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Aspects of Ricci Curvature
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This article is dedicated to my parents.

Abstract. We describe some new ideas and techniques introducedto study
spaces with a given lower Ricci curvature bound, and discuss a number of
recent results about such spaces.

Introduction

In studying spaces with a given lower sectional curvature bound we have a
very powerful tool in the Toponogov triangle comparison theorem. This allows
us to study metric properties of such spaces (see for instance [Toponogov 1964;
Burago et al. 1992; Perelman 1995]), and topological properties (see for instance
[Cheeger 1991; Cheeger and Gromoll 1972; Grove and Shiohama 1977; Gromov
1981a; Grove and Petersen 1988; Perelman 1991]). Perhaps the most important
tool for studying topological properties of such manifolds is the notion of critical
points of distance functions in connection with the Toponogov triangle compar-
ison theorem; see [Grove and Shiohama 1977] and compare with the remarks at
the end of Section 1.

When we only assume a lower Ricci curvature bound, no such estimate is
available. Classically, the only known general estimates of this type for Ricci
curvature are the volume comparison theorem [Bishop and Crittenden 1964;
Gromov 1981b] and the Abresch–Gromoll inequality [Abresch and Gromoll 1990].

In order to study manifolds with a given lower Ricci curvature bound there
are at least two obstacles to overcome. First, many results from the sectional
curvature case do not remain true for Ricci curvature. Second, due to the lack
of a good estimate on the distance function we do not have good control on the
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local geometry in this case. We will see in this survey that in some sense the
second obstacle is the most serious.

In Section 1 we will discuss a new estimate of the distance function. In later
sections we will see that this type of estimate has a large number of consequences,
some of which are given in Sections 2 and 3.

In Section 2 our main focus is the geometry and topology of manifolds with
a lower Ricci curvature bound.

In Section 3 our focus is on regularity properties of general metric spaces that
are (Gromov–Hausdorff) limits of n-dimensional manifolds with a given lower
Ricci curvature bound. This is in part motivated by Gromov’s compactness
theorem [1981b], saying that the space of n-dimensional manifolds with a given
lower Ricci curvature bound is precompact in the Gromov–Hausdorff topology.

In Section 4 we discuss some analytic properties of manifolds with a given
lower Ricci curvature bound. The Harnack inequality and the gradient estimate
of Yau and Cheng [Yau 1975; Cheng and Yau 1975] discussed in that section
play a crucial role in the results of Section 1, 2 and 3.

The results described in this survey are to be found in the references listed
under “Direct Sources” (page 94).

1. Integral Estimate of Angles and Distances
Using the Hessian

Our main technical tool is a new estimate for distance functions. The first
such estimate appeared in [Colding 1996a], and the reader should consult that
reference for a more precise statement than we are about to give here (and in
particular for the notion of “almost equal”).

Suppose M is an n-dimensional closed manifold with RicM ≥ n−1. Consider
the space of geodesics of some fixed length l < π, and identify each such geodesic
with its initial velocity. Equip this space with the probability measure coming
from the normalized Liouville measure.

Let p, q ∈ M be points with d(p, q) almost equal to π, where d(p, q) denotes
the distance between p and q. For any geodesic γ (not necessarily minimizing)
of fixed length l, let ∆ be the geodesic triangle of which γ is the side opposite
the vertex p, and let ∆ be the comparison triangle on the unit sphere, in the
sense of Toponogov (see Figure 1). For 0 ≤ t ≤ l, let dt be the distance between
γ(t) and p, and let dt be the corresponding distance on the sphere.

(If the triangle in M does not satisfy the triangle inequality, so that no com-
parison triangle exists, we use an alternative analytical definition of dt and \t

that still makes sense in this case.)
Then, in an L2-sense (or equivalently for a set of geodesics of nearly full

measure), dt is almost equal to dt, and \t is almost equal to \t. More formally:
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Figure 1. Estimate of distances and angles for positive Ricci curvature.

Theorem 1.1. Given ε > 0 and 0 < l < π, there exists a δ = δ(ε, n) > 0
such that , for any M of dimension n with RicM ≥ n − 1, any p, q ∈ M with
d(p, q) > π − δ, and any 0 ≤ t ≤ l, we have ‖dt − dt‖2 < ε and ‖\t −\t‖2 < ε.

