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Using Similar Positions to Search Game Trees

YASUHITO KAWANO

Abstract. We propose a method that uses information on similar positions
to solve Tsume-shogi problems (mating problems in Japanese chess). Two
notions, priority and simulation, are defined for this method. A given
problem is solved step-by-step according to the priority. Simulation often
allows us to omit searching on each step. A program made by the author
and based on this method solved a celebrated problem requiring over 600
plies (half-moves) to mate.

1. Introduction

It would be useful in board games if the experience learned from one position
could be applied to other, similar, positions. However, positions that seem to
only slightly differ on the board can actually differ greatly in terms of strategy.
This paper proposes a method that uses information on similar positions to solve
Tsume-shogi problems (mating problems in Japanese chess, the rules of which
are explained in Section 2).

The method is based on the notions of priority and simulation. Priority means
that we look at certain moves of our opponent earlier than others. Intuitively,
we say that a position P simulates another position Q if we can mate on Q
according to the mating sequence of P. Roughly speaking, our problem-solving
strategy has two steps. First, we restrict ourselves to our opponent’s moves
of high priority. Second, we check whether the position P where the solution
has already been obtained simulates a position Q having a lower priority. If P
simulates Q, we can dispense with the search for the latter position.

We discuss a Tsume-shogi program by the author, based on this method and
considered to be one of the strongest Tsume-shogi programs available today. It
was the first program to solve a celebrated and long-unsolved (by computer)
problem, requiring over 600 plies (half-moves) to mate.
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2. Shogi and Tsume-shogi

Shogi is a board game, similar in origin and feel to chess [Fairbairn 1989;
Wilkes 1950; Leggett 1966]. It was established around the fourteenth century in
Japan. The biggest difference between Shogi and chess is that captured pieces in
Shogi can be put back into play, on the capturer’s side, so the number of pieces
in play tends to remain high.

Shogi is played on a 9× 9 board, with, initially, twenty pieces for each player.
All pieces are the same color (so they can be reused by the opponent), ownership
being distinguished by the way they face. In diagrams, pieces are represented by
Kanji characters, but here we use the initial letters of their English translations
(with a circumflex on top of S and N, which resemble their upside-down coun-
terparts). The three rows nearest a player are than player’s domain. A piece is
promoted when it moves into, inside, or out of the opponent’s domain, and it
remains promoted until it is taken. Here are the names and movements of the
pieces:

Unpromoted

P: Pawn

L: Lance

N̂: Knight

Ŝ: Silver

G: Gold

B: Bishop

R: Rook

K: King

Promoted

PP: Promoted Pawn

PL: Promoted Lance

PN: Promoted Knight

PS: Promoted Silver

—

PB: Promoted Bishop

PR: Promoted Rook

—
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The Pawn can move only one square straight ahead. It does not have the
chess pawn’s initial move or diagonal capturing move. The Lance moves straight
ahead. The Knight moves two squares forward and one sideways (a subset of
the moves of the chess knight); it is the only piece that can jump over others.
The Silver can move one square forward in any direction or one square diagonally
backward. The Gold can move one square forward in any direction, one square to
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the side, or one square straight back. When the Pawn, Lance, Knight, and Silver
are promoted, their allowed moves become the same as the Gold’s. The Rook
and Bishop have the same moves as their chess counterparts. When they are
promoted, they have the power to move one square in the other four directions.
The King can move one square in any direction. The Gold and the King, however,
can not be promoted.

Instead of a regular move, a player can drop a piece previously captured by
him into a vacant square, provided this does not break one of the following rules:

Doubled Pawn: When a player’s Pawn is already on a column, he is not allowed
to drop another Pawn on the same column.

Dropped-Pawn mate: Mating by dropping a Pawn is prohibited. (It is legal
to mate by moving a Pawn that is already on the board.)

Deadlock: It is illegal to move or drop a piece onto a square if it cannot move
from there.

