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Abstract. A Richman game is a combinatorial game in which, rather than
alternating moves, the two players bid for the privilege of making the next
move. We find optimal strategies for both the case where a player knows
how much money his or her opponent has and the case where the player
does not.

1. Introduction

There are two game theories. The first is now sometimes referred to as matrix
game theory and is the subject of the famous von Neumann and Morgenstern
treatise [1944]. In matrix games, two players make simultaneous moves and a
payment is made from one player to the other depending on the chosen moves.
Optimal strategies often involve randomness and concealment of information.

The other game theory is the combinatorial theory of Winning Ways [Berle-
kamp et al. 1982], with origins back in the work of Sprague [1936] and Grundy
[1939] and largely expanded upon by Conway [1976]. In combinatorial games,
two players move alternately. We may assume that each move consists of sliding
a token from one vertex to another along an arc in a directed graph. A player who
cannot move loses. There is no hidden information and there exist deterministic
optimal strategies.

In the late 1980’s, David Richman suggested a class of games that share some
aspects of both sorts of game theory. Here is the set-up: The game is played
by two players (Mr. Blue and Ms. Red), each of whom has some money. There
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is an underlying combinatorial game in which a token rests on a vertex of some
finite directed graph. There are two special vertices, denoted by b and r; Blue’s
goal is to bring the token to b and Red’s goal is to bring the token to r. The two
players repeatedly bid for the right to make the next move. One way to execute
this bidding process is for each player to write secretly on a card a nonnegative
real number no larger than the number of dollars he or she has; the two cards
are then revealed simultaneously. Whoever bids higher pays the amount of the
bid to the opponent and moves the token from the vertex it currently occupies
along an arc of the directed graph to a successor vertex. Should the two bids
be equal, the tie is broken by a toss of a coin. The game ends when one player
moves the token to one of the distinguished vertices. The sole objective of each
player is to make the token reach the appropriate vertex: at the game’s end,
money loses all value. The game is a draw if neither distinguished vertex is ever
reached.

Note that with these rules (compare with [Berlekamp 1996]), there is never
a reason for a negative bid: since all successor vertices are available to both
players, it cannot be preferable to have the opponent move next. That is to say,
there is no reason to part with money for the chance that your opponent will
carry out through negligence a move that you yourself could perform through
astuteness.

A winning strategy is a policy for bidding and moving that guarantees a
player the victory, given fixed initial data. (These initial data include where the
token is, how much money the player has, and possibly how much money the
player’s opponent has.) In section 2, we explain how to find winning strategies
for Richman games. In particular, we prove the following facts, which might
seem surprising:

• Given a starting vertex v, there exists a critical ratio R(v) such that Blue has
a winning strategy if Blue’s share of the money, expressed as a fraction of the
total money supply, is greater than R(v), and Red has a winning strategy if
Blue’s share of the money is less than R(v). (This is not so surprising in the
case of acyclic games, but for games in general, one might have supposed it
possible that, for a whole range of initial conditions, play might go on forever.)

• There exists a strategy such that if a player has more than R(v) and applies
the strategy, the player will win with probability 1, without needing to know
how much money the opponent has.

In proving these assertions, it will emerge that a critical (and in many cases
optimal) bid for Blue is R(v) − R(u) times the total money supply, where v is
the current vertex and u is a successor of v for which R(u) is as small as possible.
A player who cannot bid this amount has already lost, in the sense that there
is no winning strategy for that player. On the other hand, a player who has
a winning strategy of any kind and bids R(v) − R(u) will still have a winning
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strategy one move later, regardless of who wins the bid, as long as the player is
careful to move to u if he or she does win the bid.

It follows that we may think of R(v)−R(u) as the “fair price” that Blue should
be willing to pay for the privilege of trading the position v for the position u.
Thus we may define 1−R(v) as the Richman value of the position v, so that the
fair price of a move exactly equals the difference in values of the two positions.
However, it is more convenient to work with R(v) than with 1− R(v). We call
R(v) the Richman cost of the position v.

We will see that for all v other than the distinguished vertices b and r, R(v) is
the average of R(u) and R(w), where u and w are successors of v in the digraph
that minimize and maximize R(·), respectively. In the case where the digraph
underlying the game is acyclic, this averaging-property makes it easy to compute
the Richman costs of all the positions, beginning with the positions b and r and
working backwards. If the digraph contains cycles it is not so easy to work out
precise Richman costs.

