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Take-Away Games

MICHAEL ZIEVE

Abstract. Several authors have considered take-away games where the
players alternately remove a positive number of counters from a single pile,
the player removing the last counter being the winner. On his initial move,
the first player may remove any number of counters, so long as he leaves
at least one. On each subsequent move, a player may remove at most f(n)
counters, where n is the number of counters removed by his opponent on
the preceding move. We prove various results (improving all previously
known results) about the sequence of losing positions when f is a linear
function.

1. Introduction

Several works, including [Berlekamp et al. 1982; Epp and Ferguson 1980;
Schwenk 1970], have studied take-away games where the players alternately re-
move a positive number of counters from a single pile, the player removing the
last counter being the winner. On his initial move, the first player may remove
any number of counters, so long as he leaves at least one. On each subsequent
move, a player may remove at most f(n) counters, where n is the number of
counters removed by his opponent on the preceding move. Thus, any mapping
f from the positive integers to themselves defines such a take-away game.

Epp and Ferguson [1980] considered the case where f is nondecreasing and
f(1) ≥ 1. For any such f , let H1 = 1, H2, . . . be the sizes of the initial pile
from which the first player has no winning strategy; we call these the losing
positions (these are the P-positions of [Berlekamp et al. 1982], the P standing
for a Previous-player win). We will study this sequence of losing positions. We
begin with a result from [Epp and Ferguson 1980]:

Theorem 1.1. If f(Hj) ≥ Hj , then Hj+1 = Hj +Hl, where

Hl = min
i≤j

{Hi|f(Hi) ≥ Hj}.

If f(Hj) < Hj , the sequence of losing positions is finite and Hj is the final term.
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Proof. Assume f(Hj) ≥ Hj ; then Hl = mini≤j{Hi : f(Hi) ≥ Hj} exists. For
any losing position Hi < Hl, we have f(Hi) < Hj , so from an initial pile of size
Hj +Hi the first player can remove Hi counters and win (since this leaves the
second player a pile of size Hj from which he cannot remove all counters, so he
is in a losing position).

Now let x < Hl be a winning position. Given a pile of size Hj + x, the
first player can employ a winning strategy for a pile of size x whose final move
removes y counters, where f(y) < Hj ; this leaves the second player with a pile
of size Hj from which he cannot remove all counters, and the first player wins.
(He can always arrange for y to satisfy this property because, if the last move y
of a winning strategy for x satisfies instead f(y) ≥ Hj , then y < Hl cannot be a
losing position, and consideration of a winning strategy for y leads to a smaller
final move.)

Finally, from a pile of size Hj +Hl, if the first player takes at leastHl counters
the second player takes the rest and wins; if the first player takes fewer than Hl

counters, we fall into the preceding paragraph’s situation, with roles reversed.
This proves the first statement of the theorem.

If f(Hj) < Hj , suppose we had Hj+1 = Hj +x for some x. As above, x cannot
be any Hi, since the first player wins from Hj + Hi by removing Hi counters
(since f(Hi) ≤ f(Hj) < Hj). Since x < Hj+1, x must be a winning position;
thus, the first player can win from Hj + x by employing a winning strategy for
x whose final move is y, where f(y) < Hj . Thus Hj+1 is not a losing position,
which is a contradiction, so in fact there is no Hj+1. �

A natural question is whether the sequence of losing positions eventually becomes
a simple linear recursion Hi+1 = Hi + Hi−k for sufficiently large i. For the
functions f(n) = cn, where c ≥ 1, the answer is yes, as proved in [Schwenk
1970]; a positive answer for the functions f(n) = cn − 1, where c ≥ 2, was
claimed in [Berlekamp et al. 1982].

In this paper we modify the methods of [Schwenk 1970] to give a positive
answer for functions f(n) = cn−d, where c−1 ≥ d ≥ 0. Using entirely different
methods we give a positive answer for functions f(n) = cn+ d, where c ≥ 1 and
d > 0. We also derive results describing k, the degree of the recursion, in terms
of c (our results do not depend on d); these are the first results about k that
have been found. For certain small values of c we sharpen the general results to
find k exactly. We also present algorithms for computing k and prove that they
are valid. We have implemented these algorithms for several linear functions f ,
and we make several conjectures based on this data (in particular, about the
dependence of k on d).

