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A Genealogy of Noncompact Manifolds of
Nonnegative Curvature: History and Logic

ROBERT E. GREENE

ABSTRACT. This article presents an approach to the theory of open man-
ifolds of nonnegative sectional curvature via the calculus of nonsmooth
functions. This analytical approach makes possible a very compact devel-
opment of the by now classical theory. The article also gives a summary of
the historical development of the subject of open manifolds of nonnegative
sectional curvature and of related topics. Some very recent results are also
discussed, including results of the author jointly with P. Petersen and S. H.
Zhu on curvature decay.

Introduction

At first sight, the study of noncompact manifolds seems necessarily more
complicated than that of compact ones: Removal of a single point from a compact
manifold gives a noncompact one, but not all noncompact manifolds arise in this
way—in general, the topological one-point compactification of a noncompact
C*° manifold is not even a topological manifold. To look at the matter another
way, more relevant to the subject of this article, a C'*° compact manifold always
admits a C*° function with only nondegenerate critical points, and compactness
implies that there are only a finite number of such critical points; thus, a compact
manifold has the homotopy type of a finite CW-complex, or what we shall call
loosely finite topology. A C*° noncompact manifold (all manifolds will be C*°
from now on) of course also always admits a proper C'*° function with only
nondegenerate critical points, but for some manifolds all such proper functions
have infinitely many critical points. (Here proper means that the inverse of each
set of the form (—o0, ] is compact: this is the natural context for Morse theory.)
Correspondingly, the manifold may fail to have finite topology, that is, it may
not have the homotopy type of a finite complex.
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These elementary observations can be given more considerable depth. There
is, for instance, a sense in which even just noncompact Riemann surfaces, let
alone Riemannian manifolds of higher dimension, cannot be described by invari-
ants, without special set-theoretic assumptions [Becker et al. 1980].

All this changes, however, if attention is restricted to manifolds admitting a
complete Riemannian metric of nonnegative curvature.

Completeness itself imposes no restrictions: Every (paracompact) manifold
admits a complete Riemannian metric, as can be seen by elementary arguments.
Completeness alone does, however, yield a geometrically interesting object, as
follows. If M is a complete, noncompact Riemannian manifold and x¢ € M is any
point, we can take a sequence {x;} in M such that lim;_, o dist(zg, x;) = +o00;
if no such sequence existed, M would be bounded and hence compact. Now
consider geodesics ;, parametrized by arclength, from zy to x;, with y(0) =
z; and ~y(dist(zo, x;)) = x;, and take a subsequence {v;,} such that {v; (0)}
converges, say to V (such a subsequence must exist by the compactness of the
unit ball in T, M). Then the geodesic defined on [0, 4+00) by

vt exp, (V)

is what is called a ray, that is, an arclength parameter geodesic defined on
[0, +00) that is a minimal-length connection between any two of its points. In
Mark Twain’s phrase, v “lights out for the Territory” as fast as possible: intu-
itively, 7y is a shortest connection to infinity.

In the absence of curvature hypotheses, the existence of a ray is no more than a
geometric version of the essentially obvious fact that there is always a proper, in-
jective map of [0, 400) into a given noncompact manifold. But in the presence of
everywhere nonnegative curvature, a new kind of meaning arises. Nonnegativity,
and especially positivity, of curvature tends to make long geodesics nonminimiz-
ing. Thus some tension arises between the necessary existence of rays and the
curvature’s nonnegativity. This tension ultimately imposes strong restrictions
on the topology of the manifolds that admit complete metrics of nonnegative
curvature.

Completeness is essential here: every noncompact manifold admits a (gener-
ally noncomplete) metric of nonnegative sectional curvature [Gromov 1986].

Historically, the precise forms of these matters were discovered rather slowly
and, as it were, almost indirectly in some cases. The historical development is
shown on the genealogical chart on pages 132-134, albeit the lines of descent
are from the imagination of the present author to some extent. The theme of
the present article is, however, that, with the benefit of hindsight, and with
the use of certain principles of analysis—which indeed could have been used
from the start, very nearly—the whole subject can be developed very rapidly,
essentially as a repeated application of the second variation formula. Thus, there
is a certain contrast, though by no means a dichotomy, between the genealogy
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of the historical development shown in the chart, and the intrinsic logic, as the
author perceives it at least, of the subject independent of history.

1. Of Second Variation and How Positive
Curvature Can Be

Euclidean space with its standard flat metric is the separating case between
spherical (constant positive sectional curvature) and hyperbolic (constant neg-
ative) geometries. This is a familiar classical concept, but it has certain subtle
aspects. In particular, straight lines, which can be thought of as limits of longer
and longer geodesics in larger and larger spheres, with curvature going to zero,
are, from this viewpoint, just barely minimizing. One can attach precise meaning
to this in the following way:

Consider a geodesic with arclength parameter, v : [0, L] — M, in some Rie-
mannian manifold. And consider variations of v with the variation vector field
V along « being everywhere perpendicular to v (or equivalently to ). Suppose
the variation has fixed endpoints so that V(0) = 0 and V(L) = 0. Finally, as
a normalization, suppose that max,cp,z) |V (t)|| = 1. Within this class of varia-
tions, the infimum of the second variation is in effect a measure of to what extent
v is minimizing.

Now what is interesting from the present viewpoint is that this infimum, for
straight lines in Euclidean space, goes to 0 as L goes to infinity. (Its exact value
is 4/L.) The limit is nonzero (and positive) for a hyperbolic space, whereas
for a sphere, negative second variation is of course possible for sufficiently long
geodesics, that is sufficiently large values of L, implying, as is true, that such
long geodesics are not of minimum length among nearby curves with the same
endpoints.

The fact that straight lines in R™ are, in this sense, just barely minimizing
suggests that there should be quantitative estimates on just how much positivity
of curvature could be possible without forcing a geodesic to be nonminimal. The
following lemma gives a specific version of this:

LEMMA 1.1. Let~:[0,L] — M be an arclength parameter geodesic and N (t) be
a parallel unit vector field along v with (N(t),y'(t)) = 0 for all t € [0,L]. Let
k(t) be the sectional curvature of the two-plane spanned by N(t) and ~'(t). If
a,b> 0 and a +b= L and if v is minimizing among nearby curves connecting
its endpoints, then

1

a 1 [° 1 1
1 2 o+ 2 _ <liZ
2z £k(t) dt + 55 i Ch(L—t)dt <~ + 5

PROOF. Define a piecewise C*° vector field V (¢) along v by

(t/a)N(t) if0<t<a,
Vi) = { (L—t)/b)N(t) ifa<t<L.
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Then define a variation of v by

(t,5) = exp. ) (sV (1))

Since 7 is locally minimizing, the associated second variation of arclength must
be nonnegative. By the usual formula, this becomes

L L
0< / (D,V.D.V) dt / 02k (t) dt
0 0

1 11, I )

=l+l—i/at2k(t)dt—i thk;(L—t)dt. O
a b a® ), b2 J,

This lemma has two important corollaries. The first is an aspect of the Topono-
gov Splitting Theorem. The second, which is in effect a restriction on how much
positivity of curvature there can be, is not so familiar, but forms an important
complement to the results in Section 6 on how little positivity of curvature there
can be.

COROLLARY 1.2 (TopoNOGOV). Let v : (—oo,+00) — M be an arclength
parameter geodesic with dist(y(t1),v(t2)) = |t1 — to| for all t1,t2 € (—o0, +00).
If, for some parallel unit vector field along v, we have k(t) > 0 for all t, then
k(t) =0 for all t.

This follows immediately from the lemma by choosing v(a) of the lemma to
correspond to v(t) of the corollary, for a given fixed ¢, and then letting a and b
go to infinity.

By choosing n — 1 parallel, mutually perpendicular unit vector fields along +,
each perpendicular to «/, one easily obtains results corresponding to the lemma
and corollary for Ricci curvature in place of sectional curvature.

For the second corollary, the following notation is needed: For a fixed p € M,
let K,(t) be the infimum of the sectional curvatures occurring at points ¢ with
dist(q, p) = t.

COROLLARY 1.3. If M is a noncompact complete manifold of nonnegative sec-
tional curvature and p € M, then for each r > 0 we have

1 ("5
—/ t"Kp(t)dt < 1.
™ Jo

This follows from Lemma 1.1 by choosing a ray v : [0, 400) — M with +(0) = p,
setting a = r and letting b go to infinity.

In terms of uniformly behaved K, (t), Corollary 1.3 makes clear that quadratic
decay of K,(t) as a function of ¢ is the critical case: K,(t) being of order 1/t
gives the exact order of magnitude that the corollary allows.

This quadratic decay does in fact occur: For the paraboloid of revolution
obtained by revolving the curve y = \/x around the z-axis, K, equals 1/ (2x+%)2.
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Here x and the arclength ¢ from the origin p = (0,0) are uniformly comparable
(since the derivative of 1/ is bounded as # — +oo, and indeed goes to 0), so
that K(t) also decays quadratically as a function of ¢.

It is important to understand, however, that these observations about decay
rates are really only relevant to cases where K(t) has quite regular behavior.
By way of example, note that even when M is a rotationally symmetric surface,
with a metric in geodesic polar coordinates of the form dr? + f2(r) d6?, it is still
possible for lim sup,._, , . K, () to be +-00 (and curvature to be everywhere > 0).
An example can be constructed as a surface of revolution.

2. Of Analysis, Support Functions, and Comparisons

Curvature provides estimates on second variations of arclength, which one
naturally thinks of as estimates (albeit in general one-sided only) on the second
derivatives of distances. But this natural viewpoint does not apply literally,
without some explication, since distances are not in general smooth functions
on Riemannian manifolds. Fortunately, this lack of smoothness turns out not
to matter, really. The essential reasoning needed to obviate the requirement
of smoothness has deep roots from long ago in real and complex analysis, for
instance, in the idea that subharmonicity needed to be defined and used for
functions lacking any differentiability. Indeed, so widespread are this and other
similar concepts in analysis that it is perhaps surprising that they began to
appear explicitly in Riemannian geometry, it seems, only as recently as in [Calabi
1957]. Since then, however, they have been systematically studied and exploited
in both Riemannian and K&hler contexts, in particular, in [Cheeger and Gromoll
1971; 1972; Greene and Wu 1976; 1978; Elencwajg 1975; Wu 1970; 1987].

The basic viewpoint needed is simply this: Define a function g to be supporting
a function f at a point p if f(p) = g(p) and g(q) < f(g) for all ¢ in a neighborhood
of p. Then:

SUPPORT PRINCIPLE FOR CONVEXITY. A continuous function f on a Riemann-
ian manifold is conver (that is, convex along each geodesic) if it is supported at
each point p by a convex function on some neighborhood of p.

The proof is elementary, since in effect one can immediately reduce it to a stan-
dard and easy result about convex functions on the real line. In practice, a
somewhat refined principle is more useful.

Define a C'*° function f to be e-convez if the eigenvalues of its second covari-
ant differential are everywhere at least —e. (Recaﬂ that the second covariant
differential is the quadratic form DJ%(X, Y)=X(Yf)— (DxY)f.) Then:

REFINED SUPPORT PRINCIPLE FOR CONVEXITY. A continuous function f on a
Riemannian manifold is convex if , for each point p and each € > 0, there is an
e-convex function g defined on some neighborhood of p such that g supports f
at p.
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The refined principle follows from the original principle easily using the fact
that locally defined C'*° strongly convex functions always exist on Riemannian
manifolds; for example, dist?(zo, - ) is C* in a neighborhood of z¢ and the second
covariant differential of this function has eigenvalues equal to 2 at x, and hence
bounded away from 0 in a neighborhood U of xy. The original principle can be
applied to show that, for fixed but arbitrary zg, and every § > 0, the functions
f(-)+6 dist?(xo, - ) are convex on U under the hypotheses of the refined principle.
Since convexity is a local property, and since a limit of convex functions is convex,
the conclusion of the refined principle follows by letting 6 — 0.