We defer most of our examples to another paper [Lazarus et al.], in which we
also consider infinite digraphs and discuss the complexity of the computation of
Richman costs.

2. The Richman Cost Function

Henceforth, D will denote a finite directed graph (V, E) with a distinguished
blue vertex b and a distinguished red vertex r such that from every vertex there
is a path to at least one of the distinguished vertices. For v ∈ V , let S(v) denote
the set of successors of v in D, that is, S(v) = {w ∈ V : (v, w) ∈ E}. Given any
function f : V → [0, 1], we define

f+(v) = max
w∈S(v)

f(w) and f−(v) = min
u∈S(v)

f(u).

The key to playing the Richman game on D is to attribute costs to the vertices
of D such that the cost of every vertex (except r and b) is the average of the
lowest and highest costs of its successors. Thus, a function R : V → [0, 1] is
called a Richman cost function if R(b) = 0, R(r) = 1, and for every other v ∈ V

we have R(v) = 1
2 (R+(v)+R−(v)). (Note that Richman costs are a curious sort

of variant on harmonic functions on Markov chains [Woess 1994], where instead
of averaging over all the successor-values, we average only over the two extreme
values.) The relations R+(v) ≥ R(v) ≥ R−(v) and R+(v) + R−(v) = 2R(v) will
be much used in what follows.

Theorem 2.1. The digraph D has a Richman cost function R(v).

Proof. We introduce a function R(v, t), whose game-theoretic significance will
be made clearer in Theorem 2.2. Let R(b, t) = 0 and R(r, t) = 1 for all t ∈ N.
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For v /∈ {b, r}, define R(v, 0) = 1 and

R(v, t) = 1
2 (R+(v, t− 1) + R−(v, t− 1))

for t > 0. It is easy to see that R(v, 1) ≤ R(v, 0) for all v, and a simple induction
shows that R(v, t+1) ≤ R(v, t) for all v and all t ≥ 0. Therefore R(v, t) is weakly
decreasing and bounded below by zero as t → ∞, hence convergent. It is also
evident that the function v 7→ lim

t→∞R(v, t) satisfies the definition of a Richman
cost function. �

Alternate proof. Identify functions f : V (D) → [0, 1] with points in the
|V (D)|-dimensional cube Q = [0, 1]|V (D)|. Given f ∈ Q, define g ∈ Q by g(b) =
0, g(r) = 1, and, for every other v ∈ V , g(v) = 1

2 (f+(v) + f−(v)). The map
f 7→ g is clearly a continuous map from Q into Q, and so by the Brouwer fixed
point theorem it has a fixed point. This fixed point is a Richman cost function.

�

This Richman cost function does indeed govern the winning strategy, as we now
prove.

Theorem 2.2. Suppose Blue and Red play the Richman game on the digraph
D with the token initially located at vertex v. If Blue’s share of the total money
exceeds R(v) = limt→∞R(v, t), Blue has a winning strategy. Indeed , if his share
of the money exceeds R(v, t), his victory requires at most t moves .

Proof. Without loss of generality, money may be scaled so that the total supply
is one dollar. Whenever Blue has over R(v) dollars, he must have over R(v, t)
dollars for some t. We prove the claim by induction on t. At t = 0, Blue has
over R(v, 0) dollars only if v = b, in which case he has already won.

Now assume the claim is true for t − 1, and let Blue have more than R(v, t)
dollars. There exist neighbors u and w of v such that R(u, t− 1) = R−(v, t− 1)
and R(w, t−1) = R+(v, t−1), so that R(v, t) = 1

2 (R(w, t−1)+R(u, t−1)). Blue
can bid 1

2 (R(w, t−1)−R(u, t−1)) dollars. If Blue wins the bid at v, then he moves
to u and forces a win in at most t−1 moves (by the induction hypothesis), since he
has more than 1

2 (R(w, t−1)+R(u, t−1))− 1
2 (R(w, t−1)−R(u, t−1)) = R(u, t−1)

dollars left. If Blue loses the bid, then Red will move to some z, but Blue now
has over 1

2 (R(w, t−1)+R(u, t−1))+ 1
2 (R(w, t−1)−R(u, t−1)) = R(w, t−1) ≥

R(z, t− 1) dollars, and again wins by the induction hypothesis. �

One can define another function R′(v, t) where R′(b, t) = 0 and R′(r, t) = 1 for
all t ∈ N, and R′(v, 0) = 0 and R′(v, t) = 1