See [Colding 1996a] for details, and compare [Colding 1996b; Cheeger and Cold-
ing 1996] for later versions.

In the sequel we will let ψ(ε | . . . ) and ψi(ε | . . . ) denote nonnegative func-
tions depending on ε and possibly on some additional parameters (written after
the bar), satisfying the property that when the other parameters are fixed the
function tends to 0 as ε approaches 0.

Sketch of the proof of Theorem 1.1. First we use the fact that d(p, q) >
π−δ and the bound RicM ≥ n−1 to approximate cos d(p, ·) in the (2, 1)-Sobolev
norm by a smooth function that satisfies ‖∆f + nf‖2 < ψ1(δ |n); here the L2-
norm is normalized so that ‖1‖2 = 1. Next, from the Bochner formula for f and
the fact that RicM ≥ n− 1, we get

1
2
∆|∇f |2 ≥ |Hess(f)|2 + 〈∇∆f,∇f〉+ (n − 1)|∇f |2.

Integrating by parts over M gives

0 ≥
∫

M

|Hess(f)|2 −
∫

M

|∆f |2 − (n− 1)
∫

M

f∆f.

Now since ‖∆f + nf‖2 < ψ1(δ |n) we get from the Cauchy–Schwarz inequality

ψ2(δ |n) >
1

Vol(M)

∫
M

|Hess(f)|2 − n

Vol(M)

∫
M

f2.

From the Cauchy–Schwarz inequality we therefore get, again using the fact that
‖∆f + nf‖2 < ψ1(δ |n),

ψ3(δ |n) >
1

Vol(M)

∫
M

|Hess(f)|2 +
n

Vol(M)

∫
M

f2 +
2

Vol(M)

∫
M

f∆f

=
1

Vol(M)

∫
M

|Hess(f) + fg|2,
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where g is the metric tensor. By integrating this along geodesics we can show
the theorem for f . Finally using that f approximates cos d(p, ·) we can show the
theorem for the distance function. �

This proves, in particular, that if d(p, q) is almost equal to π then the Hessian
of a function that approximates cos d(p, ·) is almost a diagonal form (in fact it is
almost fg).

The constant δ in Theorem 1.1 can be explicitly estimated in terms of n and ε.
This explicit dependence will be the case throughout.

It is interesting to compare Theorem 1.1 with the following example:

Example 1.2 [Anderson 1990b]. There exist metrics on CPn#CPn, with Ric ≥
2n − 1 and Vol ≥ v > 0, that are arbitrary close to a metric on S2n with two
conical singularities. Moreover, the diameter of S2n with this metric is π.

The metric on S4 is constructed as follows. Let Π : S3 → S
2 be the Hopf

fibration, and let σX , σY , σZ the standard left invariant coframing ofS3 = SU(2),
where σZ is tangent to the Hopf fibers. Define a metric on S

3 by C2
1σ

2
Z +

C2
2(σ2

X +σ2
Y ), where C1 ≈ 0.08 and C2 ≈ 0.25 are constants. Then (S4, g) is the

spherical suspension of S3 with this Berger metric.
In the metrics of [Anderson 1990b] the two embedded CP1’s in C P2#CP2 are

totally geodesic and round. Furthermore their curvature converges to infinity
as C P2#CP2 converges to S4. See [Anderson 1990b] for further details and
examples of similar metrics in dimension > 4.

We will now consider a different measure on the set of all minimal geodesics with
unit speed, one that behaves better when the volume of the manifold is small.
For a manifoldM , a point p ∈M , and r0 > 0, we identify the minimal geodesics
contained in Br0 (p) with their endpoints: γ → (γ(0), γ(l)), where l = length(γ).
We equip this space of minimal geodesics with the natural measure coming from
the product measure on M ×M , and we normalize this measure so that the
space of minimal geodesics with endpoints in Br0 (p) has measure one.

The next theorem appeared in [Cheeger and Colding 1996]. It follows an
earlier version given in [Colding a]. For p, q, x ∈M , define the excess by ep,q(x) =
d(p, x) + d(x, q)− d(p, q).