The support principle can also be established for subharmonic functions, and
also for plurisubharmonic functions on complex manifolds. Only the subhar-
monic case will be discussed here: for the complex case, see [Elencwajg 1975]
and [Greene and Wu 1978].

By definition, a (real-valued) continuous function f on a Riemann manifold is
subharmonic if it is a subsolution of Dirichlet problems, that is, if f(z) < h(x) for
all z € K, where K is any compact set with nonempty interior and h : K — R is
any continuous function harmonic in K and satisfying h(q) > f(q) for g € K—K.
We define a C'*° function g to be e-subharmonic if Ag > —e wherever g is defined
(here A = " 8%/0x? at the center of a normal coordinate system w1,...,z,).
Then:

REFINED SUPPORT PRINCIPLE FOR SUBHARMONICITY. A continuous function f
on a Riemannian manifold is subharmonic if, for each p € M and € > 0, there
is an e-subharmonic function g defined on some neighborhood U of p such that
g supports f at p.

The proof runs almost parallel to that of the refined principle for convexity.
On some (smaller) neighborhood V' of p, the function dist?(p, - ) has positive
Laplacian, bounded away from 0. If h is a (C°°) function that is harmonic in
a neighborhood of p, then for each § > 0, f + ddist®(p,-) — h is supported at
each point in a fixed neighborhood of p by the sum of a subharmonic function
and a C'°° function with positive Laplacian; this follows by choosing ¢ > 0
sufficiently small and using the function g + 5dist2(p, -) — h, where g is as in
the hypothesis. Thus, by calculus, f + 5dist2(p, ) — h cannot have a local
maximum near p. Hence f + ddist?(p, - ) is subharmonic. Hence, since the limit
of subharmonic functions is obviously subharmonic, f is subharmonic. There
will be circumstances later when not only convexity or subharmonicity can be
deduced, but also even smoothness.

SMOOTHNESS PRINCIPLE. Let f be a function on a Riemannian manifold. If f
and —f are both convex, or both subharmonic, then f is C*° and harmonic.

Actually, the convex situation is a special case of the subharmonic one, since
convex functions are always subharmonic [Greene and Wu 1973]. But it is nice
to notice that the convex case can be proved by completely elementary methods:
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The function must be linear along all geodesics. To prove differentiability in a
neighborhood of p, choose a geodesic ~y; through p and a point x; near p but not
on 7. Linearity shows that f is C°° on the local two-dimensional submanifold
generated by geodesics from z; to (nearby) points of 71. Repeating this cone
construction with z2 near p but not on the two-dimensional submanifold gives a
three dimensional local submanifold (containing p) on which f is differentiable.
Further repetition eventually gives differentiability on a neighborhood of p. So
f is differentiable and, since linear along geodesics, harmonic.

To treat the general subharmonic case, one proceeds as follows: For a given
point p, choose a small closed ball B around p. By standard results in partial
differential equations, there is a harmonic function h on B, with h continuous
on Band h=fon B — B. By the subharmonicity of f and —f, h = f on B.
Hence f is C*° (and harmonic) on B.

The support function method gives an almost immediate proof of the Topono-
gov Comparison Theorem, for the case of comparison with euclidean space, as
pointed out originally by H. Karcher [1989]. (The negative and positive curva-
ture comparisons are also obtained in the same work by similar methods, but
some small technical subtleties are involved, and these cases, which are not di-
rectly relevant here, will be omitted.) The crucial observation is the following
lemma, which follows from the support principle and an easy second variation
argument.

LEMMA 2.1. If M is a complete Riemannian manifold with nonnegative sectional
curvature, with p a point of M, and if v(t) is an arclength parameter geodesic
in M, then the function F :t — t> — dist®(p, y(t)) is convez.

Proor. It suffices to construct a C*° support function g, for F' at t = ¢y, fixed
but arbitrary, with d2g;,/dt?> > 0. For then, given € > 0, there is a neighborhood
of top on which g, is e-convex, and the refined support principle applies. To
construct such a gq,, choose a minimal geodesic 7; : [0, L] — M from p to (o),
where L = dist(p,y(t)). Define a vector field W (s) along v1(s) as the parallel
translation of 4/ (tg) along 1. Set V = (s/L)W and define a variation of v, by

(5,t) = exp,, (5 (tV (s)).

Let L(t) be the length of the curve, as s varies over [0, L] and ¢ is fixed. Then
a standard second variation calculation shows that d?L(t)?/ds* < 2. On the
other hand, clearly dist?(p, y(t)) < (L(t))?. Thus g(t) = t> — L(t)? satisfies the
required conditions. a

Toponogov’s Comparison Theorem can be easily deduced from this lemma in the
form that estimates the third side of a geodesic triangle in terms of the other
two sides and the included angle. Specifically, one wants to prove the following:

THEOREM 2.2 (TOPONOGOV COMPARISON FOR k > 0). Supposey; : [0, L] — M
is a minimal geodesic from a point p = v1(0) to a point ¢ = y1(L) in a complete
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Riemannian manifold M of nonnegative curvature, and vy is an arclength geodesic
through q with ¥(0) = q and (7/(0), —v{(L)) = cosa (so « is the angle between
~'(0) and —v{(L)). Then, for each positive t,

dist?(p, v(t)) < t> + L? — 2Lt cos .

Here the right-hand side of the inequality is of course the square of the length
of the third side of a euclidean triangle whose other sides have lengths ¢t and L
and meet at an angle a.

PROOF. For each § > 0, the function
Hs(t) = t* + L? — 2Lt cos o + 0t — dist?(p, v(t))

is convex, by the lemma. Also H(0) = 0 and, by an easy first variation argument,
H (t) is positive for all small positive ¢. Thus Hs(t) is positive for all positive ¢.
Hence

Hy(t) = t? + L? — 2Lt cos o — dist*(p, v(t)) > 0

for all positive ¢, which implies the conclusion of the theorem. a

3. Of Noncriticality and Nonnegative Curvature

The idea of support functions discussed in the previous section makes it pos-
sible to deal with what amounts to the second derivative properties of functions
that do not have second derivatives in the literal sense. It is natural and often
very useful to have in addition a way to deal with first derivative properties.

The functions that arise in geometry are almost all locally Lipschitz contin-
uous, that is, for each compact set K there is some constant By such that, for
all z,y € K,

[f(x) = f(y)| < Bx distar(,y).

Distance functions have this property by nature (and the triangle inequality),
and geometrically constructed functions, which are derived in most cases from
distance considerations, thus tend to have it, too. Lipschitz continuous func-
tions on R are almost everywhere differentiable and equal the integral of their
derivative, up to an integration constant. (These properties hold under the more
general condition of absolute continuity, of course, but this additional generality
is irrelevant for our present purposes.) Thus it is reasonable to try to relate
general behavior of Lipschitz continuous functions to their first derivative prop-
erties.

For a function on a manifold, or what amounts to the same thing locally,
a function of several variables, the most basic first derivative property is non-
criticality, that is, nonvanishing of the gradient grad f, or, equivalently, of the
differential df. This noncriticality has a natural possible generalization to the
case of Lipschitz continuous functions. (This idea was introduced in [Greene and
Shiohama 1981al; see also [Greene and Wu 1974]. In the specific case of distance
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functions, related ideas occurred, for example, in [Grove and Shiohama 1977],
but were tied to specifics of geodesic geometry.) In effect, one defines a point
x to be a noncritical point of a function f if there is a continuously varying set
of directions at and near x along which f decreases at a definite nonzero rate.
(This set of directions would be — grad f in the case of C! functions f.)

To make this completely precise, define a vector v € T, M to be a subgradient
for a Lipschitz continuous function f if there is a continuous vector field V'
defined in a neighborhood of x with V(z) = v and with the property that, for
some € > 0 and > 0 and all y in a neighborhood of x,

fley () = fly) < —et

for all t € (0,9), where ¢, is the geodesic emanating from y with ¢ (0) = V (y).
This property is independent of the choice of Riemannian metric; indeed, the
only function of the geodesics ¢, is to provide a suitable continuously varying
family of curves with specified initial tangent. The definition could also be made
with integral curves of a local C'*® vector field, but it is sometimes convenient to
be able to deal with vector fields that are just continuous. All such variants of
the definition yield equivalent concepts.

A point x is a noncritical point for a Lipschitz continuous function f if there
is a subgradient for f in T, M [Greene and Shiohama 1981b]. A point is critical
for f if it is not noncritical. This definition of critical definitely does not coincide
with the idea that f is “constant up to second order” at a critical point. For
example, the function x +— distas(x,p), for p fixed, always has p as a critical
point, even though it increases at unit rate along arclength parameter geodesics
emanating from p; similarly, if ¢ is such that distas(p, ¢) = sup,ep dista(x, p),
then ¢ is a critical point even though there is a direction at ¢ along which
distas( -, p) decreases at unit rate. The point is that such a direction of strict
decrease (or increase) cannot be chosen to vary continuously in a neighborhood
of q. Of course these definitions do coincide with the usual concept of being a
noncritical point if f is C! differentiable.

Note that the property of being noncritical is open, almost by definition: If
x is noncritical then so are all points y in a sufficiently small neighborhood of
x, since the same V will work for such y as a subgradient. It is also easy to
check, using the Lipschitz continuity of f, that if V' is any continuous vector
field defined in a neighborhood of 2 with V(z) a subgradient at x for f, then V
itself has the required property of the vector field in the definition of subgradient
for some €, 6 and neighborhood of x. Finally, one can also check easily that a
linear combination of subgradients with nonnegative coefficients and at least one
positive coefficient is again a subgradient: this again uses the Lipschitz continuity
of f.

The role of Lipschitz continuity in all this is primarily to insure that if two
curves have nearly the same tangent vector at some common initial point, then
the difference of f at parameter ¢ along one curve from f along the other at
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parameter t is a small multiple of t. This provides the necessary control of
one-sided (upper and lower) derivatives along curves.

Noncriticality in this extended sense is sufficient to make the main result of
noncritical Morse theory work, to the extent that it could possibly work for
nonsmooth functions:

LEMMA 3.1 (NONCRITICAL MORSE THEORY). Suppose that f : M — R is a
Lipschitz continuous function.

(1) If, for some a,b € f(M), the set f~([a,b]) is compact and contains only
noncritical points of f, then

(a) f~1((—o0,a]) is homeomorphic to f~'((—o0,b]), and

(b) f~((—o0,a)) is homeomorphic to a C> manifold-with-boundary (N, N );
in particular f~1({a}) is homeomorphic to the C> manifold ON.

(2) If, for some a > 0 in f(M), the set f=*([a,+00)) contains only noncritical
points of f and f~*([a,b]) is compact for all b > a, then M is diffeomorphic

to f~1((—o0,a)).

This lemma is established by smooth approximation techniques in [Greene and
Shiohama 1981b]. The relevant smoothing ideas were introduced in [Greene
and Wu 1973] and applied to noncritical point theory in [Greene and Shiohama
1981b]; compare [Greene and Wu 1974].