2 (R+(v, t − 1) + R−(v, t − 1)) for
v /∈ {b, r} for t > 0. By an argument similar to the proof of Theorem 2.2, this
also converges to a Richman cost function R′(v) ≤ R(v) (with R(v) defined as in
the proof of Theorem 2.1). Thus, R′(v, t) indicates how much money Blue needs
to prevent Red from forcing a win from v in t or fewer moves, so R′(v) indicates
how much money Blue needs to prevent Red from forcing a win in any length of
time.
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For certain infinite digraphs, it can be shown [Lazarus et al.] that R′(v) is
strictly less than R(v). When Blue’s share of the money supply lies strictly
between R′(v) and R(v), each player can prevent the other from winning. Thus,
optimal play leads to a draw.

Nevertheless, in this paper, we assume that D is finite, and we can conclude
that there is a unique Richman cost function R′(v) = R(v).

Theorem 2.3. The Richman cost function of the digraph D is unique.

The proof of Theorem 2.3 requires the following definition and technical lemma.
An edge (v, u) is said to be an edge of steepest descent if R(u) = R−(v). Let v̄

be the transitive closure of v under the steepest-descent relation. That is, w ∈ v̄

if there exists a path v = v0, v1, v2, . . . , vk = w such that (vi, vi+1) is an edge
of steepest descent for i = 0, 1, . . . , k − 1.

Lemma 2.4. Let R be any Richman cost function of the digraph D. If R(z) < 1,
then z̄ contains b.

Proof. Suppose R(z) < 1. Choose v ∈ z̄ such that R(v) = min
u∈z̄

R(u). Such a v

must exist because D (and hence z̄) is finite. If v = b, we’re done. Otherwise,
assume v 6= b, and let u be any successor of v. The definition of v implies
R−(v) = R(v), which forces R+(v) = R(v). Since R(u) lies between R−(v) and
R+(v), R(u) = R(v) = R−(v). Hence (v, u) is an edge of steepest descent, so u ∈
z̄. Moreover, u satisfies the same defining property that v did (it minimized R(·)
in the set z̄), so the same proof shows that for any successor w of u, R(w) = R(u)
and w ∈ z̄. Repeating this, we see that for any point w that may be reached
from v, R(w) = R(v) and w ∈ z̄. On the other hand, R(r) is not equal to R(v)
(since R(v) ≤ R(z) < 1 = R(r)), so r cannot be reached from v. Therefore b can
be reached from v, so we must have b ∈ z̄. �

Theorem 2.3. Suppose that R1 and R2 are Richman cost functions of D.
Choose v such that R1 −R2 is maximized at v; such a v exists since D is finite.
Let M = R1(v) − R2(v). Choose u1, w1, u2, w2 (all successors of v) such that
R−

i (v) = R(ui) and R+
i (v) = R(wi). Since R1(u1) ≤ R1(u2), we have

R1(u1)−R2(u2) ≤ R1(u2)−R2(u2) ≤ M. (2.1)

(The latter inequality follows from the definition of M .) Similarly, R2(w2) ≥
R2(w1), so

R1(w1)−R2(w2) ≤ R1(w1)−R2(w1) ≤ M (2.2)

Adding (2.1) and (2.2), we have

(R1(u1) + R1(w1))− (R2(u2) + R2(w2)) ≤ 2M.

The left side is 2R1(v) − 2R2(v) = 2M , so equality must hold in (2.1). In
particular, R1(u2)−R2(u2) = M ; i.e., u2 satisfies the hypothesis on v. Since u2

was any vertex with R2(u2) = R−
2 (v), induction shows that R1(u)−R2(u) = M
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for all u ∈ v̄, where descent is measured with respect to R2. Since R1(b)−R2(b) =
0 and b ∈ v̄, we have R1(v) − R2(v) ≤ 0 everywhere. That is, R1 ≤ R2. The
same argument for R2 −R1 shows the opposite inequality, so R1 = R2. �

The uniqueness of the Richman cost function implies in particular that the func-
tion R′ defined after the proof of Theorem 2.2 coincides with the function R

constructed in the first proof of Theorem 2.1. From this we deduce the follow-
ing:

Corollary 2.5. Suppose Blue and Red play the Richman game on the digraph
D with the token initially located at vertex v. If Blue’s share of the total money
supply is less than R(v) = lim

t→∞R(v, t), then Red has a winning strategy. �

It is also possible to reverse the order of proof, and to derive Theorem 2.3 from
Corollary 2.5. For, if there were two Richman functions R1 and R2, with R1(v) <

R2(v), say, then by taking a situation in which Blue’s share of the money was
strictly between R1(v) and R2(v), we would find that both Blue and Red had
winning strategies, which is clearly absurd.

