition, V is a vector space over GF(2). Let t be the smallest
nonnegative integer such that g(u) ≤ 2t−1 for all u ∈ V . Thus, if t ≥ 1, there is
some v ∈ V such that g(v) ≥ 2t−1. Then the “1’s complement” of g(v), defined
as 2t−1−g(v), is less than g(v). By the mex property of g, there exists w ∈ F (v)
such that g(w) = 2t − 1 − g(v). By Theorem 3.5, g(v ⊕ w) = g(v) ⊕ g(w) =
2t − 1. Thus, again by the mex property of g, every value in {0, . . . , 2t − 1}
is the g-value of some u ∈ V . This last property holds trivially also for t = 0.
Hence g is onto. It is a homomorphism V → GF(2)t by Theorem 3.5, and since
g(1u) = g(u) = 1g(u) and g(0u) = g(0 . . . 0) = 0 = 0g(u).

By elementary linear algebra, GF(2)t ' V/V0, where V0 is the kernel. Hence
V0 is a subspace of V . Clearly V0 is also a graph-kernel of G. So is V ′, which,
by its definition, is both independent and dominating. Since any finite acyclic
digraph has a unique kernel, V0 = V ′. Let m = dimV0. Then dim V = m + t.
The elements of V/V0 are the cosets Vi = w ⊕ V0 for any w ∈ Vi and every
i ∈ {0, . . . , 2t − 1}. �

Corollary 3.7. The greedy algorithm, applied to any lexicographic ordering of
the subset V0 ⊂ V , also produces a linear code.

Proof. Follows from Theorem 3.6, by considering the lexigraph G = (V0, E)
instead of (V, E). �

We remark that Algorithm B of [Fraenkel and Yesha 1982] yields a matrix Γ,
whose bottom n −m rows, padded with m bottom 0-rows, is the parity check
matrix for the code (vectors where γ = 0). A much simplified version of this
algorithm can be used to compute the parity check matrix for the present case
(vectors where g = 0).

Homework 3.8. The lexigraph G = (V, E) seems to exhibit a certain robust-
ness, roughly speaking, with respect to E. That is, Theorem 3.6 seems to be
invariant under certain edge deletions or reversions. In this direction, prove that
Theorem 3.6 is still valid if E is defined as follows: (Ak, Aj) ∈ E if and only if
Aj < Ak (rather than j < k) and H(Aj , Ak) < d.

Theorem 3.9. The set of lexicodes is a subset of the set of anncodes .

Proof. Let C be a lexicode with a given minimal distance. As we saw at the
beginning of this section, C is the set of the P -positions of the lexigame played
on the lexigraph G, or equivalently the set of vertices where the Sprague–Grundy
function g is zero. The lexigame is played on G by sliding a single token, and
as such it is an annihilation game; the anncode is the set of vertices where the
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generalized Sprague–Grundy function γ is zero. The two functions are the same,
since the graph is acyclic. Thus C is an anncode. �

The proof of Theorem 3.6 is actually a much simplified version of a similar
result for annihilation games [Fraenkel and Yesha 1982], where also the linearity
of γ (and hence of g) was proved for the first time, to the best of our knowledge.
The simplification in the proof is no accident, since the lexigame played on the
lexigraph (the groundgraph) can be considered as an anngame with a single
token. It’s an acyclic groundgraph, which makes the anngame theory much
simpler than for cyclic digraphs.

It might be of interest to explore the subset of anncodes generated when
several tokens, rather than only one, are distributed initially on a lexigraph.

Another question is: Under what conditions, and for what finite fields GF(pa),
where p is prime and a ∈ Z+, are there “anncodes”? The key seems to be to gen-
eralize annihilation games as follows. On a given finite digraph Γ, place nonzero
“particles” (elements of GF(pa)), at most one particle per vertex. A move con-
sists in selecting an occupied vertex and moving its particle to a neighboring
vertex v along a directed edge. If v was occupied, then the “collision” generates
a new particle, possibly 0 (“annihilation”), according to the addition table of
GF(pa). The special case a = 1, when the particles are 0, . . . , p − 1, reduces
to p-annihilation: the collision of particles i and j results in particle k, where
k ≡ i + j mod p, for k < p; and this special case becomes anngames for p = 2.
Such “Elementary Particle Physics” games, whose P -positions are collections of
linear codes, thus constitute a generalization of anngames. These games and
their applications to coding seems to be an as yet unexplored area.

4. Computing Anncodes

In this section we give one particular example illustrating the computation of
large anncodes. One can easily produce many others. The present example also
shows how anncodes and lexicodes can be made to join forces.

