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Convergence Theorems in Riemannian Geometry

PETER PETERSEN

Abstract. This is a survey on the convergence theory developed �rst by

Cheeger and Gromov. In their theory one is concerned with the compact-

ness of the class of riemannian manifolds with bounded curvature and lower

bound on the injectivity radius. We explain and give proofs of almost all

the major results, including Anderson's generalizations to the case where

all one has is bounded Ricci curvature. The exposition is streamlined by the

introduction of a norm for riemannian manifolds, which makes the theory

more like that of H�older and Sobolev spaces.

1. Introduction

This paper is an outgrowth of a talk given in October 1993 at MSRI and

a graduate course o�ered in the Spring of 1994 at UCLA. The purpose is to

introduce readers to the convergence theory of riemannian manifolds not so much

through a traditional survey article, but by rigorously proving most of the key

theorems in the subject. For a broader survey of this subject, and how it can be

applied to various problems, we refer the reader to [Anderson 1993].

The prerequisites for this paper are some basic knowledge of riemannian geom-

etry, Gromov{Hausdor� convergence and elliptic regularity theory. In particular,

the reader should be familiar with the comparison geometry found in [Karcher

1989], for example. For Gromov{Hausdor� convergence, it su�ces to read Sec-

tion 6 in [Gromov 1981a] or Section 1 in [Petersen 1993]. In regard to elliptic

theory, we have an appendix that contains all the results we need, together with

proofs of those theorems that are not explicitly stated in [Gilbarg and Trudinger

1983].

In Section 2 we introduce the concept of (pointed) Ck+� convergence of rie-

mannian manifolds. This introduces a natural topology on (pointed) riemannian

manifolds and immediately raises the question of which \subsets" are precom-

pact. To answer this, we use, for the �rst time in the literature, the idea that

a riemannian manifold in a natural way has a Ck+� norm for each �xed scale
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r > 0. This norm is a quantitative version of the de�nition of a manifold. It is

basically computed by �nding atlases of charts from r-balls in Rn into the man-

ifold and then, for each of these atlases, by computing the largest Ck+� norm

of the metric coe�cients in these charts, and for compatibility reasons, also the

largest Ck+1+� norm of the transition functions. The scale r is an integral part

of the de�nition, so that Rn becomes the only space that has zero norm on all

scales, while 
at manifolds have zero norm on small scales, and non
at manifolds

have the property that the norm goes to zero as the scale goes to zero. The norm

concept is dual to the usual radii concepts in geometry, but has nicer properties.

We have found this norm concept quite natural to work with: It gives, for

instance, a very elegant formulation of what we call The Fundamental Theorem

of Convergence Theory. This theorem is completely analogous to the classical

Arzela{Ascoli theorem, and says that, for each �xed scale r, the class of rie-

mannian n-manifolds of Ck+� norm � Q is compact in the Ck+� topology for

� < �. The only place where we use Gromov{Hausdor� convergence is in the

proof of this theorem. Aside from the new concept of norm and the use of

Gromov{Hausdor� convergence, the proof of this fundamental theorem is essen-

tially contained in [Cheeger 1970].

In Section 3 we use the Fundamental Theorem to prove the Compactness

Theorem of Cheeger and Gromov for manifolds of bounded curvature, as it is

stated in [Gromov 1981b]. In addition we give a new proof by contradiction of

Cheeger's lemma on the injectivity radius, using convergence techniques. Finally,

we give S.-H. Zhu's proof of the compactness of the class of n-manifolds with

lower sectional curvature bounds and lower injectivity radius bounds.

The theory really picks up speed in Section 4, where we introduce Lp;k norms

on the scale of r, using harmonic coordinates. It is at this point that we need to

use elliptic regularity theory. The idea of using harmonic coordinates, rather than

just general coordinates, makes a big di�erence in the theory, since it makes the

norm a locally realizable number. This is basically a consequence of the fact that

we don't have to worry about the norms of transition functions. Our \harmonic"

norm is, of course, dual to Anderson's harmonic radius, but we again �nd that

the norm idea has some important technical advantages over the use of harmonic

radius.

Most of Anderson's convergence results are proved in Section 5. They are all

generalizations of the Cheeger{Gromov Compactness Theorem, but the proofs

are, in contrast, all by contradiction.

The �nal Section 6 has some applications of convergence theory to pinch-

ing problems in riemannian geometry. Some of the results in this section are

extensions of work in [Gao 1990].
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2. The Fundamentals

For a function f : 
! Rh , where 
 � Rn the H�older C�-constant 0 < � � 1

is de�ned as:

kfk� = sup
x;y2


jf(x)� f(y)j
jx� yj� :

In other words, kfk� is the smallest constant C such that jf(x) � f(y)j �
C jx � yj�. Notice that kfk1 is the best Lipschitz constant for f . If 
 � Rn is

open, k � 0 is an integer, and 0 < � � 1, we de�ne the Ck+� norm of f as

kfkk+� = kfkCk +max
jjj=k

k@jfk�:

Here kfkCk is the usual Ck-norm and @j = @j11 � � � @jnn , where @i = @=@xi and

j = (j1; : : : ; jn) is a multi-index. Note that the norm kfkk+1 is not the same as

kfkCk+1 .

We denote by Ck+�(
) the space of functions with �nite (k + �)-norm. This

norm makes Ck+�(
) into a Banach space. The classical Arzela{Ascoli Theorem

says that for k + � > 0, 0 < � � 1, and l + � < k + �, any sequence satisfying

kfikk+� � � has a subsequence that converges in the l+�-topology to a function

f , with kfkk+� � �. Note that if � = 0 it is not necessarily true that f is Ck ,

but it will be Ck�1+1. We shall therefore always look at (k+�)-topologies with

0 < � � 1.

We can now de�ne Ck+� convergence of tensors on a given manifold M .

Namely, a sequence Ti of tensors on M is said to converge to T in the Ck+�-

topology if we can �nd a covering 's : Us ! Rn of coordinate charts so that

the overlap maps are at least Ck+1+� and all the components of the tensors

Ti converge in the Ck+� topology to the components of T in these coordinate

charts, considered as functions on '�(U�) � Rn . This convergence concept is

clearly independent of our choice of coordinates. Note that it is necessary for

the overlaps to be Ck+1+�, since the components of tensors are computed by

evaluating these tensors on the Ck+� �elds @=@xi and dxi.

In the sequel we shall restrict our attention to complete or closed riemannian

manifolds. Some of the theory can, with modi�cations, be generalized to in-

complete manifolds and manifolds with boundary. These generalizations, while

useful, are not very deep and can be found in the literature.

A pointed sequence (Mi; gi; pi) of riemannian n-manifolds with metrics gi,

and pi 2 Mi, is said to converge to a riemannian manifold (M; g; p) in the

pointed Ck+� topology if, for each R > 0, there is a domain 
 in M containing

the open ball B(p;R) and embeddings fi : 
 ! Mi, for large i, such that

fi(
) � B(pi; R) and the f�i gi converge to g in the Ck+� topology on 
. If we

can choose 
 =M and fi(
) =Mi, we say that (Mi; gi) converges to (M; g) in

the Ck+�-topology. There is obviously no signi�cant di�erence between pointed

and unpointed topologies when all manifolds in use are closed.
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It is very important to realize that this concept of Ck+� convergence is not

the same as the one we just de�ned for tensors on a given manifold M , even

when we are considering a sequence of riemannian metrics gi on the same space

M . This is because one can have a sequence of metrics gi and di�eomorphisms

fi :M !M such that ff�i gig converges while fgig does not converge.
We say that a collection of riemannian n-manifolds is precompact in the

(pointed) Ck+� topology if any sequence in this collection has a subsequence that

is convergent in the (pointed) Ck+�-topology|in other words, if the (pointed)

Ck+�-closure is compact.

The rest of the paper is basically concerned with �nding reasonable (geomet-

ric) conditions that imply precompactness in some of these topologies. In order

to facilitate this task and ease the exposition a little, we need to introduce some

auxiliary concepts.

For a riemannian n-manifold we de�ne the Ck+�-norm on the scale of r > 0,

denoted k(M; g)kk+�;r, as the in�mum over all numbers Q � 0 such that we can

�nd coordinates charts 's : B(0; r) � R
n ! Us �M with these properties:

(n1) Every ball of radius � = 1
10e

�Qr is contained in some Us.

(n2) jd'�1
s j � eQ and jd'sj � eQ on B(0; r).

(n3) rjjj+�k@jgs��k� � Q for all multi-indices j with 0 � jjj � k.

(n4) k'�1
s � 'tkk+1+� � (10 + r) eQ on the domain of de�nition.

Here gs�� represents the metric components in the coordinates 's, considered

as functions on B(0; r) � Rn . The �rst condition is equivalent to saying that

� is a Lebesgue number for the covering fUsg. The second condition can be

rephrased as saying that the eigenvalues of gs�� with respect to the standard

euclidean metric lie between e�Q and eQ. This gives both a C0 bound for gs��
and a uniform positive de�niteness for gs��.

If A is a subset of M , we can de�ne k(A; g)kk+�;r in a similar way, only

changing (n1) to say that all �-balls centered on A are contained in some Us. In

(n1) it would perhaps have been more natural to merely assume that the sets

Us cover M (or A). That, however, is not a desirable state of a�airs, because

this would put us in a situation where the norm k kk+�;r wouldn't necessarily
be realized by some Q. A fake but illustrative example is the sphere, covered by

two balls of radius r > �=2 centered at antipodal points. As r ! �=2 the sets

will approach a situation where they no longer cover the space.

From the de�nition it is clear that k(M; g)kk+�;r must be �nite for all r, when
M is closed. For open manifolds it would be more natural to have some weight

function f : M ! R, which allows for Q to get bigger as we go farther and

farther out on the manifold. We'll say a few more words about this later in this

section.