Here is the initial Shogi set-up:

L N̂ Ŝ G K G Ŝ N̂ L

R B

P P P P P P P P P

P P P P P P P P P

B R

L N̂ Ŝ G K G Ŝ N̂ L

Tsume-shogi is a Shogi mating problem. The data is a Shogi position; a
solution consists in a sequence of legal moves satisfying several conditions:

• Each move of the mating player must be optimal, in the sense of leading to
mate as soon as posbible.

• The position after each move of the mating player must be a check.
• Each response of the opponent must be optimal, in the sense of delaying mate

as long as possible. (Interpositions by moving or dropping a piece must not
be muda: this term is explained below.)

The chain of moves is called Hontejun (main sequence); its length, the number
of plies, is called Tsume-tesu. The main sequence should be unique; more specif-



196 YASUHITO KAWANO

ically, in the positions of the main sequence, each mating player’s move except
for the last one must be unique, otherwise the problem is regarded as defective.

It is said that over 100,000 complete Tsume-shogi problems have already been
published. For most of them, mating is completed in less than twenty moves, but
there are also hundreds of problems requiring more than 100 plies. At present,
the 1519-ply “Microcosmos” problem is believed to be the one requiring the
largest number of moves to complete.

We call the solution of Tsume-shogi a mating sequence in this paper.

3. Tsume-shogi Programs

Tsume-shogi programs use one of two approaches: iterative deep search, or
best-first search. At present, the best programs using iterative deep search can
solve problems with 25 or less plies without fail and in a practical time. They
do, however, tend to fail on problems with 27 or more plies since a lot of time is
needed. On the contrary, programs using the idea of best first search often solve
problems requiring large numbers of moves in a short time; but they cannot be
guaranteed to solve any given problem [Ito and Noshita 1994; Matsubara 1993].
Besides this, a hardness result for generalized Tsume-shogi problems has been
shown in [Adachi et al. 1987].

Because of the possibility of dropping, the number of candidate move is usually
much larger than in chess. This rule causes problems not found in computer
chess. One big problem is the treatment of interposed pieces. Consider the
following easy problem in Tsume-shogi:

9 8 7 6 5 4 3 2 1

K

a

P

b

c

d

e

f

g

h

R K L i

no piece in hand

The solution to this problem starts with the move 9i–9a+. (We will use ∗ to
denote a dropped piece and + for promotion.) However, the opponent can drop
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any piece on any square between the Promoted Rook and the King, because
all absent pieces are in the opponent’s hand. This can be done seven times, so
the mating sequence is 15-ply long. These interposed pieces are called muda-ai,
and human players usually ignore them, because they just prolong the mating
sequence without altering it in any essential way. In contrast, a computer will
search through hundreds of thousands of positions if it does not understand
muda-ai.

Muda-ai has no formal definition. Informally, it means any interposed piece in-
capable of essentially changing the mating sequence. Yoshikazu Kakinoki [1990]
proposed an algorithm to determine muda-ai. He defines muda-ai recursively as
follows:

(i) An interposed piece is muda if it is captured at the moment the King is
mated.

(ii) Suppose the King is mated after n moves in the absence of a given inter-
position. The interposed piece is muda if it is immediately captured and not
reused, and the King is mated in n moves, not counting the interposing move
and the capture.

Although there exists no exact algorithmical expression of muda-ai, it is known
that Kakinoki’s algorithm determines muda-ai precisely in most cases, so his
criterion is regarded as a standard. In practice, a definition that “localizes”
the concept of muda-ai by basing it on “imaginary pieces” is adopted by many
programmers. More precisely, suppose the opponent has an infinite supply of
pieces to drop. We judge whether the interposition of such an imaginary piece
at a given square is muda by Kakinoki’s algorithm, and we decree that the muda-
ness of a real dropped interposition at that square is the same. This criterion for
muda-ai sometimes leads to different results from Kakinoki’s original criterion
(which takes into account whether or not the opponent actually has additional
pieces to drop), but it is computationally much more manageable, since it avoids
an explosion of the search space.