We begin with a family Γt of groundgraphs, which is a slightly simplified
version of a family considered by Yesha [1978] for showing that the finite γ-values
on an annihilation game played on a digraph without leaves can be arbitrarily
large.

Let t ∈ Z
+, and set J = J(t) = 2t−1. The digraph Γt has vertex set

{x1, . . . , xJ , y1, . . . , yJ}, and edges as follows:

F (xi) = yi for i = 1, . . . , J,

F (yk) = {yi : 1 ≤ i < k} ∪ {xj : 1 ≤ j ≤ J and j 6= k} for k = 1, . . . , J .

Figure 4 shows Γ3.
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x1 x2 x3 x4

y1 y2 y3 y4

Figure 4. The cyclic groundgraph Γ3.

1 2 3 4 5

10 9 8 7 6

Figure 5. The cyclic groundgraph Γ′.

Since Γt has no leaf, γ(xi) = γ(yi) = ∞ for all i ∈ {1, . . . , J}. The following
facts about the anngraph Gt = (V, E) of Γt are easy to establish, where V f ={
u ∈ V : γ(u) <∞}

.

(i) γ(xi ⊕ xj) = 0 for all i 6= j.
(ii) γ(xi ⊕ yj) = j for all i, j ∈ {1, . . . , J}.
(iii) γ(yi ⊕ yj) = i⊕ j for all i 6= j.
(iv) maxγ(u)<∞ γ(u) = γ(yJ−1 ⊕ yJ) = (J − 1)⊕ J = 2t − 1.
(v) V f =

{
u ∈ V : w(u) ≡ 0 mod 2

}
, |V f | = 22J−1, dimV f = 2J − 1.

Thus, in the notation of Theorem 3.6, we have m + t = 2J − 1, hence

m = 2t − t− 1.

For the family Γt of groundgraphs, the O(n6) algorithm for computing γ thus
reduces to an O(1) algorithm.

Now consider the groundgraph Γ′ depicted in Figure 5. It is not hard to see
that a basis for V0 is given by the four vectors (1, 2, 9, 10), (4, 5, 6, 7), (2, 3, 8, 9),
(3, 4, 7, 8). Each vector indicates the four vertices occupied by tokens.

We propose to play an annihilation game, say on Γ = Γ5 + Γ′, which contains
32 + 10 = 42 vertices. The vector space associated with the anngraph of Γ
contains 242 elements, and to find a lexicode on V 42, for any given d, involves
242 operations. On the other hand, for Γ we have, since t = 1 for Γ′,

dim |V0| = m = 25 − 5− 1 + 4 + 1 = 31,



ERROR-CORRECTING CODES DERIVED FROM COMBINATORIAL GAMES 429

so the anncode defined by V0, for which d = 2, has 231 elements. By the results
of Section 2, we can compute a lexi-anncode for any d > 2, by applying the
greedy algorithm to a lexicographic ordering of V0, which can be obtained by
using any basis of V0. This computation involves only 231 operations.

Homework 4.1. Carry out this computation, and find lexi-anncodes for several
d > 2 on Γ = Γ5 + Γ′.

We note that the anncode derived from a directed complete graph, i.e., a
Nim-heap, is identical to the code derived from certain coin-turning games as
considered in [Berlekamp, Conway and Guy 1982, Ch. 14].

Remark 4.2. The Hamming distance between any two consecutive P -positions
in an annihilation game is obviously ≤ 4. Thus d = 2 for Γt and d = 4 for Γ′.
For finding codes with d > 4, it is thus natural to apply the greedy algorithm to
a lexicographic ordering of V0. Another method to produce anncodes with d > 4
is to encode each vertex of the groundgraph, that is, each bit of the anngraph,
by means of k bits for some fixed k ∈ Z+. For example, in a lexigraph, each
vertex is encoded by n bits, and the distance between any two codewords is
≥ d. In an Elementary Particle Physics game over GF(pa), it seems natural
to encode each particle by a digits. A third method for producing anncodes
with d > 4 directly seems to be to consider a generalization of anngames to the
case where a move consists of sliding precisely k (or ≤ k) tokens, where k is
a fixed positive integer parameter—somewhat analogously to Moore’s Nim (see
[Berlekamp, Conway and Guy 1982, Ch. 15], for example).

Remark 4.3. Note that
⋃2k−1

i=0 Vi is a linear subspace of V f for every k ∈
{0, . . . , t}. Any of these subspaces is thus also a linear code, in addition to V0.
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