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Injectivity Radius Estimates

and Sphere Theorems

UWE ABRESCH AND WOLFGANG T. MEYER

Abstract. We survey results about the injectivity radius and sphere the-
orems, from the early versions of the topological sphere theorem to the
authors’ most recent pinching below- 1

4
theorems, explaining at each stage

the new ideas involved.

Introduction

Injectivity radius estimates and sphere theorems have always been a central
theme in global differential geometry. Many tools and concepts that are now
fundamental for comparison geometry have been developed in this context.

This survey of results of this type reaches from the early versions of the
topological sphere theorem to the most recent pinching below- 1

4 theorems. Our
main concern is to explain the new ideas that enter at each stage. We do not cover
the differentiable sphere theorem and sphere theorems based on Ricci curvature.

In Sections 1–3 we give an account of the entire development from the first
sphere theorem of H. E. Rauch to M. Berger’s rigidity theorem and his pinching
below- 1

4 theorem. Many of the main results depend on subtle injectivity radius
estimates for compact, simply connected manifolds.

In Section 4 we present our recent injectivity radius estimate for odd-dimen-
sional manifolds Mn with a pinching constant below 1

4
that is independent of n

[Abresch and Meyer 1994]. With this estimate the restriction to even-dimensional
manifolds can be removed from the hypotheses of Berger’s pinching below-1

4

theorem.
Additional work is required in order to get a sphere theorem for odd-dimen-

sional manifoldsMn with a pinching constant < 1
4

independent of n. This result
and the basic steps involved in its proof are presented in Sections 5–7; details can
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be found in [Abresch and Meyer a]. The essential step in the geometric part of
the argument is to establish Berger’s horseshoe conjecture for simply connected
manifolds. For this purpose we need the new Jacobi field estimates in Section 6.

1. On the Topological Sphere Theorem

The topological sphere theorem was one of the first results in Riemannian ge-
ometry where the topological type of a manifoldMn is determined by inequalities
for its sectional curvature KM and some mild global assumptions. Building on
earlier work of Rauch and Berger, the final version of this theorem was obtained
by W. Klingenberg [1961]:

Theorem 1.1 (Topological sphere theorem). Let Mn be a complete, sim-
ply connected Riemannian manifold with strictly 1

4 -pinched sectional curvature.
Then Mn is homeomorphic to the sphere Sn.

Note that a positively curved manifold Mn is said to be strictly δ-pinched if and
only if infKM > δ supKM .

The first version of the theorem, for manifolds that are approximately 0.74-
pinched, had been obtained by Rauch [1951]. Several years passed until Berger
and Klingenberg managed to improve the result. The proofs of all these theorems
are based on direct methods in comparison geometry. We shall describe the basic
ideas later in this section.

First we discuss the hypotheses of the topological sphere theorem and explain
in what sense the theorem is optimal.

Remarks 1.2. (i) Strict 1
4 -pinching implies in particular that infKM ≥ λ > 0,

and by Myers’ theorem [1935; 1941] Mn is a compact manifold with diameter
≤ π/

√
λ. For this reason the theorem can equivalently be stated for compact

rather than complete manifolds.

(ii) By Synge’s lemma [1936] any compact, oriented, even-dimensional manifold
withKM > 0 is simply connected. Thus, in the even-dimensional case it is enough
to assume that the manifold Mn is orientable rather than simply connected.

(iii) The hypothesis minKM > 1
4

maxKM is optimal provided that the dimension
of Mn is even and ≥ 4. In fact, the sectional curvature of the Fubini–Study
metric on the complex and quaternionic projective spaces CPm and HPm, and
on the Cayley plane CaP2, is weakly quarter-pinched. The dimensions of these
spaces are 2m, 4m, and 16, and except for CP1 and HP1 these spaces are not
homotopically equivalent to spheres.

(iv) Nevertheless, it is possible to write more adapted curvature inequalities
and relax the hypotheses of the topological sphere theorem accordingly. Sphere
theorems based on pointwise pinching conditions were established in the mid
seventies [Im Hof and Ruh 1975]. The most advanced result in this direction



INJECTIVITY RADIUS ESTIMATES AND SPHERE THEOREMS 3

was obtained by M. Micallef and J. D. Moore in 1988, and will be discussed at
the end of this section.

For two-, three-, and four-dimensional manifolds stronger results are known. Any
compact, simply connected surface is diffeomorphic to S2, and by the Gauss–
Bonnet theorem any compact, orientable surface with strictly positive curvature
is also diffeomorphic to S2.

Furthermore, any compact, simply connected three-manifold M3 with strictly
positive Ricci curvature is diffeomorphic to the standard three-sphere. This
assertion follows from a more general result about the Ricci flow:

Theorem 1.3 [Hamilton 1982]. Let (M3, g) be a compact , connected , three-
dimensional Riemannian manifold with Ricci curvature ric > 0 everywhere.
Then g can be deformed in the class of metrics with ric > 0 into a metric with
constant sectional curvature KM .

Finally, in dimension 4 one can determine all homeomorphism types under some
weaker pinching condition by combining Bochner techniques with M. Freedman’s
classification of simply connected, topological four-manifolds [1982]:

Theorem 1.4 [Seaman 1989]. Let M4 be a compact , connected , oriented Rie-
mannian four-manifold without boundary . Suppose that the sectional curvature
KM of M4 satisfies 0.188 ≈ (1 + 3

√
1 + 25/4 · 5−1/2)−1 ≤ KM ≤ 1. Then M4

is homeomorphic to S4 or CP2.

Beginning with D. Gromoll’s thesis [1966], various attempts have been made to
prove that Mn is diffeomorphic to the sphere Sn with its standard differentiable
structure. The optimal pinching constant for a differentiable sphere theorem is
not known. Except for low-dimensional special cases, the best constant obtained
so far is approximately 0.68 [Grove et al. 1974a; 1974b; Im Hof and Ruh 1975].
However, not a single exotic sphere is known to carry a metric with KM > 0.
An exotic Milnor seven-sphere that comes with a metric of nonnegative sectional
curvature has been described by Gromoll and W. T. Meyer [1974].

The most recent results in this direction are due to M. Weiss [1993]. Using
sophisticated topological arguments, he has shown that any exotic sphere Σn

that bounds a compact, smooth, parallelizable 4m-manifold withm ≥ 2 does not
admit a strictly quarter-pinched Riemannian metric, provided that Σn represents
an element of even order in the group Γn of differentiable structures on Sn.

For the sequel it will be convenient to introduce generalized trigonometric
functions, which interpolate analytically between the usual trigonometric and
hyperbolic functions. The generalized sine snλ is defined as the solution of y′′ +
λy = 0 with initial data y(0) = 0 and y′(0) = 1: explicitly,

snλ(%) :=



λ−1/2 sin(

√
λ%) if λ > 0,

% if λ = 0,
|λ|−1/2 sinh(

√|λ| %) if λ < 0.
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The generalized cosine and cotangent are given by cnλ := sn′λ and ctλ :=
cnλ/snλ.

On Rauch’s proof [1951] of the sphere theorem. The argument dis-
penses with the two-dimensional case by referring to the Gauss–Bonnet theorem
as explained above. His basic idea for proving the theorem in dimensions n ≥ 3
was to recover the structure of a twisted sphere on the manifoldMn under consid-
eration. For this purpose he studies the exponential maps expp and expq at two
points p, q ∈Mn. This approach requires a pinching constant δ equal to the pos-
itive root of sin(π

√
δ) = 1

2

√
δ, or approximately 0.74. (Note: We always report

approximate bounds by rounding to the safe side, so they sometimes differ from
occurrences in the literature that are rounded to the nearest value either way.)

Without loss of generality Rauch scales the Riemannian metric on Mn to
ensure that δ < KM < 1. He picks the point p ∈ Mn and some unit tangent
vector v0 ∈ TpM arbitrarily and sets q := expp πv0. In order to control the
geometry of the exponential maps expp and expq , he then develops the by now
well-known Rauch comparison theorems for Jacobi fields. These estimates imply
in particular that

(i) the conjugate radius conjMn is > π;
(ii) the image of the sphere S(0, π) ⊂ TpM under expp has diameter < π snδ(π);
(iii) for any %̂ < 1

2π the ball B(0, %̂) ⊂ B̃q , where B̃q is the ball B(0, π) ⊂ TqM

equipped with the metric exp∗q g, is strictly convex. Its boundary has strictly
positive second fundamental form.

Specializing to δ ≈ 0.74, Rauch concludes that the diameter of expp

(
S(0, π)

)
is

bounded by 1
2π−2% for % > 0 sufficiently small. Lifting the restriction expp|S(0,π)

under expq , he thus obtains an immersion φ of S(0, π) ⊂ TpM into the closed ball
of radius 1

2π− 2% centered at the origin in TqM , mapping πv0 to the origin. For
this construction it is crucial that the sphere S(0, π) ⊂ TpM be simply connected,
that is, that the dimension of Mn be ≥ 3. (Rauch describes the lifting under
the local diffeomorphism expq in a more classical terminology, widely used in
complex analysis when dealing with monodromy. He speaks of a “c-process”
based on a “purse-string construction”.)

The next step is to find for each w ∈ S(0, π) ⊂ TpM the smallest number
tw ∈ (0, 1) such that the lift of the geodesic t 7→ expp((1 − t)w) under expq

starting at φ(w) leaves the ball B(0, 1
2
π−%) ⊂ TqM . It is not a priori clear that

such a number tw exists unless w = πv0. On the other hand, if tw exists, it follows
from (iii) that the lifted geodesic must intersect the sphere S(0, 1

2
π− %) ⊂ TqM

transversally in t = tw. This observation is the basis for an elaborate continuity
argument that shows that tw exists for all w ∈ S(0, π) ⊂ TpM . Moreover, this
continuity argument provides a homeomorphism θ : S(0, 1

2π− %) ⊂ TqM → ∂Ω,
where ∂Ω denotes the boundary of the star-shaped set

Ω := {τw | 0 ≤ τ < 1− tw, w ∈ S(0, π) ⊂ TpM}.
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When gluing Ω̄ and B̄(0, 1
2π − %) ⊂ TqM by means of θ, one obtains a twisted

sphere Σn. The exponential maps expp and expq fit together. They induce
a local homeomorphism Σn → Mn. Since Mn is simply connected this local
homeomorphism must actually be a global homeomorphism. �

The starting point for improving Rauch’s sphere theorem was the following in-
jectivity radius estimate:

Theorem 1.5 [Klingenberg 1959]. Let Mn be an even-dimensional , compact ,
simply connected Riemannian manifold with strictly positive sectional curva-
ture KM . Then the injectivity radius injMn is controlled in terms of the conju-
gate radius conjMn:

injMn = conjMn ≥ π/
√

maxKM .

We shall discuss this result together with Theorem 1.6 below. For the moment
our issue is to explain how such an estimate can be employed for the proof of
the sphere theorem. Actually, as a first application of Theorem 1.5, Klingen-
berg obtained a sphere theorem for even-dimensional manifolds requiring only a
pinching constant δ ≈ 0.55, the positive solution of sin(π

√
δ) =

√
δ [Klingenberg

1959, Theorem 2].
The basic advantage provided by the injectivity radius estimate is the fact

that the immersions expp : B(0, π) → B(p, π) and expq : B(0, π) → B(q, π) are
recognized as diffeomorphisms onto their images in Mn. Since the points p and
q ∈ Mn are chosen in the same way as in Rauch’s original approach, a slightly
modified continuity argument implies that the cut locus Cq of q lies in B(p, π)
and vice versa. Thus the open balls B(p, π) and B(q, π) cover the manifold.
It follows that Mn is the union of two closed cells with a common boundary
homeomorphic to Sn−1. In other words, Mn itself is recognized as a twisted
sphere. This construction avoids several lifting arguments from Rauch’s proof,
and thus it eliminates some constraints on the pinching constant.

Theorem 1.5 was also the starting point of Berger’s work on the topologi-
cal sphere theorem. Combining Klingenberg’s injectivity radius estimate with
Toponogov’s triangle comparison theorem, which had just appeared in the liter-
ature, Berger [1960b, Théorème 1] established Theorem 1.1 for even-dimensional
manifolds with the optimal pinching constant. Subsequently, he published an in-
dependent proof [Berger 1962b, Theorem 3] of the triangle comparison theorem,
based on an extension of Rauch’s comparison theorems for Jacobi fields rather
than on Alexandrov’s ideas for surfaces.

On Berger’s proof of the sphere theorem. Here the starting point is
the observation that the choice of the points p, q ∈ Mn in the preceding work of
Rauch and Klingenberg was not optimal. Berger suggested picking p and q in
such a way that the distance d(p, q) in Mn is maximal. The key property of such
a pair of antipodal points is the fact that for any unit tangent vector v ∈ TqM
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there exists a minimizing geodesic c : [0, 1] → Mn from q to p making an acute
angle with v, that is, such that g(c′(0), v) ≥ 0. Assuming that 1

4 < KM ≤ 1, he
can thus apply Toponogov’s triangle comparison theorem in order to conclude
that the metric balls B(p, π) and B(q, π) cover Mn.

Then he can proceed with some arguments from Klingenberg’s proof: Theo-
rem 1.5 reveals that B(p, π) and B(q, π) are diffeomorphic to the balls B(0, π) in
the tangent spaces TpM and TqM , respectively, and againMn can be recognized
as a twisted sphere. �

Berger [1960b, Théorème 2] also succeeded in analyzing the additional phenom-
ena that occur for simply connected, weakly quarter-pinched manifolds. We shall
review this result in Theorem 2.1.

With Berger’s proof, the only missing ingredient for the final version of the
topological sphere theorem as stated in 1.1 was a suitable injectivity radius
estimate in the odd-dimensional case. Such an estimate was established shortly
afterwards:

Theorem 1.6 [Klingenberg 1961]. Let Mn be a compact , simply connected
Riemannian manifold with strictly 1

4 -pinched sectional curvature. Then the in-
jectivity radius injMn and the conjugate radius conjMn coincide:

injMn = conjMn ≥ π/
√

maxKM .

Remarks 1.7. (i) In Theorem 1.5 it is crucial to assume that the manifold has
nonnegative sectional curvature. Otherwise, there is not even a uniform lower
bound on the injectivity radius for simply connected surfaces. In fact, it is easy
to construct surfaces of revolution with −1 ≤ KM ≤ 1 and arbitrarily small
injectivity radius. The diameter of these surfaces, which look like hourglasses,
increases without bound as the injectivity radius approaches zero.