Example. If M = Rn with the canonical euclidean metric, then kMkk+�;r = 0

for all r. More generally, we can easily prove that k(M; g)kk+�;r = 0 for r �
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inj rad(M; g) if (M; g) is a 
at manifold. We shall see later in this section that

these properties characterize Rn and 
at manifolds in general.

With this example in mind, it is pretty clear that conditions (n1){(n3) say that

on a scale of r the metric on (M; g) is Q-close to the euclidean metric in the

Ck+� topology. Condition (n4) is a compatibility condition that ensures that

Ck+�-closeness to euclidean space means the same in all coordinates.

For a given Q and r we can in the usual fashion consider maximal atlases of

all charts satisfying (n1){(n4), but we won't use this much. Let us now turn to

some of the properties of this norm.

Proposition 2.1. Let (M; g) be a C1 riemannian n-manifold .

(i) k(A; �2g)kk+�;�r = k(A; g)kk+�;r; in other words the norm is scale invariant ,

for all A �M .

(ii) IfM is compact , then k(M; g)kk+�;r is �nite for all r; moreover , this number

depends continuously on r, and it tends to 0 as r ! 0.

(iii) If (Mi; gi; pi)! (M; g; p) in the pointed Ck+�-topology , then for any bounded

domain B �M we can �nd domains Bi �Mi such that

k(Bi; gi)kk+�;r ! k(B; g)kk+�;r for every r > 0:

When all spaces involved are closed manifolds we can set Bi =Mi and B =M .

Proof. (i) If we change g to �2g we can change charts 's : B(0; r) ! M to

's��1 (x) = '(��1x) : B(0; �r) ! M . Since we are also scaling the metric, this

means that conditions (n1){(n4) still hold with the same Q.

(ii) If, as in (i), we only change g to �2g, but do not scale in euclidean space,

we get

for � < 1; k(M;�2g)kk+�;r � Q� log�

for � > 1; k(M;�2g)kk+�;r � maxf�Q; Q+ log�g;
where k(M; g)kk+�;r < Q. Thus

k(M; g)kk+�;��1r � maxf�Q; Q� log�; Q+ log�g:
If, therefore, the norm is �nite for some r, it will be �nite for all r. Furthermore,

f(r) = k(M; g)kk+�;r is a function with the property that, for each r,

f(��1r) � h(�; f(r)) = maxf�f(r); f(r) � log�; f(r) + log �g;
and f(r) = h(1; f(r)). If, therefore, ri ! r, we clearly have lim sup f(ri) � f(r),

since f(ri) = f (r (ri=r)) � g (r=ri; f(r)). Conversely, f(r) = f (ri r=ri) �
h (ri=r; f(ri)) = max ff(ri) ri=r; f(ri)� log(ri=r); f(ri) + log(ri=r)g � f(ri) +

", for any " > 0 as ri ! r. Thus f(r) � lim inf f(ri), and we have established

continuity of f(r).

To see that k(M; g)kk+�;r ! 0 as r ! 0 just use exponential coordinates

exppi : B(0; r)! B(pi; r).
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(iii) Fix r > 0 and B � M . Then choose embeddings fi : 
 ! Mi such that

f�i gi converge to g and B � 
. De�ne Bi = fi(B).

For Q > k(B; g)kk+�;r, choose appropriate charts 's : B(0; r)!M satisfying

(n1){(n4), with B = A. Then 'si = fi � 's : B(0; r) ! Mi will satisfy (n1) and

(n4). Now, since f�i gi ! g in the Ck+�-topology, (n2) and (n3) will hold with a

Qi satisfying Qi ! Q as i!1. Thus lim sup k(Bi; g)kk+�;r � k(B; g)kk+�;r.
Conversely, for large i and Q > lim inf k(Bi; gi)kk+�;r . We can choose charts

'si : B(0; r) ! Mi satisfying (n1){(n4) with Bi = A. Now consider 's =

f�1
i � 'si : B(0; r) ! M . These charts will satisfy n1 and n4, and again n2 and

n3 for some Qi � Q, which can be chosen to converge to Q as i ! 1. Thus

lim inf k(Bi; gi)kk+�;r � k(B; g)kk+�;r. �

A few comments about our de�nition of k(M; g)kk+�;r are in order at this point.
From a geometric point of view, it would probably have been nicer to assume

that our charts 's : B(p; r) � M ! 
 � Rn , were de�ned on metric balls in

M rather than on Rn . The reason for not doing so is technical, but still worth

pondering. With revised charts, k(M; g)kk+�;r would de�nitely be 1 for large

r, unless (M; g) were euclidean space; even worse, our proof of (iii) would break

down, as the charts 'i � fi and ' � f�1
i would not be de�ned on metric r-balls

but only on slightly smaller balls. We could partially avert these problems by

maximizing r for �xedQ, rather than minimizingQ for �xed r, and thereby de�ne

a (Q; k + �) radius rk+�;Q(M). This is exactly what was done in Anderson's

work on convergence, and it follows more closely the standard terminology in

riemannian geometry. But even with this de�nition, we still cannot conclude

that this radius concept varies continuously in the Ck+� topology for �xed Q.

All we get is that rk+�;Qi
(Mi; gi) ! rk+�;Q(M; g) for some sequence Qi # Q,

where Q is chosen in advance. Our concept of norm, therefore, seems to behave

in a nicer manner from an analytic point of view. However, when it really

matters, the two viewpoints are more or less equivalent. We also think that the

norm concept is more natural, since it is a quantitative version of the qualitative

coordinate de�nition of a manifold with a riemannian structure.

Another issue is exactly how to de�ne the norm for noncompact manifolds.

The most natural thing to do would be to consider pointed spaces (M; g; p),

choose a nondecreasing weight function f(R), and assume kB(p;R))kk+�;r �
f(R). Our whole theory can easily be worked out in this context, but for the

sake of brevity, we won't do this.

For noncompact spaces one can also use the norm concept to de�ne what it

should mean for a space to be asymptotically locally euclidean of order k + �|

namely, that it should satisfy k(M � B(p;R); g)kk+�;r ! 0 as R ! 1. Here

one can also re�ne this and assume that r should, in some way, depend on R.

Our next theorem is, in a way, as basic as our proposition, and in fact it

uses none of our basic properties. The proof, however, is a bit of a mouthful.

Nevertheless, the reader is urged to go through it carefully, because many of
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the subsequent corollaries are only true corollaries in the context of some of the

constructions in the proof.

Theorem 2.2 (Fundamental Theorem of Convergence Theory). For

given Q > 0, n � 2 integer , k+� > 0, and r > 0, consider the class Hk+�(n;Q; r)

of complete, pointed riemannian n-manifolds (M; g; p) with k(M; g)kk+�;r � Q.

Then Hk+�(n;Q; r) is compact in the pointed Ck+�-topology for all k+� < k+�.

Proof. We proceed in stages. First we make some general comments about

the charts we use. We then show that H = Hk+�(n;Q; r) is precompact in the

pointed Gromov{Hausdor� topology. Next we prove that H is compact in the

Gromov{Hausdor� topology. Finally we consider the statement of the theorem.

Setup: First �x K > Q. Whenever we select an M 2 H we shall assume that

it comes equipped with an atlas of charts satisfying (n1){(n4) with K in place

of Q. Thus we implicitly assume that all charts under consideration belong to

these atlases. We will, in consequence, only prove that limit spaces (M; g; p)

satisfy k(M; g)kk+�;r � K, but since K was arbitrary we still get (M; g; p) 2 H.
We proceed by establishing several simple facts.

Fact 1. Every chart ' : B(0; r)! U �M 2 H satis�es

(a) d('(x1); '(x2)) � eK jx1 � x2j and
(b) d('(x1); '(x2)) � minfe�K jx1 � x2j; e�K(2r � jx1j � jx2j)g,
where d is distance measured in M , and j � j is the usual euclidean norm. The

condition jd'j � eK together with convexity of B(0; r) immediately implies (a).

For (b), �rst observe that if any segment from x1 to x2 lies in U , then jd'j � e�K

implies that d('(x1); '(x2)) � e�K jx1 � x2j. So we may assume that '(x1) and
'(x2) are joined by a segment � : [0; 1] ! M that leaves U . Split � into

� : [0; t1)! U , and � : (t2; 1)! U such that �(ti) =2 U . Then we clearly have

d('(x1); '(x2)) = L(�) � L(�j[0;t1)) + L(�j(t2;1])
� e�K

�
L('�1 � �j[0;t1)) + L('�1 � �j(t2;1])

�
� e�K(2r � jx1j � jx2j):

The last inequality follows from the fact that '�1�(0) = x1; '
�1 ��(1) = x2 and

that '�1 � �(t) approaches the boundary of B(0; r) as t% t1, or t& t2.

Fact 2. Every chart ' : B(0; r) ! U � M 2 H, and hence any �-ball in M ,

where � = 1
10e

�Kr, can be covered by at most N(�=4)-balls, where N depends

only on n;K; r. Clearly there exists an N(n;K; r) such that B(0; r) can be

covered by at most Ne�K (�=4)-balls. Since ' : B(0; r)! U is a Lipschitz map

with Lipschitz constant � eK , we get the desired covering property.

Fact 3. Every ball B(x; l�=2) �M can be covered by � N l �=4-balls. For l = 1

we just proved this. Suppose we know that B(x; l�=2) is covered by B(x1; �=4),

. . . , B(xNl ; �=4). Then B(x; l�=2 + �=2) � SN
i=1 B(xi; �). Now each B(xi; �)
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can be covered by at most N�=4-balls; hence B(x; (l +1)�=2) can be covered by

� N N l = N l+1 �=4-balls.