For literal distance functions x — dist y/(z, p) on a complete Riemannian man-
ifold, the concept of noncriticality is equivalent to a condition on the geometry
of geodesics: A point x # p is noncritical if and only if there is a nonzero vector
v in T, M such that, for every minimal geodesic « : [0, 1] — M with (0) = p and
v (1) = z, the angle between (1) and v is > 7/2. Tt is an easy exercise in the
first variation formula to see that this geometric geodesic condition is equivalent
to the definition already given. Indeed, the geodesic condition was used as a
definition in some early works, such as [Grove and Shiohama 1977].

Although analytically the concept of noncriticality seems almost primordial,
it took some time for its utility in geometry to become widely appreciated. Early
investigations include [Greene and Wu 1974; Grove and Shiohama 1977; Greene
and Shiohama 1981a; 1981b]. A history and some further details are given in
[Greene 1989].

The relevance of these concepts to the theory of manifolds of nonnegative
curvature is twofold: First, it applies to distance functions themselves, at large
distances. And second, there are nontrivial convex functions on noncompact
manifolds of nonnegative curvature; and convex functions have no critical points
other than the points of the global minimum set.

To treat the first, one notes the following.

LEMMA 3.2. If M is a complete manifold of nonnegative sectional curvature,
if p € M, and if § > 0, then there is a B > 0 with the following property: if
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distas (p, ) > B and if v is a minimal geodesic from p to x, with v(0) = p, then
there is a ray y1 : [0, +00) — M with 1 (0) = p and such that the angle between
~'(0) and ~1(0) is less than 4.

The proof is an easy modification of the basic limiting argument establishing the
existence of rays. From this lemma and Toponogov’s theorem, one can reason
about noncriticality of distance, as follows:

Suppose distys(p, x) is large enough to satisfy the lemma, for some fixed
small 6. Choose v fixed and then 1, in the notation of the lemma, and choose
t very large. Then dists(x,v1(t)) is estimated from above, compared to the eu-
clidean triangle with sides disty(p, ) and distas(71(0),71(¢)) = t and included
angle 6. Choose a minimal geodesic v2 from z to 1 (t). Now consider the trian-
gle formed by 72, 71 | [0, ] and any minimal geodesic from p to z. Toponogov’s
theorem shows again that the angle at « must be larger than 7/2; otherwise the
third side could not have length as large as its actual length ¢. Thus the vec-
tor 74 at x satisfies the geodesic condition for noncriticality of dista/(-,p) at .
These arguments are given in [Gromov 1981a] and generalized to asymptotic
nonnegativity of curvature in [Kasue 1988].

The relatively elementary argument just given already shows, when combined
with Lemma 3.1 (noncritical Morse theory), the following striking fact:

THEOREM 3.3 (TOPOLOGICAL FINITENESS). A complete noncompact manifold
of nonnegative sectional curvature is diffeomorphic to the interior of a compact
manifold-with-boundary.

Historically, this result was discovered in the more involved context of the convex
function considerations [Cheeger and Gromoll 1972]. These considerations are
the subject of the next section.

4. Of the Distance from Infinity and Convexity

A more profound analysis of the structure of complete, noncompact, non-
negative curvature manifolds can be obtained by exploiting systematically a
construction originally introduced by H. Busemann. This construction attaches
to each ray 7 : [0,+00) — M (parametrized by arclength) a function that we
shall call B, the Busemann function of . Intuitively, B, is a measure of how
far a point is out toward infinity in the direction of . The precise definition is

By(x) = lim (¢t — distas(z, v(¢))).
t—+oco
The function ¢ — (¢ — distas(z,v(¢))) is monotone nondecreasing and bounded
above by distas(z,v(0)) so that the limit exists and is finite-valued. Also, since
each of the functions t — ¢ — dist s (x, (t)) is globally Lipschitz continuous with
Lipschitz constant 1, the function B, is also Lipschitz continuous with Lipschitz
constant 1.
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These considerations are independent of any curvature hypotheses. But in the
presence of everywhere nonnegative curvature, the Busemann functions acquire
a new virtue: they are necessarily convex. From the perspective of support func-
tions and Toponogov’s Comparison Theorem developed earlier, this convexity is
almost immediate, as will now be shown.

Nonnegative curvature implies, either by Toponogov’s Comparison Theorem
or by a direct second variation argument, that the function z +— — distas(x, y(t))
has second derivatives, along arclength geodesics in a neighborhood of a fixed
xg, whose value is at least —2/distps(zo,v(¢)). This is true in the sense of
support functions even if the function dist(-,y(¢)) does not have two derivatives
literally; that is, along such a geodesic 6(s), the function 6s? — distas(6(s), y(t))
is convex for & > distps(xo,v(t)). It follows that the same support function
second derivative estimate is true of ¢ — distas(x, v(t)). By taking the limit, one
immediately derives the convexity of B, .

An elementary argument shows that, if f: M — R is a (geodesically) convex
function, then f is necessarily locally Lipschitz continuous. (This and subse-
quent remarks on general convex function theory are independent of curvature
hypotheses.) Thus the whole machinery of noncriticality can be applied. And in
this regard, convex functions have an extraordinary property:

THEOREM 4.1 (NONCRITICALITY OF CONVEX FUNCTIONS [Greene and Shio-
hama 1981a; 1981b]). If f : M — R is a convex function on a complete Rie-
mannian manifold and if x is a point of M such that f(x) > infy f, then x is a
noncritical point for f.

OUTLINE OF PROOF. By connecting x via a geodesic to a point y with f(y) <
f(z), one sees that distas(z, f~1((—o0, f(z) — 6])) goes to 0 as § — 0F. The
set f~1((—o0, f(x) —d]) is convex. From this convexity, one sees that there is a
unique shortest connection from each point near x to this set when ¢ > 0 is small
enough. Uniqueness shows that this shortest connection varies continuously with
the variation of x, near x. The tangent vectors to these geodesics satisfy the
vector field condition for there to be a subgradient for f at z. (See [Greene and
Shiohama 1981a; Greene and Shiohama 1981b] for this argument in detail.) O

It is actually most advantageous to apply these noncriticality considerations not
to the individual Busemann functions but to the function B(z) = sup., B, (),
where the supremum is taken over all rays v with fixed v(0) = p. The supremum
of convex functions is convex, so when M has everywhere nonnegative sectional
curvature, the function B is again convex. Moreover, the function B has compact
sublevel sets, that is, B~!((—o0, a]) is compact for each a € R.

The proof is again a variant of the basic ray construction: If {z,} is a sequence
converging to infinity, that is, limdist(p, x;) = +oo, if B(z;) < « for all j and
if ~y; is a sequence of minimal, arclength-parameter geodesics, from p to x; for
each j, then B is bounded above on «;, by max(B(p), B(z;)) < max(B(p), ),
by the convexity of B. Let v be a ray which is a limit of a subsequence of the ;
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(such a v exists). Along ~, B is bounded by max(B(p), «), by continuity. But
B, is unbounded on +y, hence so is B. This contradiction completes the proof.

These observations give another proof for Theorem 3.3 on topological finite-
ness: M is diffeomorphic to the interior of a compact manifold-with-boundary
homeomorphic to B~!((—oc0, a]), for any a > infy; B. This follows by combin-
ing Lemma 3.1 (noncritical Morse theory), Theorem 4.1, and the convexity and
properness of B.

But the function B enables one to refine this picture further. First, it is not
hard to see that, if 8 < «, then

B !((~o0,0]) = {z : B(z) < a, distar(x, B~ ([, +0))) = a — B}

It follows that if By = infy; B = miny B, then B~*({3}) is a compact con-
vex subset of M with empty interior. This set thus lies in a totally geodesic
submanifold of M, and indeed is the closure of (an open subset U of) such a
submanifold. The proof of this is almost a copy of the corresponding structural
result for compact, convex subsets of IR™. The difference here is that the closure
of the submanifold may equal the submanifold, that is, the submanifold may
have no boundary. This can happen in R™ only if the submanifold is a single
point.

Given such a compact convex subset C in M, equal to the closure of a to-
tally geodesic submanifold U, one can consider the §-push-in Cs = {z € U :
distp(xz, C —U) > §}, provided that C' — U # @.

It is not hard to see, using support functions as usual, that the function
2 +— —dist(z, C' —U) is convex on U. In particular, the push-ins Cs are convex,
for each § > 0. There is a maximal § for which Cj is nonempty. And the same
structural result for this Cs, which is necessarily of lower dimension, enables
one to do the push-in construction again in a lower-dimensional totally geodesic
submanifold.

Since dimension drops at each stage, this process must eventually terminate
with a maximal push-in that is a totally geodesic submanifold without boundary.
Clearly, M has the homotopy type of this submanifold. But in fact, standard
topological neighborhood constructions [Rushing 1973], together with the non-
criticality of convex functions already discussed, show that M is diffeomorphic to
a tubular neighborhood of the submanifold §. Thus one obtains what is usually
called the Soul Theorem:

THEOREM 4.2 (STRUCTURE OF NONNEGATIVELY CURVED MANIFOLDS [Cheeger
and Gromoll 1972; Poor 1974]). If M is a complete, noncompact manifold of
everywhere nonnegative curvature, then there is a compact totally geodesic sub-
manifold (without boundary) S of M such that M is diffeomorphic to a tubular
neighborhood of S. In particular, M is diffeomorphic to the total space of a
vector bundle over a compact manifold of nonnegative curvature.
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The submanifold S is usually called the soul of M, an unattractive but appar-
ently permanent piece of terminology. The theorem was largely established in
[Cheeger and Gromoll 1972], but the diffeomorphism statement was not obtained
in full generality until [Poor 1974]. Of course, here and throughout the discus-
sion, the fact has been used repeatedly that a totally geodesic submanifold of
a manifold of nonnegative sectional curvature has itself nonnegative sectional
curvature.

In the particular situation of complete noncompact manifolds of nonnegative
curvature, it is not necessary to appeal to the topological generalities referred
to before the statement of theorem. By using the noncritical Morse theory for
nonsmooth functions that is a main theme in the present article, one can deduce
more directly that such a manifold M is diffeomorphic to a tubular neighborhood
of a soul S of M. For this, one needs only that the function z — dist(x,S)
is noncritical at every point z ¢ S. For then, by the smooth approximation
of subgradient flow as developed in [Greene and Shiohama 1981a; 1981b], for
example, one obtains a diffeomorphism of M onto {z : dist(x, S) < €}, for any
€ > 0. For £ small enough, this latter set is a tubular neighborhood, and the
proof is complete.

To see that x +— dist(z,S) is noncritical at each x ¢ S, fix such an z
and consider a minimal arclength parameter geodesic v from x to S, so that
length() = dist(x, S), while ~ starts at « and terminates at a point in S. Sup-
pose first that B(z) > minps B, where B is the supremum of the Busemann
functions, as before. The convexity of B implies that the rate of decrease of
B along v is at least (B(z) — min B)/length~y at the point 2. Moreover, the
convexity of B also implies that the set of unit vectors in T, M along which B
decreases at least at that rate is contained in a closed convex cone in T, M that
lies in an open half-space. In particular, there is a unit vector v € T,, M and an
a > 0 such that the angle from u to any such geodesic v is > 7/2+ a.. Hence, by
the logic already discussed in comparing the geometric noncriticality of [Grove
and Shiohama 1977] with the analytic noncriticality idea used here, it follows
that dist(-,.S) is noncritical (in the analytic sense) at .