(ii) The most significant difference between Theorems 1.5 and 1.6 is the pinch-
ing condition that appears in the hypothesis of the latter. Such a condition
is necessary to get a result for odd-dimensional manifolds at all. The optimal
value for the pinching constant in Theorem 1.6 is not known. Berger has shown
[1962a] that a constant < 1

9 is not sufficient in order to obtain even the slightly
weaker inequality injMn ≥ π/

√
maxKM . For this purpose he considers a family

of Riemannian metrics gε on the odd-dimensional spheres S2n+1 ⊂ Cn+1 . These
metrics are defined by shrinking the standard metric in the direction of the Hopf
circles {eitp | t ∈ R/2πZ} ⊂S2n+1 in such a way that their lengths with respect
to gε become 2πε. The range of the sectional curvature of gε is the interval
[ε2, 4 − 3ε2], provided of course that 0 < ε ≤ 1. Clearly, πε < π/

√
4− 3ε2

for ε2 < 1
3
. This means that for any δ ∈ (0, 1

9
) there exists a Berger metric gε

whose sectional curvature is δ-pinched and whose injectivity radius is strictly
less than π/

√
maxKM . Unless ε = 1 there does not exist any pair consisting of

a (horizontal) geodesic γ : R→ (S2n+1, gε) and a parallel unit normal field v

along γ such that the sectional curvature on each plane span{γ′(s), v(s)} equals
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4 − 3ε2. Hence for any ε ∈ (0, 1) the conjugate radius of gε is strictly greater
than π/

√
maxKM . A direct computation reveals that the conjugate radius of gε

arises as the first positive zero of the map s 7→ ε2 + (1− ε2)s cot s, and thus the
injectivity radius of gε ceases to be equal to its conjugate radius as ε becomes
less than 0.589. This means that the optimal value for the pinching constant in
Theorem 1.6 is necessarily at least 0.117 > 1

9 .

(iii) Even worse, in dimension 7, the Aloff–Wallach examples [1975] described
in the appendix contain a sequence of simply connected, homogeneous Einstein
spaces whose pinching constants converge to 1

37
and whose injectivity radii con-

verge to zero. In other words, if δ < 1
37

there does not exist any a priori lower
bound for the injectivity radius of a seven-dimensional, simply connected, δ-
pinched Riemannian manifold.

The proofs of Theorems 1.5 and 1.6, and of essentially any other injectivity radius
estimate, begin with the observation that the injectivity radius of a compact
Riemannian manifold can be related to its conjugate radius and to the length
of a shortest geodesic loop. We give a refined version of [Klingenberg 1959,
Lemma 4]:

Lemma 1.8 [Cheeger and Ebin 1975, Lemma 5.6]. Let Mn be a complete Rie-
mannian manifold , and let p ∈ Mn. Let `M (p) denote the minimal length of
a nontrivial geodesic loop c0 : [0, 1] → Mn starting and ending at p. Then the
injectivity radius of Mn at p is injM(p) = min{conjMn, 1

2 `M (p)}.
By definition, injMn = infp injM(p). For compact manifolds Mn the infimum is
always achieved at some point p0 ∈ Mn. Furthermore, if `M (p0) < 2 conjMn,
it is easy to see that the geodesic loop c0 : [0, 1] → Mn of length 2 injMn with
c0(0) = c0(1) = p0 is actually a closed geodesic c0 : R/Z→Mn. This means that
for compact Riemannian manifolds one has injMn = min{conjMn, 1

2
`(Mn)},

where `(Mn) = infp `M (p) is the minimal length of a nontrivial closed geodesic
c0 : R/Z→Mn.

On the proof of Theorem 1.5. It is a standard fact that a geodesic is not
minimizing beyond the first conjugate point. Hence injMn ≤ conjMn, and it is
possible to proceed indirectly.

Assuming that injMn < conjMn, Lemma 1.8 asserts that there is a closed
geodesic c0 : R/Z→Mn of length L(c0) = 2 injMn. As in the proof of Synge’s
lemma [1936], the canonical form theorem for the orthogonal group SO(n −
1) leads to a closed, parallel, unit normal field v0 along c0. Since KM > 0,
the second variation formula reveals that the nearby curves ct : R/Z→ Mn,
s 7→ expc0(s) tv0(s), are strictly shorter than c0, provided that t is nonzero and
sufficiently small.

At this point Klingenberg observes that the image of such a curve ct is con-
tained in the closed ball with radius 1

2L(ct) < injMn centered at ct(0), and thus
he can lift ct under expct(0) to a map c̃t : R/Z→ Tct(0)M such that c̃t(0) = 0.
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Notice that the argument that guarantees the existence of c̃t is very different
from the arguments that justify taking local lifts under expp up to the conjugate
radius, encountered in Rauch’s proof of the sphere theorem.

By assumption, injMn < conjMn, and thus the curves c̃t : R/Z→ Tct(0)M

define an equicontinuous map c̃ : R/Z× (0, ε) → TM . Extending this map
continuously to R/Z× [0, ε), one obtains a lift c̃0 : R/Z→ Tc0(0)M of c0 under
expc0(0), satisfying c̃0(0) = 0. On the other hand the lift of the geodesic c0 must
be the line s 7→ sc′(0), contradicting the periodicity of c̃0. �

The proof of Theorem 1.6 is much more subtle. It will be explained in Section 4
together with our recent extension of this injectivity radius estimate (Theo-
rem 4.1).

Further progress in understanding the topological sphere theorem was made
by K. Grove and K. Shiohama in the late seventies. Observing that the twisted
sphere construction in the proof of Theorem 1.1 resembles the proof of Reeb’s
theorem in Morse theory, Grove and Shiohama investigated under what condi-
tions the function fpq : x 7→ dist(x, p) − dist(x, q) has only two critical points,
an absolute minimum at p and an absolute maximum at q. Persuing this idea,
they proved the following result:

Theorem 1.9 (Diameter sphere theorem [Grove and Shiohama 1977]).
Let Mn be a connected , complete Riemannian manifold with sectional curvature
KM ≥ λ > 0 and diameter diamMn > π/(2

√
λ). Then Mn is homeomorphic to

the sphere Sn.

Remark 1.10. The Fubini–Study metrics on the projective spaces CPm, HPm,
and CaP2 have diameter π/(2

√
minKM ) if m ≥ 2. Thus in Theorem 1.9 the

hypothesis on the diameter is optimal if the dimension of the manifold is even
and ≥ 4.

Notice that the distance functions to fixed points p and q are only Lipschitz
functions. They are not differentiable at the cut loci Cp and Cq. In fact, the
proof of Theorem 1.9 has led to a fruitful definition of what a critical point
of a distance function should be. Eventually, an elaborate critical point theory
for distance functions was developed and successfully applied to many other
problems [Grove 1993]. For instance, the proof of M. Gromov’s Betti numbers
theorem uses critical point theory for distance functions in a substantial way
[Abresch 1985; 1987; Gromov 1981b].

With this particular critical point theory it is possible to prove the diame-
ter sphere theorem in a conceptually straightforward way by applying Topono-
gov’s triangle comparison theorem twice [Grove 1987; 1993; Karcher 1989; Meyer
1989]. Moreover, Theorem 1.9 ties in nicely with the injectivity radius estimate
from Theorem 1.6. Thinking of the injectivity radius as a lower bound for the
diameter, one obtains an alternate, and structurally more appealing, proof of
the topological sphere theorem.
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The pointwise pinching problem requires completely different techniques. Re-
sults of this type are typically not based on direct comparison methods but
on partial differential equations on the manifold Mn [Ruh 1982] or on minimal
surfaces in Mn [Micallef and Moore 1988]. Here we shall focus on this theorem:

Theorem 1.11 [Micallef and Moore 1988]. Let Mn be a compact , simply con-
nected Riemannian manifold of dimension n ≥ 4. Suppose that Mn has positive
curvature on totally isotropic two-planes. Then Mn is homeomorphic to Sn.

Remarks 1.12. (i) The notion of positive curvature on totally isotropic two-
planes arises naturally when one looks for a condition determining the sign of the
difference between the Hodge Laplacian and the rough Laplacian on two-forms.

(ii) The projective spaces CPm, HPm, and CaP2 have nonnegative curvature on
totally isotropic two-planes.

(iii) A direct computation shows that pointwise strict 1
4
-pinching implies positive

curvature on totally isotropic two-planes. This means that the topological sphere
theorem holds in dimensions n ≥ 4 already for compact, simply connected,
pointwise strictly 1

4
-pinched manifolds.

On the proof of Theorem 1.11. Note that any conformal harmonic map
f : S2 → Mn is a common critical point for the Dirichlet functional D and the
area functional and, moreover, area(f) = D(f). In general, area ≤ D, so the
Dirichlet functional is an upper barrier for the area functional at the surface
represented by f .

The key step for the proof of the theorem is to show that any nonconstant,
branched, minimal two-sphere f : S2 → Mn in a Riemannian manifold of di-
mension ≥ 4 with positive curvature on totally isotropic two-planes has index
indD(f) ≥ 1

2 (n− 3). On the other hand, Micallef and Moore prove that any
compact Riemannian manifold Mn with πk(Mn) 6= 0 for some k ≥ 2 contains
a nonconstant harmonic two-sphere f : S2 → Mn with index indD(f) ≤ k − 2.
Combining these two facts, it follows that π1(Mn) = · · · = π[n/2](Mn) = 0.
Hence the Hurewicz isomorphism theorem implies that H1(Mn;Z) = · · · =
H[n/2](Mn;Z) = 0, and by the Poincaré duality theorem Mn must be a homol-
ogy sphere. Thus the result follows using S. Smale’s solution of the generalized
Poincaré conjecture in dimensions n ≥ 5 [Milnor 1965, p. 109; Smale 1961] and
Freedman’s classification of compact, simply connected four-manifolds [1982].

The existence of nonconstant harmonic two-spheres f : S2 → Mn with index
indD(f) ≤ k− 2 is established by means of the standard saddle point arguments
from Morse theory. Micallef and Moore work with a perturbed version of the
α-energy introduced by S. Sacks and K. Uhlenbeck, in order to have a nonde-
generate Morse functional that satisfies Condition C of Palais and Smale, and
study the limit as α→ 1.

In order to obtain the lower bound for the index of such a nonconstant, con-
formal, branched, minimal two-sphere f : S2 →Mn, Micallef and Moore express
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the Hessian of the Dirichlet functional D in terms of the squared norm of the
∂̄-operator of the complexified bundle f∗TM ⊗RC , rather than in terms of the
squared norm of the full covariant derivative ∇. With this modification the
zero-order term in the Hessian becomes an expression in the curvatures of to-
tally isotropic two-planes containing ∂f . In particular, the claimed estimate for
the index indD(f) follows upon constructing sufficiently many isotropic, holo-
morphic sections in f∗TM ⊗RC whose exterior product with ∂f is nontrivial.
The appropriate tool for this purpose is Grothendieck’s theorem on the decom-
position of holomorphic vector bundles over CP1. Combining this theorem with
the fact that the first Chern class of f∗TM ⊗RC vanishes, the authors construct
a complex linear space of dimension ≥ 1

2
(n − 1) of isotropic holomorphic sec-

tions. �

2. Berger’s Rigidity Theorem and Related Results

In this section the principal goal is to present the extensions of the topo-
logical sphere theorem and the diameter sphere theorem that hold when all
strict inequalities in the hypotheses of these theorems are replaced by their weak
counterparts. In particular, we shall see that the projective spaces mentioned in
Remarks 1.2(iii) and 1.10 are the only other possibilities for the topological type
of Mn. It is not known whether the sphere theorem by Micallef and Moore can
be extended correspondingly or not.

When working on the topological sphere theorem, Berger actually studied
the limiting case of simply connected, weakly quarter-pinched, even-dimensional
manifolds, too:

Theorem 2.1 (Berger’s rigidity theorem [Berger 1960b, Théorème 2]). Let
Mn be an even-dimensional , complete, simply connected Riemannian manifold
with 1

4 ≤ KM ≤ 1. Then either

(i) Mn is homeomorphic to the sphere Sn, or
(ii) Mn is isometric to one of the other rank-one symmetric spaces, namely
CPn/2, HPn/4, or CaP2.

The first step in Berger’s proof of the rigidity theorem was in a sense a predecessor
of the diameter sphere theorem. Theorem 1.5 asserts that the manifold has
injectivity radius injMn ≥ π. Refining the comparison argument from the proof
of the topological sphere theorem, Berger proves that a Riemannian manifoldMn

with 1
4 ≤ KM ≤ 1, injMn ≥ π, and diamMn > π is homeomorphic to Sn. There

remains the case where 1
4
≤ KM ≤ 1 and diamMn = injMn = π; here he shows

that any point p ∈ Mn lies on a closed geodesic c : R/Z→ Mn of length
L(c) = 2π. With this additional information Mn can be recognized as a rank-
one symmetric space by means of an argument that Berger had used shortly
before in the proof of a weaker rigidity result [Berger 1960a, Théorème 1].
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The assertion that a compact, simply connected Riemannian manifold with
1
4 ≤ KM ≤ 1 and diamMn = π is isometric to a symmetric space is known as
Berger’s minimal diameter theorem [Cheeger and Ebin 1975, Theorem 6.6(2)].
J. Cheeger and D. Ebin also give a geometrically more direct proof for this
result. Their idea is to study the metric properties of the geodesic reflections
φp : B(p, π) → B(p, π) and prove directly that these maps are isometries that
can be extended continuously to Mn. Thus Mn is recognized as a symmetric
space. It is an elementary fact that any symmetric space with KM > 0 has rank
one.

Remark 2.2. Berger’s rigidity theorem has been extended to cover odd-dimen-
sional manifolds as well, asserting that any complete, simply connected, odd-
dimensional manifold with weakly quarter-pinched sectional curvature is home-
omorphic to the sphere. It should be clear from our sketch of Berger’s original
proof that such an extension follows immediately once the injectivity radius es-
timate from Theorem 1.6 has been generalized to the class of simply connected,
weakly quarter-pinched manifolds. Such a generalization appeared shortly after-
wards in the work of Klingenberg [1962]. However, the argument is technically
extremely subtle, and complete proofs were only given much later in two inde-
pendent papers by Cheeger and Gromoll [1980] and by Klingenberg and T. Sakai
[1980].

The diameter sphere theorem due to Grove and Shiohama can be generalized as
follows:

Theorem 2.3 (Diameter rigidity theorem [Gromoll and Grove 1987]).
Let Mn be a connected , complete Riemannian manifold with sectional curva-
ture KM ≥ λ > 0 and diameter diamMn ≥ π/(2

√
λ). Then

(i) Mn is homeomorphic to the sphere Sn, or
(ii) the universal covering M̃n of Mn is isometric to Sn, CPn/2, or HPn/4, or
(iii) the integral cohomology ring of M̃n is isomorphic to that of CaP2.

We are discussing this theorem mainly because its proof has required an en-
tirely new approach for recognizing rank-one symmetric spaces. The details are
technically quite subtle, but the basic ideas are geometrically nice and simple.