Fact 4. H is precompact in the pointed Gromov{Hausdor� topology. This

is equivalent to asserting that, for each R > 0, the family of metric balls

B(p;R) � (M; g; p) 2 H is precompact in the Gromov{Hausdor� topology. This

claim is equivalent to showing that we can �nd a function N(") = N(";R;K; r; n)

such that each B(p;R) can contain at most N(") disjoint "-balls. To check this,

let B(x1; "); : : : ; B(xs; ") be a collection of disjoint balls in B(p;R). Suppose that

l�=2 < R � (l + 1)�=2; then the volume of B(p;R) is at most N (l+1) times the

maximal volume of (�=4)-ball, therefore at most N (l+1) times the maximal vol-

ume of a chart, therefore at most N (l+1)enK volB(0; r) � F (R) = F (R; n;K; r).

Conversely, each B(xi; ") lies in some chart ' : B(0; r) ! U �M whose preim-

age in B(0; r) contains an (e�K")-ball. Thus volB(pi; ") � e�2nK volB(0; "). All

in all we get F (R) � volB(p;R) � P
volB(pi; ") � s e�2nK volB(0; "). Thus

s � N(") = F (R)e2nK(volB(0; "))�1.

Now select a sequence (Mi; gi; pi) in H. From the previous considerations

we can assume that (Mi; gi; pi) ! (X; d; p) converge to some metric space in

the Gromov{Hausdor� topology. It will be necessary in many places to pass to

subsequences of (Mi; gi; pi) using various diagonal processes. Whenever this hap-

pens, we shall not reindex the family, but merely assume that the sequence was

chosen to have the desired properties from the beginning. For each (Mi; gi; pi)

choose charts 'is : B(0; r) ! Uis � Mi satisfying (n1){(n4). We can further-

more assume that the index set fsg = f1; 2; 3; 4; � � �g is the same for all Mi, that

pi 2 Ui1, and that the balls B (pi; (l=2)�) are covered by the �rst N l charts.

Note that these N l charts will then be contained in D
�
pi; (l=2)� + beK + 1c��.

Finally, for each l, the sequence D (pi; (l=2)�) = fxi : d(xi; pi) � (l=2)�g con-

verges to D (p; (l=2)�) � X , so we can choose a metric on the disjoint union

Yl = (D (p; (l=2)�)q`1
i=1D (pi; (l=2)�)) such that pi ! p and D (pi; (l=2)�)!

D (p; (l=2)�) in the Hausdor� distance inside this metric space.

Fact 5. (X; d; p) is a riemannian manifold of class Ck+1+� with norm � K.

Obviously we need to �nd bijections 's : B(0; r)! Us � X satisfying (n1){(n4).

For each s consider the maps 'is : B(0; r) ! Uis � Yl+2beK+1c. Inequality (a)

of Fact 1 implies that this is a family of equicontinuous maps into the compact

space Yl+2[eK+1]. The Arzela{Ascoli Theorem shows that this sequence must

subconverge (in C0-topology) to a map 's : B(0; r) � Yl+2beK+1c which also

has Lipschitz constant eK . Furthermore, inequality (b) will also hold for this

map as it holds for all the 'is maps. In particular, 's is one-to-one. Finally,

since Uis � D
�
pi; (l=2)� + beK + 1c� and D

�
pi; (l=2)� + beK + 1c� Hausdor�

converges to D
�
p; (l=2)� + beK + 1c� � X , we see that 'x(B(0; r)) = Us � X .

A simple diagonal argument says that we can pass to a subsequence of (Mi; gi; pi)

having the property that 'is ! 's for all s.
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In this way, we have constructed (topological) charts 's : B(0; r) ! U � X ,

and we can easily check that they satisfy (n1). Since 's also satisfy inequal-

ities (a) and (b), they would also satisfy (n2) if they were di�erentiable (this

being equivalent to the transition functions being C1). Now the transition func-

tions '�1
is � 'it converge to '�1

s � 't, because the 'is converge to 's. Note that
these transition functions are not de�ned on the same domains; but we do know

that the domain for '�1
s � 't is the limit of the domains for '�1

is � 'it, so the

convergence makes sense on all compact subsets of the domain of '�1
s �'t. Now

k'�1
is � 'itkCk+1+� � K, so a further application of Arzela{Ascoli, followed by

passage to subsequences, tells us that k'�1
s � 'tkCk+1+� � K, and that we can

assume that the '�1
is �'it converge to '�1

s �'t in the Ck+1+�-topology. This then

establishes (n2) and (n4). We now construct a compatible riemannian metric on

X that satis�es (n3). For each s, consider the metric gis = gis�� written out in

its components on B(0; r) with respect to the chart 'is. Since all of the gis��
satisfy (n3), we can again use Arzela{Ascoli to make these functions converge

on B(0; r) in the Ck+�-topology to functions gs��, which also satisfy (n3).

The local \tensors" gs�� thus obtained satisfy the change of variables formu-

lae required to make them into global tensors on X . This is because all the

gis�� satisfy these properties, and everything that needs to converge in order for

these properties to be carried over to the limit also converges. Recall that the

rephrasing of (n2) gives the necessary C0 bounds, and also shows that gs�� is

positive de�nite. We now have exhibited a riemannian structure on X such that

's : B(0; r) ! Us � X satisfy (n1){(n4) with respect to this structure. This,

however, does not guarantee that the metric generated by this structure is iden-

tical to the metric we got from X being the pointed Gromov{Hausdor� limit

of (Mi; gi; pi). However, since Gromov{Hausdor� convergence implies that dis-

tances converge, and since we know at the same time that the riemannian metric

converges locally in coordinates, it follows that the limit riemannian structure

must generate the \correct" metric, at least locally, and therefore also globally.

Fact 6. (Mi; gi; pi) ! (X; d; p) = (X; g; p) in the pointed Ck+�-topology. We

assume the setup is as in Fact 5, where charts 'is, transitions '
�1
is � 'it, and

metrics gis��, converge to the same items in the limit space. Let's agree that two

maps f; g between subsets in Mi and X are Ck+1+� close if all the coordinate

compositions '�1
s � g � 'it and '�1

s � f � 'it are Ck+1+� close. Thus we have a

well de�ned Ck+1+� topology on maps from Mi to X . Our �rst observation is

that fis = 'is � '�1
s : Us ! Uis and fit = 'it � '�1

t : Ut ! Uit \converge to

each other" in the Ck+1+� topology. Furthermore, (fis)
�gijUis converges to gjUs

in the Ck+� topology. These are just restatements of what we already know. In

order to �nish the proof, we therefore only need to construct di�eomorphisms

Fil : 
l =
Sl
s=1 Us ! 
il =

Sl
s=1 Uis, which are closer and closer to the fis,

for s = 1; : : : ; l maps (and therefore all fis) as i ! 1. We will construct Fil
by induction on l and large i depending on l. For this purpose we shall need a
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partition of unity f�sg on X subordinate to fUsg. We can �nd such a partition

since the covering fUsg is locally �nite by choice, and we can furthermore assume
that �s is C

k+1+�.

For l = 1 simply de�ne Fi1 = fi1.

Suppose we have maps Fil : 
l ! 
il, for large i, that get arbitrarily close

to fis, for s = 1; : : : ; l, as i ! 1. If Ul+1 \ 
l = ?, we just de�ne Fil+1 = Fil
on 
il and Fil+1 = fil+1 on Ul+1. In case Ul+1 � 
l, we simply let Fil+1 = Fil.

Otherwise we know that Fil and fil+1 are as close as we like in the Ck+1+�-

topology when i ! 1. So the natural thing to do is to average them on Ul+1.

De�ne Fil+1 on Ul+1 as

Fil+1(x) = 'il+1 �
 

1X
s=l+1

�s(x)'
�1
il+1 � fil+1(x) +

lX
s=1

�s(x)'
�1
il+1 � Fil(x)

!

= 'il+1 � (�1(x)'�1
l+1(x) + �2(x)'

�1
il+1 � Fil(x)):

This map is clearly well de�ned on Ul+1, since �2(x) = 0 on Ul+1 � 
l; since

�1(x) = 0 on 
l, the map is a smooth (Ck+1+�) extension of Fil. Now consider

this map in coordinates:

'�1
il+1 � Fil+1 � 'l+1(y) = �1 � 'l+1(y) y + �2 � 'l+1(y)'

�1
il+1 � Fil � 'l+1(y)

= ~�1(y)F1(y) + ~�2(y)F2(y):

Now

k~�1F1 + ~�2F2 � F1kk+1+� = k~�1(F1 � F1) + ~�2(F2 � F1)kk+1+�

� k~�2kk+1+� kF2 � F1kk+1+� :

This inequality is valid on all of B(0; r), despite the fact that F2 is not de�ned

on all of B(0; r), because ~�1F1+ ~�2F2 = F1 on the region where F2 is unde�ned.

By assumption, kF2 � F1kk+1+� converges to 0 as i ! 1, so Fil+1 is Ck+1+�-

close to fis, for s = 1; : : : ; l + 1, as i ! 1. It remains to be seen that Fil+1

is a di�eomorphism. But we know that ~�1F1 + ~�2F2 is an embedding since F1
is and the space of embeddings is open in the C1-topology and k + 1 + � > 1.

Also the map is one-to-one since the images fil+1=(Ul+1�
l) and Fil(
l) don't

intersect. �

Corollary 2.3. The subclasses H(D) � H = Hk+�(n;Q; r) and H(V ) � H,
where the elements in addition satisfy diam � D and vol � V , respectively ,

are compact in the Ck+�-topology . In particular , H(D) and H(V ) contain only

�nitely many di�eomorphism types .

Proof. Use notation as in the Fundamental Theorem. If diam(M; g; p) � D,

then clearly M � B
�
p; 12k�

�
for k > (2=�)D. Hence each element in H(D) can

be covered by � Nk charts. Thus Ck+�-convergence is actually in the unpointed

topology, as desired.
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If instead volM � V , we can use Fact 4 in the proof to see that we can

never have more than k = V e2nk(volB(0; "))�1 disjoint "-balls. In particular,

diam � 2"k, and we can use the above argument.