If B(z) = minys B but still © ¢ S, then one can apply the same reasoning
to deduce the noncriticality of dist(-,.S) at x. In this case, one works not with
B but with the relevant convex function associated to the push-in that takes
x to the next-lower-dimensional totally convex set that is the next stage in the
construction of the soul. By total convexity, all minimal connections v from x
to S lie in a totally convex set containing x and S on which the convex function
for the push-in is defined. So the argument goes exactly as before.

Striking as this structural result is, it leaves a number of substantial questions
unanswered. Omne of them is, which vector bundles over compact manifolds S
of nonnegative sectional curvature actually do admit complete metrics of non-
negative sectional curvature on their total spaces? Trivial bundles obviously do:
one just uses the product metric on S x R"™. In practice, it is not easy to find



NONCOMPACT MANIFOLDS OF NONNEGATIVE CURVATURE 113

cases where one can see that a certain vector bundle does not occur. This makes
the following results, proved in [Ozaydin and Walschap 1994], particularly in-
triguing: The total space of a rank k vector bundle over a compact flat manifold
M admits a complete metric of nonnegative sectional curvature if and only if
E admits a complete flat metric, and also if and only if F is diffeomorphic to
R™ %, (v) R¥, where 71 (M) acts on R™ by covering transformations (of M) and
on R* by an orthogonal representation. This latter condition is in turn equiv-
alent to E being diffeomorphic to the total space of a vector bundle of rank k
over M that admits a flat Riemannian connection. From this, one deduces that
the total space of a rank-2 oriented vector bundle over a compact flat manifold
admits a complete metric of nonnegative sectional curvature if and only if its
rational Euler class vanishes. This provides many examples of vector bundles
over flat manifolds the total space of which does not admit a complete metric
of nonnegative sectional curvature—for example, among oriented rank-2 bundles
over the n-torus, only the trivial bundle has a complete metric of nonnegative
sectional curvature.

So far in this section, attention has been concentrated on B, the supremum of
the Busemann functions over all rays from a given point, for the logical reason
that in general relatively little information can be derived by considering a single
Busemann function. But there is one situation wherein much information can be
derived about a single Busemann function: Suppose that a complete Riemannian
manifold M contains a line v : (—oo, +00) — M, that is a curve with

dist(y(t1), y(t2)) = [t1 — tof

for all t1,t2 € R = (—o00, +00). Associated to this situation are two Busemann
functions: By, the Busemann function of the ray ][0, +00), and B_, that of the
ray t — vy(—t), for t € [0, +00).

It follows from the triangle inequality that By + B_ < 0 everywhere on M
and that By + B_ = 0 at points of . This is not conspicuously instructive in
complete generality. But if M is supposed to have nonnegative Ricci curvature,
second variation arguments already discussed show that Busemann functions
on M are subharmonic in the support sense (and even convex, under the more
restrictive assumption of nonnegative sectional curvature).

Now the maximum principle holds for support-subharmonic functions, as is
easy to see. Thus the fact that By + B_ is nonnegative on M and vanishes on
~ implies that it vanishes in fact on all of M, if By and B_ are subharmonic—
e.g., when M has everywhere nonnegative Ricci curvature. Then B, is support-
harmonic (since it is subharmonic and its negative B_ is also subharmonic).
So, by the smoothness principle of Section 2, B} is a C* harmonic function.
(When M has nonpositive sectional curvature, the weaker and more elementary
smoothness principle for functions linear along geodesics suffices here.)

Since B is then C'*°, it has a gradient everywhere, of length 1. The gradient
has length no more than 1 because B is Lipschitz continuous with constant 1.
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To see that the gradient has length at least 1 at a given x € M, choose a
sequence of minimal, arclength parameter geodesics «y; from z to points ~(¢;)
with ¢; — +oo and unit vectors 7; at x converging to a (unit) vector v. Then
B can easily be seen to increase at unit rate along t — exp, (tv), t > 0.

Moreover, B being harmonic implies that its level surfaces, which are smooth
hypersurfaces, have mean curvature 0. Since they are “equidistant”, it follows
easily that they are totally geodesic hypersurfaces. One then sees immediately
that M must be isometric to

{reM:Bi(x) =0} xR,

the isometry being the map that associates to each (z,t) the flow to time ¢ along
the integral curve of grad By emanating from x at t = 0.

This gives the Splitting Theorem of [Cheeger and Gromoll 1971] for mani-
folds of nonnegative Ricci curvature (and, by the easier form of the arguments,
Toponogov’s Splitting Theorem [Toponogov 1964] for manifolds of nonnegative
sectional curvature): If a complete n-dimensional manifold of nonnegative Ricci
curvature contains a line, it is isometric to the product of an (n — 1)-manifold
and the real line R.

5. Of Distance-Nonincreasing Retractions and
Manifolds with Positive Curvature at One Point

If C is a closed subset of a complete Riemannian manifold M, then, for each
p € M, there is a point p’ in C that is as close to p as possible, that is,

dist(p, p") = dist(p, C) := inf dist(p, q).
qeC

If C is a closed, convex set in R"™ then, for each p € R"™, there is exactly one
such closest point p’ in C. In this case, one can define a retraction R of R™ onto
C by setting R(p) = p’. This retraction R has the property of being distance-
nonincreasing in the sense that, for all py,ps € R™,

dist(R(p1), R(p2)) < dist(p1, p2)-

For complete Riemannian manifolds, the situation is more complicated. The
“closest point” p’ may not be unique: for example, the north pole is equidistant
from every point of the boundary of the southern hemisphere (which is convex).
However, if C is a closed, convex set in a complete Riemannian manifold, there is
a neighborhood U of C' such that, for each p € U, there is a unique closest point
p’ in C; a proof is given in [Greene and Shiohama 1981a], where the problem
was investigated in detail.

Even if two points p1, p2 have unique closest points pj and p}, and if C is
convex, it may be that dist(p],ph) > dist(p1,p2). For instance, this happens
when C is the southern hemisphere and p1, ps are points of the same latitude in
the northern hemisphere (excluding the equator and pole).
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This latter example, if looked at in some detail, however, strongly suggests
that there is some kind of control over closest-point retractions onto convex sets.
If p1, po are on the parallel of latitude € north, and are separated in longitude
by 6, the law of spherical cosines gives

cos dist(p1, p2) = sin? € + cos®e cos 0,

where we have chosen units making the radius of the sphere equal to 1. On the
other hand,

cos dist(p], ph) = cos 6.

Since cose = 1— %52 +... and sine = e — %53 + ..., one sees that the retraction
R : p; — pl, as before, is almost distance-nonincreasing, where almost means up
to an error that is second order in the distance ¢ of py, ps from C.

The historic concept of “infinitesimals of higher order” , or Duhamel’s Principle
as it is often called, now suggests that, if some similar second-order statement
holds for Riemannian manifolds in general, then it should be possible to construct
distance-nonincreasing retractions onto (sub)level sets of convex functions. In
outline, with p1, p2 in the same level, say «, one projects p1, p2 successively onto
closely-spaced lower levels via closest-point mappings, until one reaches some
fixed lower level 3. These successive projections make at most second-order
increases in distance. So by taking the limit with the number of intermediate
levels going to infinity, one obtains a retraction that is distance-nonincreasing.
The “errors” have vanished in the limit, having been infinitesimals of higher
order.

This old-fashioned, almost eighteenth-century, way of thinking can in fact
be made easily into a precise proof of the following result, first obtained by
Sharafutdinov [1977] for retraction on the soul of a manifold of nonnegative
curvature (compare [Greene and Shiohama 1981a)):

DISTANCE-NONINCREASING RETRACTION THEOREM. If M is a complete Rie-
mannian manifold, and if f : M — R is a convexr function, then, for each
a € f(M), there is a retraction

R:M — f((—o0,q])

satisfying
distas (R(x1), R(z2)) < distas(z1, x2)
forall z1,x5 € M.

To make the proof of this result more explicit, note first that it is enough to
construct, for a given fixed 3 > «, a distance-nonincreasing retraction Rg , from
I~ H([—o00, B]) onto f~!([—00,a]). Then the required R on M can be obtained as
a composition of Ry11 o, Ra+2,a+1, €tc. To construct Rg, (when f is proper),
note that for all sufficiently large positive integers n, there are unique closest
points in f~!([~o0, a + (B — a)i/n]) to points in f~1([—o0, a + (8 — a)(i +
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1)/n]), for i = 0,1,...,n — 1. This follows from the existence of a unique
closest point for points in a small neighborhood of a convex set, as noted earlier.
This construct defines a retraction R of f~!([—oc0,f]) onto f~!([—oc0,a]) by
composition of the successive closest-point maps. Each of these closest-point
maps is distance-nonincreasing modulo an error of order n~2; this follows from
a geometric argument that will be made explicit momentarily. A (sub)sequence
of the R,, converges uniformly to a retraction that is distance-nonincreasing: the
error terms are n in number and O(n~2), so that their contribution vanishes in
the limit.

Two further ingredients are needed to complete the geometric part of this
argument, that is, to establish that projections onto the lower sublevels are

2. The first ingredient is to note

distance-nonincreasing up to errors of order n
an angle property of projection: Suppose that C' is a compact (totally) convex
set, and that x; and zo are points not in C' but close enough to C' to have
unique closest points in C, say y; and ys. Let 73 be minimal from x; to y1, 72
from z9 to yo2, and 3 from y; to yo. Then the angle at y; between ~; and 3
(that is, Zx1y1y2) and the corresponding angle at yo are both > 7/2. This is an
obvious consequence of the first variation formula and the fact that v3 C C: If,
say, Zx1y1y2 were acute, then moving along -3 from y; towards y» would give
points (in C) closer to x; than is y;, whereas y; is the closest point in C to 7.
In an obvious sense, this angle estimate shows that dist(zy,z2) > dist(y1, y2)
up to terms of second order in dist(z1, C') and dist(y;, C). (Here dist(za, yo) is
bounded uniformly if C' is compact; otherwise, in case one wants to consider C
only closed, convex, not necessarily compact, one still has a bound on dist(y;, y2)
in terms of dist(z1, z2) and dist(x1, C) and dist(x2, C'), which sufﬁces.)

The second ingredient needed is the observation that, supposing the sublevel
F71((=00, b]) to be compact and a to be greater than miny, f, there is a constant
Cy independent of n such that

fl)ela+i(b—a)/n,a+(b—a)(i+1)/n] fori=0,1,...,n—1 =
dist(z, f~ (=00, a + (b — a)i/n])) < Co/n.

This estimate shows that “second-order” in terms of distance to the closest-
point projection, as in the previous paragraph, implies second-order in the sense
of order 1/n?. To establish this estimate, choose a number « such that a < a
but @ > minys f. For x such that f(z) € [a + (b—a)i/n, a+ (b—a)(i+1)/n],
choose zg € f~1((—o00,a]) such that

dist(x, 2¢) = dist(x, f~1((—00, a])).

And choose a minimal, arclength parameter geodesic v : [0, D,;] — M with
7(0) = o and ¥(D;) = =.