2. The Functions f(n) = cn − d

This section is devoted to the proof of the following result.
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Theorem 2.1. In the game associated to the function f(n) = cn − d, where
c − 1 ≥ d ≥ 0, there is a nonnegative integer k such that the sequence of losing
positions Hi satisfies Hi+1 = Hi +Hi−k for all sufficiently large i.

Note that f(n) ≥ n for all n, so Theorem 1.1 implies that the sequence of losing
positions is infinite. The theorem follows from the following two lemmas.

Lemma 2.2. If Hi ≤ f(Hj), then Hi+1 ≤ f(Hj+1).

Proof. Decreasing j if necessary, we may assume Hi+1 = Hi + Hj . Also,
Hj+1 = Hj +Hl where f(Hl) ≥ Hj . Thus,

f(Hj+1) = cHj+1 − d = cHj + cHl − d

≥ cHj +Hj = f(Hj) + d+Hj ≥ Hi + d+Hj = Hi+1 + d,

and the lemma is proved. �

Lemma 2.3. There exists a positive integer r such that f(Hn−r) < Hn for all
n > r.

Proof. For any integer i ≥ 1 we have Hi+1 = Hi + Hj , where cHj − d =
f(Hj) ≥ Hi; thus,

Hi+1

Hi
= 1 +

Hj

Hi
≥ 1 +

1
c
.

Let r be any integer for which (1 + 1/c)r > c; then, for any n > r,

Hn

Hn−r
=

n−1∏
i=n−r

Hi+1

Hi
≥

(
1 +

1
c

)r

> c.

Thus, f(Hn−r) ≤ cHn−r < Hn. �

Theorem 2.1. Each Hi+1 equals Hi +Hj for some j ≤ i; Lemma 2.2 implies
that the sequence of differences i − j is nondecreasing, and Lemma 2.3 implies
that this sequence is bounded above by r − 1, so together they show that the
sequence must be constant for sufficiently large i. This limiting value is the k
described in the theorem. �

3. The Functions f(n) = cn + d

The proof that the sequence of losing positions for the take-away game aso-
ciated to f(n) = cn− d eventually satisfies a simple recursion was quite simple:
the sequence of differences i− j (where Hi+1 = Hi +Hj) was shown to be non-
decreasing and bounded. The sequence of differences for f(n) = cn+d, however,
is generally not monotonic, so one cannot hope for such a simple proof in this
case.

Theorem 3.1. In the take-away game associated to the function f(n) = cn+ d,
where c ≥ 1 and d > 0, there is a nonnegative integer k such that the sequence
of losing positions Hi satisfies Hi+1 = Hi +Hi−k for all sufficiently large i.
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Proof. First, any function f as in the theorem satisfies f(n) ≥ n for all n, so
Theorem 1.1 implies that the sequence of losing positions is infinite. Now, each
Hi+1 equals Hi +Hj for some j ≤ i; we will show that the sequence of differences
i− j is nonincreasing for sufficiently large i, which implies that the sequence is
eventually constant, finishing the proof.

Define J0 = {1}, and inductively

Ji+1 = {α : Hα = Hα−1 +Hr for r ∈ Ji}.
Let ri and si be the minimal and maximal elements of Ji, respectively. We
claim that every Ji is a finite nonempty set of consecutive integers, Ji = {ri, ri +
1, . . . , si}, and that ri+1 = si + 1; thus the sets J0, J1, . . . partition the positive
integers into intervals. The proof of this claim is inductive: we have

J1 = {α : Hα = Hα−1 + 1} = {α : Hα−1 ≤ f(1)} = {2, 3, . . . , s2}
and, for i ≥ 1,

Ji+1 = {α : f(Hr−1) < Hα−1 ≤ f(Hr), r ∈ Ji}
= {α : f(Hri−1) < Hα−1 ≤ f(Hsi)},

so Ji+1 is a finite set of consecutive integers whose least element is si + 1; thus
the claim is proved. Now, every positive integer j is in some Ji, and we define
ψ(j) = i. Then ψ is a nondecreasing function.