Theorem 1.3. Fix r0 > 0. Given ε > 0, there exist R = R(ε, r0, n) > 0, Λ =
Λ(ε, r0, n) > 0 and δ = δ(ε, r0, n) > 0 such that , for any M of dimension n with
RicM ≥ −(n−1)R−2Λ and any p, q, x ∈M with ep,q(x) < δ and d(p, x), d(q, x)>
R, we have ‖dt − dt‖2 < ε and ‖\t − \t‖2 < ε.

To prove Theorem 1.3, we show first that we can approximate the distance
function in the (2, 1)-Sobolev norm by a harmonic function. We then show
that the L2-norm of the Hessian of this harmonic function is small. Finally
we integrate this Hessian estimate along geodesics to get the theorem for the
harmonic function, and we use the fact that the harmonic function approximates
the distance function to get the theorem for the distance function.
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One should compare these three steps with the corresponding three steps in
the proof of Theorem 1.1.

It is important to note that in both Theorem 1.1 and Theorem 1.3 the differ-
ence in the angles is not necessarily uniformly small, but only small with respect
to the L2-norm. For examples where this difference is not uniformly small, see
[Anderson 1992; Perelman 1997]. Such examples also show that we cannot con-
trol the critical points of the distance function for Ricci curvature (compare with
the discussion in the Introduction).

For other estimates along these lines, see [Colding 1996a; Colding 1996b;
Colding a; Cheeger and Colding 1996; Cheeger, Colding, and Tian b].

2. Almost Maximal Manifolds

Recall that the set of all metric spaces can be made into a metric space
by means of the Gromov–Hausdorff distance dGH . Denoting by Tε(X) the ε-
neighborhood of a subset X of a metric space Y , this distance is defined as
follows:

Definition 2.1 [Gromov 1981b]. The Gromov–Hausdorff distance between two
metric spaces (X1 , d1) and (X2, d2) is the infimum of all ε > 0 such that there
exist a metric space Y and isometric embeddings j1 : X1 → Y and j2 : X2 → Y

with j1(X1) ⊂ Tε(j2(X2)) and j2(X2) ⊂ Tε(j1(X1)).

For noncompact metric spaces we say that a pointed sequence (Xi, xi) converges
to (X, x) in the pointed Gromov–Hausdorff topology if, for all r > 0, the sequence
Xi ∩ Br(xi) converges to X ∩ Br(x) in the Gromov–Hausdorff topology. This
convergence should be thought of as convergence on compact subsets.

For our purposes the importance of this definition is that dGH(X1 , X2) < ε

if and only if there exist maps f1 : X1 → X2 and f2 : X2 → X1 such that, for
i = 1, 2 and all ai, bi ∈ Xi,

|d(fi(ai), fi(bi)) − d(ai, bi)| < ψ(ε),

and for i, j = 1, 2 with i 6= j,

d(fj ◦ fi(ai), ai) < ψ(ε).

One of the most useful properties of the Gromov–Hausdorff distance is that
it is a good tool to measure the rough geometry of a metric space. In partic-
ular, we will see in Theorems 2.3 and 2.5 that if we have a space with a lower
Ricci curvature bound then in many instances the rough (large-scale) geometry
controls the small-scale geometry.

For the next few results the L2-estimate on distance functions (and of the
Hessian of a function that approximates the distance function) mentioned in
Section 1 is crucial.
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By V n
Λ (r) we will mean the volume of a ball of radius r in the n-dimensional

simply connected space form of constant sectional curvature Λ.

Theorem 2.2 [Colding 1996a]. Given ε > 0, there exists δ = δ(n, ε) > 0 such
that , if an n-dimensional manifold M has RicM ≥ n−1 and Vol(M) > V n

1 (π)−δ,
then dGH(M,Sn) < ε.

Theorem 2.2 was conjectured by Anderson–Cheeger and Perelman.
A key point in the proof of Theorem 2.2 is that the Bishop volume comparison

theorem and the assumption on the volume imply that, for any p ∈ M , there
exists q ∈ M with d(p, q) > π − ψ(δ |n). We can therefore apply Theorem 1.1
for all p ∈ M .

Theorem 2.2 is the first result about Ricci curvature proved using “synthetic”
techniques (see Section 3 for more on this).

The case of Alexandrov spaces, which are possibly singular spaces with a lower
sectional curvature bound in the triangle comparison sense, was treated system-
atically from such a point of view in [Burago et al. 1992]; compare [Perelman
1995].