4. Using Similar Positions

Since muda-ai reflects the essential equality of mating sequences, Kakinoki’s
algorithm should be recognized as a method capable of determining this essen-
tial equality and its applications. We consider the extension of this decision of
muda-ai.

Priority. We introduce the notion of priority before we define the notion of
simulation. Priority is the total searching order of the opponent’s next moves
at a position: moves of low priority will not be searched for until moves of high
priority are searched for. The same priority is used with moves of corresponding
positions. In Kakinoki’s algorithm, moves other than interpositions have the
highest priority, and interpositions near the King have higher priorities than
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those farther away. In addition, for example, captures by many opponent’s
pieces except for the King are noted as low priorities. The priority is set in the
following discussion.

Though priority is defined locally, we can extend it to a partial order on a set
of moves (nodes) in a game tree for a given problem. We set the priority of each
mating player’s move to be equal to its parent’s. We also introduce the following
relations:

(a) The problem (the root node) has the highest priority in the game tree,

(b) The priority of a move having the highest priority in the local sense is the
same as its parent’s, and

(c) The priority of a move not having the highest priority in the local sense is
lower than its older siblings’ descendents’.

We solve each given problem according to this extended priority. We first restrict
ourselves to our opponent’s moves of highest priority. Each position Q not having
highest priority goes unnoticed until we solve the older sibling of the root node
of the subtree consisting of moves having the same priority as Q. If there exists
a position P that simulates the position Q, we can dispense with the search
for Q. To find such a position P, we appoint candidates beforehand for each
position Q, where the candidates satisfy the relation with Q in high probability;
otherwise, we use a transposition table to find candidates.

Simulation. We define a relation P ≥ Q between positions, read “Q simulates
P”. Let pri(m) and pri(Q) be the priorities of m and Q, where m is a move
and Q is a node of the game tree. Let Ppri(Q) be the problem obtained from P
by restricting ourselves to moves m of our opponent that satisfy the condition
pri(m) 6≤ pri(Q). We write P ≥ Q when we can mate the King of Ppri(Q) and
we can mate the King of Q according to one of the mating sequences for Ppri(Q).
Formally, we define P ≥ Q recursively as follows:

(i) Q is a position for a mating player’s move.Let m be the first move of one of
the mating sequences for Ppri(Q). If m is not a checking move for Q, then
P 6≥ Q. Otherwise, let P′,Q′ be the positions obtained from P,Q by move
m. By definition, P ≥ Q if and only if P′ ≥ Q′.

(ii) Q is a position for an opponent’s move.If Q is a mate, set P ≥ Q. If Q is
not a mate, generate all of the opponent’s next moves mi, for i ∈ Λ. If they
are not properly included in the set of next moves of Ppri(Q), then P 6≥ Q.
Otherwise, let P′

i and Q′
i be the positions obtained from P and Q by move

mi. By definition, P ≥ Q if and only if P′
i ≥ Q′

i for all i ∈ Λ.

Unfortunately, the relation ≥ is not suitable for application to searching in
Tsume-shogi, even though it is natural. For example, an interposed piece at
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in the first of these diagrams would be muda, although P 6≥ Q:

P =

5 4 3 2 1

L

a

b

PR

K

c

G

P

d

e

no piece in hand

Q =

5 4 3 2 1

L

a

b

PR

K

c

G

P

d

e

no piece in hand

The reason why P 6≥ Q is this. In Q, we assume that the opponent will drop
a Pawn on 2c. The recorded next move of Ppri(Q) is 4c–2c. But since 4c in Q is
vacant, Q does not simulate P.