Suppose that, for each α ∈ Ji (where i > 0, so that α > 1), the unique
r satisfying Hα = Hα−1 + Hr also satisfies Hα ≥ f(Hr) − dε. Then, for any
β ∈ Ji+1, we have Hβ = Hβ−1 +Hα for some α ∈ Ji, so Hα ≥ f(Hr)− dε. Thus
f(Hα−1) < Hβ−1 ≤ f(Hα). Now

Hβ − f(Hα) = Hβ−1 +Hα − f(Hα) = Hβ−1 +Hα − cHα − d

> f(Hα−1) +Hα − cHα − d = cHα−1 +Hα − cHα = Hα − cHr

= Hα + d− f(Hr) ≥ d− dε,

so Hβ > f(Hα)− d(ε− 1).
Put ε = (c + d − 2)/d. Note that J1 = {2, 3, . . . , bc+ dc+ 1}, where bc+ dc

denotes the greatest integer not exceeding c + d. For any α ∈ J1, we have
Hα = Hα−1 +H1, and

f(H1)− dε = c+ d− dε = 2 ≤ Hα.

By the above paragraph, for each α ∈ Ji, the unique r satisfyingHα = Hα−1+Hr

also satisfies Hα ≥ f(Hr)− d(ε+ 1− i).
For any j > 1 such that i = ψ(j) ≥ max{2, 1 + ε}, we have Hj = Hj−1 +Hm

where m ∈ Ji−1. Since i ≥ 1, we have Hm = Hm−1 +Ht, where

Hm ≥ f(Ht)− d(ε+ 2− i) ≥ f(Ht)− d.
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Now, since f(Hm−1) < Hj−1 ≤ f(Hm), we get

Hj − f(Hm) = Hj−1 +Hm − cHm − d

> f(Hm−1)− d+Hm − cHm

= cHm−1 +Hm − cHm = Hm − cHt = Hm − f(Ht) + d ≥ 0,

so Hj > f(Hm). Thus, if Hj+1 = Hj +Hl, we have f(Hl) ≥ Hj , so l > m, and
thus the difference j − l ≤ (j − 1)−m.

We have now shown that, for sufficiently large j, the sequence of differences
j − r, where Hj+1 = Hj +Hr, is nonincreasing; since each such difference is a
nonnegative integer, this implies that the sequence is eventually constant, which
completes the proof. �

4. The Degree of the Recursion

The theorems of the previous two sections imply that, if f(n) = cn+ d where
c ≥ 1 and d ≥ 1 − c, the sequence of losing positions Hi for the corresponding
take-away game satisfies Hi+1 = Hi + Hi−k for all sufficiently large i. In this
section we derive some general results about k. Our methods use only the ulti-
mate behavior of the sequence, namely that Hi+1 = Hi +Hi−k for sufficiently
large i, and disregard the early behavior.

Theorem 4.1. If f(n) = cn + d where c > 1 and d ≥ 1 − c, and the sequence
of losing positions for the corresponding take-away game satisfies the recursion
Hi+1 = Hi +Hi−k for all sufficiently large i, then

log (c− 1)
log c− log (c− 1)

≤ k ≤ log c
log (c+ 1)− log c

.

Proof. We will only consider i that are “sufficiently large”, so we may assume
that Hi+1 = Hi + Hi−k for all i under consideration. The characteristic poly-
nomial for this recursion relation is g(x) = xk+1 − xk − 1. By Descartes’ rule of
signs, g has exactly one positive real root, which we will denote by r. Note that
g(t) → +∞ as t→ +∞, where t is a real variable; thus, for t > r we must have
g(t) > 0. Now, any complex root z of this polynomial satisfies

1 = |zk+1 − zk| = |z|k · |z − 1| ≥ |z|k · (|z| − 1) = |z|k+1 − |z|k,
or equivalently g(|z|) ≤ 0. Thus, |z| ≤ r. If |z| = r then g(|z|) = 0, so we have
equality in the displayed equation above, implying that |z − 1| = |z| − 1; by the
equality criteria for the triangle inequality, this last equality implies that z is a
nonnegative real number, so z = r. Thus, any complex root of g other than r

has absolute value less than r. Since r is necessarily a simple root of g, it follows
by a standard result about linear recursion relations that

lim
i→∞

Hi+1

Hi
= r.
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Since cHi−1 + d < Hi+k ≤ cHi + d, we have

