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Collapsing with No Proper Extremal Subsets

G. PERELMAN

Abstract. This is a technical paper devoted to the investigation of col-
lapsing of Alexandrov spaces with lower curvature bound. In a previous
paper, the author defined a canonical stratification of an Alexandrov space
by the so-called extremal subsets. It is likely that if the limit of a collaps-
ing sequence has no proper extremal subsets, then the collapsing spaces
are fiber bundles over the limit space. In this paper a weaker statement
is proved, namely, that the homotopy groups of those spaces are related
by the Serre exact sequence. A restriction on the ideal boundary of open
Riemannian manifolds of nonnegative sectional curvature is obtained as a
corollary.

We assume familiarity with the basic notions and results about Alexandrov
spaces with curvature bounded below [Burago et al. 1992; Perelman 1994; Perel-
man and Petrunin 1994], and with earlier results on collapsing with lower cur-
vature bound [Yamaguchi 1991]. For motivation for the collapsing problem, see
[Cheeger et al. 1992] and references therein.

1. Background

Notation. Throughout the paper we denote by M a fixed m-dimensional com-
pact Alexandrov space with curvature ≥ k; by N a variable n-dimensional com-
pact Alexandrov space with curvature ≥ k, where n > m; by Φ : M → N a
ν-approximation. For p ∈M we denote by p̄ the image Φ(p). We set

Il
a(v) = {x ∈ Rl : |xi − vi| < a for all i}.

For a map f : M → R
l1 and 1 ≤ l ≤ l1 we denote by f[l] a map from M to Rl

whose coordinate functions are the first l coordinate functions of f .

Admissible functions, maps, and regular points. A function f : M → R is
called admissible if f(x) =

∑
α φα(distqα(x)), where qα ∈M , the φα are smooth,

increasing, concave functions, and the set of indices α is finite.

This paper was prepared while the author was a Miller fellow at the University of California
at Berkeley.
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A map f̂ : M → R
l is said to be admissible in a domain U ⊂ M if it can

be represented there as f̂ = H ◦ f , where H is a homeomorphism of Rl and the
coordinate functions fi of f are admissible.

A map f̂ = H ◦ f admissible in U is regular at p ∈ U if the coordinate
functions fi =

∑
αi
φαi ◦ distqαi

satisfy

(1)
∑

αi,αj
φ′αi

(
distqαi

(p)
)
φ′αj

(
distqαj

(p)
)
cos \̃qαipqαj < 0 for any i 6= j, and

(2) there exists ξ ∈ Σp such that f ′i(ξ) > 0 for all i.

(Note that f̂ has no regular points if l > m.)
An admissible map f̂ = H ◦ f is said to be regular in a domain V ⊂ U if it is

regular at all points p ∈ V .
Conditions (1) and (2) are slightly more restrictive than those given in the

definitions in [Perelman 1994]; however, it is easy to check that the arguments
of [Perelman 1994] go through with this modified definition. The reason for this
modification is that our new definition is stable: if fi satisfies (1) and (2) then
f̄i =

∑
αi
φαi(distq̄αi

(x)) satisfies the same conditions at p̄ ∈ N , provided that

ν > 0 is small enough. Therefore if f̂ = H ◦ f is regular at p then ¯̂
f = H ◦ f̄ is

regular at p̄. Now if f̂ = H ◦ f is regular in U and, for some subset K̃ ⊂ Rl, the
set K = f̂−1(K̃)∩U has compact closure in U , then, assuming ν > 0 to be small
enough, we can unambiguously define K̄ ⊂ N as a union of those components of
¯̂
f
−1

(K̃) that are Hausdorff-close to Φ(K).

Canonical neighborhoods. Let f̂ = H ◦ f : M → R
l+1 be admissible in U ;

let p ∈ U , and a > 0. Suppose that

(i) f̂l+1(U) ⊂ (−∞, 0] and f̂l+1(p) = 0;
(ii) the coordinate functions of f[l] satisfy conditions (1) and (2) in U , and the

coordinate functions of f satisfy the same conditions in U\f̂−1
l+1(0);

(iii) the set Kp(a) of points x ∈ U such that |f̂i(x)− f̂i(p)| < a for i = 1, . . . l+1
has compact closure in U ; and

(iv) f̂ is one-to-one on Kp(a) ∩ f̂−1
l+1(0).