Clearly f(y(t)) > « for t > 0. Let tp be the smallest positive number such
that f(v(to)) = a. Now the function ¢ — f(y(t)) is convex. It follows that f is
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strictly increasing on [0, D,], and that if ¢; is the unique number in [0, D,] such
that f(v(t1)) = a+ (b — a)i/n, then

D, — f3(0) _ f(alta)) — 1(0)
D, —t; - to—0 '

Thus

dist(x, f ' (—o00,a+ (b—a)i/n]) < D, —t; < at——oa (f(z) = (a+ (b—a)i/n))

< ( o > Lo o 1
a—a) n - a—an
where d, = inf{dist(p,q) : f(p) = a, f(¢) = a}. Thus the required estimate

holds, with Cy = dn(a — ).
Retraction that is distance-nonincreasing onto a = min f follows by a limiting

argument from the case of @ > min f. Also, if the sublevels are not compact,
similar estimates hold on compact subsets and the desired constructions can be
carried out globally by patching arguments, which are omitted in the interests
of brevity.

A variant of this argument can be used to show that if B > « > infy, f then
f~ ([0, B]) is homeomorphic to f~!([~o0,a]), and also that f~!((—o0,a))
is homeomorphic to M. One does not map a point p in f~!([a + (8 — a)i/n,
a+ (B—a)(i+1)/n]) to its closest point in f~!([—oco, a+ (8 — «)i/n]). Rather,
one takes the point p to the intersection with {z : f(p) = a+ (8 — a)i/n} of the
geodesic from p to the closest point to p in f~1(([—oo, a+ (B —a)(i—1)/n]))—
or, if i = 0, to f~1(([~00, a — €])), for some small ¢ > 0. This construction
gives a sequence of “push-downs” that can be patched together to exhibit a
product structure on f~!([a, 3]), making it homeomorphic to {x € M : f(z) =
a} x [o,B]. (See [Greene and Shiohama 1981a] for details, and [Greene and
Shiohama 1981b] for a proof of the stronger result where “diffeomorphism” is
substituted for “homeomorphism”.) This process serves as a geometric substitute
for the more analytic viewpoint of noncriticality of convex functions away from
their minimum sets, discussed in Section 3.

The soul S of a complete manifold M of nonnegative sectional curvature is
obtained as successive push-downs to the minimum set of convex functions, as
explained in Section 4. Thus one obtains the following corollary (established in
[Sharafutdinov 1977]) of the result on distance nonincreasing retractions:

RETRACTION ONTO THE SOUL. If M is a complete Riemannian manifold with
everywhere nonnegative sectional curvature, and if S C M is a soul of M, then
there is a distance-nonincreasing retraction R : M — S.

The retraction R is, as noted, obtained as a composition of retractions that
are themselves limits of compositions of other retractions. This might seem to
be a rather uncontrolled, even uncontrollable, construction, from the geometric
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point of view. Thus, the following result of Perelman [1994] is more than a little
startling:

RIGIDITY OF RETRACTION ONTO THE SOUL. If R : M — S is a distance-
nonincreasing retraction of a complete manifold M of nonnegative curvature onto
a soul S, then R(exp,v) =z for each x € S and v € TyM withv L T,S.

The exponential map on the normal bundle of S need not be a diffeomorphism
onto M, even though M is indeed diffeomorphic to this normal bundle (see
Section 3). For instance, if S is a point, so that M is diffeomorphic to R™, it
may not be the case that M has any pole (recall that x € M is a pole if exp, is
a diffeomorphism). Even so, Perelman’s rigidity result can well be thought of as
saying that R is a one-sided inverse of exp of the normal bundle of S.

If M is a complete Riemannian manifold of everywhere positive sectional cur-
vature, the supremum B of the Busemann functions is actually strongly convex
in the support-function sense. That is, for each x in M and for ¢ a C'"* func-
tion in a neighborhood of x with positive definite covariant differential at =,
there is an € > 0 such that B — €0 is convex in a neighborhood of x. The
minimum set of a strongly convex function (in the support-function sense, which
applies to not necessarily smooth functions) is either empty or consists of a single
point. Thus the soul S of M is a point and M is diffeomorphic to R™, where
n = dim M. Homeomorphism to R™ was proved by Gromoll and Meyer [1969],
prior to the general structure theorem for nonnegative curvature, and indeed this
work introduced already the basic results about the suprema of the Busemann
functions and so on. The explicit proof of diffeomorphism to R", as opposed
to just homeomorphism, came in [Poor 1974] (this is of course relevant only in
dimensions 3 and 4). The same result was proved in [Greene and Wu 1976] by a
particularly direct process: we first proved that the function B can be smoothed,
that is, approximated by a strongly convex C'*° function, which is also proper.
That M is diffeomorphic to R™ then follows from standard smooth Morse theory
techniques.

It was natural to ask whether the conclusions that S is a point and hence
that M is diffeomorphic to R™ hold under the weaker hypotheses that M has
nonnegative curvature everywhere and all sectional curvatures positive at a single
point. This was known to be true in two particular cases: in dimension 2 [Cohn-
Vossen 1935], and for manifolds M that arise as the boundaries of convex bodies
in R™"*! (see the classification in [Busemann 1958]). Of course, for n > 2, it is
atypical for a general Riemannian manifold to be isometric to a hypersurface,
even locally, since local isometric embedding requires, generically, %n(n +1)
dimensions at least (compare [Gromov and Rohlin 1970]). In any case, it was
conjectured by Cheeger and Gromoll [1972] that sectional curvatures nonnegative
everywhere and all positive at one point (on a complete, noncompact manifold)
implies diffeomorphism to euclidean space.
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Only very limited special cases of this conjecture were confirmed in the next
twenty years: for example, when S has codimension 1 [Cheeger and Gromoll
1972] or 2 [Walschap 1988], and some cases involving detailed curvature assump-
tions [Elerath 1979]. Thus Perelman’s proof of the conjecture, presented for
the first time at the MSRI Workshop of which this volume is a record, caused
excitement. In fact the solution follows from this general result [1994]:

FLAT RECTANGLES IN NONNEGATIVE CURVATURE. Let M be a complete non-
compact manifold of nonnegative curvature with soul S of positive dimension.
Let v be a geodesic in S, and let N be a parallel vector field along v normal to
S. Then the curves vy defined by

Ve () = expa(y) tN (u),

fort > 0, are geodesics in M and form a flat totally geodesic two-dimensional
submanifold.

COROLLARY 5.1 [Perelman 1994]. A complete, noncompact, n-dimensional man-
ifold with everywhere nonnegative sectional curvature and with all sectional cur-
vatures positive at some point is diffeomorphic to R™.

The corollary follows from the theorem because every point p of M arises as
exp, tN, where x € § and N L T, S. This is easy to see, e.g., by taking for =
a closest point in S to p and for N the tangent vector at x to a minimal-length
geodesic from z to p. If S has positive dimension the theorem provides a zero
sectional curvature at p. So if all sectional curvatures at some p are positive, S
must be zero-dimensional, that is a point (S is convex, and therefore connected).
Hence M is diffeomorphic in that case to R™.

The arguments used by Perelman to prove the rigidity theorem and the flat
two-plane theorem are ingenious, but purely geometric and, in a sense, surpris-
ingly elementary. The starting point is to define a function f(r) as follows: if
R: M — S is a distance-nonincreasing retraction, set

f(r) = maxdist(z, R(exp, rv)),

where x € S and v € T, M is orthogonal to S. Then, by a geometric argument,
one shows that the upper (one-sided) derivative of f is nonnegative. Since f is
clearly Lipschitz continuous, f is the integral of its derivative up to an additive
constant. Since f(0) = 0 while f > 0 by definition, f(r) = 0 for » > 0. This
establishes the rigidity. The flat two-plane result then follows using comparison
results applied to “rectangles” obtained by exponentiating the parallel vector
field N along +, applying R, and using the rigidity result.

It was also shown in [Perelman 1994] as part of the proofs of the results already
quoted that Sharafutdinov’s retraction R was a Riemannian submersion of class
C'. Recently, this submersion has been shown to be of class C*° by Guijarro [a].
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6. Of How Little Curvature a Manifold of Nonnegative
Curvature Can Have

In Section 1, the question was explored of how much positive curvature a
noncompact manifold of nonnegative curvature could have. That there was some
restriction was obvious, since if there were too much positive curvature, the
manifold would close up, ceasing to be noncompact. But at first sight, there
seems to be no restriction in the other direction, no lower bound on how much
positivity of curvature can occur. After all, the most familiar examples of open
manifolds of nonnegative curvature, euclidean spaces, have no positive curvatures
at all; they are flat. It is thus rather surprising that, if one supposes in advance
that the metric is not flat, there is a precise sense, in many cases, in which the
manifold cannot be arbitrarily close to flat.

The first results of this type were discovered only relatively recently; they are
not extensions of results from the classical period of Riemannian geometry, in the
late nineteenth and early twentieth centuries. The absence of any such results
classically is probably just a consequence of the fact that for surfaces there are no
results of the type. It is easy, for instance, to construct complete metrics (from
surfaces of revolution) on R? that have zero curvature outside some compact
set, nonnegative curvature everywhere, and positive curvature somewhere. The
corresponding situation for metrics on R”™, for n > 3, cannot occur, as we shall
see momentarily. And this nonoccurrence is the basic instance of the restrictions
on near-flatness without total flatness with which we shall be concerned.

The first results of this general type were actually obtained for complete,
simply connected Kéhler manifolds of nonpositive curvature and “faster-than-
quadratic curvature decay”, in the sense that, for some C' > 0 and ¢ > 0,

sup |K(0)] < Cr—+e),

where the supremum of absolute value of sectional curvature is taken over all two-
planes o at distance r from a fixed point. Such manifolds had been proposed as
objects of study in [Greene and Wu 1977], where, in particular, it was conjectured
that they should be necessarily biholomorphic to C". This conjecture was proved
in [Siu and Yau 1977]. But except in complex dimension 1, no examples were
known except the standard metric on C". And in [Mok et al. 1981], it was shown
that indeed such manifolds had to be isometric to C™ if their complex dimension
n were > 2. (The biholomorphism theorem was extended in the same paper to
allow small amounts of positive curvature, so that then nonflat examples occur).
This work on Ké&hler geometry motivated H. Wu and myself to consider the
corresponding, more general Riemannian situation to be discussed now.

The most basic and prototypical Riemannian-geometric result has to do with
manifolds that are flat outside some compact set:

THEOREM 6.1 [Greene and Wu 1982]. Let M be a complete noncompact manifold
such that (a) there is a compact set K such that all sectional curvatures are 0
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on M — K, and (b) M is connected at infinity and simply connected at infinity.
Then there are compact sets K1 in M and Ko in R™ with M — K, isometric to
M — K.

COROLLARY 6.2 [Greene and Wu 1982; Greene and Wu 1993]. If a manifold
satisfying the hypotheses of the Theorem also has the property of everywhere
nonnegative Ricci curvature, it is isometric to R™.

COROLLARY 6.3 [Greene and Wu 1982]. If a complete, simply connected Rie-
mannian manifold of dimension n > 3 has everywhere nonpositive sectional cur-
vature and has zero curvature outside some compact set, it is isometric to R™.

The first corollary follows from the theorem by considering a (large) region in M
containing K7, the boundary of which is isometric to the boundary of a cube in
R™ Identifying opposite faces gives a manifold of dimension n with nonnegative
Ricci curvature and with first homology of rank n. Such a manifold must be flat,
by the Bochner technique, so M itself is flat.