Hi−1

Hi+k
<

1− d/Hi+k

c
≤ Hi

Hi+k
;

taking the limit as i→∞, we see that

1
rk+1

≤ 1
c
≤ 1
rk
,

or, equivalently, rk ≤ c ≤ rk+1. Note that r > 1, since f(1) < 0; now, since
rk = 1/(r − 1), we have

rk ≤ c ≤ rk+1

⇔ 1/(r − 1) ≤ c ≤ r/(r − 1)

⇔ 1/c ≤ r − 1 and (c− 1)r ≤ c

⇔ (c+ 1)/c ≤ r ≤ c/(c− 1)

⇔ g
(
c+ 1
c

)
≤ 0 ≤ g

(
c

c− 1

)

⇔
(
c+ 1
c

)k(1
c

)
≤ 1 ≤

(
c

c− 1

)k( 1
c− 1

)

⇔ k
(
log (c+ 1)− log c

)
− log c ≤ 0 ≤ k

(
log c− log (c− 1)

)
− log (c− 1)

⇔ log (c− 1)
log c− log (c− 1)

≤ k ≤ log c
log (c+ 1)− log c

,

which completes the proof. �

Define χ(c) = (log c)/
(
log (c+ 1)− log c

)
for c > 0. Then the result of the above

theorem is that χ(c− 1) ≤ k ≤ χ(c).

Lemma 4.2. The function χ(c) is increasing for c > 1.

Proof. Since

χ(c) =
1

log (c+ 1)/ log c − 1

for c > 1, this function is increasing if and only if

φ(c) =
log (c+ 1)

log c

is decreasing. But its derivative satisfies

φ′(c) =
(log c)/(c+ 1)− (

log (c+ 1)
)
/c

(log c)2
=
c log c− (c+ 1) log (c+ 1)

c(c+ 1)(log c)2
< 0,

so indeed φ is decreasing, hence χ is increasing for c > 1. �
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Corollary 4.3. For any integers c1, c2, d1, d2 such that c1 − 1 ≥ c2 ≥ 2 and
d1 ≥ 1− c1, d2 ≥ 1− c2, we have k1 > k2, where the losing positions of the take-
away game associated to the function f(n) = cjn+dj satisfy Hi+1 = Hi +Hi−kj

for sufficiently large i.

Proof. We have k2 ≤ χ(c2) ≤ χ(c1 − 1) ≤ k1; if k2 = k1 every equality would
hold, so χ(c2) = k2 would be an integer and 1 + 1/χ(c2) = log (c2 + 1)/ log c2
would be a rational number, implying that c2 +1 is a rational power of c2, which
cannot hold in light of the unique prime factorization theorem for the integers.

�

When d1 = d2 = 0, this corollary becomes:

Corollary 4.4. For any integers c1 > c2 ≥ 2, the degree of the recursion
satisfied by the ultimate losing positions for f(n) = c1n is greater than the cor-
responding degree for f(n) = c2n.

References [Berlekamp et al. 1982; Schwenk 1970; Whinihan 1963] asked for
results about these degrees; the above corollary and the preceding theorem are
the first such results.

Theorem 4.1 gives an interval, in terms of c, in which the degrees correspond-
ing to all f(n) = cn + d lie; the length of this interval, χ(c) − χ(c − 1), is
asymptotic to log c as c→∞, since χ(c) is asymptotic to c log c.

5. Special Values of c

In this section we derive sharp results about the degree corresponding to
f(n) = cn+ d when c has certain special values.

Proposition 5.1. For any positive real number d, the sequence of losing posi-
tions for the take-away game corresponding to f(n) = n+d satisfies Hi+1 = 2Hi

for all sufficiently large i.

Note that this could be stated: if c = 1 the degree is 0.

Proof. Since the Hi form an increasing sequence of positive integers, there is
some Hi > 2d. Then Hi+1 = Hi + Hr, where Hr + d ≥ Hi. Thus Hi + d ≤
Hr + 2d < Hr + Hi = Hi+1, so Hi+2 = 2Hi+1. Then f(Hi+1) < Hi+2, so
Hi+3 = 2Hi+2, and so on. �

Proposition 5.2. For any positive real number d, the sequence of losing posi-
tions for the take-away game corresponding to f(n) = 2n + d satisfies Hi+1 =
Hi +Hi−1 for all sufficiently large i.

This could be stated: if c = 2 the degree is 1.