Then Kp(a) is called a canonical neighborhood of p with respect to f̂ . (In
particular we allow l = m and f̂l+1 ≡ 0.)

It has been proved in [Perelman 1994] that if f : M → Rl is regular at p, then
f is an open map near p and there exists a canonical neighborhood of p with
respect to some map g : M → Rl1 with l1 > l, such that g[l] = f .

Regular fibers and fiber data. Let f : M → R
m be regular at p. Then f is

a local homeomorphism near p. If ν > 0 is small enough, f̄ is regular in a neigh-
borhood of p̄ of size independent of N . Therefore, according to [Perelman 1994,
Main Theorem (B)], we have a trivial bundle f̄ : f̄−1

(
Im
a (f(p))

) → Im
a (f(p)) for

small a� ν . In this case the fiber f̄−1(f(p)) is called regular and the pair (f, p)
is called fiber data. It is easy to see that a regular fiber is connected.
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It is easy to see that if (f1, p) and (f2, p) are fiber data then the corresponding
regular fibers F1, F2 are homotopy equivalent, provided that ν > 0 is small
enough. Since a point p ∈ M is a part of fiber data if and only if Σp contains
m + 1 directions making obtuse angles with each other, and since the set of
such points is open, dense and convex (convexity follows from Petrunin’s result
on parallel translation), we can conclude that the statement about homotopy
equivalence is valid for arbitrary fiber data (f1, p1) and (f2, p2).

If N is a smooth manifold, a regular fiber is a topological manifold. In gen-
eral one can check that a regular fiber has Z/2Z-fundamental class in (n −m)-
dimensional singular homology (relative to the boundary if ∂N 6= ?).

Homotopy groups. Fix an integer l ≥ 0. Let (f, p) be fiber data and let
F = f̄−1(f(p)) be the corresponding regular fiber. We can assume that p̄ ∈ F .
We can try to define a homomorphism πl(N, F, p̄) → πl(M, p) in the following
way. Given a spheroid in πl(N, F, p̄), consider its fine triangulation and for each
vertex xα find a point yα ∈M so that |xαΦ(yα)| ≤ ν ; now span the corresponding
spheroid in πl(M, p) using vertices yα. The local geometric contractibility of M
implies that this procedure gives a correctly defined homomorphism provided
that ν > 0 is small enough.

The main result of this paper is that the constructed homomorphism has an
inverse, namely the lifting map constructed after Proposition 2.4 below, provided
that M has no proper extremal subsets.

2. The Lifting Map

A point p ∈ M is called good if it satisfies the following condition.

Condition PN. For any R > 0 there exists a number ρ = ρ(p, R) > 0 such
that, for any fiber data (f, q) with q ∈ Bp(ρ), one can find ν̄ = ν̄(p, R, f, q) > 0
so that, if ν ≤ ν̄, then N contains a product neighborhood, that is, a domain
U with Bp̄(ρ) ⊂ U ⊂ Bp̄(R) such that the inclusion f̄−1(f(q)) ↪→ U induces
isomorphisms of homotopy and homology groups.

Let NPN denote the set of all bad points of M .

Proposition 2.1. The closure of NPN , if nonempty , is a proper extremal subset
of M .

Observe that the closure of NPN is not all of M , since p is definitely good if Σp

contains m+1 directions making obtuse angles with each other. The extremality
of clos(NPN) follows from two lemmas.

Lemma 2.2. Let K be a canonical neighborhood with respect to f : M → R
l+1.

Assume that p, q ∈ K ∩ f−1
l+1(0), and that p is good . Then q is also good .
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Proof. Fix R > 0. Find a > 0 so that Kp(3a) ⊂ K and Kq(3a) ⊂ Bq(R) ∩K.
Take r > 0 such that Bp(r) ⊂ Kp(a). Choose d > 0 so thatKp(3d) ⊂ Bp(ρ(p, r)).
Finally, define ρ(q, R) > 0 so that Bq(ρ(q, R)) ⊂ Kq(d).