Beforehand we mention that there are only a few possibilities for the cov-
ering maps M̃n → Mn in assertions (ii) and (iii), since by Synge’s lemma
any orientable even-dimensional manifold Mn with KM > 0 is simply con-
nected. The only nontrivial quotients that can arise are the real projective
spaces RPn, the space forms S2m+1/Γ where the action of Γ preserves some
proper orthogonal decomposition of R2m+2, and the spaces CP2m+1/Z2 where
the Z2-action is given by the antipodal maps in the fibers of some standard
projection CP2m+1 → HPm.

Because of the structure of their cohomology rings, the spaces CP2m, HP2m,
and CaP2 do not admit any orientation-reversing homeomorphisms. With a little
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more effort one can also show that none of the spaces HP2m+1, where m ≥ 1, ad-
mits a smooth, orientation-reversing, fixed-point-freeZ2-action. For this purpose
one verifies that the projection π : HP2m+1 → HP2m+1/Z2 onto the hypothetical
quotient space induces the zero-map on the fourth integral cohomology groups.
Since T HP2m+1 = π∗T (HP2m+1/Z2), it follows that the first Pontrjagin class
p1(HP2m+1) should vanish, contradicting the fact that p1(HPk) = 2(k − 1)ξ
where ξ is a generator of H4(HPk) ∼=Z[Greub et al. 1973, Chapter IX, Problem
31(ii)]. In the quaternionic case, the existence of quotients can alternatively be
ruled out by observing that the full group of isometries Isom HPk is connected
for k ≥ 2 [Wolf 1977, p. 381].

On the proof of the diameter rigidity theorem. The starting point is
to observe that the cut locus of a subspace C Pk ⊂ CPm is the dual subspace
CPm−k−1 ⊂ CPm. Moreover, the pairs consisting of such a CPk ⊂ C Pm and
its cut locus can be characterized geometrically as pairs of dual convex sets
A,A′ ⊂ CPn. This means that dist(p, p′) = diam C Pn for any pair of points
(p, p′) ∈ A×A′.

If k = 0, that is, if A′ consists of a single point, it is possible to recover
the total space CPm as the Thom space of the normal bundle of A ⊂ C Pm.
In particular, the total space of the corresponding unit sphere bundle is an
S2m−1 that is foliated by equidistant circles. Similar structures can be found
on the quaternionic projective spaces HPm and on the Cayley plane CaP2. The
only differences are that the total spaces of the unit normal bundles of A are
spheres S4m−1 foliated by three-spheres and an S15 foliated by seven-spheres,
respectively.

In fact, when we normalize λ to 1, the diameter sphere theorem reduces the
proof of Theorem 2.3 to the study of compact Riemannian manifolds with KM ≥
1 and diamMn = 1

2π. The first step in investigating this setup is to analyze
the structure of dual convex sets A,A′ ⊂Mn by means of critical point theory,
establishing more and more of the properties described above. In particular,
A and A′ are totally geodesic submanifolds, and for any point p′ ∈ A′ the
exponential map defines a Riemannian submersion πA from the unit normal
sphere in p′ to A. It also follows that A is a deformation retract of Mn r A′

and vice versa. By the latter assertion, at least one of the sets A or A′ is not
contractible unless Mn is homeomorphic to a sphere.

On the other hand, if A′ were contractible, it would consist of a single point
p′ ∈ Mn. In this case the manifold Mn is the mapping cone of πA, and the
fibers of this submersion are homotopy spheres of dimensions 1, 3, or 7. Now the
key point is to resort to the results about low-dimensional metric foliations of
Euclidean spheres in [Gromoll and Grove 1988] to conclude that πA is isometric
to a standard Hopf fibration, except possibly when n − 1 = 15 and dimA = 8.
Clearly, the isometry between πA and such a standard Hopf fibration induces a
continuous map between the corresponding mapping cones, that is, it gives rise
to a map from Mn to C Pn/2 or HPn/4.
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In order to prove the result for simply connected manifolds Mn, it remains to
show that the latter map remains an isometry and, moreover, that there exists
a pair of dual convex sets A,A′ ⊂ Mn such that A′ is contractible. Both steps
are accomplished by an argument that uses recursively the concepts presented
so far. Finally, the case where Mn is not simply connected is reduced to the
preceding one by means of covering theory. �

The problems in recovering the Cayley plane in Theorem 2.3 up to isometry
are due to some shortcomings in understanding metrical foliations of Euclidean
spheres. Recently, F. Wilhelm [1995] has treated the case of the Cayley plane
under more restrictive geometric conditions that yield better information about
the structure of the family of dual convex sets in M16:

Theorem 2.4 (Radius rigidity theorem). Let Mn be a connected , com-
plete Riemannian manifold with sectional curvature KM ≥ λ > 0 and radius
radMn ≥ π/(2

√
λ). Then

(i) Mn is homeomorphic to the sphere Sn, or
(ii) the universal covering M̃n of Mn is isometric to Sn, C Pn/2, HPn/4, or

CaP2.

Recall that the radius radMn of a compact, connected Riemannian manifold
is defined as the infimum of the function p 7→ radM (p) := maxq∈Mn dist(p, q).
Clearly, injMn ≤ radMn ≤ diamMn. If Mn is a compact, simply connected,
rank-one symmetric space, all three quantities coincide.

3. On Berger’s Pinching Below-1
4 Theorem

Since the early sixties it had been a challenging problem to find out whether
there is a stability result extending Berger’s rigidity theorem. An affirmative
answer was only found in 1983.

Theorem 3.1 [Berger 1983]. For any even number n there exists a constant
δn < 1

4 such that any n-dimensional , complete, simply connected Riemannian
manifold Mn with δn ≤ KM ≤ 1 is either

(i) homeomorphic to the sphere Sn, or
(ii) diffeomorphic to CPn/2, HPn/4, or CaP2.

Up to now there has been no analogous theorem where the upper curvature
bound is replaced by a corresponding lower bound for the diameter. Results in
this direction by O. Durumeric [1987] involve some additional hypotheses.

In contrast to the pinching theorems discussed so far, the proof of Theorem 3.1
does not provide an explicit constant δn, because it relies on the precompactness
of certain spaces of isometry classes of Riemannian manifolds.

Our plan is to summarize the precompactness result, explaining in particular
the injectivity radius estimates that are required in this context. We conclude
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this section by describing how Theorem 3.1 can be deduced from a rigidity the-
orem that extends Theorem 2.1.

In order to discuss precompactness, one needs a topology on the class of
connected Riemannian manifolds. In this context there are actually two natural
topologies, the Hausdorff topology and the Lipschitz topology. Both are defined
in terms of appropriate distance functions on the class of inner metric spaces.
Recall that a connected Riemannian manifold (Mn, g) can be considered as an
inner metric space (M, d), where d denotes the Riemannian distance function
corresponding to the metric g.

The Hausdorff distance between two inner metric spaces (Mµ, dµ) is defined
as an infimum over all isometric embeddings ιµ : (Mµ, dµ) → (X, d) into some
bigger metric space:

distH

(
(M1, d1), (M2, d2)

)
:= inf

ιµ:Mµ→X
dH

(
ι1(M1), ι2(M2)

)
,

where dH denotes the Hausdorff distance of the closed subsets ι1(M1) and ι2(M2)
within the metric space (X, d):

dH

(
ι1(M1), ι2(M2)

)
= inf

{
ε > 0

∣∣ ι1(M1) ⊂ Uε(ι2(M2)), ι2(M2) ⊂ Uε(ι1(M1))
}
.

The Lipschitz distance of (M1, d1) and (M2, d2), on the other hand, is defined
as an infimum over the class of all bijective maps f : M1 →M2:

distL

(
(M1, d1), (M2, d2)

)
:= inf

f:M1→M2
log+(dil f) + log+(dil f−1) ,

where log+(x) := sup{0, log(x)} and

dil(f) := sup
p6=q

d2(f(p), f(q))
d1(p, q)

.

Note that distL((M1 , d1), (M2, d2)) = +∞ unless M1 and M2 are homeomorphic.
In the presence of a uniform bound for the diameter it is not hard to show

that any two inner metric spaces that are Lipschitz close have small Hausdorff
distance, too. The converse is not true in such generality, as the example consist-
ing of a finite graph X ⊂ R3 and its distance tubes Uε(X) shows. The graph X
and its tubes Uε(X) are not homeomorphic, so distL(X,Uε(X)) = +∞ despite
the fact that distH(X,Uε(X)) → 0 as ε→ 0.

However, Gromov [1981a] has obtained the following result for the space
M

Λ
λ

D
·
·
v
(n) consisting of all isometry classes of compact, n-dimensional Riemann-

ian manifolds (Mn, g) with λ ≤ KM ≤ Λ, diamMn ≤ D, and 0 < v ≤ volMn

(compare also [Peters 1987]):

Theorem 3.2 (Gromov’s compactness theorem). Let n ∈ N, λ ≤ Λ, and
v,D > 0. Then, on M :=MΛ

λ
D
·
·
v
(n), the Hausdorff and the Lipschitz topologies

coincide. Furthermore, M is relatively compact in the space of isometry classes
of C1,1-manifolds with C0-metrics g.
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Remark 3.3. An upper bound for the number of diffeomorphism types of
the Riemannian manifolds corresponding to the points in M had been obtained
earlier by Cheeger. This result is known as Cheeger’s finiteness theorem.

It is possible to recover Cheeger’s finiteness theorem, which is a refinement of a
finiteness theorem for homotopy types due to A. Weinstein [1967], from Gromov’s
compactness theorem, except for the precise value of the upper bound, of course.
In fact, by Shikata’s work [1966] on the differentiable sphere theorem, there exists
for any n ∈ N a constant εn > 0 such that any two n-dimensional Riemannian
manifolds (Mn

µ , gµ) with distL

(
(Mn

1 , d1), (Mn
2 , d2)

)
< εn are diffeomorphic. By

Gromov’s compactness theorem it is possible to cover the space M with finitely
many distL-balls of radius εn. Thus there are only finitely many diffeomorphism
types among the compact, n-dimensional Riemannian manifolds with λ ≤ KM ≤
Λ, diamMn ≤ D, and 0 < v ≤ volMn.

Remarks 3.4. (i) The lens spaces S2m−1/Zk show that the lower volume bound
is crucial for Cheeger’s finiteness theorem and hence also for Gromov’s com-
pactness theorem. Moreover, in dimension 7 the Aloff–Wallach examples [1975]
discussed in the appendix provide a family of counterexamples that are not just
coverings of each other.

(ii) It is even easier to see that the upper diameter bound is necessary. One
simply considers ladders, that is, connected sums of an unbounded number of
copies of the same topologically nontrivial manifold.

(iii) Similarly, the lower bound for the sectional curvature turns out to be essen-
tial, whereas the upper bound for KM was discarded in a later finiteness theorem
by Grove, P. Petersen, and J.-Y. Wu [Grove et al. 1990].

Cheeger’s finiteness theorem can indeed be viewed as an immediate predecessor
of Gromov’s compactness theorem. The proofs of both rely on a particular
injectivity radius estimate, which, in contrast to Theorems 1.5 and 1.6, must not
impose any restriction on the sign of the sectional curvature KM . As explained in
Remark 1.7, such an injectivity radius estimate requires some further geometrical
hypotheses in addition to the bounds for KM . The first result in this direction
was Cheeger’s propeller lemma [Cheeger and Ebin 1975, Theorem 5.8]; we give
a version with improved numerical constants, due to E. Heintze and H. Karcher
[1978, Corollary 2.3.2]:

Proposition 3.5 (Propeller lemma). Let Mn be a complete Riemannian
manifold with λ ≤ KM , diamMn ≤ D, and volMn ≥ v > 0. Then the injectivity
radius of Mn is bounded from below by

injMn ≥ inf

{
conjMn,

πv

volSn
snλ

(
min

{
D, π/(2

√
λ )

})−(n−1)

}
,

where volSn is the volume of the unit sphere in (n + 1)-dimensional Euclidean
space.
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Proof of Proposition 3.5. The idea is to use Lemma 1.8 in order to reduce
the assertion to a simple volume computation. One considers distance tubes
Ur(γ) around a closed geodesic γ of length `(Mn) = infp `M (p). Their volumes
can be estimated as follows:

volUr(γ) ≤ `(Mn) vol(Sn−2)
∫ r

0

snλ(%)n−2 cnλ(%) d%

= `(Mn) vol(Sn−2)
1

n − 1
snλ(r)n−1 = `(Mn)

1
2π

vol(Sn) snλ(r)n−1 .

Finally, one observes that the closed tube Ūr(γ) covers Mn for r ≥ diamMn or
for r ≥ π/(2

√
λ) if λ > 0. �

Roughly speaking, the propeller lemma asserts that, in the presence of a lower
sectional curvature bound and an upper diameter bound, giving a lower volume
bound is equivalent to giving a lower injectivity radius bound. We have followed
the approach of Heintze and Karcher, since it invokes the lower volume bound in a
more intuitive way than Cheeger’s original approach, which gave rise to the name
of the result. As a word of caution, the upper bound for volUr(γ) used in the
proof does not remain valid when the lower bound for the sectional curvature KM

is replaced by the corresponding lower bound for the Ricci curvature [Anderson
1990].

On the proof of Cheeger’s finiteness theorem. The basic idea is to cover
a Riemannian manifold Mn with balls Bi = B(pi, 2%) such that the concentric
balls of radius % are disjoint, and to consider the nerve complex corresponding
to this covering. Since the conjugate radius of Mn ∈ M is bounded below by
π/
√

Λ if Λ > 0 and is +∞ otherwise, Proposition 3.5 provides a uniform lower
bound for the injectivity radius on the whole class of Riemannian manifolds.

The idea is to work with some radius % that is a small fraction of the preceding
injectivity radius bound. Thus the ballsBi are actually topological balls, and the
edges of the nerve complex correspond to minimizing geodesics γij : [0, 1] →Mn

from pi to pj. Picking an orthogonal frame (eν
i )n

ν=1 at the center pi of each ball
in our covering, the edges of the nerve complex can be labeled by the length of
γij and by the orthogonal transformation that maps the frame (eν

i )n
ν=1 to the

frame (eν
j )n

ν=1, when the tangent spaces TpiM and TpjM are identified by means
of parallel transport along γij .

The combinatorial properties of the nerve complex can be controlled using
the relative volume comparison theorem. More sophisticated arguments from
comparison geometry show in addition that two Riemannian manifolds in M
that admit combinatorially equivalent nerve complexes are diffeomorphic if the
labelings of these complexes are sufficiently close. �

In some sense, Cheeger’s finiteness theorem may be regarded as a vast gener-
alization of the topological sphere theorem. For instance, the counterpart of
the nerve complex appearing in the proof of the topological sphere theorem is a
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complex consisting of two vertices joined by one edge. The vertices correspond
to the two balls in the description of a twisted sphere.