Proof. By Theorem 3.1, we know that Hi+1 = Hi + Hi−k for all sufficiently
large i. Theorem 4.1 implies that

k ≤ log 2
log 3− log 2

< 2,
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so k = 0 or k = 1. For any i, we have Hi+1 = Hi +Hr, so

f(Hi) > 2Hi ≥ Hi +Hr = Hi+1.

Thus, we cannot have k = 0, so k = 1. �

6. How to Compute the Degrees

In this section we derive theoretical results which provide algorithms for com-
puting the degrees; in the next section we present data generated using these
algorithms, and make several conjectures based on it.

Proposition 6.1. Suppose f(n) = cn − d, where c − 1 ≥ d ≥ 0. If Hj+1 =
Hj +Hj−k for some j, and cHj+i−1−k < Hj+i for 1 ≤ i ≤ k + 1, then Hr+1 =
Hr +Hr−k for all r ≥ j.

Proof. By Lemma 2.2, f(Hr−k−1)<Hr≤ f(Hr−k) implies Hr+1≤ f(Hr−k+1).
Thus, since f is increasing, Hr≤ f(Hr−k) impliesHr+1≤ f(Hr−k+1). SinceHj ≤
f(Hj−k), we have Hr≤ f(Hr−k) for all r≥ j. Now, since cHj+i−1−k<Hj+i, we
have

f(Hj+i−1−k)≤ cHj+i−1−k<Hj+i≤ f(Hj+i−k),

so Hj+i+1 = Hj+i +Hj+i−k for 1 ≤ i ≤ k + 1. In particular, Hj+2 = Hj+1 +
Hj+1−k and Hj+k+2 = Hj+k+1 +Hj+1. Thus

Hj+k+2 = Hj+k+1 +Hj+1 > cHj + cHj−k = cHj+1.

We have shown that Hj+2 = Hj+1 + Hj+1−k and cHj+1 < Hj+k+2; thus, for
J = j + 1 we have HJ+1 = HJ + HJ−k and, for i = 1, 2, . . . , k + 1, we have
cHJ+i−1−k < HJ+i. So, by induction, for all r ≥ j and all 1 ≤ i ≤ k+1 we have
Hr+1 = Hr +Hr−k and cHr+i−1−k < Hr+i. �

This suggests the following algorithm.

Algorithm 6.2. For f(n) = cn− d, where c − 1 ≥ d ≥ 0, compute successive
terms Hi, by putting H1 = 1 and

Hi+1 = Hi + min
j≤i

{Hj : f(Hj) ≥ Hi}.

Stop when an integer j is found for which Hj+1 = Hj +Hj−k and cHj+i−1−k <

Hj+i for each 1 ≤ i ≤ k + 1, and output k.

We do not know, a priori, whether this algorithm will terminate. If it does, it
will output the integer k for which Hr+1 = Hr + Hr−k for sufficiently large r.
We implemented this algorithm and applied it for all pairs of integers (c, d) such
that 90 ≥ c > d > 0; it terminated rather quickly in every case. Our data is
considered in the next section.

Our algorithm for functions f(n) = cn+d is a bit more complicated. We begin
with a definition: For a given function f(n) = cn+ d with c > 1, d > 0, and any
integer j > 1, let δ(j) be the unique positive integer such that Hj = Hj−1+Hδ(j).
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Lemma 6.3. Suppose f(n) = cn + d, where c > 1 and d > 0. If j is an integer
such that δ(j) > 1 and that each i = δ(j), δ(j)+1, . . . , j−1 satisfies Hi ≥ cHδ(i),
the sequence of differences

(
i− δ(i)

)
i≥j

is nonincreasing.

Proof. Put m = δ(j); then

Hj − cHδ(j) = Hj−1 − (c− 1)Hm

> f(Hm−1)− (c− 1)Hm = cHm−1 + d− cHm +Hm

= d+Hm − cHδ(m) ≥ d,

soHj > f(Hδ(j)) > cHδ(j). Now,Hj+1 = Hj+Hδ(j+1) implies that f(Hδ(j+1)) ≥
Hj , so δ(j + 1) > δ(j). Since δ(j + 1) ≤ j, we know that Hi ≥ cHδ(i) for each
i = δ(j + 1), . . . , j, so our hypotheses are satisfied if we replace j by j + 1. By
induction, our hypotheses are satisfied if we replace j by any larger integer r.
As above, this implies that δ(r+1) > δ(r), so r− δ(r) ≥ r+ 1− δ(r+1) for any
r ≥ j, which is what we are trying to show. �

The proof of Theorem 3.1 shows that there do exist integers j satisfying the
hypotheses of the above lemma.