Clearly compactness in any Ck+�-topology implies that the class cannot con-

tain in�nitely many di�eomorphism types. �

This corollary is essentially contained in [Cheeger 1970]. Technically speaking,

our proof comes pretty close to Cheeger's original proof, but there are some

di�erences: notably, the use of Gromov{Hausdor� convergence which was not

available to Cheeger at the time. Another detail is that our proof centers on

the convergence of the charts themselves rather than the transition functions.

This makes it possible for us to start out with the apparently weaker assumption

that the covering fUsg has � as a Lebesgue number, rather than assuming that

M can be covered by chart images of euclidean (r=2)-balls that lie in transition

domains Us \ Ut.
Corollary 2.4. The norm k(M; g)kk+�;r is always realized by some charts

's : B(0; r)! Us satisfying (n1){(n4) with k(M; g)kk+�;r in place of Q.

Proof. Choose appropriate charts 'Qs : B(0; r) ! UQ
s � M for each Q >

k(M; g)kk+�;r, and let Q ! k(M; g)kk+�;r. If the charts are chosen to conform

with the proof of the fundamental theorem, we will obviously get some limit

charts with the wanted properties. �

Corollary 2.5. M is a 
at manifold if k(M; g)kk+�;r = 0 for some r, and M

is euclidean space with the canonical metric if k(M; g)kk+�;r = 0 for all r > 0.

Proof. Using the previous corollary,M can be covered by charts 's : B(0; r)!
Us � M satisfying jd'sj � 1. This clearly makes M locally euclidean, and

hence 
at. If M is not euclidean space, the same reasoning clearly shows that

k(M; g)kk+�;r > 0 for r > inj rad(M; g). �

Finally we should mention that all properties of this norm concept would not

change if we changed (n1){(n4) to, say,

(n10) Us has Lebesgue number f1(n;Q; r),

(n20) (f2(n;Q))
�1 � jd'sj � f2(n;Q),

(n30) rjjj+�k@jgs��k� � f3(n;Q) for 0 � jjj � k,

(n40) k'�1
s � 'tkk+� � f4(n;Q; r),

for continuous functions f1; : : : ; f4 with f1(n; 0; r) = 0 and f2(n; 0) = 1. The key

properties we want to preserve are the continuity of k(M; g)kk+�;r with respect

to r, the Fundamental Theorem, and the characterization of 
at manifolds and

euclidean space.

We should also mention that we could develop an Lp-norm concept, but we

shall delay this till Section 4, in order to do it in the context of harmonic coor-

dinates.
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Another interesting thing happens if in the de�nition of k(M; g)kk+�;r we

let k = � = 0. Then (n3) no longer makes sense, because � = 0, but aside

from that we still have a C0-norm concept. The class H0(n;Q; r) is now only

compact in the pointed Gromov{Hausdor� topology, but the characterization

of 
at manifolds is still valid. The subclasses H(D) and H(V ) are also only

compact with respect to the Gromov{Hausdor� topology, and the �niteness of

di�eomorphism types apparently fails.

It is, however, possible to say more. If we investigate the proof of the

Fundamental Theorem we see that the problem lies in constructing the maps

Fik : 
k ! 
ik , because we now only have convergence of the coordinates in the

C0 (or C�, for � < 1) topology, so the averaging process fails as it is described.

We can, however, use a deep theorem from topology about local contractibil-

ity of homeomorphism groups [Edwards and Kirby 1971] to conclude that two

C0-close topological embeddings can be \glued" together in some way without

altering them too much in the C0-topology. This makes it possible to exhibit

topological embeddings Fik : 
 ,! Mi such that the pullback metrics (not rie-

mannian metrics) converge. As a consequence, we see that H(D) and H(V )
contain only �nitely many homeomorphism types. This is exactly the content

of the original version of Cheeger's Finiteness Theorem, including the proof as

we have outlined it. But, as we have pointed out earlier, he also considered the

easier to prove �niteness theorem for di�eomorphism types given better bounds

on the coordinates.

3. The Cheeger{Gromov Compactness Results

The focus of this section is the relationship between volume, injectivity radius,

sectional curvature and the norm concept from Section 2.

First let's see what exponential coordinates can do for us. If (M; g) is a

riemannian manifold with jsecM j � K and inj radM � i0, we know from the

Rauch comparison theorems that there is a continuous function f(r; i0;K), for

r < i0, such that f(0; i0;K) = 1, f(r; i0; 0) = 1, and expp : B(0; r) � TpM !
B(p; r) � M satis�es (f(r; i0;K))�1 � jd expp j � f(r; i0;K). In particular we

have:

Theorem 3.1. For every Q > 0 there exists r > 0 depending only on i0;K

such that any complete (M; g) with jsecM j � K and inj radM � i0 satis-

�es k(M; g)k0;r � Q. Furthermore, if (Mi; gi; pi) satisfy inj radMi � i0 and

jsecMij � Ki ! 0, then a subsequence will converge in the pointed Gromov{

Hausdor� topology to a 
at manifold with inj rad � i0.

The proof follows immediately from our constructions in Section 2.

This theorem does not seem very satisfactory, because even though we have

assumed a C2 bound on the riemannian metric, locally we only get a C0 bound.
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To get better bounds under the same circumstances, we must look for di�erent

coordinates. Our �rst choice for alternate coordinates is distance coordinates.

Lemma 3.2. Given a riemannian manifold (M; g) with inj rad � i0 and jsec j �
K, and given p 2 M , the Hessians H(v) = Hess r(x)(v) = Dv grad r of the

distance function r(x) = d(x; p) has grad r as an eigenvector with eigenvalue 0,

all other eigenvalues lie in the interval�p
K cot(r(x)

p
K);

p
K coth(r(x)

p
K)
�
:

Proof. We know that the operator H satis�es the Riccati equation @H=@r +

H2 = �R, where R(v) = R (v; @=@r) (@=@r) = R(v; grad r) grad r. The eigenval-

ues for R(v) are assumed to lie in the interval [�K;K], so elementary di�erential

equation theory implies our estimate. �

Now �x (M; g); p 2 M as in the lemma, and choose an orthonormal basis

e1; : : : ; en for TpM . Then consider the geodesics 
i(t) with 
i(0) = p, _
i(0) = ei
and, together with them, the distance functions ri(x) = d

�
x; 
i(i0=(4

p
K))

�
.

These distance functions will then have uniformly bounded Hessians on B(p; �),

for � = i0=(8
p
K). Set 'p(x) = (r1(x); : : : ; rn(x)) and gpij = h@=@ri; @=@rji.

Note that the inverse of gpij is g
ij
p = hgrad ri; grad rji.

Theorem 3.3. Given i0 and K > 0 there exist Q; r > 0 such that any (M; g)

with inj rad � i0 and jsecj � K satis�es k(M; g)k0+1;r � Q.

Proof. The inverses of the 'p are our potential charts. First observe that

gpij(p) = �ij , so the uniform Hessian estimate shows that jd'pj � eQ and

jd'�1
p j � eQ on B(p; "), where Q; " depend only on i0;K. The proof of the

inverse function theorem then tells us that there is "̂ > 0 depending only on

Q;n such that 'p : B(0; "̂) ! Rn is one-to-one. We can then easily �nd r such

that '�1
p : B(0; r) ! Up � B(p; ") satis�es (n2). The conditions (n3), (n4)

now immediately follow from the Hessian estimates, except we might have to

increase Q somewhat. Finally (n1) holds since we have coordinates centered at

every p 2M . �

Notice that Q cannot be chosen arbitrarily small, because our Hessian estimates

cannot be improved by going to smaller balls. This will be taken care of in the

next section, by using even better coordinates. Theorem 3 was �rst proved in

[Gromov 1981b] as stated. The reader should be aware that what Gromov refers

to as a C1;1-manifold is in our terminology a manifold with k(M;h)k0+1;r <1,

i.e., C0+1-bounds on the riemannian metric.

Without going much deeper into the theory we can easily prove:

Lemma 3.4 (Cheeger's Lemma). Given a compact n-manifold (M; g) with

jsecj � K and volB(p; 1) � v > 0 for all p 2 M , we have inj radM � i0, where

i0 depends only on n, K and v.
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Proof. The proof goes by contradiction, using Theorem 3.3. Assume we have

(Mi; gi) with inj radMi ! 0 and satisfying the assumptions of the lemma. Find

pi 2 Mi such that inj radpi = inj radMi and consider the pointed sequence

(Mi; hi; pi), where hi = (inj radMi)
�2gi is rescaled so that inj rad(Mi; hi) = 1

and jsec(Mi; hi)j � inj rad(Mi; gi)K = Ki ! 0. Theorem 3.3, together with the

Fundamental Theorem 2.2, then implies that some subsequence (Mi; hi; pi) will

converge in the pointed C0+� topology (� < 1) to a 
at manifold (M; g; p).

The �rst observation about (M; g; p) is that inj rad(p) � 1. This follows

because the conjugate radius for (Mi; hi) is at least �=
p
Ki, which goes to in�nity,

so Klingenberg's estimate for the injectivity radius implies that there must be a

geodesic loop of length 2 at pi 2Mi. Since (Mi; hi; pi) converges to (M; g; p) in

the pointed C0+�-topology, the geodesic loops must converge to a geodesic loop

in M based at p, having length 2. Hence inj rad(M) � 1.

The other contradictory observation is that (M; g) is Rn with the canonical

metric. Recall that volB(pi; 1) � v in (Mi; gi), so relative volume compari-

son shows that there is a v0(n;K; v) such that volB(pi; r) � v0rn, for r � 1.