Theorem 2.3 (Volume convergence [Colding 1996b; a]). For r > 0, con-
sider all metric balls of radius r in all complete n-dimensional Riemannian man-
ifolds with Ricci curvature greater or equal to −(n−1). Equip this space with the
Gromov–Hausdorff topology . Then the volume function is a continuous function.

This result was conjectured by Anderson and Cheeger.
Using a covering argument and the volume comparison theorem we can re-

duce the proof of Theorem 2.3 to showing that, if a ball in an n-dimensional
manifold for which the infimum of the Ricci curvature is almost zero is close to
the corresponding ball in Rn, the volumes are also close.

It is easy to see that a lower Ricci curvature bound is needed in Theorem
2.3; see for instance the examples in [Colding 1996b]. In the same reference we
showed that Vol is continuous at the unit n-sphere, Sn: more precisely, if Mi is
a sequence of n-dimensional manifolds with RicMi ≥ n− 1 and Mi

dGH−→ S
n, then

Vol(Mi) → Vol(Sn).

Theorem 2.4 [Colding a]. There exists an ε = ε(n) > 0 such that if M is a
closed n-dimensional manifold with RicM diam2

M > −ε and b1(M) = n then M

is homeomorphic to a torus if n 6= 3 and homotopically equivalent to a torus if
n = 3.

This result was conjectured by Gromov [1981b, p. 75].
To prove Theorem 2.4, we show first that a finite cover of M is close to a flat

n-dimensional torus. This allows us to apply Theorem 2.3 to a finite cover of M
to conclude that a finite cover is a homotopy torus. See also Theorem 2.6.

Theorem 2.4 should be compared with Bochner’s theorem [Bochner 1946;
Bochner and Yano 1953] and with Gromov’s theorem [1981b]. Recall that
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Bochner’s theorem says that a closed n-manifold with nonnegative Ricci cur-
vature has b1 ≤ n, and equality holds if and only if the manifold is isometric to a
flat torus. Later Gromov showed (see also [Gallot 1983]) that there exists an ε =
ε(n) > 0 such that any closed n-manifoldM with RicM diam2

M > −ε has b1 ≤ n.
Yamaguchi [1988] proved that, given D > 0 and k ≤ n, there exists an

ε = ε(k,D, n) > 0 such that if M is a closed n-manifold with diamM ≤ D,
b1(M) = k, RicM ≥ −ε, and |SecM | ≤ 1, then a finite cover of M fibers over
a k-torus. In [Yamaguchi 1991] he showed that if SecM diam2

M > −ε, then a
finite cover of M fibers over a k-torus. Actually, in [Yamaguchi 1988] he made a
stronger conjecture than the original one by Gromov, namely, that this should
remain true for almost nonnegative Ricci curvature. This was disproved by
Anderson [1992], who gave counterexamples for k ≤ n − 1; Gromov’s original
conjecture, however, was left open.

LetM be an n-dimensional open Riemannian manifold with nonnegative Ricci
curvature. By Gromov’s compactness theorem [1981b], any sequence ri →∞ has
a subsequence rj →∞ such that the rescaled manifolds (M, p, r−2

j g) converge in
the pointed Gromov–Hausdorff topology to a length space M∞.

Every such limit (an example of Perelman shows that M∞ is not unique in
general) is said to be a tangent cone at infinity of M . Even though uniqueness
fails in general, one expects it to hold in the maximal case. In fact, we have the
following result:

Theorem 2.5 [Colding a]. If an n-dimensional manifold M has nonnegative
Ricci curvature and some M∞ is isometric to Rn then M is isometric to Rn.

Theorem 2.5 was conjectured by Anderson and Cheeger [Anderson 1992].