To check Condition PN, let L = K∩f−1
l+1(−d, 0] and observe that, according to

[Perelman 1994, Main Theorem (A)], the map f̄[l] is a (topological) submersion
in K̄, whereas f̄ is a submersion in K̄ \ L̄, if ν > 0 is small enough. Therefore,
applying the results of [Siebenmann 1972], we can construct a homeomorphism
ψ : F ×Il → K̄ that respects f̄[l] and, in addition, respects f̄l+1 over K̄\L̄. Thus
we can use the homeomorphism θ = ψ ◦ transl(f[l](p)f[l](q)) ◦ ψ−1 to transfer
K̄p(ρ) to K̄q(ρ) for d ≤ ρ ≤ 3a, and it is easy to see that if U is a product
neighborhood, K̄p(2d) ⊂ U ⊂ K̄p(2a), then θ(U) is also a product neighborhood
that satisfies Condition PN with respect to given q, R and chosen ρ(q, R). �

Lemma 2.3. Let f : M → R
l be regular in a neighborhood U of p, and let

L =
⋂

i>1 f
−1
i (fi(p)). Then f1 restricted to clos(NPN ∩L)∩U cannot attain its

minimum.

Proof. We use reverse induction on l. If l = m, our assertion is clear since all
points in U are good in this case. Assume that l < m. If the minimum is attained,
we can assume that it is attained at p. Consider a canonical neighborhood
Kp(a) ⊂ V ⊂ U with respect to a map g : M → Rl1, where l1 > l, such that g[l] =
f in V . Since p is the point of minimum, we have Kp(a) ∩ L ∩ g−1

l1
(0) 6⊂ NPN .

Therefore Lemma 2.2 implies thatKp(a)∩NPN∩g−1
l1

(0) = ?. On the other hand,
since p ∈ clos(L ∩NPN), we can find v ∈ Rl1 such that vi = fi(p) for 1 < i ≤ l,
|vi − fi(p)| < a for l + 1 ≤ i ≤ l1, vl1 6= 0, and Kp(a) ∩NPN ∩ L1 6= ?, where
L1 =

⋂
1<i≤l1

g−1
i (vi) ⊂ L. Let U1 = Kp(a)\g−1

l1
(0), and p1 ∈ U1 ∩ L1. Then g

is regular in U1 3 p1, and g1(= f1) restricted to clos(NPN ∩L1) ∩U1 attains its
minimum value because f1(p) ≤ f1(x) < f1(p)+a for all x ∈ clos(NPN∩L1)∩U1,
whereas f1(L1∩∂U1) ⊂ {f1(p)+a, f1(p)−a}. This proves the induction step. �

The extremality of clos(NPN) follows immediately from the case l = 1 of the
lemma above and the definition.

Now assume that M has no proper extremal subsets. According to Propo-
sition 2.1, all points of M are good. Moreover, the compactness of M implies
that we can define a function ρ(R) satisfying Condition PN and independent
of p.

(
Choose a finite covering of M by balls B(pα, ρ(pα, Rα/10)/10) and let

ρ(R) = minα ρ(pα, R/10)/10
)
.

Fix a positive integer l and fiber data (f0, p0). Choose R2l+3 > 0 so small
that f0 is regular in a R2l+3-neighborhood of p0 and for any finite simplicial
complex K of dimension at most l and its subcomplex L, any two maps of (K,L)
into (M, p0) that are uniformly R2l+3-close are homotopic relative to L. Define
Ri > 0 for 0 ≤ i ≤ 2l + 2 inductively, in such a way that ρ(Ri+1/10) ≥ 10Ri

for all i. Take a finite family of fiber data (fα, qα) such that qα form an R0-net
in M . Repeating the compactness argument, we can choose a universal ν̄, with



COLLAPSING WITH NO PROPER EXTREMAL SUBSETS 153

0 < ν̄ < R0, so that Condition PN is satisfied for all p ∈ M , R = Ri, f = fα,
q = qα. From now on we assume ν ≤ ν̄.

Proposition 2.4. Let K be a finite simplicial complex of dimension ≤ l. Sup-
pose φ : K×I →M and φ̄ : K → N satisfy |φ̄(x)Φ◦φ(x)| < Ri+1 for x ∈ skeliK,
for 0 ≤ i ≤ l, and that diamφ(∆) < R0 for all simplices ∆ ⊂ K. Then φ̄ can
be extended to a map from K × I to N such that

∣∣φ̄(x)Φ ◦ φ(x)
∣∣ < Ri+1 for

x ∈ skeli(K × I), for 0 ≤ i ≤ l + 1.