Proposition 6.4. For f as in the preceding lemma, suppose that the sequence
of differences

(
i − δ(i)

)
i≥j

is nonincreasing. If Hj = Hj−1 +Hj−1−k and also
Hj+i ≤ cHj+i−k for each i = 0, 1, . . . , k, then Hr+1 = Hr+Hr−k for all r ≥ j−1.

Proof. First, Hj+i ≤ cHj+i−k implies that Hj+i < f(Hj+i−k); but Hj+i+1 =
Hj+i +Hδ(j+i+1) implies that Hj+i > f(Hδ(j+i+1)−1), so δ(j+ i+1) ≤ j+ i−k.
Since the sequence of differences is nonincreasing,

k + 1 = j − δ(j) ≥ j + i+ 1− δ(j + i+ 1),

so δ(j + i+ 1) ≥ j + i− k. Thus, δ(j + i+ 1) = j + i− k for each i = 0, 1, . . . , k,
so Hj+i+1 = Hj+i +Hj+i−k for each such i. Now,

Hj+k+1 − cHj+1 = Hj+k +Hj − cHj+1 ≤ cHj + cHj−k − cHj+1 = 0,

so the hypotheses of this proposition are satisfied if we replace j by j + 1. By
induction, these hypotheses are satisfied if we replace j by any larger integer;
thus, as above, Hr+1 = Hr +Hr−k for all r ≥ j − 1. �

Algorithm 6.5. For f(n) = cn+d, where c > 1 and d > 0, compute successive
terms Hi by putting H1 = 1 and

Hi+1 = Hi + min
l≤i

{Hl : f(Hl) ≥ Hi}.

Find the least integer j0 such that δ(j0) > 1 and that each i with δ(j0) ≤ i ≤
j0 − 1 satisfies Hi ≥ cHδ(i). Stop when an integer j ≥ j0 is found for which
Hj = Hj−1 +Hj−1−k and Hj+t ≤ cHj+t−k for each t = 0, 1, . . . , k. Output k.
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By Lemma 6.3 and Proposition 6.4, if this algorithm terminates, we haveHr+1 =
Hr +Hr−k for all r ≥ j − 1. We implemented this algorithm and applied it to
all pairs of positive integers (c, d) such that c ≤ 90 and d ≤ 1000; in every case
the algorithm terminated rather quickly. The data is considered below.

7. Observations and Conjectures

Armed with the algorithms from the previous section, we computed the de-
grees for various functions f(n) = cn + d for integers c, d. We computed the
degrees for all pairs of integers (c,−d) with 0 ≤ −d < c ≤ 90, and also for all
pairs of positive integers (c, d) with c ≤ 90 and d ≤ 1000. We now state some
observations about these data, which lead us to make several conjectures.

Our first observation is that, for fixed c, positive integers d that are “close”
to each other tend to produce the same degree, and similarly negative integers d
that do not differ by much tend to produce the same degree. This is especially
pronounced for large positive integers d: as it almost always happens that, for
fixed c, all d between 50 and 1000 produce the same degree.

Next, for fixed c, the integers d = 0,−1, . . . , 1−c produce at most two different
degrees, and if there are two they are consecutive integers. For fixed c and
positive d, the degree tends to be smallest for d < 20, say, and the degree for
d = 1000 exceeds the degree for d = 1 for all c > 5. Moreover, for c > 5, every
d > 30 has larger degree than does d = 1. So, it seems that very small positive
values of d produce a degree smaller than that produced by all larger positive d.

Finally, we observe that, for fixed c, every d > 32 produces a larger degree
than any negative d. This suggests an interesting relationship between positive
and negative values of d. Theorem 4.1 implies that, for fixed c, every d produces
a degree in a certain interval whose length is something like log c; our feeling
is that the negative and only slightly positive values of d lead to degrees in the
lower part of this interval, whereas larger positive values of d lead to degrees in
the upper part of this interval. We shall not spoil the reader’s fun by proving
these conjectures.
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