Sketch of proof. Fix p ∈ M . By the assumption, if we rescale a large
ball centered at p to unit size the rescaled ball is close to the unit ball in Rn.
Therefore, by Theorem 2.3, the volumes are close. Using the volume comparison
theorem we can now conclude that a ball of a fixed size in M with center at
p has the same volume as the corresponding ball in Rn. From equality in the
volume comparison theorem we conclude that M is isometric to Rn. �

As an immediate consequence of Theorem 2.3, small balls have almost maximal
volume. The importance of this was pointed out to us by Anderson and Cheeger.
In particular they observed that this, together with [Anderson 1990c] (see also
[Anderson 1992]), implies Theorem 2.7 below. Moreover, this together with the
result of [Perelman 1994] and methods from controlled topology [Ferry 1979;
Ferry and Quinn 1991], as in [Grove et al. 1989; 1990; Petersen 1990], gives the
next theorem:

Theorem 2.6 (Topological stability [Colding a]). If M is a closed n-
manifold , there exists ε(M) > 0 such that , if N is a n-manifold with RicN ≥
−(n− 1) and dGH(M,N) < ε, then M and N are homotopically equivalent (and
even homeomorphic if n 6= 3).
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In the case of sectional curvature, Perelman [1991] proved that Theorem 2.6
remains true in the class of Alexandrov spaces. However, for Ricci curvature, if
one allows M in Theorem 2.6 to have singularities, the conclusion does not hold.
Indeed, Anderson [1990a] gave examples of metrics onS2×S2 with |Ric| ≤ C that
converge to a metric with two conical singularities on the suspension of RP3 (the
diagonal and antidiagonal in S2 ×S2 are each collapsed to a point). Numerous
further examples have since been considered. For instance, Example 1.2 shows
that there exist metrics on CP2#CP2 arbitrary close to a metric suspension of
a Berger metric on S3 and having Ric ≥ 3. Similarly, Otsu [1991] constructed
metrics on S3 × S2 with Ric ≥ 4 and arbitrarily close to a metric suspension
of a metric on S2 × S2. Even for Einstein metrics the topological stability of
Theorem 2.6 fails if M has singularities; see for instance [Tian and Yau 1987].

Note that the ε in Theorem 2.6 must depend on M for the same reason
that the conclusion fails if one allows M to have singularities. For instance,
a trivial modification of Anderson’s examples [1990b] gives a sequence where
the manifolds are alternately homeomorphic to S4 and to C P2#CP2, and all
metrics have Ric ≥ 3, but the limit is still the same spherical suspension of a
Berger sphere.

Theorem 2.7 (Metric stability [Colding a]). Let Mi be a sequence of n-
dimensional Einstein manifolds with RicMi = cigi, for |ci| ≤ n−1, converging to
a closed n-manifold in the Gromov–Hausdorff topology . Then the Mi converge
in the C∞-topology .

See also [Colding 1996a; 1996b; a] for further applications of these estimates.
The following theorem gives a generalization of Cheng’s maximal diameter

theorem [1975] to singular spaces that are limits.

Theorem 2.8 (Almost maximal diameter [Cheeger and Colding 1996]).
Given ε > 0, there exists δ = δ(ε, n) > 0 such that if RicM ≥ n − 1 and
diamM > π − δ then for some metric space X we have dGH(M,S(X)) < ε.

Here S(X) = (0, π)×sin r X is the metric suspension of X.

Theorem 2.9 (Almost splitting [Cheeger and Colding 1996]). Suppose that
Mi is a sequence of n-dimensional manifolds with RicMi ≥ −(n − 1)εi, where
εi → 0. If Mi converges in the pointed Gromov–Hausdorff topology to a metric
space X that contains a line, then X splits isometrically , that is, X = Y ×R
for some metric space Y .

This was conjectured in [Fukaya and Yamaguchi 1992]. It generalizes the splitting
theorem of [Cheeger and Gromoll 1971] to singular spaces that are limits.

Theorem 2.10 (Almost volume cone implies almost metric co

ne [Cheeger and Colding 1996]). If M has nonnegative Ricci curvature and
Euclidean volume growth, every tangent cone at infinity is a Euclidean cone.
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Here a Euclidean cone is the metric completion of a space of the form C(X) =
(0,∞)×r X, for some metric space X.

The next theorem, which was conjectured by Gromov, was proved for mani-
folds of almost nonnegative sectional curvature by Fukaya and Yamaguchi [1992],
who also observed that their proof would go through for almost nonnegative Ricci
curvature provided that two conjectures could be established. One of these con-
jectures follows from Theorem 2.6; see [Colding a] for the exact statement. The
other conjecture is Theorem 2.10. Therefore:

Theorem 2.11 [Cheeger and Colding 1996]. There exists an ε = ε(n) > 0
such that if M is a closed n-dimensional manifold with RicM diam2

M > −ε then
π1(M) is almost nilpotent (that is, has a nilpotent subgroup of finite index).