The second corollary follows from the Theorem by noting that M has exactly
euclidean volume growth, that is,

lim vol B(p,r)/vol. B(r) =1
r—+00

for each p € M, where vol, B(r) is the volume of the euclidean ball of radius
T. Then M must be flat by the Bishop volume comparison result [Bishop and
Crittenden 1964]: if any sectional curvature of M at a point p, say, were negative,
the volume growth limit would be greater than 1 from p.

It is an important fact that no analogue of the first corollary holds for non-
positive Ricci curvature: There are compactly supported perturbations of the
standard euclidean metric on R", for n > 3, which have Ricci curvature nonpos-
itive everywhere and negative somewhere [Lohkamp 1992].

The proof of the Theorem on manifolds flat outside a compact set is obtained
by considering the locally isometric “developing map” of M outside a compact
set to R™. Using the convexity results of [Greene and Wu 1973; 1974], one can
take the compact set to have C'*° boundary and to be convex in M. Simple
connectivity gives a well-defined developing map which maps the boundary of
the compact convex set in M to an immersed, locally convex hypersurface in
R™ Since n > 3, this immersion is in fact an embedding [Sacksteder 1960;
van Heijenoort 1952], and the consideration of exterior normal maps gives an
isometric map from the exterior of this compact convex hypersurface in R" to
the exterior of the corresponding set in M. This technique can be extended
to classify the possible structures of manifolds flat outside a compact set even
when the manifolds are not assumed simply connected at infinity ([Greene and
Wu 1993]; this classification was in fact obtained earlier by a different method
in [Schroeder and Ziller 1989]).
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It is natural to try to replace the condition of flatness outside a compact set
by some condition of rapid decay of curvature to zero with increasing distance.
The Kahler-geometric situation suggests that faster than quadratic decay is the
appropriate choice. So does the relationship between faster-than-quadratic cur-
vature decay and quasi-isometry of the exponential map established in [Greene
and Wu 1979]. In [Greene and Wu 1982], the faster-than-quadratic-decay con-
dition was analyzed as a substitute for flat-outside-a-compact-set in the case of
manifolds admitting a pole.

In summary form, it was proved in [Greene and Wu 1982] that a manifold with
a pole, with faster than quadratic curvature decay, and with sectional curvature
of one sign (either everywhere < 0 or everywhere > 0) was necessarily flat, if the
dimension of the manifold was > 3, except when the dimension is 4 or 8 and the
curvature is nonnegative.

These results were called “gap theorems” because in effect they showed the
existence of a gap between flat R™ and other metrics of signed curvature on R™:
such metrics cannot be too close to the flat metric.

The basic proof technique for these results of [Greene and Wu 1982] is to esti-
mate the (n — 1)-dimensional volume of distance spheres with a view to showing
that M has euclidean volume growth. Then the flatness follows from the Bishop
volume comparison [Bishop and Crittenden 1964], as already mentioned. For
curvature < 0, one wishes to estimate volume from above. One can estimate the
sectional curvature of distance spheres from below with a positive lower bound
depending on the radius, using comparison methods such as the Hessian com-
parison of [Greene and Wu 1979]. The volume estimate above follows. (This
argument, simpler than the ones used in [Greene and Wu 1982], was communi-
cated to the author by M. Gromov.) But for curvature > 0, one seeks estimates
of (n — 1)-dimensional volume of the distance spheres from below, while the
information available directly from comparison theory is an upper (and lower)
curvature bound on the spheres’ intrinsic metrics. In general, such curvature in-
formation fails to yield a lower bound on volume, as the phenomenon of “collapse
with bounded curvature” shows (e.g., Berger spheres).

In odd dimensions one does get a lower volume estimate on the (even-dimen-
sional) distance spheres by means of the generalized Gauss—Bonnet formula of
[Allendoerfer and Weil 1943]. A bound on the absolute value of sectional curva-
ture provides a bound on the generalized Gauss—Bonnet integrand and, since the
integral must be the Euler characteristic of the even-dimensional sphere, namely
2, a lower volume bound follows. This method was introduced in [Greene and
Wu 1982] for the odd-dimensional pole case. The same approach was used suc-
cessfully in the case of manifolds not necessarily diffeomorphic to R™ (soul not
a point) in [Eschenburg et al. 1989] to generate “gap theorems” in that situ-
ation again in odd dimensions, and to deal with the odd-dimensional case of
diffeomorphism to R"™, but with no pole.
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When the manifold itself is even-dimensional, the estimation of distance sphere
volume from below must use a different method. The idea used in [Greene and
Wu 1982] is to replace the generalized Gauss-Bonnet integrand by a Gauss—
Kronecker curvature computed relative to an almost parallel frame. (The almost
parallel frame can be constructed in a neighborhood of a given (large) distance
sphere because of the nearly-zero curvature of the manifold at large distances.)
The Gauss—Kronecker integrand can be estimated above by comparison meth-
ods as before. Because the Gauss—Kronecker integrand is the determinant of the
Gauss map relative to the almost parallel frame, its integral is, up to a normal-
ization constant, equal to the degree of the Gauss map. Since the Gauss map is
a classifying map for the tangent bundle of the sphere, the integral is bounded
away from 0 (the degree being nonzero and in fact 1, provided that the tangent
bundle of S"~! is nontrivial, that is, provided that n # 2, 4, or 8). This method
introduced in [Greene and Wu 1982] for the pole case was extended in [Drees
1994] to apply to curvature > 0, no pole assumed. (The cases n = 4, 8 with a
pole were treated in [Kasue and Sugahara 1987], but the method there does not
generalize to the nonpole case.)

That n = 4 really is a special case was made a matter not just of restricted
proof technique but also of concrete example in [Unnebrink a]. There a metric is
constructed on R4 with cubic curvature decay and volume growth of cubic order,
vol B(p,r) = O(r3)—an order of magnitude less than one might hope. Somewhat
mysteriously, no example of a similar nature on R® has yet been found.

Meanwhile, the author, P. Petersen, and S. Zhu have shown [Greene et al.
1994] that no such example can exist on any R™, for n # 2,4, 8, with faster than
quadratic curvature decay. And on R™ for n = 4 or 8, no such example exists
with curvature decay faster than quartic; that is, if, for some C and € > 0, one
has

sup |K(0)] < Cr—+e),

where the sup is over sectional curvatures at points of distance r from a fixed
p € M, then the volume growth is euclidean:

lim vol B(p,r)/voley B(r) = 1.
r——400

(No hypothesis is made about signed curvature.) A corresponding result with
faster-than-quartic decay also holds without topological hypotheses (of simple
connectivity at infinity), the conclusion being in that case that the manifold
admits a new metric, equivalent to the original one of fast curvature decay,
with the new metric’s sectional curvature being zero outside some compact set
(the possibilities for metrics of that type having been already determined in
[Schroeder and Ziller 1989] and [Greene and Wu 1993]).
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7. Of Convergence and Behavior at Infinity

The rather specific proof techniques of the previous section can be put advan-
tageously into a general picture via the concept of Gromov—Hausdorff conver-
gence (hereafter, GH convergence). Suppose (M, g) is a complete, noncompact
manifold with the property that

lim inf(r? inf K (o)) > —o0,
r—+00

where as usual the inf K(0) means the infimum of sectional curvature K(o)
over two-planes o at distance r from a fixed base point pg in M. A manifold
of faster-than-quadratic curvature decay has this property, for example. Then
the family of Riemannian manifolds {(M,A"1g) : A > 1, A € R} is precompact
in the sense of GH convergence. (This precompactness property really requires
only a corresponding estimate on Ricci curvature as a function of distance, but
this greater generality would not be relevant here.) That is, every sequence
{(M, X\;'g) : lim\; = +oc} has a subsequence that converges in the GH sense
for pointed metric spaces, all the (M, A~!g) being taken to have py as base point.
(See [Gromov 1981b] for the relevant convergence definitions.) The role here of
the curvature hypothesis is to guarantee that the family {(M, A\~tg) : A > 1}
has curvature bounded below A, away from the base point. (In this set-up,
the base point py in general becomes a singular point in a limit as A; — o0,
corresponding to the curvature at py “blowing up” in the rescaling.) This lower
bound on curvature arises from the fact that distance is rescaling by 1/X and the
curvature by A2. So a lower bound on liminfr?K (o) as r — 400 gives a lower
curvature bound at points fixed distance from pg that is uniform over variation
of A\, for r > 0 fixed.

According to [Grove and Petersen 1991], a space arising as a GH limit of
Riemannian manifolds (of fixed dimension) with curvature bounded uniformly
below has constant dimension: The GH limit of a sequence of such manifolds
of dimension n is either again of dimension n, with some metric singularities
perhaps, or alternatively “collapsing” occurs everywhere, and the limit space
has everywhere a fixed dimension k£ < n. In either case the limit space is an
Alexandrov space. This result applies, in particular, to the GH limit of a GH-
convergent sequence {(M, \; '9)}, where lim\; = +oo. The collapsing case
(into a nonmanifold) can indeed occur, as one sees for instance from a capped-
off two-dimensional half-infinite cylinder, with curvature > 0 everywhere and
curvature # 0 outside a compact set: the limit space in this case is isometric to
{teR:t>0}.

In the case of GH limits of sequences {(M;,¢;)} of manifolds with curvature
bounded both above and below, stronger conclusions hold than in the more
general situation of [Grove and Petersen 1991], where the curvature is bounded
below only. Collapsing can still occur, as the example of Berger spheres shows.
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But with bounds both above and below and with no collapsing, the limit space
is (identifiable with) an n-dimensional Riemannian manifold with a C1* metric.

In this no collapsing situation, [Grove and Petersen 1991] guarantees that in-
jectivity radius is bounded away from zero uniformly (or uniformly on compact
sets, in case the (M;,g;) are noncompact, pointed). Thus the O statement
is just a restatement of the standard C'*® Convergence Theorem proposed by
Gromov [1981b] and established in detail in [Greene and Wu 1988], and inde-
pendently in [Peters 1987], using results from [Jost and Karcher 1982] (compare
[Nikolaev 1980]).

This line of reasoning applies in particular to a family of the form {(M, A\~1g) :
A > 1} if M is a manifold of faster than quadratic curvature decay. The family
has (sectional) curvature bounded both below and above (away from the point
po, that is, on the complement in each (M, A~!g) of a ball in that (M, A~lg)
around pg of any fixed positive radius € > 0, the curvature bounds depending
on ¢). This follows by the reasoning of the first paragraph of this section.

Suppose that {(M, )\i_l g)}, with lim A\; = 400, is a GH convergent sequence
in this setting and that the convergence occurs without collapsing. (The occur-
rence of the single singular point py at which curvature is possibly unbounded
causes no difficulty in the applications of [Grove and Petersen 1991] and the C'**
convergence theorem that is used here.) Then the limit space (with pg ignored)
is a Riemannian manifold with C1*® Riemannian metric, and this metric is flat,
in the sense for instance that it is the limit of C'*° metrics with curvature going
to zero, so that it is also flat in the triangle comparison sense. Thus the limit
must be in fact a C'>° Riemannian manifold of zero curvature. If M is connected
at infinity and simply connected at infinity, this limit flat manifold with the
isolated singularity pg removed is isometric to R™ with a single point removed
(compare Theorem 6.1). Note that the metric space structure limit includes pg
so that pg is metrically isolated too, that is the limit space minus py is isometric
to R™ minus a point, not to R™ minus a set with more than one point). Since
n > 3, the limit space is in fact simply isometric to R™.