Theorem 2.2 and Corollary 2.5 do not cover the critical case where Blue has
exactly R(v) dollars. In this case, with both players using optimal strategy, the
outcome of the game depends on the outcomes of the coin-tosses used to resolve
tied bids. Note, however, that in all other cases, the deterministic strategy
outlined in the proof of Theorem 2.2 works even if the player with the winning
strategy concedes all ties and reveals his intended bid and intended move before
the bidding.

Summarizing Theorem 2.2 and Corollary 2.5, we may say that if Blue’s share
of the total money supply is less than R(v), Red has a winning strategy, and if it
is greater, Blue has a winning strategy (see [Lazarus et al.] for a fuller discussion).

3. Other Interpretations

Suppose the right to move the token is decided on each turn by the toss of a
fair coin. Then induction on t shows that the probability that Red can win from
the position v in at most t moves is equal to R(v, t), as defined in the previous
section. Taking t to infinity, we see that R(v) is equal to the probability that
Red can force a win against optimal play by Blue. That is to say, if both players
play optimally, R(v) is the chance that Red will win. The uniqueness of the
Richman cost function tells us that 1−R(v) must be the chance that Blue will
win. The probability of a draw is therefore zero.

If we further stipulate that the moves themselves must be random, in the
sense that the player whose turn it is to move must choose uniformly at random
from the finitely many legal options, we do not really have a game-like situation
anymore; rather, we are performing a random walk on a directed graph with two
absorbing vertices, and we are trying to determine the probabilities of absorption
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at these two vertices. In this case, the relevant probability function is just the
harmonic function on the digraph D (or, more properly speaking, the harmonic
function for the associated Markov chain [Woess 1994]).

Another interpretation of the Richman cost, brought to our attention by Noam
Elkies, comes from a problem about makings bets. Suppose you wish to bet (at
even odds) that a certain baseball team will win the World Series, but that your
bookie only lets you make even-odds bets on the outcomes of individual games.
Here we assume that the winner of a World Series is the first of two teams to win
four games. To analyze this problem, we create a directed graph whose vertices
correspond to the different possible combinations of cumulative scores in a World
Series, with two special terminal vertices (blue and red) corresponding to victory
for the two respective teams. Assume that your initial amount of money is $500,
and that you want to end up with either $0 or $1000, according to whether
the blue team or the red team wins the Series. Then it is easy to see that the
Richman cost at a vertex tells exactly how much money you want to have left
if the corresponding state of affairs transpires, and that the amount you should
bet on any particular game is $1000 times the common value of R(v)−R(u) and
R(w)−R(v), where v is the current position, u is the successor position in which
Blue wins the next game, and v is the successor position in which Red wins the
next game.

4. Incomplete Knowledge

Surprisingly, it is often possible to implement a winning strategy without
knowing how much money one’s opponent has.

Define Blue’s safety ratio at v as the fraction of the total money that he has
in his possession, divided by R(v) (the fraction that he needs in order to win).
Note that Blue will not know the value of his safety ratio, since we are assuming
that he has no idea how much money Red has.

Theorem 4.1. Suppose Blue has a safety ratio strictly greater than 1. Then Blue
has a strategy that wins with probability 1 and does not require knowledge of Red’s
money supply. If , moreover , the digraph D is acyclic, his strategy wins regardless
of tiebreaks ; that is , “with probability 1” can be replaced by “definitely”.

Proof. Here is Blue’s strategy: When the token is at vertex v, and he has
B dollars, he should act as if his safety ratio is 1; that is, he should play as if
Red has Rcrit dollars with B/(B+Rcrit) = R(v) and the total amount of money
is B + Rcrit = B/R(v) dollars. He should accordingly bid

X =
R(v)−R−(v)

R(v)
B
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dollars. Suppose Blue wins (by outbidding or by tiebreak) and moves to u along
an edge of steepest descent. Then Blue’s safety ratio changes

from

(
B

B + R

)

R(v)
to

(
B −X

B + R

)

R(u)
,

where R is the actual amount of money that Red has. However, these two safety
ratios are actually equal, since

B −X

B
= 1− X

B
= 1− R(v)−R(u)

R(v)
=

R(u)
R(v)

.