The rescaled manifold (Mi; hi) therefore satis�es volB(pi; r) � v0rn, for r �
(inj rad(Mi; gi))

�1. Using again the convergence of (Mi; hi; pi) to (M; g; p) in

the pointed C0+�-topology, we get volB(p; r) � v0rn for all r. Since (M; g) is


at, this shows that it must be euclidean space. �

This lemma was proved by a more direct method in [Cheeger 1970], but we have

included this perhaps more convoluted proof in order to show how our conver-

gence theory can be used. The lemma also shows that Theorem 3.3 remains true

if the injectivity radius bound is replaced by a lower bound on the volume of

balls of radius 1.

Theorem 3.3 can be generalized in another interesting direction.

Theorem 3.5. Given i0; k > 0 there exist Q; r depending on i0; k such that any

manifold (M; g) with inj rad � i0 and sec � �k2 satis�es k(M; g)k0+1;r � Q.

Proof. It su�ces to get some Hessian estimate for distance functions r(x) =

d(x; p). As before, Hess r(x) has eigenvalues � k coth(kr(x)). Conversely, if

r(x0) < i0, then r(x) is supported from below by f(x) = i0 � d(x; y0), where

y0 = 
(i0), and 
 is the unique unit speed geodesic which minimizes the distance

from p to x0. Thus Hess r(x) � Hess f(x) at x0. But Hess f(x) has eigenvalues

at least �k coth(d(x0; y0)k) = �k coth(k(i0� r(x0))) at x0. Hence we have two-
sided bounds for Hess r(x) on appropriate sets. The proof can then be �nished

as for Theorem 3.3. �

Interestingly enough, this theorem is optimal in two ways. Consider rotationally

symmetric metrics dr2 + f2" (r) d�
2, where f" is concave and satis�es f"(r) = r

for 0 � r � 1�" and f"(r) = 3
4r, with 1+" � r. These metrics have sec � 0 and

inj rad =1. As " ! 0 we get a C1+1 manifold with a C0+1 riemannian metric

(M; g). In particular, k(M; g)k0+1;r < 1 for all r. Limit spaces of sequences
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with inj rad � i0 and sec � k can therefore not in general be assumed to be

smoother than the above example.

With a more careful construction, we can also �nd g" with g"(r) = sin(r) for

0 � r � �=2� " and g"(r) = 1 for r � 1+ ", having the property that the metric

dr2+g2"(r) d�
2 satis�es jsecj � 4 and inj rad � 1

4 . As "! 0 we get a limit metric

of class C1+1. So while we may suspect (this is still unknown) that limit metrics

from Theorem 3.3 are C1+1, we only prove that k(M; g)k1+�;r � f(r) with

f(r) ! 0 as r ! 0, where f(r) depends only on n = dimM , i0 (� inj radM),

and K (� jsecM j); see Theorems 4.1 and 4.2.

4. The Best Possible of All Possible . . .

We are now ready to introduce and use harmonic coordinates in our conver-

gence theory. We will use Einstein summation convention whenever convenient.

The Laplace{Beltrami operator � on (M; g) is de�ned as � = trace(Hess).

In coordinates one can compute

� =
1

g

X @

@xi

�
g gij

@

@xj

�
=
X

gij
@2

@xi@xj
+
X 1

g

@(g gij)

@xi
@

@xj

=
1

g
@i(g g

ij@j) = gij@i@j +
1

g
@i(g g

ij)@j ;

where gij are the metric components, (gij) is the inverse of (gij), and g =p
det gij . A function u is said to be harmonic (on (M; g)) if �u = 0. Notice that

if we scale g to �2g then � changes to ��2�; hence the concept of harmonicity

doesn't change. A coordinate system ' : U ! Rn is said to be harmonic if each

of the coordinate functions are harmonic. In harmonic coordinates, the Laplace

operator has the form � = gij@i@j , since

0 = �xk = gij@i@jx
k +

1

g
@i(g g

ij)@jx
k = 0 +

1

g
@i(g g

ij�kj ) =
1

g
@i(g g

ij):

The nicest possible coordinates that one could ask for would be linear coor-

dinates (Hess � 0). But such coordinates clearly only exist on 
at manifolds. In

contrast, any riemannian manifold admits harmonic coordinates around every

point. It turns out that these coordinates, while harder to construct, have much

nicer properties than both exponential and distance coordinates. First of all we

have the important equation �gij +Q(gij ; @gij) = Ricij for the Ricci tensor in

harmonic coordinates, where Q is a term quadratic in @gij . We shall often write

this equation in symbolic form as �g +Q(g; @g) = Ric, and merely imagine the

appropriate indices.

This equation was used in [DeTurck and Kazdan 1981] to prove that the metric

always has maximal regularity in harmonic coordinates (if it is not C1). And

in a very important paper [Jost and Karcher 1982], Theorem 3.3 was improved

as follows:
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Theorem 4.1. Given (M; g) as in Theorem 3.3, then for every � < 1 and Q > 0

there exists r depending on i0;K; n; �;Q such that k(M; g)k1+�;r � Q.

The coordinates used to give this improved bound were harmonic coordinates.

We should point out their original theorem has been rephrased into our termi-

nology. With these improved coordinates, the following result was then proved

in [Peters 1987; Greene and Wu 1988]:

Theorem 4.2. The class of riemannian n-manifolds with jsecj � K, diam � D,

vol � v, for �xed but arbitrary K;D; v > 0, is precompact in the C1;�-topology

for any � < 1, and contains only �nitely many di�eomorphism types .

This is, of course, a direct consequence of Corollary 2.3, Lemma 3.4, and Theo-

rem 4.1.

It is the purpose of this section to set up the theory of harmonic coordinates

so that we can prove Anderson's generalization of these two results. For this

purpose, let us de�ne for a riemannian manifold (M; g) the (harmonic) Lp;k

norm at the scale of r, denoted k(M; g)kp;k;r, as the in�mum of all Q � 0 such

that there are charts 's : B(0; r)! Us �M satisfying:

(h1) � = 1
10e

�Q r is a Lebesgue number for the covering fUsg.
(h2) jd'�1

s j � eQ and jd'sj � eQ on B(0; r).

(h3) rjjj�n=pk@jgs��kp � Q for 1 � jjj � k.

(h4) '�1
s : Us ! B(0; r) are harmonic coordinates.

Here kfkp = (
R
fp)1=p in the usual Lp-norm on euclidean space.

Several comments are in order. All riemannian manifolds in this section are

C1, so our harmonic coordinates will automatically also be C1. Thus we are

only concerned with how the metric is bounded, and not with how smooth it

might be. When k = 0 condition (h3) is obviously vacuous, so we will always

assume k � 1; for analytical reasons we will in addition assume that p > n if

k = 1 and p > n=2 if k � 2. The transition condition (n4) has been replaced

with the somewhat di�erent harmonicity condition. To recapture (n4), we need

to use the Lp elliptic estimates from Appendix A together with Appendix B.

In harmonic coordinates we have � = gij@i@j , and (h2), (h3) imply that the

eigenvalues for gij are in [e�Q; eQ] and that kgijkp;k � ~Q, where ~Q depends on

n;Q. Thus the Lp estimates say that kukp;k+1 � C(k�ukp;k�1 + kukLp). In

particular we get Lp;k+1 bounds on transition functions on compact subsets of

domain of de�nition, since they satisfy � = 0.

In the case where k � n=p > 0 is not an integer, we have a continuous em-

bedding Lp;k � Ck�n=p; we can therefore bound k(M; g)kk�n=p; ~r, for ~r < r,

in terms of k(M; g)kp;k;r. This, together with the Fundamental Theorem 2.2,

immediately implies:

Theorem 4.3. Let Q, r > 0, p > 1 and k 2 N be given. The class Hp;k(n;Q; r)

of n-dimensional riemannian manifolds with k(M; g)kp;k;r � Q is precompact in

the pointed Cl+� topology for l + � < k � n=p.
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The concept of Lp;k-convergence for riemannian manifolds is de�ned as for Cl+�-

convergence, using convergence in appropriate �xed coordinates for the pullback

metrics.

Before discussing how to achieve Lp;k-convergence, we warm up with some

elementary properties of our new norm concept. Note that if A � M , then

k(A; g)kp;k;r is de�ned just like k(A; g)kl+�;r.
Proposition 4.4. Let (M; g) be a C1 riemannian manifold .

(i) k(A; �2g)kp;k;�r = k(A; g)kp;k;r.
(ii) k(A; g)kp;k;r is �nite for some r, then it is �nite for all r, and in this case

it will be a continuous function of r that approaches 0 as r ! 0.

(iii) For any D > 0, we have

k(M; g)kp;k;r = supfk(A; g)kp;k;r : A �M; diamA � Dg:

(iv) If the sequence (Mi; gi; pi) converges to (M; g; p) in the pointed Lp;k-topology ,

and all spaces are C1 riemannian manifolds , then for each bounded B �M

there are bounded sets Bi �Mi such that

k(Bi; gi)kp;k;r ! k(B; g)kp;k;r:

Proof. Parts (i) and (ii) are proved as before, except for the statement that

k(M; g)kp;k;r converges to 0 as r ! 0. To see this, observe that we know that

k(M; g)k2k+�;r ! 0 as r ! 0. Then approximate these coordinates by harmonic

maps by solving Dirichlet boundary value problems. This will then give the right

type of harmonic coordinates.

Property (iii) is unique to norms that come from harmonic coordinates. What

fails in the general case is the condition (n4). Clearly K = supfk(A; g)kp;k;r :

A � M; diamA � Dg � k(M; g)kp;k;r. Conversely, choose Q > K. If every set

of diameter � D can be covered with coordinates satisfying (h1){(h4), then M

can obviously be covered by similar coordinates.