In this situation, one concludes that M is “euclidean at infinity”, not only
in the sense that M minus some compact set is topologically R™ minus some
compact set, but also that the metric structure of M converges (in C1) to that
of R™ in the following sense: There are coordinates on M that amount to a map
of R™ minus a (large) ball into M in which coordinates the metric g converges to
the Euclidean g;; = d;; metric with increasing distance from pg. This program
is carried out in detail in [Bando et al. 1989].

Continuing in this faster-than-quadratic decay setting, one notes that the re-
quired “no collapsing” can be guaranteed by assuming Euclidean volume growth
in the sense already discussed, that is, that =™ vol B(pg, ) bounded away from
0 as r — 4o00. In this set-up, the assumption of simple connectivity made earlier
for convenience of exposition is not in fact needed: The limit flat Riemannian
manifold with an isolated singular point py must have finite fundamental group
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(otherwise it could not have euclidean volume growth, as one sees from the met-
ric classification of manifolds flat outside a compact set in [Schroeder and Ziller
1989] or [Greene and Wu 1993]). So by passing to a finite cover, one can reason
as in the simply connected case to conclude that M “at infinity” converges to
(S"~YT1) x RT, where T is a finite group of fixed-point-free isometries of $"~1:
see [Bando et al. 1989] for details.

This perspective explains the repeated occurrence of volume estimation as the
vital point in the proofs of the “gap theorems” of the previous section: euclidean
volume growth is the natural guarantee of “good”, that is, essentially euclidean,
behavior at infinity.

The convergence viewpoints so far discussed in relation to the gap theorems
and asymptotically locally euclideanness are also related to the concept of ideal
boundaries for open manifolds defined in terms of geodesic geometry. This con-
cept was first introduced in substantial form by Eberlein and O’Neill [1973] for
manifolds of nonpositive curvature. Two rays emanating from a base point py
were to be regarded as equivalent if they remained a bounded distance apart;
and the ideal boundary, what is now known as the (boundary of) the Eberlein—
O’Neill compactification, was obtained by introducing an appropriate metric on
the equivalence classes of rays.

For manifolds of nonnegative curvature, a corresponding idea was suggested in
[Ballmann et al. 1985] with some “exercises” pointing the way to detailed devel-
opment. Further development in detail indeed was carried out by Kasue [1988],
Shioya [1988], and Shiohama [a]. In summary form, the ideal boundary or “space
at infinity” consists of equivalence classes of rays emanating from a base point
po. Two rays v, and 7o are taken to be equivalent if lim ¢~ dist(7y (t), v2(¢)) = 0
as t — +oo.

Then the distance between two equivalence classes, represented by, say, «(t)
and f((t), is defined to be lim¢~!dist;(As, By), where A; and B; are the inter-
sections of the rays o and § with the radius-t sphere around pg, and dist; is the
distance obtained by using the intrinsic metric of the radius-t sphere around py.
(Of course, this intrinsic metric distance differs considerably, in general, from
the distance in M between the two points.)

For manifolds of nonnegative curvature, the space at infinity or ideal boundary
in this geodesic sense is related to the GH limiting ideas as follows [Shiohama a]:
If (M, g) is a complete noncompact manifold of nonnegative sectional curvature,
with fixed base point pg, the GH limit of the family (M, A~lg) as A — +oo
exists and is a cone over a compact (metric) space M (o). The space M (o0) is
isometric to the space at infinity in the geodesic sense.

At first sight, the space M (0o) might seem to be quite arbitrary. It has the
property that it is an Alexandrov space of curvature > 1 (see [Guijarro and
Kapovitch 1995] for history), but no other restrictions spring immediately to
mind. Thus the following result of Luis Guijarro and Vitali Kapovitch [1995] is
rather surprising:
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THEOREM T7.1. If (M,g) is a complete, noncompact, n-dimensional manifold
of monnegative curvature and if M(co) is connected, there is a locally trivial
fibration f : S* — M(oc0) for some k <n — 1.

From this line of thought, one can deduce that there are compact manifolds of
curvature > 1 that do not occur as the ideal boundary M (co) of any complete
noncompact M of nonnegative curvature.

References

[Abresch 1985] U. Abresch, “Lower curvature bounds, Toponogov’s theorem, and
bounded topology 17, Ann. scient. Ec. Norm. Sup. (4) 18 (1985), 651-670.

[Abresch and Gromoll 1990] U. Abresch and D. Gromoll, “On complete manifolds with
nonnegative Ricci curvature”, J. Amer. Math. Soc. 3 (1990), 355-374.

[Allendoerfer and Weil 1943] C. Allendoerfer and A. Weil, “The Gauss—Bonnet theorem
for Riemannian polyhedra”, Trans. Amer. Math. Soc. 53 (1943), 101-129.

[Anderson and Cheeger 1992] M. Anderson and J. Cheeger, “C® compactness for
manifolds with Ricci curvature and injectivity radius bounded from below”, J. Diff.
Geom. 35 (1992), 265-281.

[Bando et al. 1989] S. Bando, A. Kasue, and H. Nakajima, “A construction of
coordinates at infinity on manifolds with fast curvature decay and maximal volume
growth”, Invent. Math. 97 (1989), 313-349.

[Ballmann et al. 1985] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of
Nonpositive Curvature, Birkhauser, Boston, 1985.

[Becker et al. 1980] J. Becker, C. W. Henson, and L. Rubel, “First-order conformal
invariants”, Ann. of Math. 112 (1980), 123-178.

[Bishop and Crittenden 1964] R. Bishop and R. Crittenden, Geometry of Manifolds,
Academic Press, New York, 1964.

[Burago et al. 1992] Y. Burago, M. Gromov, and G. Perelman, “A. D. Aleksandrov
spaces with curvatures bounded below”, Uspehi Mat. Nauk 47:2 (1992), 3-51, 222;
translation in Russian Math. Surveys 47:2 (1992), 1-58.

[Busemann 1958] H. Busemann, Convez Surfaces, Tracts in Pure and Appl. Math. 6,
Interscience, New York, 1958.

[Calabi 1957] E. Calabi, “An extension of E. Hopf’s maximum principal with an
application to geometry”, Duke Math. J. 25 (1957), 45-56.

[Cai 1991] M. Cai, “Ends of Riemannian manifolds with nonnegative Ricci curvature
outside a compact set”, Bull. Amer. Math. Soc. 24 (1991), 371-377.

[Cai et al. 1994] M. Cai, G. Galloway and Z. Liu, “Local splitting theorems for
Riemannian manifolds”, Proc. Amer. Math. Soc. 120 (1994), 1231-1239.

[Cheeger and Gromoll 1971] J. Cheeger and D. Gromoll, “The splitting theorem for
manifolds of nonnegative Ricci curvature”, J. Differential Geom. 6 (1971), 119-129.

[Cheeger and Gromoll 1972] J. Cheeger and D. Gromoll, “On the structure of complete
manifolds with nonnegative curvature”, Ann. of Math. 96 (1972), 413-443.



128 ROBERT E. GREENE

[Cheeger and Tian 1994] J. Cheeger and G. Tian, “On the cone structure at infinity of
Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay”,
Invent. Math. 118 (1994), 493-571.

[Cohn-Vossen 1935] S. Cohn-Vossen, “Kurzeste Wege und Totalkriimmung auf
Flachen”, Compositio Math. 2 (1935), 69-133.

[Drees 1994] G. Drees, “Asymptotically flat manifolds of nonnegative curvature”,
Differential Geom. Appl. 4 (1994), 77-90.

[Eberlein and O’Neill 1973] P. Eberlein and B. O’Neill, “Visibility manifolds”, Pacific
J. Math. 46 (1973), 45-109.

[Elencwajg 1975] G. Elencwajg, “Pseudoconvexité locale dans les variétés kahlériennes,
Ann. Inst. Fourier 25 (1975), 295-314.

[Elerath 1979] D. Elerath, “Open nonnegatively curved 3-manifolds with a point of
positive curvature”, Proc. Amer. Math. Soc. 75 (1979), 92-94.

[Eschenburg et al. 1989] J. Eschenburg, V. Schroeder, and M. Strake, “Curvature at
infinity of open nonnegatively curved manifolds”, J. Differential Geom. 30 (1989),
155-166.

[Gao 1990] L. Gao, “L™? curvature pinching”, J. Diff. Geo. 32 (1990), 713-774.

[Greene 1989] R. E. Greene, “Some recent developments in Riemannian geometry”,
pp. 1-30 in Recent Developments in Riemannian Geometry (Los Angeles, 1987),
edited by S.-Y. Cheng et al., Contemp. Math. 101, Amer. Math. Soc., Providence,
1989.

[Greene and Shiohama 1981a] R. E. Greene and K. Shiohama, “Convex functions on
complete noncompact manifolds: topological structure”, Invent. Math. 63 (1981),
129-157.

[Greene and Shiohama 1981b] R. E. Greene and K. Shiohama, “Convex functions on
complete noncompact manifolds: differentiable structure”, Ann. scient. Ec. Norm.
Sup. (4) 14 (1981), 357-367.

[Greene and Wu 1973] R. E. Greene and H. Wu, “On the subharmonicity and
plurisubharmonicity of geodesically convex functions”, Indiana Univ. Math. J. 22
(1973), 641-653.

[Greene and Wu 1974] R. E. Greene and H. Wu, “Integrals of subharmonic functions
on manifolds of nonnegative curvature”, Invent. Math. 27 (1974), 265-298.

[Greene and Wu 1976] R. E. Greene and H. Wu, “C*° Convex functions and manifolds
of positive curvature”, Acta Math. 137 (1976), 209-245.

[Greene and Wu 1977] R. E. Greene and H. Wu, “Analysis on noncompact Kéhler
manifolds”, pp. 69-100 in Several complex variables (Williams College, 1975), edited
by R. O. Wells, Jr., Proc. Sym. Pure Math. 30, Amer. Math. Soc., Providence, 1977.

[Greene and Wu 1978] R. E. Greene and H. Wu, “On Kéhler manifolds of positive
bisectional curvature and a theorem of Hartogs”, Abh. Math. Sem. Univ. Hamburg
47 (1978), 171-185.

[Greene and Wu 1979] R. E. Greene and H. Wu, Function theory on manifolds which
possess a pole, Lecture Notes in Math. 699, Springer, Berlin, 1979.

[Greene and Wu 1982] R. E. Greene and H. Wu, “Gap theorems for noncompact
Riemannian manifolds”, Duke Math. J. 49 (1982), 731-756.



NONCOMPACT MANIFOLDS OF NONNEGATIVE CURVATURE 129

[Greene and Wu 1988] R. E. Greene and H. Wu, “Lipschitz convergence of Riemannian
manifolds”, Pacific J. Math. 131 (1988), 119-141.

[Greene and Wu 1993] R. E. Greene and H. Wu, “Nonnegatively curved manifolds
which are flat outside a compact set”, pp. 327-335 in Differential geometry:
Riemannian geometry (Los Angeles, 1990), edited by R. Greene and S. T. Yau,
Proc. Symp. Pure Math. 54 (3), Amer. Math. Soc., Providence, 1993.

[Greene et al. 1994] R. E. Greene, P. Petersen, and S. H. Zhu, “Riemannian manifolds
of faster-than-quadratic curvature decay”, Internat. Math. Res. Notices 1994, no. 9,
363-377.

[Gromoll and Meyer 1969] D. Gromoll and W. Meyer, “On complete manifolds of
positive curvature”, Ann. of Math. 90 (1969), 75-90.