Proof. A standard argument reduces our extension problem to the case when
K = ∆i, 0 ≤ i ≤ l, diam(φ(∆i × I)) < R0, and φ̄ has already been defined
on ∆i × {0} ∪ ∂∆i × I. Take any p ∈ φ(∆i × I) and let U, V be the product
neighborhoods such that Bp̄(10Ri+1) ⊂ U ⊂ Bp̄(Ri+2/10) and Bp̄(10Ri) ⊂ V ⊂
Bp̄(Ri+1/10). Clearly φ̄(∆i × {0} ∪ ∂∆i × I) ⊂ U and φ̄(∂∆i × {1}) ⊂ V .
Since there exists a regular fiber F such that F ↪→ V and F ↪→ U induce
isomorphisms of homotopy groups, we conclude that V ↪→ U has the same
property; in particular, πi+1(U, V ) = 0. Therefore we can easily extend φ̄ so
that φ̄(∆i × I) ⊂ U and φ̄(∆i × {1}) ⊂ V . �

Now we can define a lifting map πl(M, p0) → πl(N, F0, p̄0): Given a spheroid φ

in πl(M, p0), let φ̄ be its image if
∣∣φ̄(x)Φ ◦ φ(x)

∣∣ < Rl+1 for all x. Existence of
such φ̄ follows from Proposition 2.4 and the fact that the inclusion of F0 into its
appropriate neighborhood of size R2l+3 is a homotopy equivalence; correctness
follows from Proposition 2.4 with Rl+i+1 substituted for Ri+1 in the assumption
and the conclusion. It is clear that this lifting homomorphism is an inverse of
the one described at the end of Section 1.

3. Corollaries

Corollary 3.1. Let N be a complete noncompact Riemannian manifold of
nonnegative sectional curvature that does not admit isometric splitting and is not
diffeomorphic to Rn. Then its asymptotic cone M has proper extremal subsets.
In particular , the radius of its ideal boundary is at most π/2.

Remark. The last assertion was conjectured by Shioya [1993]. Recently Sérgio
Mendonça independently obtained a direct proof of the same result.

Proof of Corollary 3.1. The manifold N with rescaled metrics collapses to
M . If M has no proper extremal subsets, then, in particular, its apex is a good
point. Therefore we can easily construct neighborhoods U1 ⊃ V ⊃ U2 ⊃ S of
the soul S, such that U1, U2 are product neighborhoods, whereas V is a convex
neighborhood. Thus S must have the homology groups of the regular fiber,
whence dim S = n−m. Now an easy packing argument shows that the normal
bundle of S has finite holonomy, which is therefore a quotient of the fundamental
group of S and N . Thus a finite cover Ñ of N has normal bundle with trivial
holonomy, and, according to [Strake 1988], Ñ splits isometrically. It follows that
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M is the quotient of the asymptotic cone of Ñ by an isometric action of a finite
group, which fixes the apex. Thus, according to [Perelman and Petrunin 1994,
§ 4.2], M has proper extremal subsets, unless the group action is trivial and
Ñ = N .

The second statement of the corollary follows from [Perelman and Petrunin
1994, Proposition 1.4.1]. �

Corollary 3.2. If Σm−1 is a limit of a collapsing sequence of compact (n−1)-
dimensional Alexandrov spaces with curvature ≥ 1, then either the diameter of
Σm−1 is at most π/2 or Σm−1 has proper extremal subsets.

In particular, according to [Perelman and Petrunin 1994, Proposition 1.4.1], the
radius of Σm−1 cannot exceed π/2. This conclusion was obtained earlier by
Petrunin (in his unpublished Master’s Thesis), and it also follows immediately
from [Grove and Petersen 1993, Theorem 3(3)].

Proof. Consider the collapsing of the corresponding cones. If the conclusion is
false, then M = cone(Σm−1) has no proper extremal subsets; in particular, its
apex is a good point. Thus we can construct neighborhoods U1 ⊃ V ⊃ U2 in
the collapsing cone, such that U1, U2 are product neighborhoods, whereas V is
a spherical neighborhood of the apex. Therefore the inclusion U2 ↪→ U1 factors
through a contractible space—a contradiction. �
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