To prove (iv), suppose that (Mi; gi; pi) converges to (M; g; p) in the pointed

Lk;p-topology and that B is a bounded subset of M . If B � B(p;R) � 
 and

we have Fi : 
 ! 
i � B(pi; R) such that F �
i gi ! g in the Lk;p-topology, we

can just let Bi = Fi(B).

Let's �rst prove the inequality lim sup k(Bi; g)kp;k;r � k(B; g)kp;k;r. For this
purpose, choose Q > k(B; g)kp;k;r; and then using (i) (see also the proof part (i)

of Proposition 2.1), choose " > 0 such that k(B; g)kp;k;(r+") < Q.

Then select a �nite collection of charts 's : B(0; r + ") ! Us � M that

realizes this inequality. De�ne Uis = Fi('s(D(0; r + "=2))); then Uis is a closed

disk with boundary @Uis = Fi('s(S(0; r+"=2))). On eachUis, solve the Dirichlet

boundary value problem

 is : Uis ! R
n ; with �i is = 0 and  isj@Uis = '�1

s � F�1
i j@Uis :
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Then on each 's (D (0; r + "=2)) we have two maps: '�1
s , which satis�es �'�1

s �
0, and  is�Fi, which satis�es �i is�Fi � 0, where �i also denotes the Laplacian

of the pullback metric F �
i gi. We know that F �

i gi ! g in Lp;k with respect to

the �xed coordinate system 's on B(0; r + "). What we want to show is that

the metric F �
i gi in the harmonic coordinates  is also converges to g in the Lp;k

topology on B(0; r), or equivalently on 's(B(0; r)). This will clearly be true if

we can prove that k'�1
s �  is � Fikp;k+1 converges to as i ! 1. If we write

�i in the �xed coordinate system 's, then the elliptic estimates for divergence

operators (see Theorem A.3) tell us that

k'�1
s �  is � Fikp;2;B(0;r+"=2) � C k�i('

�1
s �  is � Fi)kp;B(0;r+"=2)

= C k�i'
�1
s kp;B(0;r+"=2) (4.1)

when k = 1 and p > n, while

k'�1
s �  is � Fikp;k+1;B(0;r)

� C
�k�i'

�1
s kp;k�1;B(0;r+"=2) + k'�1

s �  is � Fikp;B(0;r+"=2)

�
(4.2)

when k � 2 and p > n=2.

To use these inequalities, observe that k�i'
�1
s kp;k�1;B(0;r+"=2) approaches 0

as i ! 1 since the coe�cients of �i = aij@i@j + bj@j converge to those of �

in Lp;k�1, and �'�1
s = 0 (see also Appendix B). Inequality 4.1 therefore takes

care of the cases when k = 1 and p > n.

For the remaining cases, when k � 2 and p > n=2, recall that we have

a Sobolev embedding L2p;1 � Lp;k. Thus we can again use 4.1 to see that

k'�1
s �  is � Fikp;B(0;r+"=2) approaches 0 as i ! 1. Inequality 4.2 then shows

that k'�1
s �  is � Fikp;k+1;B(0;r) ! 0 as i!1.

To check the reverse inequality lim inf k(Bi; g)kp;k;r � k(B; g)kp;k;r, �x some

Q > lim inf k(Bi; g)kp;k;r. For some subsequence of (Mi; gi; pi) we can then

choose charts 'is : B(0; r) ! Uis � Mi satisfying (h1){(h4) that converge to

limit charts 's : B(0; r) ! Us � M satisfying (h1){(h3). Since the metrics

converge in the Lk;p-topology, k � 1, the Laplacians must also converge, and so

we can easily check that the charts '�1
s are harmonic and therefore give charts

showing that k(B; g)kp;k;r � Q. �

One of the important consequences of the Fundamental Theorem is that conver-

gence of the metric components in appropriate charts implies global convergence

of the manifolds. The key step in getting these global di�eomorphisms is to glue

together compositions of charts using a center of mass construction. It is clearly

desirable to have a similar local-to-global convergence construction for Lp;k con-

vergence, but the method as we described fails. This is because products of

Lp;k functions are not necessarily Lp;k. If, however, one of the functions in the

product or composition has universal C1 bounds, there won't be any problems.

So we arrive at the following result:
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Lemma 4.5. Suppose (Mi; gi; pi) and (M; g; p) are pointed C1 riemannian man-

ifolds and that we have charts 'is : B(0; r) ! Uis � Mi as in the proof of the

Fundamental Theorem 2.2 satisfying (h1), (h2), and (h4), and such that the

metric components gis�� converge in the Lp;k-topology , to the limit metric (M; g).

Then a subsequence of (Mi; gi; pi) will converge to (M; g; p) in the pointed Lp;k

topology .

Proof. The proof is almost word for word the same as that of the Fundamental

Theorem. The important observation is that the limit coordinates 's : B(0; r)!
Us �M satisfy (h4) and are therefore C1, since (M; g) was assumed to be C1.

The partition of unity on (M; g) is therefore also C1. Thus the compositions

'is � '�1
s are all close in the Lp;k+1 topology, and we also have

k�1F1 + �2F2 � F1kp;k+1 � k�2kC1 kF2 � F1kp;k+1:

Finally, �1F1+�2F2 is also C
1 close to F1, since k+1�n=p > 1 and Lp;k+1 � C1

is continuous. �

5. Generalized Convergence Results

Many of the results in this section have also been considered by Gao and D.

Yang, but we will follow the approach taken by Anderson. The survey paper

[Anderson 1993] has many good references for further applications and to the

papers where many of these things were �rst considered.

The machinery developed in the previous section makes it possible to state

and prove the most general results immediately. Rather than assuming point-

wise bounds on curvature, we will use Lp bounds. Our notation is kRic kp =�R
M
jRic jpd vol�1=p and kRkp = �RM jRjpd vol�1=p, where jRic j and jRj are the

pointwise bound on the Ricci tensor and curvature tensor. Note that if we

scale the metric g to �2g, the curvature tensors are multiplied by ��2 and

the volume form by �n, so the new Lp norms on curvature are kRicnew kp =

�(n=p)�2kRicold kp and kRnewkp = �(n=p)�2kRoldkp. So if p > n=2 the Lp bounds

scale just as the C0 = L1 bounds, while if p = n=2 they remain unchanged. We

shall, therefore, mostly be concerned with Lp bounds on curvature, for p > n=2.

Another heuristic reason for doing so is that if f 2 Lp;2 for p 2 (n=2; n), then

f 2 C2�n=p \ L1;q, where 1=q = 1=p� 1=n. In particular we have C0 control on

f . So Lp bounds p > n=2 on curvature should somehow control the geometry.

With this philosophy behind us, we can state and prove Anderson's conver-

gence results.

Theorem 5.1. Let p > n=2, � � 0, and i0 > 0 be given. For every Q > 0

there is an r = r(n; p;�; i0) such that any riemannian n-manifold (M; g) with

kRic kp � � and inj rad � i0 satis�es k(M; g)kp;2;r � Q.

Proof. Suppose this were not true. Then for some Q > 0 we could �nd (Mi; gi)

with k(Mi; gi)kp;2;ri � Q for some sequence ri ! 0. By further decreasing ri we
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can actually assume k(Mi; gi)kp;2;ri = Q for ri ! 0. Now de�ne hi = r�2
i gi; then

k(Mi; hi)kp;2;1 = Q. Next select pi 2 Mi such that k(Ai; hi)kp;2;1 � Q=2, for all

Ai 3 pi. After possibly passing to a subsequence, we can assume that (Mi; hi; pi)

converges to (M; g; p) in the pointed Cl+�, topology, where l + � < 2 � n=p.

Together with this convergence we will select charts 'is : B(0; r) ! Uis � Mi

and 's : B(0; r)! Us �M such that the 'is satisfy (h1){(h4) for some ~Q > Q,

r > 1, and converging to 's in Cl+1+�. Denote the metric components of hi
in 'is by his��, and similarly denote by gs�� the components for g in 's. By

assumption the his�� are bounded in Lp;2. If p > n then 2 � n=p > 1, so l = 1;

hence we can assume that the his�� converge to gs�� in C
1+�, with � = 1� n=p.

If p < n then 1=(2p) > 1=p� 1=n, and we can assume that the his�� converge to

gs�� in L
2p;1. In particular, g has a well de�ned Laplacian � on M , which maps

Lp;2 into Lp, and the Laplacians �i for hi on Mi converge to � in L2p;1. So if

u 2 Lp;2 then �iu! �u in Lp.

We will now establish simultaneously two contradictory statements, namely

that (M; g) is Rn with the canonical metric, and that the (Mi; hi; pi) converge to

(M; g; p) in the pointed Lp;2 topology. These statements are contradictory since

we know that k(Rn ; can)kp;2;1 = 0, and therefore Proposition 4.4(iv) implies that

k(B(pi; �); hi)kp;2;1 ! 0 as i!1, which goes against our assumption that

k(B(pi; �); hi)kp;2;1 � Q=2:

Since we are using harmonic coordinates, his�� satis�es

�ihis�� +Q(his��; @his��) = Ricis��;

where Ricis�� represents the components of the Ricci tensor for hi in the 'is
coordinates. Since hi = r�2

i gi and ri ! 0 we know that kRicis�� kp ! 0 as i! 0.

Also, his�� ! gs�� in C
0 and @his�� ! @gs�� in L

2p. Therefore Q(his��; @his��) !
Q(gs��; @gs��) in L

p, since Q is a universal function of class C1 in its arguments

and quadratic in @g. Thus we conclude that �ihis�� ! �gs�� in L
p. We can then

use the Lp estimates from Appendix A (Theorem A.2) to see that

khis�� � gs��kp;2
� Cik�i(his�� � gs��)kLp + Cikhis�� � gs��kLp
� Cik�i(his��)��(gs��)kLp + Cik(���i)gs��kLp + Cikhis�� � gs��kLp ;

which converges to 0 as i ! 1. As usual, Ci is bounded by the coe�cients

of �i, which we know are universally bounded. There is also the slight detail

about the left-hand side being measured on a compact subset of B(0; r). But this

can be �nessed because ~Q > Q = k(Mi; hi; pi)kp;2;1, so we can �nd a universal

r = 1 + " by the proof of Proposition 4.4(i) such that k(Mi; hi)kp;2;r < ~Q.