[Gromov 1981a] M. Gromov, “Curvature, diameter and Betti numbers”, Comment.
Math. Helv. 56 (1981), 179-195.

[Gromov 1981b] M. Gromov, Structures métriques pour les variétés riemanniennes,
edited by J. Lafontaine and P. Pansu, CEDIC, Paris, 1981.

[Gromov 1986] M. Gromov, Partial Differential Relations, Springer, Berlin, 1986.

[Gromov and Rohlin 1970] M. Gromov and V. Rohlin, “Imbeddings and immersions in
Riemannian geometry”, Uspehi Mat. Nauk 25:5 (1970), 3-62; translation in Russian
Math. Surveys 25:5 (1970), 1-58.

[Grove and Petersen 1991] K. Grove and P. Petersen, “Manifolds near the boundary
of existence”, J. Differential Geom. 33 (1991), 379-394.

[Grove and Shiohama 1977] K. Grove and K. Shiohama, “A generalized sphere
theorem”, Ann. of Math. 106 (1977), 201-211.

[Guijarro a] L. Guijarro, in preparation.

[Guijarro and Kapovitch 1995] L. Guijarro and V. Kapovitch, “Restrictions on the
geometry at infinity of nonnegatively curved manifolds”, Duke Math. J. 78 (1995),
257-276.

[Guijarro and Petersen a] L. Guijarro and P. Petersen, “Rigidity in nonnegative
curvature”, preprint.

[van Heijenoort 1952] J. van Heijenoort, “On locally convex manifolds”, Comm. Pure
Appl. Math. 5 (1952), 223-242.

[Hartmann and Nirenberg 1951] Hartmann and L. Nirenberg, “On the spherical image
maps whose Jacobians do not change signs”, Amer. J. Math. 73 (1951).

[Jost and Karcher 1982] J. Jost and H. Karcher, “Geometrische methoder zur
Gewinnung von a-priori-Schranken fiir harmonische Abbildungen”, Manuscripta
Math. 40 (1982), 27-77.

[Karcher 1989] H. Karcher, “Riemannian comparison constructions”, pp. 170-222 in
Global differential geometry, edited by S.-S. Chern, MAA Stud. Math. 27, Math.
Assoc. America, Washington, DC, 1989.

[Kasue 1988] A. Kasue, “A compactification of a manifold with asymptotically
nonnegative curvature”, Ann. scient. Ec. Norm. Sup. (4) 21 (1988), 593-622.

[Kasue and Sugahara 1987] A. Kasue and K. Sugahara, “Gap theorems for certain
submanifolds of euclidean spaces and hyperbolic space forms”, Osaka J. Math. 24
(1987), 679-704.



130 ROBERT E. GREENE

[Li and Tam 1992] P. Li and L.-F. Tam, “Harmonic functions and the structure of
complete manifolds”, J. Diff. Geom. 35 (1992), 359-383.

[Lohkamp 1992] J. Lohkamp, “Negatively Ricci curved manifolds”, Bull. Amer. Math.
Soc. (2) 27 (1992), 288-291.

[Marenich 1981] V. B. Marenich, “Metric structure of open manifolds of nonnegative
curvature” (Russian), Dokl. Akad. Nauk SSSR 261 (1981), 801-804.

[Mok et al. 1981] N. Mok, Y. T. Siu, and S. T. Yau, “The Poincaré-Lelong equation
on complete Kéahler manifolds”, Compositio Math. 44 (1981), 183-218.

[Nikolaev 1980] I. G. Nikolaev, “Parallel translation and smoothness of the metric of
spaces of bounded curvature”, Dokl. Akad. Nauk SSSR 250 (1980), 1056-1058.

[Ozaydin and Walschap 1994] M. Ozaydin and G. Walschap, “Vector bundles with no
soul”, Proc. Amer. Math. Soc. 120 (1994), 565-567.

[Perelman 1994] G. Perelman, “Proof of the soul conjecture of Cheeger and Gromoll”,
J. Differential Geom. 40 (1994), 209-212.

[Peters 1987] S. Peters, “Convergence of Riemannian manifolds”, Compositio Math.
62 (1987), 3-16.

[Poor 1974] W. A. Poor, “Some results on nonnegatively curved manifolds”, J.
Differential Geom. 9 (1974), 583-600.

[Rushing 1973] T. Rushing, Topological embeddings, Academic Press, New York, 1973.

[Sacksteder 1960] R. Sacksteder, “On hypersurfaces with no negative curvature”, Amer.
J. Math. 82 (1960), 609-630.

[Schroeder and Ziller 1989] V. Schroeder and W. Ziller, “Rigidity of convex domains in
manifolds with nonnegative Ricci and sectional curvature”, Comment. Math. Helv.
64 (1989), 173-186.

[Sharafutdinov 1977] V. Sharafutdinov, “Pogorelov—Klingenberg theorem for manifolds
homeomorphic to R™, Sibirsk. Math. Zh. 18 (1977), 915-925.

[Shiohama a] K. Shiohama, “An introduction to the geometry of Alexandrov spaces”,
lecture notes, Seoul National University.

[Shioya 1988] T. Shioya, “Splitting theorems for nonnegatively curved manifolds”,
Manuscripta Math. 61 (1988), 315-325.

[Siu and Yau 1977] Y. T. Siu and S. T. Yau, “Complete Kahler manifolds of faster
than quadratic curvature decay”, Ann. Math. 105 (1977), 225-264.

[Strake 1988] M. Strake, “A splitting theorem for open nonnegatively curved
manifolds”, Manuscripta Math. 61 (1988), 315-325.

[Toponogov 1959] V. Toponogov, “Riemann spaces with curvature bounded below”
(Russian), Uspehi Mat. Nauk 14 (1959), 85, 87-130.

[Toponogov 1964] V. Toponogov, “Spaces with straight lines”, Amer. Math. Soc.
Transl. 37 (1964), 287-290.

[Unnebrink a] S. Unnebrink, “Asymptotically flat 4-manifolds”, preprint.

[Walschap 1988] G. Walschap, “Nonnegatively curved manifolds with souls of
codimension 27, J. Differential Geom. 27 (1988), 525-537.



NONCOMPACT MANIFOLDS OF NONNEGATIVE CURVATURE 131

[Wu 1970] H. Wu, “An elementary method in the study of nonnegative curvature”,
Acta Math. 142 (1970), 57-78.

[Wu 1987] H. Wu, “On manifolds of partially positive curvature”, Indiana Univ. Math.
J. 36 (1987), 525-548.

[Yang 1992] D. Yang, “Convergence of Riemannian manifolds with integral bounds on
curvature I-117, Ann. Sci. Ecole Norm. Sup. 25 (1992), 77-105, 179-199.

[Yim 1988] J. W. Yim, “Distance nonincreasing retraction on a complete open manifold
of nonnegative sectional curvature”, Ann. Global Anal. Geom. 6 (1988), 191-206.

ROBERT E. GREENE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
Los ANGELES, CA 90024
greene@math.ucla.edu



132 ROBERT E. GREENE

Support, Comparison and Splitting

Second variation support functions (Calabi [1957] et al.)

Toponogov triangle comparison [1959]
(Second variation = Toponogov: H. Karcher [1989)])

Toponogov splitting [1964]
(second curvature > 0 and existence of a line = isometric to N x R)

Cheeger—Gromoll splitting [1971]
(Ricci > 0 and existence of a line = isometric to N x R)

Greene and Wu [1974], Greene and Shiohama [1981a]
(sectional curvature > 0 outside a compact = finite number of product ends)

P. Li and L. Tam [1992]
(Ricci curvature > 0 outside a compact = finite number of ends)
(Geometric proof by M. Cai [1991])

Cai, Galloway, Liu [1994] (localized version)

Related support function applications

Elenczwag [1975], Greene and Wu [1978] (Kahler manifolds of nonnegative
holomorphic bisectional curvature, plurisubharmonic functions, etc.)

H. Wu [1987] (mixed curvature conditions, g-convexity)

Convex Function Theory

Greene and Wu [1973; 1976]
(approximation of convex functions by almost convex C* functions; existence
of O strictly convex exhaustion function under positive curvature)

Sharafutdinov [1977] (distance nonincreasing retraction onto soul)

Greene and Shiohama [1981a; 1981b] (structure of convex functions,
distance-nonincreasing retraction in general convex function case)

Yim [1988] (space of souls)

G. Perelman [1994] (rigidity of retraction onto soul)
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Open Manifolds of Nonnegative Curvature

Cohn-Vossen [1935] Toponogov triangle
(surfaces: [kdA < 2mx(M), comparison [1959]

lassification for k > 0
classification for k 2 0) Gromoll and Meyer [1969]

(curvature > 0 = homeomorphic to R™)

Cheeger and Gromoll [1972]

Soul Theorem Conjecture
(curvature > 0 = homeomorphic to (curvature > 0 everywhere
total space of bundle over compact and > 0 somewhere =
manifold of curvature > 0) homeomorphic to R™)

(classification of codimension-one soul case) |
| Elerath [1979] (true if

Poor [1974] (diffeomorphism manifold not too curved)
in all dimensions, generalizing |
Cohn-Vossen <) G. Perelman [1994] (true)

Marenich [1981], Strake [1988]
(splitting when holonomy is trivial)

Abresch [1985] (asymptotically nonnegative
= estimatable finite topology)

Walschap [1988] (codimension-two soul)

Ozaydin and Walschap [1994] (not all bundles over compact manifolds of
curvature > 0 occur)

Rescaling and Convergence

Jost and Karcher [1982] Gromov [1981b] (Gromov—Hausdorff and

(harmonic coordinates) other convergence ideas, rescaling)

Peters [1987], Greene and Wu [1988] (C1“ convergence); cf. Nikolaev [1980]

Bando, Kasue, and Nakajima [1989] (curvature decay and volume growth
of order n = asymptotically locally euclidean at oo)

Cheeger and Tian [1994] (cone structure for Kéhler case)

Anderson and Cheeger [1992], Gao [1990], Yang et al. [1992] (integral curv., Ricci)
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Behavior at Infinity: Gap Theorems

Greene and Wu [1977] (conjecture on Kéhler manifolds: 71 = 0, curvature < 0
and decaying faster than quadratically = biholomorphic to C™)

Siu and Yau [1977] (proof of conjecture)

Mok, Siu, and Yau [1981] (same hypotheses = isometric to C" if n > 2)

Greene and Wu [1982] (Riemannian gap theorems:
w1 = 0 at oo, flat outside a compact, curvature of one sign = flat;
curvature of one sign,
decay faster than quadratic, pole, dim # 4, 8 if curvature > 0 = flat)

Kasue and Sugahara [1987] (pole case, n = 4,38)

Eschenburg, Schroeder, and Strake [1989]

(codimension of soul > 3, curvature — 0 = soul flat)

(curvature decay rates for gap theorems in odd dimensions
in terms of codimension of soul)

Drees [1994] (curvature > 0,
dim # 4,8, decay faster than quadratic = flat)

Greene, Petersen, and Zhu [1994]

(7 finite at co, decay faster than quadratic (if dim # 4, 8) or quartic (else)
= quotient of asymptotically euclidean manifold)

(1 infinite, faster than quartic = equivalent metric flat outside a compact)

Guijarro and Petersen [a] (curvature — 0 at oo = soul flat)

Schroeder and Ziller [1989] Unnebrink [a] (counterexample
(classification of flat outside compact set; to faster than quadratic
by another method, Greene and Wu [1993]) growth in dimension 4)