3. The Structure of Spaces with Ricci Curvature
Bounded Below

As mentioned in Section 2, the estimates in Section 1 and the way they occur
give the possibility of treating Ricci curvature from a “synthetic” point of view
(compare [Gromov 1980]). The first applications of such ideas were given in Sec-
tion 2. In this section we will explore this further. Due to Gromov’s compactness
theorem we can think of the results of this section in two equivalent ways: as the
study of smooth manifolds with a given lower Ricci curvature bound on a small
but definite scale; or as the study of spaces that are Gromov–Hausdorff limits of
such manifolds.

Throughout this section Mi will always be a sequence of n-manifolds with
RicMi ≥ −(n − 1), having M∞ as a Gromov–Hausdorff limit. Unless otherwise
stated, the examples, theorems, and definitions are to be found in [Cheeger and
Colding a].

A tangent cone at p∞ ∈ M∞ is a pointed metric space (X, x) that is a
Gromov–Hausdorff limit of the rescaled metrics (M∞, p∞, rjd∞), where rj →∞.
Such limits exist by the Gromov compactness theorem.

We will sometimes also require that for all i and all pi ∈ Mi we have

Vol(B1(pi)) ≥ v > 0. (3.1)

By the volume comparison theorem, this condition gives a uniform lower bound
on the volume of all balls of a fixed radius. Condition (3.1) will often be referred
to by saying that the sequence Mi does not collapse. Using in part Theorem 2.3,
we can show that (3.1) is equivalent to requiring that M∞ has Hausdorff dimen-
sion n.

The next example should be compared with the example of Perelman men-
tioned in Section 2.

Example 3.2. There exists M∞ where all Mi satisfy (3.1) and p∞ ∈M∞ such
that the tangent cone at p∞ is not unique.
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An important feature in the noncollapsing case is that even though tangent
cones are not unique, as seen in the preceding example, they are Euclidean
cones. Indeed:

Theorem 3.3. Suppose that all Mi satisfy (3.1). Then, for all p∞ ∈M∞, every
tangent cone at p∞ is a Euclidean cone.

The next example shows that, if the volume of balls of a fixed size is not uniformly
bounded from below, tangent cones may not be Euclidean cones.

Example 3.4. There exists M∞ and p∞ ∈ M∞ such that no tangent cone at
p∞ is a Euclidean cone.

We next define two notions of regular points.

Definition 3.5. We say that p ∈ M∞ is a weakly k-Euclidean point if some
tangent cone at p splits off a factor Rk isometrically.

Definition 3.6. A point p ∈M∞ is called regular if, for some k, every tangent
cone at p is isometric to Rk. In this case we write p ∈ R.

Definition 3.7. A point p ∈ M∞ is called singular if it is not regular. In this
case we write p ∈ S.
Note that, if the volume of balls of a fixed size is uniformly bounded from below
(that is, if (3.1) is satisfied), weakly n-Euclidean implies regular by Theorem 2.5.

We next stratify the points of M∞ according to how regular their tangent
cones are.

Definition 3.8. A point p ∈ M∞ is called k-degenerate if it is not (k+1)-weakly
Euclidean. We let Dk denote the set of k-degenerate points.

Let dim denote the Hausdorff dimension.

Theorem 3.9. If all Mi satisfy (3.1), dim(Dk) ≤ k.

If all Mi satisfy (3.1), then S = Dn−1. This follows from the fact that weakly
n-Euclidean imply regular if the sequence Mi does not collapse.

Theorem 3.10. If all Mi satisfy (3.1), then S ⊂ Dn−2, so Theorem 3.9 implies
dim(S) ≤ n− 2.

In the next theorem the volume of subsets of M∞ are measured with respect to
the n-dimensional Hausdorff measure.

Theorem 3.11 (Volume comparison for limit spaces). If all Mi satisfy
(3.1) then M∞ satisfies the relative volume comparison theorem.

If we do not assume a lower bound on the volume, this is not always the case:

Example 3.12. There exists M∞ that does not satisfy the volume comparison
theorem.
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The next theorem was proved earlier by Fukaya and Yamaguchi [1994], under
the additional assumption that all Mi have a uniform lower sectional curvature
bound.