Thus we have the convergence taking place on B(0; 1), and we conclude using

Proposition 4.4(iv) that (Mi; hi; pi) ! (M; g; p) in the pointed Lp;2 topology.

(We will show below that (M; g) is C1.)
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The limit metric (M; g) now satis�es �g = �Q(g; @g) in our weak Lp;2 har-

monic coordinates. If p > n, we have g 2 C1+� as already observed; thus the

leading coe�cients for � are in C1, and Q(g; @g) is in C�. Then standard reg-

ularity theory implies g 2 C2+1+�. A bootstrap argument then shows g 2 C1.

The equation �g + Q = 0 then shows that M is Ricci-
at. We must now re-

call that inj rad(Mi; hi) = r�1
i i0, which goes to 1, so inj rad(M; g) = 1. The

Cheeger{Gromoll splitting theorem then implies that (M; g) = (Rn ; can).

We must now deal with the case where p 2 (n=2; n). De�ne ~p = (2=p�2=n)�1,

so f 2 Lp;2 implies f 2 L2~p;1 \ C2�n=p. Since g 2 Lp;2, we must therefore have
Q(g; @g) 2 L~p. But then �g 2 L~p, and g 2 L~p;2 since the coe�cients for �

are C0. Now ~p > n=2 + 2 (p� n=2) = 2p � n=2 = p + (p� n=2). Iterating this

procedure k times, we get g 2 L2;q for q > p + k (p� n=2). If k is big enough,

we clearly have q > n, and we get g 2 C1+� , where � = 1 � n=q > 0. We can

then proceed as above. �

This theorem has some immediate corollaries.

Corollary 5.2. Given � � 0, i0; Q > 0, and p > 1, there is an r =

r(n; p;Q;�; i0) such that any riemannian n-manifold (M; g) with jRicj � � and

inj rad � i0 satis�es k(M; g)kp;2;r � Q.

This corollary clearly implies that we have C1+� control (� < 1) on the metric,

given C0 bounds on jRicj and lower bounds on injectivity radius.

Corollary 5.3. Given �, i0; V > 0, and p > n=2, the class of n-manifolds

with: kRickp � �, inj rad � i0, and vol � V is precompact in the C�-topology ,

where � < 2� n=p.

Recall that, when we had bounded sectional curvature, we could replace the

injectivity radius bound by a lower volume bound on balls of radius 1. This is

no longer possible when we only bound the Ricci curvature, because there are

many non
at Ricci-
at metrics with volume growth of order rn|for example, the

Eguchi{Hanson metric described in Appendix C. Also, if we assume kRkp � �,

we can construct examples with lower volume bounds on balls of radius 1, but

without any control on the metric. This is partly due to the fact that we have

no way of showing that these assumptions imply the volume growth condition

volB(p; r) � v0 rn for r � 1. To get such a condition, one must have at least a

lower bound on Ricci curvature. The best we can do is therefore this:

Theorem 5.4. Given p > n=2, � � 0, v > 0, and Q > 0, there is an r =

r(n; p;Q;�; v) such that any n-manifold (M; g) with kRkp � � and volB(p; s) �
v sn for all p 2M and s � 1 satis�es k(M; g)kp;2;r � Q.

Proof. The setup is identical to the proof of Theorem 5.1. This time the limit

space will be 
at, since kRkp varies continuously in the Lp;2 topology, and have

volB(p; r) � v rn for all r. Thus (M; g) = (Rn ; can). �
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Considering that the proofs of Theorems 5.1 and 5.4 only di�er in how we char-

acterize euclidean space, it would seem reasonable to conjecture that any appro-

priate characterization of euclidean space should yield some kind of theorem of

this type. We give some examples of this now:

Example 5.5. (Rn ; can) is the only space with Ric � 0 and inj rad = 1, by

the Cheeger{Gromoll splitting theorem. In [Anderson and Cheeger 1992], it is

proved by a slightly di�erent method from what we have described above that,

for any p > n, the L1;p norm at some scale r is controlled by dimension, lower

Ricci curvature bounds, and lower injectivity radius bounds.

Example 5.6. If in Theorems 5.1 and 5.4 we also assume that the covariant

derivatives of Ric up to order k are bounded in Lp, where p > n=2, we can control

the Lp;k+2 norm. The proof of this is exactly like the proof of Theorems 5.1

and 5.4: we just use the stronger assumption that Ric goes to zero in the Lp;k

topology.

Example 5.7. Let !n be the volume of the unit ball in euclidean space. Then

(Rn ; can) is characterized as the only Ricci-
at manifold with volB(p; r) � (!n�
"n)r

k for all r, where "n > 0 is a universal constant only depending on dimension.

The existence of such a constant was established in [Anderson 1990b]. Note that

relative volume comparison shows that the volume growth need only be checked

for one p 2 M . Also if (M; g; p) satis�es these conditions, then (M;�2g; p)

satis�es these conditions for any � > 0.

It is actually an interesting application of Theorem 5.1 to prove that this re-

ally gives a characterization of (Rn ; can). We proceed by contradiction on the

existence of such an "n > 0. Using scale invariance of norm and the condi-

tions, we can then �nd a sequence (Mi; gi; pi) of Ricci-
at manifolds such that

volB(pi; r) � (!n � i�1)rn for all r, and a sequence Ri ! 1 such that, say,

Q � k(Ai; gi)k2n;2;1 � Q=2, where pi 2 Ai � B(pi; Ri), for some Q > 0. The

proof of Theorem 5.1 then shows that (B(pi; Ri); pi) ! (M; g; p) in the L2n;2-

topology. But this limit space is now Ricci-
at and satis�es volB(p; r) = !nr
n

for all r, and must, therefore, be (Rn ; can). This contradicts continuity of the

L2n;2 norm in the L2n;2 topology.

We can then control the Lp;2 norm in terms of r0 and �, where kRic kp � �

and volB(p; r) � (!n � "n) r
n, for r � r0. If we impose the stronger curvature

bound jRicj � �, then relative volume comparison shows that we need only check

that volB(p; r0) � (!n�"n)(v(n;��; 1))�1v(n;��; r0), where v(n;��; r) is the
volume of an r-ball in constant curvature �� and dimension n.

As already pointed out, the Eguchi{Hanson metric shows that one cannot

expect to get as nice control on the metric with Ricci curvature and general

volume bounds as one gets in the presence of sectional curvature bounds. But if

we also assume Ln=2 bounds on R, then we can do better than in Example 5.7.
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Example 5.8. In [Bando et al. 1989] it is proved that any complete n-manifold

with Ric � 0; kRkn=2 < 1 and volB(p; r) � v rn, for all r and some v > 0,

is an asymptotically locally euclidean space. This implies, in particular, that

lim volB(p; r)=rn = !n=k for some integer k (in fact, k is the order of the

fundamental group at 1). If, therefore, v > 1
2!n, then k = 1. But then relative

volume comparison and nonnegative Ricci curvature implies that the space is

euclidean space.

This again leads to two results. First: The L2;p norm for any p is controlled

by �, r0, and ", where jRicj � �, kRkn=2 � �, and

volB(p; r0) �
�
1
2!n + "

�
(v(n;��; 1))�1v(n;��; r0):

Second: The L2;p norm is controlled by �; r0 and " where kRickp � �, kRkn=2 �
� and volB(p; r) � � 12!n + "

�
rn, for r � r0.

For even more general volume bounds, we have:

Example 5.9. With a contradiction argument similar to the one used in Ex-

ample 5.7, one can easily see that there is an "(n; v) > 0 such that any complete

n-manifold with Ric � 0; kRkn=2 � "(n; v) and volB(p; r) � vrn for all r is

(Rn ; can). Hence given v; r0;� > 0 with jRicj � �, volB(p; r0) � v, and the

(n=2)-norm of R on balls of radius r0 satisfying kRjB(p;r0)kn=2 � "(n; v) we can

control the Lp;2-norm for any p. We can, as before, modify this argument if

we only wish to assume Lp bounds on Ric (see also [Yang 1992] for a di�erent

approach to this problem).

This result seems quite promising for getting our hands on manifolds with given

upper bounds on jRicj, kRkn=2, and lower bounds on volB(p; 1). The Eguchi{

Hanson metric will, however, still give us trouble. This metric has Ric � 0,

kRkn=2 < 1, and volB(p; r) � 1
2!nr

n for all p. All these quantities are scale-

invariant, but if we multiply by larger and larger constants, the space will con-

verge in the Gromov{Hausdor� topology to the euclidean cone over RP3, which

is not even a manifold. Away from the vertex of the cone, the convergence is

actually in any topology we like, since Ric � 0. What happens is that kRkn=2,
while staying �nite, will concentrate around the singularity that develops and

go to zero elsewhere. Questions related to this are investigated in [Anderson

and Cheeger 1991], where the authors prove that the class of n-manifolds with

jRicj � �, kRkn=2 � �, diam � D, and vol � v contains only �nitely many

di�eomorphism types. The idea is that these bounds give Lp;2-control on each

of the spaces away from at most N(n;�; D; v) points, and that each of these bad

points can only degenerate in a very special fashion that looks like the degener-

ation of the Eguchi{Hanson metric.