Remark 3.6. S. Peters [1987] has given a proof of Gromov’s compactness
theorem following the approach to Cheeger’s finiteness theorem described above.
He used harmonic coordinates to construct the diffeomorphism between two
manifolds inM whose labeled nerve complexes are sufficiently close. In this way
he actually proved that the spacesM are relatively compact in the C2,α-topology.
As observed by I. Nikolaev [1983], the limiting objects are C3,α-manifolds with
Riemannian metrics of class C1,α. They have curvature bounds λ and Λ in
distance comparison sense.

Before we finish this section with an outline of the proof of Theorem 3.1, we
present another injectivity radius estimate, which extends the basic idea behind
Proposition 3.5. In fact, even for complete, noncompact manifolds, it is possible
to relate a lower injectivity radius bound to some lower volume bound, provided
one “localizes” the relevant geometric quantities appropriately:

Theorem 3.7 [Cheeger et al. 1982, Theorem 4.7]. Consider two points p0 and p
in a connected , complete Riemannian manifold Mn with λ ≤ KM ≤ Λ. Further-
more, let r0, r > 0. Suppose that r < π/(4

√
Λ) if Λ > 0. Then the injectivity

radius at the point p can be bounded from below as follows:

injM (p) ≥ r
volB(p, r)

volB(p, r) + V n
λ (2r)

≥ r
V n

λ (r) volB(p0 , r0)
V n

λ (r) volB(p0, r0) + V n
λ (2r)V n

λ (r̂)
, (3.1)

where r̂ := max{r , r0 + dist(p0, p)}, and where V n
λ (%) denotes the volume of a

ball of radius % in the n-dimensional model space Mn
λ with constant sectional

curvature λ.

Remark 3.8. In [Cheeger et al. 1982] one can find even more refined versions
of the preceding theorem. Here, however, we prefer to point out one important
special case: if we choose the parameter r0 as the injectivity radius at the point
p0 ∈ Mn, inequality (3.1) turns into the following relative injectivity radius
estimate:

injM (p) ≥ sup
0<r<π/(4

√
Λ)

r
V n

λ (r)V n
Λ (r0)

V n
λ (r)V n

Λ (r0) + V n
λ (2r)V n

λ (r̂)
.

In other words, injM (p) ≥ ϕn,λ,Λ

(
injM(p0), dist(p0, p)

)
, where ϕn,λ,Λ is a uni-

versal, strictly positive function that depends only on the dimension n and on
the curvature bounds λ and Λ. This is the way the result is stated in [Gromov
1981a, Proposition 8.22]. Moreover, this is the version typically used when study-
ing degenerate limits where the dimension of the Riemannian manifolds drops.



18 UWE ABRESCH AND WOLFGANG T. MEYER

Extending Theorem 3.2, a whole theory of collapsing Riemannian manifolds has
been developed.

On the proof of Theorem 3.7. As far as the proof is concerned, the first
inequality in (3.1) is the central assertion of the theorem, whereas the second
comes almost free, as a direct consequence of the relative volume comparison the-
orem. Yet it is the second inequality that is crucial for controlling the injectivity
radius injM (p) at points p ∈Mn far away from the base point p0.

The link between injM (p) and volB(p, r) described in the first inequality
in (3.1) is a purely local result. By hypothesis, the conjugate radius of Mn is
≥ 4r, and by Lemma 1.8 it is therefore sufficient to show that the length `M (p)
of the shortest nontrivial geodesic loop at p is bounded from below as follows:

`M (p) ≥ 2r
volB(p, r)

volB(p, r) + V n
λ (2r)

. (3.2)

The idea for proving this inequality is to compare the geometry of the ball
B(p, 4r) ⊂Mn with the geometry of its local unwrapping B̃4r, which is the ball
B̃(0, 4r) ⊂ TpM equipped with the metric exp∗p g. The exponential map provides
a length-preserving local diffeomorphism expp : B̃4r → B(p, 4r) ⊂Mn.

Let p̃1 = 0 and let p̃2, . . . , p̃N be the various preimages of p in the domain
B̃r ⊂ B̃4r. They correspond bijectively to the geodesic loops γ1 , . . . , γN of length
< r at p. Clearly, γ1 is the trivial loop. Furthermore, for each point p̃i there
exists precisely one isometric immersion ϕi : B̃r → B̃4r mapping 0 to p̃i and
such that expp ◦ϕi = expp. Without loss of generality we may assume that
L(γ2) = `M (p) is the minimal length of a nontrivial loop at p.

Analyzing short homotopies, one can show that the maps ϕi constitute a
pseudogroup of local covering transformations, hence ϕi(q̃) 6= ϕj(q̃) for 1 ≤ i <

j ≤ N and for all q̃ ∈ B̃r . This fact has two implications:
First, N ≥ 2m+ 1, where m := [r/`M (p)]. More precisely, we claim that the

points ϕµ
2 (p̃1), for −m ≤ µ ≤m, are distinct preimages of p in B̃r . For otherwise

ϕ2 would act as a permutation on the set {ϕµ
2 (p̃1) | −m ≤ µ ≤ m}. But this

set has a unique center of mass q̃ ∈ B̃2r . Actually, q̃ lies in B̃r , so q̃ = ϕ2(q̃), in
contradiction with the fact that ϕ2 is a local covering transformation.

Secondly, each point in B(p, r) has at least N preimages in
⋃N

i=1 B(p̃i, r) ⊂
B̃2r. Hence N volB(p, r) ≤ vol B̃2r ≤ V n

λ (2r), and inequality (3.2) follows upon
combining this estimate with the fact that N ≥ 2 [r/`M(p)] + 1. �

On the proof of Theorem 3.1. The basic idea is to pursue an indirect
approach. If the theorem were false, there would exist a sequence (Mn

j , gj)∞j=1 of
complete, simply connected Riemannian manifolds with 1

4
j

j+1
≤ KMj ≤ 1 such

that none of these manifolds is diffeomorphic to a sphere Σn, possibly with an
exotic differentiable structure, or to one of the projective spaces CPn/2, HPn/4,
or CaP2.
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By Myers’ theorem diamMn
j ≤ 2π

√
1 + 1/j < 3π. Since we are in the even-

dimensional case, we can apply Theorem 1.5 to conclude that injMn
j ≥ π. There-

fore the volume of each Mn
j is bounded from below by the volume of the standard

sphere Sn. (See Proposition 3.5 and Theorem 3.7 for more information about
the equivalence of a lower volume bound and a lower injectivity radius bound.)

Hence Theorem 3.2 asserts that the manifolds Mn
j in our sequence belong to

finitely many diffeomorphism types. One of these types must appear infinitely of-
ten; restricting ourselves to the corresponding subsequence, we are dealing in fact
with a sequence of Riemannian metrics φ∗jgj on a fixed compact manifold Mn.
Furthermore, the compactness theorem asserts that there exists a subsequence
(φ∗jν

gjν )∞ν=1 that converges in the C1,α-topology. As a limit space we thus obtain
a compact, simply connected C3,α-manifold Mn that is neither homeomorphic
to a sphere nor diffeomorphic to one of the projective spaces C Pn/2, HPn/4, or
CaP2, and that carries a Riemannian metric g of class C1,α with 1

4 ≤ K ≤ 1 in
distance comparison sense.

Thus it remains to extend Berger’s rigidity theorem so it holds under the weak
regularity properties of the limit spaces that appear in Gromov’s compactness
theorem. It is by no means a priori clear whether or not such an extension of The-
orem 2.1 exists, since the smoothness of the Riemannian metric has been used in
the arguments in [Berger 1960a] in a significant way. For instance, the regularity
properties of the metric really matter in the theory of Riemannian manifolds
with −1 ≤ KM ≤ 0 and volMn <∞ where the smooth category exhibits vastly
more phenomena than the real analytic category. Concerning Berger’s rigidity
theorem, however, the alternate proof given by Cheeger and Ebin [1975] is much
more robust than the original proof. Following their approach to some extent,
Berger succeeded in eliminating all arguments that still required smoothness,
replacing them by purely metric constructions [Berger 1983].

More precisely, he is able to recognize the cut locus Cp of an arbitrary point
p ∈ Mn as a k-dimensional, totally geodesic submanifold. At the same time
the projective lines are recovered as totally geodesically embedded spheres of
curvature 1 and of the complementary dimension n − k. Furthermore, the cut
locus Cp is shown to have the property that any closed geodesic c : R/Z→ Cp of
length L(c) = 2π spans a totally geodesic RP2 ⊂Mn of curvature 1

4 . Combining
all this information, he can then construct the geodesic symmetries φp : Mn →
Mn directly, recognizing the limit space Mn as a symmetric space and thus a
posteriori as a smooth Riemannian manifold. �

4. An Improved Injectivity Radius Estimate

Already before Berger discussed the metrics gε of Remark 1.7(ii) on odd-
dimensional spheres, it had been considered an interesting question whether
or not the pinching constant in Klingenberg’s injectivity radius estimate for
simply connected, odd-dimensional manifolds could be improved. The extension
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of Theorem 1.6 to weakly quarter-pinched manifolds was summarized in our
discussion of Berger’s rigidity theorem in Remark 2.2.

With Berger’s pinching below- 1
4 theorem the problem became even more in-

triguing. Nevertheless, the first result in this direction was achieved only very
recently:

Theorem 4.1 (Injectivity radius estimate [Abresch and Meyer 1994]).
There exists a constant δinj ∈ (0.117, 0.25) such that the injectivity radius injMn

and the conjugate radius conjMn of any compact , simply connected Riemannian
manifold Mn with δinj-pinched sectional curvature coincide:

injMn = conjMn ≥ π/
√

maxKM .

The pinching constant δinj in this result is explicit and independent of the di-
mension. In fact, the theorem holds for δinj = 1

4(1+ εinj)−2, where εinj = 10−6.
Its proof is based on direct comparison methods, not involving the concept of
convergence of Riemannian manifolds. Yet the constant δinj obtained by this
method is by no means optimal, since the argument involves several curvature-
controlled estimates that are not simultaneously sharp. Currently there is not
even a natural candidate for the optimal value of the pinching constant δinj in
the preceding theorem. The Berger metrics described in Remark 1.7(ii) merely
show that the number must be at least 0.117 > 1

9 .
Notice that the conclusion injMn = conjMn is best possible, and in this

respect the result can be considered as a natural generalization of Klingenberg’s
injectivity radius estimate in Theorem 1.6. In particular, the preceding estimate
can be used not only to justify the extension of Berger’s rigidity theorem to odd-
dimensional manifolds, but to yield a corresponding extension of the pinching
below- 1

4
theorem:

Theorem 4.2 (Sphere theorem [Abresch and Meyer 1994]). For any odd in-
teger n > 0 there exists some constant δn ∈ (0, 1

4 ) such that any complete, simply
connected Riemannian manifold Mn with δn-pinched sectional curvature KM is
homeomorphic to the sphere Sn.

Here, as in Berger’s pinching below- 1
4 theorem, the pinching constants δn ∈ (0, 1

4)
are not explicit, and there is no reason why they should not approach 1

4 as the
dimension n gets large. The proof of Theorem 4.2 relies on the same convergence
methods as the proof of Berger’s pinching below-1

4
theorem, discussed in the

previous section. The details for the odd-dimensional case have been worked
out by Durumeric [1987]. His result requires some uniform lower bound for the
injectivity radius as an additional hypothesis. Such a bound is now provided by
Theorem 4.1.

In the remainder of this section we explain the proofs of the injectivity radius
estimates for odd-dimensional, simply connected manifolds with δ ≤ KM ≤ 1, as
stated in Theorems 1.6 and 4.1. By Myers’ theorem one has a diameter bound
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in terms of the positive lower bound on the sectional curvature. Nevertheless,
in the absence of a lower volume bound, the arguments for establishing Theo-
rems 1.6 and 4.1 must be very different from the proofs of Cheeger’s propeller
lemma (Proposition 3.5) and Theorem 3.7. As in the even-dimensional case, the
hypothesis that the manifold Mn be simply connected must be used in a signif-
icant way, and, as in the proof of Theorem 1.5, the starting point is to conclude
from Lemma 1.8 that it is sufficient to rule out the existence of a closed geodesic
c0 : R/Z→Mn of length L(c0) < 2 conjMn.

However, it is not possible to use Synge’s lemma. Much more sophisticated
global arguments, based on a combination of lifting constructions and Morse
theory, are needed. The following result essentially goes back to [Klingenberg
1962, p. 50].

Lemma 4.3 (Long homotopy lemma). Let (Mn, g) be a compact Riemannian
manifold , and let ct : R/Z→ Mn, for 0 ≤ t ≤ 1, be a continuous family of
rectifiable, closed curves such that

(i) c0 is a nontrivial geodesic digon of length L(c0) < 2 conjMn, and
(ii) c1 : R/Z→ {c1(0)} ⊂Mn is a constant curve.

Then this family contains a curve cτ of length L(cτ ) ≥ 2 conjMn.

Here, in contrast to Klingenberg’s original version of the lemma, the family
(ct)t∈[0,1] can be any free null homotopy of c0.

Proof. The idea is to proceed indirectly and assume that L(ct) < 2 conjMn

for all t ∈ [0, 1]. Without loss of generality we may suppose that the curves ct
are parametrized proportional to arclength.

We consider the family of curves as a continuous map c : R× [0, 1] → Mn

such that c(s + 1, t) = c(s, t) = ct(s) and such that c(0, 0) is a vertex of the
geodesic digon. Then the segments ct|[− 1

2 ,0] and ct|[0,12 ] are strictly shorter than
conjMn, and hence they can be lifted under expct(0). In this way one obtains
a continuous map c̃ : [−1

2
, 1

2
]× [0, 1] → TM such that exp ◦ c̃(s, t) = c(s, t) and

c̃(0, t) = 0 ∈ Tct(0)M . Since c̃(s, 1) = 0, it follows in particular that c̃(−1
2
, t) =

c̃(1
2
, t) for all t ∈ [0, 1].
Since c0 is a geodesic digon, it is clear that one of its arcs c0|[− 1

2 ,0] or c0|[0, 1
2 ]

lifts to a radial straight line segment in Tc0(0) of length 1
2L(c0). The other arc

lifts to a curve of equal length with the same end points, and hence their images
coincide, contradicting the hypothesis that c0 is a nontrivial digon. �

Proof of Theorem 1.6. Proceeding indirectly, we assume that injMn <

conjMn. By Lemma 1.8 one finds a closed geodesic c0 : R/Z→ Mn with
L(c0) < 2 conjMn. Since Mn is simply connected, there exist piecewise smooth
free homotopies c = (ct)0≤t≤1 beginning at c0 and ending at some constant
curve c1.
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Recall that the energy functional and the length functional are related by the
inequality E(ct) = 1

2

∫
R/Z

|c′t(s)|2 ds ≥ 1
2L(ct)2. Thus it follows from Lemma 4.3

that for any free homotopy c from c0 to a constant curve the map t 7→ E(ct)
achieves its maximum at some t0 ∈ (0, 1) and that, moreover,

Emin(c0) := inf
c

max
0≤t≤1

E(ct) ≥ 2
(
conjMn

)2
.