Theorem 3.13 [Cheeger and Colding b]. If all Mi satisfy (3.1), the isometry
group of M∞ is a Lie group.

By assuming that all Mi are Einstein manifolds we get further regularity of the
limit M∞. This is the topic of the next two theorems.

Theorem 3.14. Suppose that all Mi satisfy (3.1) and are all Einstein with
uniformly bounded Einstein constants. Then S is a closed subset and dim(S) ≤
n − 2. Further , R is a smooth Einstein manifold and the convergence is in the
C∞-topology on compact subsets of R.

Theorem 3.15 [Cheeger, Colding, and Tian b]. Suppose that all (M, gi) sat-
isfy (3.1) and are Kähler–Einstein on M (where dimCM = n), with uniformly
bounded Einstein constants. Then dim(S) ≤ 2n − 4. Further , there exists a
subset S ⊂ M∞ with H2n−4(S) = 0 (where H2n−4 is the Hausdorff measure)
such that for all p ∈ M∞ \ S the tangent cone at p is unique and is equal to
C

n−2 × C 2/Γ, where Γ ⊂ SU(2).

Finally, in [Cheeger and Colding b] we give a generalization to the collapsed case
of the volume convergence theorem of [Colding a].
See [Cheeger and Colding a; b; Cheeger, Colding, and Tian b] for more results
in the spirit of those given in this section.

4. Function Theory on Spaces with a Lower Ricci Curvature
Bound

In this section we will touch on some of the results on function theory on
spaces with Ricci curvature bounded below (see also [Li 1993] for a discussion of
this subject). For further details on the results of this section, see [Colding and
Minicozzi 1996; a; Cheeger, Colding, and Minicozzi 1995].

Definition 4.1. Let M be a open (complete, noncompact) manifold, and fix
p ∈ M . Let r be the distance function from p. A harmonic function u on M

has polynomial growth of order at most d if there exists some C > 0 so that
|u| ≤ C(1 + rd). We denote by Hd(M) the linear space of such functions.

Yau [1975] generalized the classical Liouville theorem of complex analysis to
open manifolds with nonnegative Ricci curvature. Specifically, he proved that a
positive harmonic function on such a manifold must be constant. This theorem
was generalized in [Cheng and Yau 1975] by means of a gradient estimate that
implies the Harnack inequality; in fact this gradient estimate played an important
role in the proof of the results of Section 1. As a consequence, one sees that
harmonic functions which grow less than linearly must be constant. In his study
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of these functions, Yau was motivated to conjecture that the space of harmonic
functions of polynomial growth of a fixed rate is finite-dimensional on an open
manifold with nonnegative Ricci curvature. On this conjecture of Yau we have
the following result:

Theorem 4.2 [Colding and Minicozzi a]. For an open manifold with nonnegative
Ricci curvature and Euclidean volume growth, the space of harmonic functions
with polynomial growth of a fixed rate is finite-dimensional .

Other important results on this conjecture of Yau can be found in [Christiansen
and Zworski 1996; Donnelly and Fefferman 1992; Kasue a; Li 1995; Li and Tam
1989; 1991; Lin 1996; Wang 1995; Wu 1991].

For d = 1 we have the following theorem, which was proved earlier by Peter
Li [1995] in the case where M is Kähler.

Theorem 4.3 [Cheeger, Colding, and Minicozzi 1995]. If dimH1(M) = n + 1
for an open n-dimensional manifold M with nonnegative Ricci curvature, M is
isometric to Rn.

To prove this, we show first that ifM is an open manifold with nonnegative Ricci
curvature and u is a nonconstant harmonic function with linear growth then any
tangent cone at infinity M∞ splits off a line. This implies in particular that if
dimH1(Mn) = n+ 1 then M∞ = Rn; then Theorem 2.5 gives M =Rn.

There exist manifolds with nonnegative (or even positive) Ricci curvature that
do not split off a line, but admit a nonconstant linear growth harmonic function.
In contrast, if M has nonnegative sectional curvature and M∞ splits off a line,
then M must split off a line.

As a final remark, I note that after the original version of this survey was
written several related results were shown. In particular, jointly with Bill Mini-
cozzi we settled the general case of Yau’s conjecture mentioned above [Colding
and Minicozzi c; d; e].
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