Now suppose instead that Red wins the bid (by outbidding or by tiebreak) and
moves to z. Then Blue’s safety ratio changes

from

(
B

B + R

)

R(v)
to

(
B + Y

B + R

)

R(z)
,

with Y ≥ X . Note that the new safety ratio is greater than or equal to
(

B + X

B + R

)

R(w)
,

where R(w) = R+(v). But this lower bound on the new safety ratio is equal to
the old safety ratio, since

B + X

B
= 1 +

X

B
= 1 +

R(w) −R(v)
R(v)

=
R(w)
R(v)

.

In either case, the safety ratio is nondecreasing, and in particular must stay
greater than 1. On the other hand, if Blue were to eventually lose the game,
his safety ratio at that moment would have to be at most 1, since his fraction
of the total money supply cannot be greater than R(r) = 1. Consequently, our
assumption that Blue’s safety ratio started out being greater than 1 implies that
Blue can never lose. In an acyclic digraph, infinite play is impossible, so the
game must terminate at b with a victory for Blue.

In the case where cycles are possible, suppose first that at some stage Red
outbids Blue by εB > 0 and gets to make the next move, say from v to w. If
Blue was in a favorable situation at v, the total amount of money that the two
players have between them must be less than B/R(v). On the other hand, after
the payoff by Red, Blue has

B + X + εB =
(
1 +

R(v)−R(u)
R(v)

+ ε
)
B

=
(2R(v)−R(u)

R(v)
+ ε

)
B

=
(

R(w)
R(v)

+ ε
)
B,
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so that Blue’s total share of the money must be more than R(w) + εR(v). Blue
can do this calculation as well as we can; he then knows that if he had been in a
winning position to begin with, his current share of the total money must exceed
R(w)+εR(v). Now, R(w)+εR(v) is greater than R(w, t) for some t, so Blue can
win in t moves. Thus, Red loses to Blue’s strategy if she ever bids more than he
does. Hence, if she hopes to avoid losing, she must rely entirely on tiebreaking.
Let N be the length of the longest path of steepest descent in the directed graph
D. Then Blue will win the game when he wins N consecutive tiebreaks (if not
earlier). �

When D has cycles, Blue may need to rely on tiebreaks in order to win, as in
the case of the Richman game played on the digraph pictured in Figure 4.
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Figure 1. The digraph D and its Richman costs.

Suppose that the token is at vertex v, that Blue has B dollars, and that
Red has R dollars. Clearly, Blue knows he can win the game if B > R. But
without knowing R, it would be imprudent for him to bid any positive amount
εB for fear that Red actually started with (1− ε)B dollars; for if that were the
case, and his bid were to prevail, the token would move to a vertex where the
Richman cost is 1

2 and Blue would have less money than Red. Such a situation
will lead to a win for Red with probability 1 if she follows the strategy outlined
in Theorem 2.2.

5. Rationality

For every vertex v of the digraph D (other than b and r), let v+ and v− denote
successors of v for which R(v+) = R+(v) and R(v−) = R−(v). Then we have
R(b) = 0, R(r) = 1, and 2R(v) = R(v+) + R(v−) for v 6= b, r. We can view this
as a linear program. By Theorem 2.3, this system must have a unique solution.
Since all coefficients are rational, we see that Richman costs are always rational
numbers.

The linear programming approach also gives us a conceptually simple (though
computationally dreadful) way to calculate Richman costs. If we augment our
program by adding additional conditions of the form R(v−) ≤ R(w) and R(v+) ≥
R(w), where v ranges over the vertices of D other than b and r and where, for
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each v, w ranges over all the successors of v, then we are effectively adding in
the constraint that the edges from v to v− and v+ are indeed edges of steepest
descent and ascent, respectively. The uniqueness of Richman costs tells us that
if we let the mappings v 7→ v− and v 7→ v+ range over all possibilities (subject to
the constraint that both v− and v+ must be successors of v), the resulting linear
programs (which typically will have no solutions at all) will have only solutions
that correspond to the genuine Richman cost functions. Hence, in theory one
could try all the finitely many possibilities for v 7→ v− and v 7→ v+ and solve the
associated linear programs until one found one with a solution. However, the
amount of time such an approach would take increases exponentially with the
size of the directed graph. In [Lazarus et al.], we discuss other approaches.

We will also discuss in [Lazarus et al.], among other things, a variant of
Richman games, which we call “Poorman” games, in which the winning bid is
paid to a third party (auctioneer or bank) rather than to one’s opponent. The
whole theory carries through largely unchanged, except that Poorman costs are
typically irrational.
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