Let (cj)∞j=1 be a minimizing sequence of such homotopies, and let t0,j be pa-
rameters such that E

(
cj
t0,j

)
= max0≤t≤1E(cjt). Clearly, E

(
cj
t0,j

) → Emin(c0) as
j → ∞. Since the energy functional E on the free loop space satisfies Condi-
tion C of Palais and Smale, a subsequence of the curves cj

t0,j
converges towards

a closed geodesic c̄0 : R/Z→ Mn of length L(c̄0) =
√

2Emin(c0) ≥ 2 conjMn

and Morse index indE(c̄0) ≤ 1. In this generality, the assertion about the Morse
indices of the limiting geodesics obtained by the preceding minimax construction
requires the degenerate Morse lemma from [Gromoll and Meyer 1969], since we
have not made any attempt to perturb the Riemannian metric and to ensure
that the energy functional E is a nondegenerate Morse function.

The contradiction appears when we look at the index form of the closed geo-
desic c̄0. The idea is to evaluate

I(Y, Y ) =
∫
R/Z

∣∣∣∣∇dsY
∣∣∣∣
2

− 〈R(Y, c̄′0)c̄
′
0, Y 〉 ds

on closed unit vector fields v1, . . . , vn that rotate with constant angular velocity
and that are pairwise orthogonal. Since KM > 1

4 and L(c̄0) ≥ 2 conjMn ≥ 2π,
it is indeed not hard to see that indE(c̄0) ≥ n− 1 ≥ 2. �

In the preceding proof we have used the degenerate Morse lemma, avoiding the
bumpy metrics theorem [Abraham 1970], since we want to explain the additional
difficulties that arise in the weakly quarter-pinched case. It should be pointed
out that the standard minimax construction used in the proof yields a limiting
geodesic c̄0 but nothing like a limiting homotopy c̄.

Remark 4.4. A similar argument can be given in the space ΩppM of loops with
base point p ∈ Mn. In this case the minimax construction leads to a geodesic
loop c̄0 of length L(c̄0) ≥ 2π, and in order to estimate the index form one must
use test fields Y that vanish at the initial and end points of c̄0. In this context
it is customary to test the index form with vector fields obtained as the product
of a parallel normal field and an appropriately transformed sine function. One
concludes that the Morse index of c̄0 in ΩppM is ≥ n− 1, too.

This approach is actually pretty close to Klingenberg’s original proof of The-
orem 1.6. However, neither the degenerate Morse lemma nor the bumpy metrics
theorem were known in 1961. Klingenberg’s way out was to work in some path
space ΩpqM , picking an end point q ∈ Mn close to p such that in particular
the energy functional E has only nondegenerate critical points on ΩpqM . This
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approach relies on the fact that the long homotopy lemma can be applied to
nontrivial digons c0 rather than merely to closed geodesics.

On the extension of the proof to weakly
1
4
-pinched manifolds. In

the limiting case, where the simply connected, odd-dimensional manifoldMn has
only weakly quarter-pinched sectional curvature, it has turned out to be neces-
sary to work on the free loop space ΩM . Nevertheless, the index computation
for the long geodesic c̄0 does not yield an immediate contradiction, but it leads
to the following additional information:

(a) the long geodesic c̄0 has length L(c̄0) = 2π, and conjMn = π;
(b) the holonomy action on the normal bundle of c̄0 is the map −id;
(c) KM (σ) = 1

4 for any tangent plane σ of Mn containing c̄′0.

Properties (b) and (c) mean that in some sense c̄0 looks like a primitive closed
geodesic in the real projective space RPn

1/4 with constant sectional curvature 1
4
.

The argument given in [Cheeger and Gromoll 1980] is based on the observation
that the lifting construction in the proof of the long homotopy lemma actually
proves a little more. The authors conclude that the long geodesic c̄0 is nonliftable
in a suitable sense [Cheeger and Gromoll 1980, Lemma 1]. This property, which
is technically fairly delicate to deal with, turns out to be quite strong since
L(c̄0) ≤ 2π in the weakly quarter-pinched case. One concludes that for any
s0 ∈ Rthe first conjugate points of c̄0 on either side of s = s0 appear at s = s0± 1

2 ,
an assertion much stronger than the statement about the conjugate radius in (a).
It implies that there exists a closed unit normal field v0 along c̄0 such that

KM

(
span{c̄′0, v0}

) ≡ 1,

contradicting property (c) and thus obstructing the special long geodesic c̄0 as
required. �

The properties of the parallel unit vector field v0 in the preceding proof assert
that the long geodesic c̄0 looks in some sense like the boundary of a totally
geodesically immersed hemisphere Σ of constant curvature KΣ = 1. Loosely
speaking, the contradiction that concludes the proof in [Cheeger and Gromoll
1980] is due to the fact that this picture of c̄0 is very different from the appearance
of a primitive closed geodesic in RPn

1/4.
Nevertheless, any straightforward attempt to extend the argument of Cheeger

and Gromoll to a proof of Theorem 4.1 fails badly.

Remarks 4.5. (i) If the pinching constant δ is < 1
4 , that is, if δ = 1/(4(1+ε)2)

for some ε > 0, it is still possible to follow the approach in the proof of Theo-
rem 1.6 for a while. The assumption injMn < conjMn still implies the existence
of a long geodesic c̄0, which in this case has the following properties:

L(c̄0) ≥ 2 conjMn ≥ 2π, indE(c̄0) ≤ 1. (4.1)
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The preceding upper bound for the Morse index of c̄0 yields additional informa-
tion about the length and the first holonomy angle of the long geodesic:

L(c̄0) ≤ 2π(1 + ε), ψ1(c̄0) ≤ π

1 + ε
.

By definition the first holonomy angle ψ1(c) of a closed curve c : R/Z→ Mn

is the angle of smallest absolute value among the rotation angles correspond-
ing to the 2 × 2 blocks Di in the expression of the holonomy matrix Uc =
diag(1, D1, . . . , D(n−1)/2) ∈ SO(n) in canonical form. The other holonomy an-
gles 0 ≤ ψ1(c) ≤ · · · ≤ ψ(n−1)/2(c) ≤ π are defined similarly.

Refining the minimax construction, it is furthermore possible to obtain a long
geodesic c̄0 that is shortly null-homotopic. This means that there exists a free
homotopy c̄ from c̄0 to a constant curve c̄1 consisting of closed curves c̄t such
that L(c̄t) < L(c̄0) for all t ∈ (0, 1].

(ii) By (i) the set of shortly null-homotopic closed geodesics c̄0 that obey (4.1)
is nonempty and compact, and thus it contains an element of minimal length.

However, in contrast to the setup in the weakly quarter-pinched case, it is
not possible to ensure that the curves c̄t in a free null homotopy of the long
geodesic c̄0 are strictly shorter than 2 conjMn for any t ∈ (0, 1]. Thus c̄0 cannot
be recognized as the limit of a family of liftable curves. This is precisely the
point where any direct attempt to generalize the argument from [Cheeger and
Gromoll 1980] seems to fail.

The idea for the proof of Theorem 4.1 as given in [Abresch and Meyer 1994] is to
consider a minimal closed geodesic c̄0 : R/Z→Mn as described in the preceding
remark and to gain further geometric information by normalizing the short null
homotopy c̄ in three basic steps. Figure 1 is a Morse theory–type picture of the
last two normalization steps.
On the tail of short null homotopies. We define the tail of a short null homotopy
c̄ as the family (c̄t)t0<t≤1, where t0 := inf{t | L(c̄t) < 2π}. It will be convenient
to introduce the space ΩM<2π consisting of all closed curves in Mn of length
< 2π and the connected component ΩM<2π,0 ⊂ ΩM<2π containing the constant
curves.

Since 2π ≤ 2 conjMn ≤ L(c̄0), it follows from the long homotopy lemma that
a curve c̄t in the short null homotopy of c̄0 is contained in ΩM<2π,0 if and only
if L(c̄t) < 2π. The space ΩM<2π,0 in turn is sufficiently special to admit the
following additional lifting construction:

Lemma 4.6 [Abresch and Meyer 1994, Theorem 6.8]. For any complete Rie-
mannian manifold Mn with KM ≤ 1 there is a unique continuous map

h : ΩM<2π,0 →Mn × ΩTM, h(c0) := (m0, c̃0),

such that the following conditions hold :
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c̄0
c̆0:=c̄τ0

c̄t0

c̆t1

c̄

c̆

L≡const

L≡2π

κ(c)≤ _1
7

Figure 1. The initial segments (c̄t)0≤t≤t0 and (c̆t)0≤t≤t1 of a normalized short
null homotopy.

(i) c̃0 is a lift of c0 under the exponential map expm0
: Bπ/2Tm0M → Mn,

where Bπ/2Tm0M denotes the ball of radius 1
2
π centered at 0 ∈ Tm0M , and

(ii) the origin in Tm0M is the center of the circumscribed ball around the image
of c̃0 in Bπ/2Tm0M .

It should be clear how to define the map h on a space of very short curves, say
much shorter than the injectivity radius of Mn. The next step is to observe
that by properties (i) and (ii) such partially defined maps h admit locally unique
continuations. The existence of these continuations depends on the fact that in
the standard sphere Sn of curvature 1 any curve of length < 2π is contained in
an open hemisphere, that is, in an open ball of radius 1

2π. For the uniqueness
part one should observe that the condition on the center of the circumscribed
ball determines the tangent space containing the image of c̃0. Finally, the long
homotopy lemma asserts that there are no problems with monodromy.

Clearly, the map h extends continuously to the closure ΩM<2π,0 ⊂ ΩM .
Applying the preceding lemma with c0 = c̄t0 , we can replace the tail of the short
null homotopy c̄ up to some reparametrization in t by the map

ĉ : R/Z× [0, 1]→Mn, ĉ(s, t) := expm0
tc̃0(s). (4.2)

The image of this map has remarkable geometric properties if the total abso-
lute curvature

κ(c0) =
∫
R/Z

∣∣∣∣∇ds
c′0(s)
|c′0(s)|

∣∣∣∣ ds
is sufficiently small. For κ(c0) < 1

2
π it can be shown that ĉ describes an immersed

ruled surface Σ ⊂ Mn with a conical singularity at m0 = ĉ(s, 0). Clearly, the
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sectional curvature at the regular points of this ruled surface satisfiesKΣ ≤ KM ≤
1. The same upper bound holds for the curvature at the conical singularity, since
by condition (ii) in Lemma 4.6 the curve c̃0 does not lie in any open half-space
in Tm0M .

If the total absolute curvature κ(c0) approaches zero, the ruled surface Σ
looks more and more like a totally geodesically immersed hemisphere of constant
curvature KΣ = 1. For the proof of Theorem 4.1 we only need a slightly weaker
result:

Lemma 4.7 [Abresch and Meyer 1994, Proposition 6.15 and Theorem 6.1]. Let
Mn be a complete Riemannian manifold with sectional curvature bounded by
0 < KM ≤ 1. Let c0, c̃0, and ĉ be as in (4.2), and suppose that κ(c0) ≤ 1

6π.
Then the unit vector field v along c0 obtained by normalizing s 7→ (∂ĉ/∂t)|(s,1)

has total absolute rotation
∫
R/Z

∣∣∣∣∇dsv
∣∣∣∣ ds ≤ κ(c0) + 2

√
κ(c0) .

Furthermore, the first holonomy angle ψ1(c0) is bounded as follows:

ψ1(c0) ≤



κ(c0) if n is even,
√

2 κ(c0) + 2
√
κ(c0)√

1− sinκ(c0)
if n is odd .

This implies in particular that the initial curve c̄t0 of the tail of the short null
homotopy c̄ has first holonomy angle ψ1

(
c̄t0

)
< 1

3π provided that the total
absolute curvature of c̄t0 satisfies κ

(
c̄t0

)
< 1

7 .

A first normalization of the initial segment of the short null homotopy. The
purpose of this normalization is to guarantee that the total absolute curvature
of c̄t0 is so much less than 1

7 that the inequality κ
(
c̄t0

)
< 1

7 persists even after
the second normalization step. This leads to the required contradiction, since
the second normalization step will ensure that ψ1

(
c̄t0

)
> 1

3π, provided that the
pinching constant δ = 1/(4(1 + ε)2) is sufficiently close to 1

4
.

Recall that c̄0 is a closed geodesic of length η := L(c̄0) ∈
[
2π, 2π(1 + ε)

]
.

Hence κ(c̄0) = 0 and c̄t ∈ ΩM<η,0 for 0 < t ≤ 1. But there is no bound for the
length of the initial segment (c̄t)0≤t≤t0 when considered as a curve in the free
loop space ΩM . Nevertheless, it is possible to get away with some bounds for the
differential dκ on a suitable domain in ΩM<η,0. The key observation is that the
total absolute curvature κ can be interpreted as the L1-norm of the L2-gradient
gradL2 L of the length functional L. Recall that the L2-norm of a vector field
X along c̄t is defined by ‖X‖2

L2 =
∫
R/Z

|X|2 |c̄′t| ds. Since the L2-Hessian of the
length functional at some curve c̄t is bounded from below by −maxKM ≥ −1,
one obtains the following lemma:
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Lemma 4.8 (Curve shortening). Let Mn, c̄0, and η := L(c̄0) be as before.
Suppose that the initial segment of the short null homotopy c̄ beginning at c̄0 is
a solution of the rescaled curve-shortening flow

∂c̄t
∂t

= −p(t) gradL2 L|c̄t ,

except at finitely many θj ∈ [0, t0] where the weight function p : [0, t0] → (0,∞]
is unbounded . Then for any t ∈ [0, t0] the total absolute curvature of c̄t satisfies

κ
(
c̄t

)2 ≤ 2
(
L(c̄0)− L(c̄t)

) ≤ 4πε.

Remarks 4.9. (i) Clearly, θ0 = 0, and each θj > 0 means that the trajectory
approaches a closed geodesic c̄θj . By our choice of the initial curve c̄0 such
a geodesic must have Morse index indE

(
c̄θj

) ≥ 2, and thus it is possible to
restart the curve-shortening flow below the critical level after performing some
tiny, explicit deformation of c̄θj by means of the degenerate Morse lemma. By
Condition C of Palais and Smale the closed interval [2π2, 1

2
η2] contains only

finitely many critical values of the energy functional E, and thus after at most
finitely many restarts the flow passes through a curve c̄t0 of length L

(
c̄t0

)
= 2π.