To avoid cases such as this, in which the pieces cannot be moved, we introduce
the relation ≥f , which permits the mating player to choose the next move in
the above definition. We introduce a choice function for the mating player f :
(m, δ) 7→ Ωmδ, where we denote the difference of two positions by δ, and the set
of candidates by Ωmδ. We denote by ≥f the binary relation defined by replacing
case 1 in the definition of ≥ with the following sentence:

(i) Q is a position for a mating player’s move. Let m be the first move of one
of mating sequences of Ppri(Q), and let Ω be the set of checking moves in
Ωmδ for Q. If Ω is empty, then P 6≥f /Q. Otherwise, let P′ and Q′ be the
positions obtained from P and Q by a move m′ ∈ Ω. By definition, P ≥f Q
if and only if there exists m′ ∈ Ω such that P′ ≥f Q′.

We now define muda-ai as follows.

Definition. Let P be a given position in which an interposed piece can forestall
a check. Let Q be a position obtained by capturing the interposed piece imme-
diately, checking, and eliminating the captured piece from the mating player’s
hand. The interposed piece is muda if and only if P ≥f Q.

Under this definition, an interposition at 3c in the preceding example is muda,
since P ≥f Q holds, where the difference δ is based on the positions of the PR,
and we assume that f(4c–?, δ) contains 3c–?.

The relation ≥f depends on the function f . The safety of our method is
guaranteed for any function f , since the following theorem holds independently
of this choice.

Theorem. Suppose P ≥f Q. Then we can mate in Q, and there exists a mating
sequence in Ppri(Q) whose length is greater than or equal to the number of moves
to mate the King of Q.
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Corollary. An interposed piece that is muda under our definition is muda
under Kakinoki’s definition .

5. Examples

Another example of determining muda-ai. An interposed piece at 3c in
the next diagram is non-muda, that is, P 6≥f Q. We can see this as follows.
The recorded response to the opponent’s move P*2c in P is 5a–2d. But in Q, if
the opponent drops a Pawn at 2c, the Bishop cannot be moved to 2d, since the
Promoted Rook is in the way.

P =

5 4 3 2 1

B a

N̂ L

b

PR

K

c

P

d

P e

no piece in hand

Q =

5 4 3 2 1

B a

N̂ L

b

PR

K

c

P

d

P e

no piece in hand

An example of a one-piece difference. The next diagram is an example of
P ≥f Q and Q 6≥f P. We shall show that Q 6≥f P.

P =

5 4 3 2 1

PR

Ŝ K

a

G L

b

P c

P d

e

no piece in hand

Q =

5 4 3 2 1

PR

G K

a

G L

b

P c

P d

e

no piece in hand

(i) The recorded next move of Q is 5a–4a. Therefore, we move the PR on P.
(ii) In the resulting position, we assume that the opponent captures this PR

with his Gold.
(iii) We look at the recorded next move for the moves 5a–4a and 4b–4a in Q. It

is G*2b.
(iv) We assume that f(G*2b, δ) contains S*2b here.
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(v) We cannot find the opponent’s next move 2a-3b in the mating sequence of
Qpri(P).

6. Final Remarks

The proposed best-first search algorithm was implemented by the author. It
performs very well. For example, it is said that today’s human experts, regardless
of the time spent, can only solve about 80% of the problems posed in the well-
known “Shogi Zuko” [Kanju 1755], written in the Edo period. This program,
however, can solve 85% of them in a short time; other programs can solve at
most 70%. The very famous last problem, “Kotobuki” (happiness), is illustrated
below. It requires 611 plies, the longest mating sequence of any Tsume-shogi
from the Edo period. The author’s program solved it in about 8 minutes on an
HP9000 workstation (model735/99MHz). Details are given in [Ito et al. 1995].

9 8 7 6 5 4 3 2 1

G P PR

a

L

P

G P

b

Ŝ P P P

c

L
B d

L

B K

P L e

PP

PR

PP

f

PP PS

Ŝ g

PN PP G

Ŝ h

G PP

P L i

four pawns in hand
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Note Added in Proof

After this paper had been written, Masahiro Seo pubished new results of his
research. His Tsume-shogi program can solve 99% of problems in [Kanju 1755].
See [Seo 1995] for details.
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