(ii) In [Abresch and Meyer 1994, Proposition 5.1] we are actually working in
some fixed, finite-dimensional subspace Ωk

`M<η of broken geodesics rather than
on the Hilbert manifold ΩM , whose metric is induced by the H1-inner products
on the tangent spaces. This is to avoid the analytical difficulties concerning the
long-time existence of the curve-shortening flow. A second benefit of working in
a fixed finite-dimensional approximation space is the fact that two-sided bounds
for the Hessians of the length and the energy functionals are available. These
bounds will be used in a significant way in the next normalization step.

A second normalization of the initial segment of c̄. From now on we suppose that
the initial segment (c̄t)0≤t≤t0 of the short null homotopy c̄ has been normalized by
means of the curve-shortening flow as discussed in the preceding step. Moreover,
we assume that ε ≤ 1

64 000 . With this constraint on the pinching constant δ,
Lemma 4.8 implies that κ(c̄t) < 1

70 for all t ∈ [0, t0], and by Lemma 4.7 the
first holonomy angle of the curve c̄t0 is much smaller than 1

3π. Since the map
t 7→ ψ1(c̄t) is continuous, we conclude that there exists some τ0 ∈ (0, t0) such
that c̄τ0 has first holonomy angle equal to 1

2π and total absolute curvature < 1
70 .

Our goal is to replace the segment (c̄t)τ0≤t≤t0 of the short null homotopy c̄

by some alternate arc c̆ : [0, t1] → ΩM<η,0 from c̆0 = c̄τ0 to some curve c̆t1
representing an element of the boundary of ΩM<2π,0. The construction of c̆ shall
imply that the total absolute curvature of c̆t1 is still bounded by 1

7
and that its

first holonomy angle is still > 1
3
π, contradicting the assertion in Lemma 4.7.

The key observation for constructing c̆ is to realize that because of the equation
ψ1(c̆0) = 1

2
π there exists a subspace W ⊂ Tc̆0ΩM of dimension ≥ 2 consisting of
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vector fields v along c̆0 such that

∇
∂s
v ⊥ v and

∣∣∣∣∇∂sv
∣∣∣∣ = 1

2
π |v| .

In other words, each of these fields v rotates with constant speed. On the one
hand, the angular velocity is sufficiently large in comparison to the total absolute
curvature κ(c̆0) to allow us to conclude that v and the tangent field c̆′0 are almost
perpendicular. On the other hand, the angular velocity of v is already sufficiently
small for us to conclude that

hessL2(L)|c̆0 (v, v) /
(

π2

4L(c̆0)2
− 1

4(1 + ε)2

)
‖v‖2

L2 ≈ − 3
16
‖v‖2

L2 < 0. (4.3)

It is customary to control the path dependence of parallel transport in terms of
the norm of the Riemannian curvature tensor of Mn and the area of a spanning
homotopy. A similar argument can be used to estimate the change in the first
holonomy angle along c̆:

∣∣ψ1(c̆t1)− ψ1(c̆0)
∣∣ ≤ 4

3
area(c̆) . (4.4)

The corresponding statements for the finite-dimensional approximation spaces
Ωk

`M<η used in [Abresch and Meyer 1994] are somewhat more technical. Even
if the number k of corners of the broken geodesics is chosen to be large, the con-
stants appearing in Lemma 4.7 and in inequalities (4.3)–(4.4) differ significantly
from the constants in the corresponding statements for Ωk

`M<η in [Abresch and
Meyer 1994]. The reason is that the natural metrics gk on the approximation
spaces converge to the normalized L2-inner product on ΩM rather than to the
standard L2-inner product used in the preceding discussion. Moreover, the esti-
mates in [Abresch and Meyer 1994] are stated in terms of the energy functional
E rather than the length functional L.

The advantage of working in the space Ωk
`M<η is that a two-sided bound for

the Hessian of L is available, so there is a bound for the norm of the differential
dκ. This means that the required bounds for the first holonomy angle and for the
total absolute curvature of c̆t1 ∈ ∂Ωk

`M<2π,0 can be guaranteed if the length of c̆
with respect to the metric gk on Ωk

`M<η is bounded by a small constant tmax > 0
and if ε is sufficiently small.

In the finite-dimensional setup, we are dealing with a broken geodesic c̆0 =
c̄τ0 ∈ Ωk

`M<η,0. The tangent space Tc̆0Ωk
`M<η also contains a subspace Wk of

dimension at least 2 on which the Hessian of the length functional is bounded
from above by an explicit negative constant. Now the idea is to pick the homo-
topy c̆ as a normal gk-geodesic in Ωk

`M<η of length ≤ tmax starting at c̆0 = c̄τ0

with initial vector ∂
∂t c̆t|t=0 = v ∈Wk. Since dimWk ≥ 2, we may assume that

dL
(
∂

∂t
c̆t

∣∣∣
t=0

)
≤ 0.
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As we decrease ε > 0, the difference L(c̆0)−2π becomes as small as we please,
so the proof can be finished establishing a negative upper bound for

d2

dt2
L(c̆t) = hessL2(L)

(
∂

∂t
c̆t,

∂

∂t
c̆t

)
(4.5)

for all t ∈ [0, tmax], and not just at t = 0 as in inequality (4.3). For this purpose
we cannot refer to any modulus of continuity for the Hessian hessL2(L) itself,
since this would require a bound for the covariant derivative of the curvature
tensor. However, the bounds for

∫
R/Z

∣∣∣∣∇∂s
∂

∂t
c̆t

∣∣∣∣
2 ∣∣∣∣ ∂∂s c̆t

∣∣∣∣
−1

ds and
∣∣∣∣ ∂∂s c̆t ∧

∂

∂t
c̆t

∣∣∣∣ ,
which have been used to prove inequality (4.3) for c̆0, can be extended continu-
ously along the gk-geodesic t 7→ c̆t, and thus we obtain a uniform negative upper
bound for the second derivative of the map t 7→ L(c̆t) on [0, tmax], provided that
tmax and ε are sufficiently small.

This concludes our sketch of the proof of Theorems 1.6 and 4.1.

5. A Sphere Theorem with a Universal Pinching Constant
Below 1

4

The injectivity radius estimate in Theorem 4.1 was the first result with a
pinching constant below 1

4 and independent of the dimension. In this context it
is natural to ask whether the assertions in Berger’s pinching below-1

4 theorem
and the sphere theorem in the preceding section (Theorems 3.1 and 4.2) remain
valid for some universal pinching constants. In the odd-dimensional case the
answer is affirmative:

Theorem 5.1 (Sphere theorem [Abresch and Meyer a]). There exists a con-
stant δodd ∈ (0, 1

4
) such that any odd-dimensional , compact , simply connected

Riemannian manifold Mn with δodd-pinched sectional curvature is homeomor-
phic to the sphere Sn.

In fact, the constant δodd is explicit. Our proof works for δodd = 1
4 (1 + εodd)−2,

where εodd = 10−6. In the even-dimensional case, however, our methods are not
yet sufficient to generalize Berger’s pinching below- 1

4 theorem accordingly. So
far, there is only the following partial result [Abresch and Meyer a]:

Theorem 5.2 (Cohomological pinching below-
1
4 theorem). There ex-

ists a constant δev ∈ (0, 1
4 ) such that for any even-dimensional , compact , simply

connected Riemannian manifold Mn with δev-pinched sectional curvature the
cohomology rings H∗(Mn;R) with coefficients R ∈ {Q,Z2} are isomorphic to
the corresponding cohomology rings of one of the compact , rank-one symmet-
ric spaces Sn, C Pn/2, HPn/4, or CaP2, or the rings H∗(Mn;R) are truncated
polynomial rings generated by an element of degree 8.
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Again, the constant δev is explicit and independent of the dimension. The proof
works for δev = 1

4(1 + εev)−2, where εev = 1
27 000 .

Recall that H∗(CaP2;R) = R[ξR]/(ξ3R), where deg ξR = 8. However, we
cannot exclude the possibility that H∗(Mn;R) = R[ξR]/(ξm+1

R ), where deg ξR =
8 andm > 2. For instance, we cannot apply J. Adem’s result [1953, Theorem 2.2],
which is based on Steenrod’s reduced third power operations, since we do not
have enough control on the cohomology ring of Mn with coefficients Z3.

Notice that in dimensions 2, 3, and 4 the more special results mentioned in the
discussion of the topological sphere theorem in Section 1 are still much stronger
than the assertions in Theorems 5.1 and 5.2. In fact, we even need to refer to
Hamilton’s result, since our proof for the sphere theorem depends on Smale’s
solution of the Poincaré conjecture in dimensions ≥ 5. We use Theorem 1.3 in
order to handle the three-dimensional case.

The starting point for the proofs of both theorems is to establish the horseshoe
conjecture of Berger [1962a], which had remained open until recently:

Theorem 5.3 (Horseshoe inequality [Abresch and Meyer a, Theorem 2.4]).
There exists a constant εhs > 0 such that , for any complete Riemannian manifold
Mn satisfying

δhs := 1
4

(1 + εhs)−2 ≤ KM ≤ 1

and
π ≤ injMn ≤ diamMn ≤ π (1 + εhs),

the following statement holds: For any p0 ∈Mn and any v ∈ Sn−1 ⊂ Tp0M , the
distance between the antipodal points expp0

(−πv) and expp0
(πv) is less than π.

If Mn is one of the projective spaces CPm, HPm, and CaP2 with its Fubini–
Study metric, the two points expp0

(−πv) and expp0
(πv) coincide. The horseshoe

inequality asserts that their distance is less than the injectivity radius of Mn

if the relevant geometric invariants of Mn do not deviate too much from the
corresponding quantities of the projective spaces. Notice in particular that the
pinching constant δhs is explicit and independent of the dimension. In fact, the
assertion of Theorem 5.3 holds for εhs = 1

27 000
.

A horseshoe inequality for manifolds with nontrivial fundamental group had
been established earlier by Durumeric [1984, Lemma 6]. His argument was based
on a detailed investigation of the geometry of Dirichlet cells in the universal cov-
ering of Mn, and relied on the hypothesis π1(Mn) 6= 0. The proof of Theorem 5.3
is very different. It requires some refined Jacobi field estimates, which might be
useful in other contexts as well. Our plan is to explain these Jacobi field esti-
mates in the next section and describe the proof of the horseshoe inequality in
Section 7.

We conclude this section by explaining how to deduce Theorems 5.1 and 5.2 for
manifolds Mn of dimension n ≥ 4 by combining the injectivity radius estimate
of Theorem 4.1, the diameter sphere theorem, and the horseshoe inequality of
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Theorem 5.3 with some results from algebraic topology. This reduction had
already been known to Berger [1962a]. Complete proofs are given in [Abresch
and Meyer a]. Here we list only the basic steps.

In fact, Theorem 5.3 does not come into the proofs of Theorems 5.1 and 5.2
directly. Instead we need the following corollary:

Corollary 5.4 [Berger 1962a, Proposition 2]. Let δhs ∈ (0, 1
4
) be the con-

stant of Theorem 5.3. Then any compact Riemannian manifold Mn satisfying
δhs ≤ KM ≤ 1 and

π ≤ injMn ≤ diamMn ≤ π

2
√
δhs

admits a continuous, piecewise smooth map f : RPn →Mn of degree 1.

Here deg f denotes the standard integral mapping degree if Mn is odd-dimen-
sional and orientable. Otherwise deg f has to be understood as the Z2-mapping
degree.

Remark 5.5. If Mn = CPm, with n = 2m > 2, the map f : RP2m →
CPm obtained from the preceding corollary can be visualized in terms of the
standard cell decompositions. Recall that RP2m = RP2m−1 ∪ϕ e2m and CPm =
CPm−1 ∪ϕ̄ e2m. Moreover, the fibers of the attaching map ϕ̄ : ∂e2m → C Pm−1

are the Hopf circles in S2m−1 = ∂e2m. They are invariant under the antipodal
map, and thus there is an induced map ψ : RP2m−1 → C Pm−1 such that ϕ̄
factors as ψ ◦ ϕ. Hence the identity map on the 2m-cell e2m induces a map f :
RP2m → CPm with deg

Z2
f = 1. This map coincides with the map constructed

in the proof of the corollary.

It turns out that the mere existence of such a map f : RPn → Mn is a strong
constraint for the topology of the manifoldMn:

Theorem 5.6. Let Mn be a compact , simply connected , odd-dimensional man-
ifold . Suppose that there exists a continuous map f : RPn →Mn with degZf =
1. Then Mn is a homology sphere.

Theorem 5.7. Let Mn be a compact , simply connected , even-dimensional
manifold . Suppose that there exists a continuous map f : RPn → Mn with
degZ2 f = 1. Then the cohomology rings of Mn with coefficients R ∈ {Q,Z2}
are isomorphic to truncated polynomial rings generated by an element ξR of de-
gree 2, 4, 8, or n.

Both theorems follow essentially from standard computations in algebraic topol-
ogy, based on the Poincaré duality theorem, the Steenrod squares, and the uni-
versal coefficient theorem. The proof of Theorem 5.7 refers in addition to J.
F. Adams’s results on secondary cohomology operations and the Hopf invariant
one problem [Adams 1960]. A summary of this work is given in [Milnor and
Stasheff 1974, page 134]. Historically, Theorem 5.6 goes back to H. Samelson
[1963], whereas Theorem 5.7 can be extracted from [Berger 1965, p. 135ff].
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Theorem 5.7 is far from recognizing the manifoldMn up to homeomorphism.
It determines the integral cohomology ring H∗(Mn;Z) only up to the Serre class
of torsion groups of odd order. This ambiguity reflects the fact that we can only
work with the modulo-2 mapping degree of f . Furthermore, the fake projective
spaces discovered by J. Eells and N. H. Kuiper [1962] show that it would not
even be sufficient to recover the integral cohomology rings in order to recognize
the manifold Mn up to homeomorphism.

On the proof of Theorem 5.1 in dimensions n ≥ 5. We set δodd :=
max{δinj, δhs}, where δinj and δhs are the constants from Theorems 4.1 and 5.3.
It is convenient to scale the metric on Mn such that δodd ≤ KM ≤ 1. Because of
the diameter sphere theorem of Grove and Shiohama it is sufficient to consider
manifolds with diamMn ≤ π/(2

√
δodd). By Theorem 4.1 we have injMn ≥ π,

so Corollary 5.4 yields a continuous, piecewise smooth map f : RPn → Mn of
degree degZf = 1. With Theorem 5.6 we conclude that the manifold Mn is a
homology sphere. Since by hypothesis Mn is simply connected, Smale’s solution
of the Poincaré conjecture in dimensions n ≥ 5 can be applied [Milnor 1965,
p. 109; Smale 1961]. �

On the proof of Theorem 5.2 in dimensions n ≥ 4. The argument is very
similar. We estimate the injectivity radius ofMn by means of Theorem 1.5 rather
than Theorem 4.1, so we may set δev := δhs. Again we obtain a continuous,
piecewise smooth map f : RPn → Mn. We still have deg

Z2
f = 1, so we

can apply Theorem 5.7. In order to conclude the proof, we observe that the
truncated polynomial rings R[ξR]/(ξm+1

R ) where m = n/deg ξR are precisely the
cohomology rings of Sn, CPn/2, or HPn/4, if the degree of the generator is n, 2,
or 4, respectively. �

6. New Jacobi Field Estimates

In this section the issue is to obtain precise control over normal Jacobi fields
Y with Y (0) = 0 along any geodesic γ : [0, r2] → Mn. We are interested in
mixed estimates for Y at some point r1 ∈ (0, r2), which depend on information
about the size of the initial derivative ∇

drY (0) and the boundary value Y (r2), and
which refine the standard estimate provided by the Rauch comparison theorems.
For this purpose it is essential to work with two-sided bounds for the sectional
curvature KM of the Riemannian manifold Mn. The basic estimates have been
established in [Abresch and Meyer a, Theorem 5.6].

Theorem 6.1 (Mixed Jacobi field estimates). Let λ < Λ and let 0 <

r1 ≤ r2. Suppose that r2 ≤ π/
√

Λ if Λ > 0. Then there exists a continuous
function Ψr1r2 : [0,∞)×[0,∞)→ [0,∞) such that , for any Riemannian manifold
Mn with sectional curvature bounded by λ ≤ KM ≤ Λ and for any geodesic
γ : [0, r2] → Mn with |γ′| ≡ 1, there is the following lower bound for a normal
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Jacobi field Y along γ with initial value Y (0) = 0:

|Y (r1)| ≥ Ψr1r2

(∣∣∣∇
dr
Y (0)

∣∣∣ , |Y (r2)|
)
.

Furthermore, the function Ψr1r2 has the following properties:

(i) it is weakly convex and positively homogeneous of degree 1;
(ii) it is nondecreasing with respect to both variables;
(iii) it is locally of class C1,1 except at (α, η) = (0, 0);
(iv) Ψr1r2 (α, η) ≥ max

{
α snΛ(r1), η snλ(r1)/snλ(r2)

}
for all (α, η) ∈ [0,∞)2.

Remark 6.2. The lower bounds for Ψr1r2 in (iv) reflect the standard Jacobi field
estimates. The term α snΛ(r1) is due to the first Rauch comparison theorem,
whereas the term η snλ(r1)/snλ(r2) follows from the monotonicity of the map
s 7→ snλ(s)−1 |Y (s)| asserted by the infinitesimal Rauch comparison theorem. In
fact,

Ψr1r2 (α, η) =
{
α snΛ(r1) if η ≤ α snΛ(r2),
η snλ(r1)/snλ(r2) if α snλ(r2) ≤ η.

(6.1)

The continuity of the first derivatives of Ψr1r2 as asserted in (iii) implies that
inequality (iv) is strict, provided that α snΛ(r2) < η < α snλ(r2) and r1 is suf-
ficiently close to r2. This is the range of parameters in which Theorem 6.1
improves the classical estimates.

The homogeneity property of Ψr1r2 corresponds to the linearity of the Jacobi field
equation. The convexity asserted in (i) is essential in order to apply Jensen’s
inequality when integrating the Jacobi field estimate from Theorem 6.1 over a
family of geodesics. In particular, it enables us to deduce:

Theorem 6.3 [Abresch and Meyer a, Theorem 5.4]. Let λ < Λ and let 0 <

r1 ≤ r2. Suppose that r2 ≤ π/
√

Λ if Λ > 0. Consider a Riemannian manifold
Mn with sectional curvature bounded by λ ≤ KM ≤ Λ and a ruled surface γ :
[0, r2]× [0, 1]→Mn generated by normal geodesics γθ = γ( · , θ) emanating from
a fixed point p0 ∈ Mn. Then the lengths `(ri) of the circular arcs θ 7→ γ(ri, θ)
and the total angle

ϕ0 :=
∫ 1

0

∣∣∣∇
∂r

∂γ

∂θ
(0, θ)

∣∣∣ dθ
satisfy the inequality

`(r1) ≥ Ψr1r2

(
ϕ0, `(r2)

)
,

where Ψr1r2 is the comparison function introduced in Theorem 6.1.

For computational purposes it is necessary to have a more explicit description of
the comparison functions Ψr1r2 that appear in the preceding theorems. In fact,
the proof of Theorem 6.1 provides the following information:
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On the comparison functions Ψr1r2 . The values at all pairs (α, η) outside
the cone α snΛ(r2) < η < α snλ(r2) are given by formula (6.1). By homogeneity
it is sufficient to define Ψr1r2 (1, η) for snΛ(r2) < η < snλ(r2). For this purpose
we introduce the functions ȳ : [0, r2]× [0, r2] → [0,∞) by means of

ȳ(r0, r) :=




snΛ(r) if r ≤ r0 ,
snΛ(r0) cnλ(r − r0) + cnΛ(r0) snλ(r − r0) if r0 ≤ r and n = 2,
snλ(r) w̄(r0, r)1/2 if r0 ≤ r and n > 2,

(6.2)
where snλ and cnλ are the generalized trigonometric functions defined on page 3,
and where w̄(r0, r) is the nonnegative number

w̄(r0, r) :=
sn2

Λ(r0)
sn2

λ(r0)
− 2 det

(
cnλ(r0) cnΛ(r0)
snλ(r0) snΛ(r0)

) ∫ r

r0

snΛ(%)
sn3

λ(%)
d% .

The graphs of the functions ȳr0 : r 7→ ȳ(r0, r) with 0 ≤ r0 < r2 foliate the
domain {(r, y) | snΛ(r) < y ≤ snλ(r), 0 < r ≤ r2}, as shown in Figure 2. In
particular, for any η ∈ [snΛ(r2), snλ(r2)] there is precisely one r0 ∈ [0, r2] such
that ȳ(r0, r2) = η, and Ψr1r2 (1, η) is defined implicitly by the equation

Ψr1r2

(
1, ȳ(r0, r2)

)
= ȳ(r0, r1) . (6.3)

Remark 6.4. For λ = 1
4

and Λ = 1 it is possible to evaluate the integral in
the expression for w̄ in terms of trigonometric functions. Moreover, the solution
of the equation ȳ(r̂0, π) = 1, which is needed in order to compute Ψr1π(1, 1) =

1
√λ

1
√Λ

ȳr̄0

ȳr̂0

ȳr1

snλ

snΛ

0 π
√Λ

π
2√Λ

r̄0 r̂0 r1 r2

Figure 2. The functions ȳr0 and the map η 7→ Ψr1r2(1, η). The graphs of the

functions ȳr0 , ȳr̂0 , and ȳr1 are only qualitative pictures with the correct number

of local maxima, local minima, and saddle points, provided that 0 < λ < 1
4
Λ.

In an actual plot the qualitative properties of these functions would be almost
invisible.
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ȳ(r̂0, r1) for r1 ∈ (0, π), is given by

r̂0 =
{

2 arccos
(
2−1/3

) ≈ 0.416 304 π if n = 2,
2 arcsin

(
1
2 + sin( 1

18π)
) ≈ 0.470 548 π if n > 2.

In particular, if r1 = 59
120π ∈

(
r̂0,

1
2π

)
, it follows that Ψr1π(1, 1) ≥ (1+a0) sin(r1)

for a0 ≈ 0.001 663 > 0. By continuity this inequality persists with a slightly
smaller constant aε > 0 if λ = 1

4(1 + ε)−2 and ε > 0 is sufficiently small. A
numerical computation shows that aε ≈ 0.001 661 for ε = εhs = 1

27000 .

With the preceding definition of the functions Ψr1r2 in equations (6.1)–(6.3)
it is straightforward, but tedious, to verify all the analytical properties listed
as assertions (i)–(iv) in Theorem 6.1. Here we shall rather concentrate on the
geometric ideas leading to the claimed lower bound for |Y (r1)|.
On the proof of Theorem 6.1 in dimension n = 2. In this case the
argument is quite easy. The normal Jacobi field Y can be written as a product
yE of a nonnegative function y : [0, r2] → [0,∞) with a parallel unit normal field
along the geodesic γ. The Jacobi field equation reduces to the scalar differential
equation y′′ +KM |γ y = 0, and the Rauch comparison theorems assert that

y′(0) snΛ(r1) ≤ y(r1) ≤ y′(0) snλ(r1)

for all r1 ∈ [0, r2]. The infinitesimal version of the Rauch comparison theorems
provides the inequality y(r2) snλ(r1)/snλ(r2) ≤ y(r1). The latter inequality can
be improved by applying the maximum principle to the differential inequality
y′′ + λy ≤ 0. We conclude that for any r0 ∈ [0, r2) the restriction of y to the
interval [r0, r2] is bounded from below by any solution ȳr0r2 of the differential
equation z′′ + λz = 0 with boundary data z(r0) = y′(0) snΛ(r0) and z(r2) ≤
y(r2). Maximizing over r0 leads to the functions ȳr0 = ȳ(r0, .) introduced in
formula (6.2). One finds that y(r1) ≥ y′(0) ȳr0(r1) for any r1 ∈ [0, r2] provided
that y′(0) ȳr0 (r2) ≤ y(r2). �

In dimensions n > 2 there is no way to apply the maximum principle directly.
Nevertheless, it is still possible to write the normal Jacobi field Y as a product yE
of a nonnegative function y = |Y | and a unit normal field E along the geodesic
γ. The difficulty is that the unit normal field E needs not be parallel.

Yet, the idea is to reduce to a two-dimensional situation by considering the
ruled surface Σ defined by a variation of the geodesic γ which corresponds to
the Jacobi field Y . The intrinsic sectional curvature KΣ of this surface can be
determined by means of the Gauss equations

KΣ|γ = KM

(
TΣ|γ

) −
∣∣∣∇
dr
E

∣∣∣2 ,
so λ− ∣∣ ∇

dr
E

∣∣2 ≤ KΣ ≤ Λ. We are able to proceed, since the angular velocity ∇
dr
E

of the Jacobi field Y can be bounded as follows:
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Lemma 6.5 [Abresch and Meyer a, Proposition 5.12]. Let γ : [0, r2] →Mn be a
normal geodesic in a Riemannian manifold with sectional curvature bounded by
λ ≤ KM ≤ Λ. Suppose that r2 ≤ π/

√
Λ if Λ > 0. Then on the interval (0, r2)

the angular velocity ∇
drE of a nontrivial normal Jacobi field Y = yE (where

y = |Y |), with initial value Y (0) = 0, can be estimated in terms of the function
u := y−1 y′ as follows:
∣∣∣∇
dr
E

∣∣∣2 ≤ 1
4 (ctλ− ctΛ)2 − (

u− 1
2 (ctλ +ctΛ)

)2 = − ctλ ctΛ +(ctλ +ctΛ)u− u2.

Proof. Since Y (0) = 0, the Jacobi field equation for Y can be expressed as a
Riccati equation for the Hessian A of a local distance function along γ:

∇
dr
Y = AY and

∇
dr
A+A2 + R( · , γ′)γ′ = 0 .

Since E is a unit normal field, the standard comparison results for the Riccati
equation assert that ctΛ Pγ ≤ A ≤ ctλ Pγ , where ctλ and ctΛ are the generalized
cotangent functions introduced on page 3 and where Pγ := id−〈 · , γ′〉γ′. On the
other hand it is easy to see that ∇

drE + uE = AE, or, equivalently:

∇
dr
E +

(
u− 1

2
(ctλ +ctΛ)

)
E = AE − 1

2
(ctλ +ctΛ)E.

The lemma follows, since ∇
drE is orthogonal to the unit vector field E and since

1
2(ctλ−ctΛ) is an upper bound for the norm of the right hand side. �

The preceding lemma means that the lower bound for the curvature KΣ of the
ruled surface Σ is a function of the parameter r along the geodesic γ, and that
this function depends on the logarithmic derivative u of y = |Y |. Expressing the
Jacobi field equation in Σ in terms of u instead of y, we obtain the differential
inequality

u′ = −KΣ − u2 ≤ −λ − ctλ ctΛ +(ctλ +ctΛ)u− 2u2 . (6.4)

This differential inequality is still of Riccati type. However, because of the
factor 2 in front of the quadratic term it corresponds to a linear differential
inequality of second order for the function y2 , or more appropriately for z :=
y2/ snλ, rather than for y itself. A straightforward computation shows that z
satisfies the inequality

z′′ + (ctλ − ctΛ) z′ +
(
λ− ctλ (ctλ− ctΛ)

)
z ≤ 0.

By construction, snλ is a solution of the corresponding differential equation.
Since snλ > 0 on (0, r2], the maximum principle implies that for any interval
[r0, r2] ⊂ (0, r2] the boundary value problem

z′′ + (ctλ− ctΛ) z′ +
(
λ− ctλ (ctλ− ctΛ)

)
z = 0
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with

z(r0) =
snΛ(r0)2

snλ(r0)
y′(0)2 and z(r2) =

snΛ(r2)2

snλ(r2)

has a unique solution z̄r0r2 ≥ 0, and that y|[r0 ,r2] ≥
√

snλ z̄r0r2 . By means of the
Wronskian and the special solution snλ it is possible to compute the functions
z̄r0r2 explicitly. As in the two-dimensional case it remains to maximize over r0,
in order to arrive at the expression for ȳ given in the third line in (6.2).

7. On the Proof of Berger’s Horseshoe Conjecture

In this section we explain the proof of Theorem 5.3. Again we shall concentrate
on the geometric ideas. For brevity we write ε rather than εhs, and we always
assume that ε is sufficiently small. Details can be found in [Abresch and Meyer
a, § 4].

The hypothesis on the diameter of Mn implies that the distance between
the points p1 := expp0

(−πv) and p2 := expp0
(πv) does not exceed π (1+ε),

and the geodesic s 7→ expp0
(sv), for s ∈ [−π, π], connecting p1 to p2 looks like

a horseshoe. In order to use the upper bound on the diameter of Mn more
efficiently, we consider the intermediate points qε

1 := expp0

(−1
2(1 + %ε)πv

)
and

qε
2 := expp0

(
1
2(1 + %ε)πv

)
, where %ε ≈ 4

π ε
2/3 is defined as the solution of the

equation

sin
(

1
2%επ

)
= sin

(
1
4ε

1/3π
)−1 sin

(
1
2επ

)
.

Let cε : [0, 1] → Mn be a minimizing geodesic from qε
1 to qε

2. Since diamMn ≤
π (1+ε), it is clear that cε does not pass through p0. The configuration described
so far is depicted in Figure 3.

p0

p2

p1

q2
ε

q1
ε

c ε

v

r1
1_
2π 3_

4π π

Σε

Figure 3. The horseshoe p1p0p2, the geodesic cε, and the spherical ribbon Σε.
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We proceed indirectly and assume, contrary to the assertion of Theorem 5.3,
that d(p1, p2) ≥ π. This assumption enables us to control various properties
of the geodesic cε, which finally lead to the contradiction L(cε) > π (1 + ε) ≥
diamMn.

Lemma 7.1. If 0 < ε ≤ 1
64

and d(p1, p2) ≥ π, there are the following bounds for
the distance between p0 and the geodesic cε constructed above:

7
16
π ≤ 1

2

(
1− 1

2
ε1/3

)
π ≤ d

(
p0, c

ε(t)
)
< 3

4
π for all t ∈ [0, 1].

Notice that the lower bound converges to 1
2
π as ε approaches zero.

Sketch of proof. The idea for proving the lower bound is to consider the
weak contraction Φ : Mn → Sn onto the sphere of constant curvature 1 which is
induced by a linear isometry Tp0M

n → Tp̄0S
n and by the corresponding expo-

nential maps. The map Φ collapses the entire complement of the ball B(p0 , π)
to the antipodal point of p̄0. Clearly,

d
(
p0, c

ε(t)
) ≥ inf

{
d(p̄0, q̄)

∣∣ q̄ ∈ Sn, d(q̄, q̄ε
1) + d(q̄, q̄ε

2) ≤ π (1 + ε)
}
,

where q̄ε
i := Φ(qε

i ). In view of the fact that the infimum is achieved at some
point q̄ε ∈ Sn with d(q̄ε, q̄ε

1) = d(q̄ε, q̄ε
2) = 1

2π (1 + ε), it is straightforward to
compute the numerical value of this lower bound using the law of cosines.

For 0 ≤ t ≤ 1
2 the upper bound for the distance between p0 and cε(t) is

obtained by applying Toponogov’s triangle comparison theorem three times. Our
model space is always the sphere S2

δ of constant curvature δ = 1
4(1 + ε)−2.

The first step is to consider the triangle p1p0p2. By hypothesis d(p1, p0) =
d(p0, p2) = π and d(p1, p2) ≥ π, so we get a lower bound for the length d(p1, q

ε
2)

of the secant from p1 to qε
2, which converges to π if ε → 0. The next step is

to consider the triangle p1q
ε
1q

ε
2. Since the lengths of the edges p1q

ε
1 and qε

1q
ε
2

are bounded by 1
2π and π (1 + ε) respectively, the angle at qε

1 is bounded from
below by some number approaching 1

2π if ε → 0. This angle is the exterior
angle for the hinge p0q

ε
1c

ε(t). Because of the inequality 0 ≤ t ≤ 1
2 we know that

d(p0, q
ε
1) ≤ 1

2 (1 + %ε)π and d
(
qε
1, c

ε(t)
) ≤ 1

2(1 + ε)π. These data yield an upper
bound for d

(
p0, c

ε(t)
)

that converges to 2
3
π if ε approaches zero.

For 1
2
≤ t ≤ 1 the upper bound is established in a similar way. One merely

needs to employ the symmetry of the horseshoe and exchange the points p1 and
p2 as well as qε

1 and qε
2. �

The preceding lemma guarantees that for ε ≤ 1
27 000 the geodesic cε can be lifted

under the exponential map expp0
to a curve

c̃ε : [0, 1] → B(0, 3
4
π) r B(0, r1) ⊂ Tp0M

n,

where r1 := 59
120

π. Furthermore, the formula γε(r, t) := expp0

(
r |c̃ε(t)|−1 c̃ε(t)

)
defines a differentiable map γε : [0, π] × [0, 1] → Mn. The restriction of γε to
[0, π)×[0, 1] describes an immersed ruled surface inMn with a conical singularity
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at p0. The geodesic cε lies in the image of this ruled surface. Its lift to the domain
of γε is the graph of the function r̃ε = |c̃ε| : [0, 1] → [r1, 3

4π].
By the infinitesimal version of the Rauch comparison theorem the pullback

metric (γε)∗g on the rectangular domain [r1, 3
4π] × [0, 1] can be bounded from

below in terms of the rescaled arclength function

ϕ̃ε : t 7→ 1
sin(r1)

∫ t

0

∣∣∣ ∂
∂θ
γε(r1, θ)

∣∣∣ dθ
of the circular arc t 7→ γε(r1, t) as follows:

(γε)∗g ≥ dr2 + sin(r)2 (dϕ̃ε)2.

Hence the map id×ϕ̃ε yields a weak contraction from
(
[r1, 3

4π]× [0, 1], (γε)∗g
)

to
the spherical ribbon Σε =

(
[r1, 3

4π]× [0, ϕ̃ε(1)], ḡ
)

where ḡ := dr2 + sin(r)2 dϕ2

denotes the standard metric of constant curvature 1. In particular, the length
of the geodesic cε in Mn is bounded from below by the distance of the points
q̃ε
1 :=

(
r̃ε(0), 0

)
and q̃ε

2 :=
(
r̃ε(1), ϕ̃ε(1)

)
in the inner metric space Σε:

diamMn ≥ L
(
cε

) ≥ distΣε

(
q̃ε
1, q̃

ε
2

)
. (7.1)

By construction, ∂
∂rγ

ε(0, 1) = − ∂
∂rγ

ε(0, 0) = v, so the total angle

ϕε
0 :=

∫ 1

0

∣∣∣∇
∂r

∂

∂t
γε(0, t)

∣∣∣ dt
at the conical singularity of the ruled surface described by γε is bounded from
below by π. The arc t 7→ γε(π, t) connects the points p1 = expp0

(−πv) and
p2 = expp0

(πv), and thus its length is ≥ d(p1, p2) ≥ π.
After these preparations we apply Theorem 6.3 with λ = δhs, Λ = 1, and

r2 = π, and use the monotonicity and homogeneity properties of Ψr1π asserted
in Theorem 6.1(i) and (ii) to conclude that

sin(r1) ϕ̃ε(1) ≥ Ψr1π(ϕε
0, π) ≥ πΨr1π(1, 1) .

As explained in Remark 6.4, it follows that ϕ̃ε(1) ≥ (1+aε)π for aε ≈ 0.001 661.
Notice that aε is a monotonically decreasing function of ε, and thus the preceding
lower bound for ϕ̃ε(1) holds uniformly for all ε ≤ εhs.

Geometrically, this bound means that the length of the equatorial arc join-
ing the two longitudinal segments in the boundary of the spherical ribbon Σε

exceeds π by a certain fixed amount. Since the points q̃ε
1 and q̃ε

2 on these lon-
gitudinal boundary arcs approach the equator if ε gets small, we conclude that
their distance in the inner geometry of the ribbon is not only greater than π but
even greater than (1 + ε)π, provided ε is sufficiently small. But the inequality
distΣε

(
q̃ε
1, q̃

ε
2

)
> (1 + ε)π ≥ diamMn contradicts (7.1).
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8. Final Remarks

The injectivity radius estimate in Theorem 4.1, the sphere theorem and the
cohomological pinching below- 1

4 theorem stated in 5.1 and 5.2, and the horseshoe
inequality in Theorem 5.3 have this feature in common: In each theorem the
pinching constant is an explicit number < 1

4 , independent of the dimension.
Nevertheless, we do not know the optimal value for any of the pinching constants
δinj, δodd, δev, or δhs. The current proofs combine several curvature controlled
estimates in such a way that they do not become sharp simultaneously.

The values provided by these proofs are only slightly smaller than 1
4
, and

thus they differ significantly from the values that are obstructed by the coun-
terexamples known today. Yet, these lower bounds cannot be considered any
less artificial than the numbers provided by the current proofs. For instance,
because of the Berger spheres described in Remark 1.7(ii) it is necessary that
δinj ≥ 0.117 > 1

9
. Furthermore, the examples in Table 1 show that δev ≥ 1

64
and

δodd ≥ 1
37

. But the significance of the latter two numbers is impaired by the
fact that only in low dimensions do we know any examples of compact, simply
connected Riemannian manifolds with strictly positive sectional curvature that
are not homeomorphic to spheres or projective spaces.

Appendix: Compact Manifolds of Positive Curvature

Table 1 lists all simply connected manifolds that are known to carry metrics
with positive sectional curvature. To begin with, there are the symmetric spaces
with KM > 0. They must have rank one, and thus one is left with the spheres Sn

and the projective spaces C Pn, HPn, and CaP2 equipped with the Fubini–Study
metric.

Further examples of compact manifolds with KM > 0 are already quite
scarce. Currently, non-symmetric examples appear only in very few dimen-
sions. They have been discovered as follows: First, Berger [1961] classified
the simply connected, normal homogeneous spaces with KM > 0. The only
new examples that appeared in this classification are the two odd-dimensional
spaces Sp(2)/SU(2) and M13 = SU(5)/(Sp(2) × S1). Their pinching constants
δM := minKM/maxKM were calculated later by H. Eliasson [1966] and Heintze
[1971], respectively.

The next step was the classification by Wallach [1972] of simply connected,
even-dimensional, homogeneous spaces with KM > 0. Besides spheres and pro-
jective spaces there are only the three flag manifolds M6 = SU(3)/T2, M12 =
Sp(3)/(SU(2)× SU(2)× SU(2)), and M24 = F4/Spin(8). They are, respectively,
an S2-bundle over CP2, an S4-bundle over HP2, and an S8-bundle over CaP2.
As shown in [Valiev 1979], the pinching constants for the three flag manifolds
are 1

64
; compare also [Grove 1989].
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An infinite series of homogeneous, odd-dimensional examples has been found
by S. Aloff and N. Wallach [1975]. They are quotient spaces M7

k,l = SU(3)/S1
k,l,

where the integers k and l label the various embeddings of S1 into a maximal
torus T2 ⊂ SU(3). H.-M. Huang [1981] computed that the pinching constants
induced by a particular left-invariant metric defined in [Aloff and Wallach 1975]
approach 16

29·37 as k
l → 1. The manifolds M7

k,l are not only interesting for their
geometric properties. M. Kreck and S. Stolz [1991] have found out that this
sequence of examples contains seven-manifolds that are homeomorphic but not
diffeomorphic.

M dim minKM /maxKM

symmetric spaces

Sn n 1
C Pn 2n 1

4

HPn 4n 1
4

CaP2 16 1
4

normal homogeneous spaces [Berger 1961]

Sp(2)/SU(2) 7 1
37

[Eliasson 1966]
SU(5)/(Sp(2)×S1) 13 16

29·37
[Heintze 1971]

ditto with a nonnormal metric 1
37 [Püttmann 1996]

flag manifolds [Wallach 1972]

SU(3)/T2 6 1
64 [Valiev 1979]

Sp(3)/(SU(2)3) 12 1
64

[Valiev 1979]
F4/Spin(8) 24 1

64
[Valiev 1979]

Aloff–Wallach examples [1975]

SU(3)/S1
k,l 7 → 16

29·37 [Huang 1981]
ditto with certain Einstein metrics → 1

37
[Püttmann 1996]

inhomogeneous orbit spaces [Eschenburg 1982; Bazăıkin 1995]

SU(3)/(T2 -action) 6 ?
SU(3)/(S1

klpq-action) 7 → 1
37

[Püttmann 1996]
S1

p1...p5
\U(5)/(Sp(2)×S1) 13 → 1

37
[Püttmann 1996]

Table 1. Compact, simply connected manifolds with KM > 0. The arrows in
front of some of the pinching constants indicate that the given values appear as

limits for properly chosen subsequences.
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L. Bérard-Bergery [1976] showed that there exist no other simply connected,
odd-dimensional, homogeneous spaces of positive curvature. This result finishes
the classification of the simply connected, homogeneous spaces with KM > 0.

So far, nonhomogeneous examples have only been obtained as inhomogeneous
orbit spaces, where a subgroup H ⊂ G × G acts on a simply connected Lie
group G. Analyzing the two-sided T2- and S1-actions on SU(3), J. Eschen-
burg [1984; 1982; 1992] has found a six-dimensional inhomogeneous space of
positive curvature and an infinite family of seven-dimensional inhomogeneous
orbit spaces. These examples resemble the Aloff–Wallach examples in many
respects.

Following Eschenburg’s approach, A. Bazăıkin [1995] has recently constructed
an infinite sequence of 13-dimensional, simply connected, pairwise nonhomeo-
morphic orbit spaces with strictly positive sectional curvature. These examples
are biquotients that are closely related to the second one of the normal homo-
geneous spaces discovered by Berger. A complete classification of all two-sided
actions which lead to simply connected Riemannian manifolds with positive cur-
vature has not been accomplished as yet.

Recently, I. Taimanov [1996] has discovered an isometric, totally geodesic em-
bedding of the Aloff–Wallach space M7

1,1, equipped with the metric considered
by Huang, into the Berger space M13, so explaining to some extent the curious
coincidence of the pinching constants determined by Heintze and Huang, re-
spectively. In Bazăıkin’s work the manifold SU(5)/(Sp(2) × S1) appears with
a deformed metric that is homogeneous but not normal homogeneous. Un-
der Taimanov’s embedding M7

1,1 ↪→ SU(5)/(Sp(2) × S1) the corresponding one-
parameter deformation induces the Aloff–Wallach metrics on SU(3)/S1

1,1 with
a slightly different parametrization. Th. Püttmann [1996] has computed the
curvature tensors of these one-parameter deformations of metrics on SU(3)/S1

1,1

and SU(5)/(Sp(2) × S1) in a systematic way, finding that 1
37 is the optimal

pinching constant in each case. The coincidence of the two constants is not a
complete surprise, since Taimanov’s embedding stays totally geodesic for the
entire deformation; however, we do not have any explanation why this value
also coincides with the pinching constant of the seven-dimensional Berger space
Sp(2)/SU(2). As yet, the curvature computations cover all homogeneous metrics
on Sp(2)/SU(2) and SU(5)/(Sp(2)× S1), but it is still an open question whether
or not 1

37 remains optimal for the entire nine-parameter family of homogeneous
metrics that exists on SU(3)/S1

1,1.
As a consequence of Püttmann’s improvments, any subsequence of the Aloff–

Wallach examples M7
k,l where k

l → 1 admits metrics whose pinching constants
approach 1

37 . An analogous statement holds for the seven-dimensional inhomo-
geneous spaces of Eschenburg and the 13-dimensional spaces of Bazăıkin.

It is a curious coincidence that the optimal, 1
37 -pinched metric on the Aloff–

Wallach space M7
1,1 is one of the Einstein metrics discovered by M. Wang [1982].
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Furthermore, it can be shown that anyM7
k,l with k

l sufficiently close to 1 carries a
homogeneous Einstein metric whose pinchimg constant is close to 1

37
. In contrast,

the optimal metric on the 13-dimensional Berger space M13 is not Einstein.

References

[Abraham 1970] R. Abraham, “Bumpy metrics”, pp. 1–3 in Global analysis (Berkeley,
1968) edited by S.-S. Chern and S. Smale, Proc. Symp. Pure Math. 14, AMS,
Providence, RI, 1970.

[Abresch 1985] U. Abresch, “Lower curvature bounds, Toponogov’s theorem, and
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