Recall that the injectivity radius of a closed manifold is computed as either

half the length of the shortest closed geodesic (abbreviated scg(M; g)) or the

distance to the �rst conjugate point. Thus the injectivity radius of a manifold



190 PETER PETERSEN

with bounds on jRj is completely controlled by scg(M). In the next example,

we shall see how at least the Lp;2 norm is controlled by kRkp and scg(M). Some

auxiliary comments are needed before we proceed. Let us denote by sgl(M; g)

the shortest geodesic loop. (A closed geodesic is a smooth map 
 : S1 !M with

�
 � 0, while a geodesic loop is a smooth map 
 : [0; l] ! M with 
(0) = 
(l)

and �
 � 0. The base point for a loop is 
(0).) On a closed manifold M we have

scg(M; g) � sgl(M; g). On a complete 
at manifold, scg(M; g) = sgl(M; g), and

each geodesic loop realizing sgl(M; g) is a noncontractible closed geodesic.

Example 5.10. (See also [Anderson 1991]). Our characterization of (Rn ; can) is

that it is 
at and contains no closed geodesics. First we claim that given p > n=2

and l;�; Q > 0 there is an r(n; p; l;�; Q) such that any closed manifold with

kRkp � � and sgl � l satis�es k(M; g)kp;2;r � Q. This is established by our usual

contradiction argument. If the statement were not true, we could �nd a sequence

(Mi; gi) with kR(gi)kp ! 0, sgl(Mi; gi) ! 1, and k(Mi; gi)kp;2;1 = Q > 0

for all i. For each (Mi; gi) select pi 2 Mi such that k(Ai; gi)kp;2;1 = Q for

any Ai 3 pi. Then the pointed sequence (Mi; gi; pi) will subconverge to a 
at

manifold (M; g; p) in the pointed Lp;2 topology. Thus (M; g; p) also has the

property that k(A; g)kp;2;1 = Q for all A 3 p. This implies that inj rad(M; g) < 1

at p; thus we have a geodesic loop 
 : [0; l] ! M of length l < 2 and 
(0) =


(l) = p. Using the embeddings Fik : 
k ! Mi, we can then construct a

loop ci : [0; li] ! Mi of length li ! l with ci(0) = ci(li) = pi. Since 
 is not

contractible, the loops ci will not be contractible in B(pi; 1) for large i. We can,

therefore, shorten ci through loops based at pi until we get a nontrivial geodesic

loop 
i : [0; ~li]!Mi of length ~li � li based at pi. This, however, contradicts our

assumption that sgl(Mi; gi)!1.

We can now use this to establish the following statement: Given p > n=2 and

�; l; Q > 0, there is an r = r(n; p;Q;�; l) such that any closed manifold with

kRkp � � and scg � l satis�es k(M; g)kp;2;r � Q. We contend that there is an
~l = ~l(n; p;�; l) such that any such manifold also satis�es sgl � ~l. Otherwise, we

could �nd a pointed sequence (Mi; gi; pi) with kR(gi)kp ! 0, scg(Mi; gi) ! 1,

and sgl(Mi; gi) = 2. Let 
i : [0; 2] ! Mi be a geodesic loop at pi of length

2. From our previous considerations, it follows that (Mi; gi; pi) subconverges

to a 
at manifold (M; g; p) in the pointed Lp;2 topology. The loops 
i will

converge to a geodesic loop 
 : [0; 2] ! M of length 2 and 
(0) = 
(2) = p. If

sgl(M; g) = scg(M; g) < 2 we can, as before, �nd geodesic loops in Mi of length

less than 2 for large i. Hence 
 is actually a closed geodesic of length 2 which

is noncontractible. This implies that the geodesic loops 
i are noncontractible

inside B(pi; 2) for large i. By assumption 
i cannot be a closed geodesic, and

is therefore not smooth at pi. Thus the closed curve 
i, when based at 
i(")

for some �xed but small " > 0, can be shortened through curves based at 
i(")

to a nontrivial geodesic loop of length less than 2. This again contradicts the

assumption that sgl(Mi; gi) = 2.
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Our proof of this last result deviates somewhat from that of [Anderson 1991].

This is required by our insisting on using norms rather than radii to measure

smoothness properties of manifolds.

Example 5.11. If a complete manifold satis�es Ric � ��, volB(p; 1) � v for all

p, and the conjugate radius is at least r0, then the injectivity radius has a lower

bound, inj rad � i0(n;�; v; r0). This result was observed by Zhu and the author,

and independently by Dai and Wei. It follows from the proof of the injectivity

radius estimate in [Cheeger et al. 1982]: the above bounds are all one needs in

order for the proof to work. Thus we conclude that the class of n-manifolds

with jRic j � �, vol � v, diam � D, and conj rad � r0 is precompact in the

C1+�-topology for all � < 1.

The local model for a class of manifolds is the type of space characterized by the

inequalities and equations one gets by multiplying the metrics in the class by

constants going to in�nity and observing how the quantities de�ning the class

changes.

Some examples are: The class of manifolds with kRic kp � � and inj rad � i0
has local model Ric � 0, inj rad � 1, which, as we know, is (Rn ; can). The class

of manifolds with kRkp � � has local model R � 0, i.e., 
at manifolds. The class

with jRic j � �, kRkn=2 � M , and volB(p; r0) � v has local model Ric � 0,

kRkn=2 <1, volB(p; r) � v0rn for all r; these are the nice asymptotically locally

euclidean spaces.

In all our previous results, the local model has been (Rn ; can). It is, therefore,

reasonable to expect any class that has (Rn ; can) as local model to satisfy some

kind of precompactness condition. If the local model is not unique, the situation

is obviously somewhat more complicated, but it is often possible to say something

intelligent. It is beyond the scope of this article to go into this. Instead we refer

the reader to [Anderson 1993; Fukaya 1990; Cheeger et al. 1992; Anderson and

Cheeger 1991].

As a �nale, Table 1 lists schematically some of the results we have proved.

6. Applications of Convergence Theory to Pinching Problems

In this section we will present some pinching results inspired by the work

in [Gao 1990]. Our results are more general and the proofs rely only on the

convergence results and their proofs given in previous sections, not on the work

in [Gao 1990].

For p > n=2 � 1 and Q; r > 0, we have the class H(n; p;Q; r) of pointed
C1 riemannian n-manifolds with k � kp;2;r � Q. We will be concerned with the

subclass H(V ) = H(n; p;Q; r; V ) of compact manifolds that in addition have

volume at most V . If p > n we know that H(V ) is precompact in the C1+�

topology, for � < 1 � n=p, while if n=2 < p < n the class H(V ) is precompact
in both the C� and L1;q, topologies, for � < 2 � n=p and 1=q > 1=p � 1=n.
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Class Local model = R
n Precompact in C�-topology

jRj � �; (jrkRicj �M) R � 0

1 vol � v vol B(p; r)� v0 � rn � < 2(+k)

diam � D

kRickp � �; (krkRickp �M) ric � 0

2 inj � i0 inj �1 � < 2(+k)� n
p
, where p > n

2

vol � V or diam � D

kRkp � �; (krkRickp �M) R � 0

3 scg � l0 scg �1 � < 2(+k)� n
p
, where p > n

2

vol � V or diam � D

jRicj � � Ric � 0

4
vol � v vol B(p; r)� v0 � rn

� < 2
diam � D

kRjB(p;r0)kn2 � "(n; v �D�n) kRkn
2
� "(n; v0)

jRicj � � Ric � 0

5
vol � v vol B(p; r)� v0 � rn

� < 2
diam � D

conj � r0 conj �1

Table 1. Comparison of results. All classes consist of connected, closed rie-

mannian n-manifolds.

Note that the volume bound tells us that any convergence takes place in the

unpointed sense, so we are basically reducing ourselves to studying convergence

of riemannian metrics on a �xed manifold.

Let g � g be the Kulkarni{Nomizu product of g with itself.

Theorem 6.1. Fix l 2 (1; p] and c 2 R. There exists " = "(l; c; n; p;Q; r; v)

such that any (M; g) 2 H(V ) with kRicg �cgkl =
�R

M jRicg �cgjl
�1=l � " is C�,

close to an Einstein metric on M , where � < 2 � n=p. If kRg � cg � gkl < ",

then (M; g) is C� close to a constant curvature metric.

Proof. Note that we think of jRicg �c gj as a function on M whose value at

p 2M is supfjRic(v; v)� cj : p 2 TpM; g(v; v) = 1g. A similar de�nition is given

for kR� c g � gkl.



CONVERGENCE THEOREMS IN RIEMANNIAN GEOMETRY 193

The proof is by contradiction on the existence of such an ". For the sake

of concreteness suppose n=2 < p < n. Using all of our previous work, we can

therefore suppose that we we have a sequence of metrics gi on a �xed manifoldM

such that (M; gi) 2 H(V ) and kRicgi �c gikl converges to 0. We can furthermore

assume that for each i, we have harmonic charts  is : B(0; r) ! M , for s =

1; : : : ; N , so that gis�� converges on B(0; r) to some limit riemannian metric gs��
in the  is�� coordinates. Note that the coordinates vary, but that they will

themselves converge to limit charts  s. As in the preliminaries of Theorem 5.1,

we know that the limit coordinates are harmonic.

Now �x s and consider, in the  is coordinates, the equation �igi+Q(gi; @gi) =

Ricgi . Here we know that Q(gi; @gi) converges to Q(g; @g) in L
q=2 where 1=q >

1=p � 1=n, and g is the limit metric. Moreover, kRicgi �c gikl ! 0. So we

can conclude that, in the limit harmonic coordinates  s, we have the equation

�g+Q(g; @g) = c g or �g = �Q(g; @g)+c g. Here the right-hand side is in Lq=2,
with q=2 > p. So we can argue as in the proof of Theorem 5.1 that g is a C1

metric that satis�es the equation �g +Q(g; @g) = c g in harmonic coordinates.

But this implies that the metric is Einstein, which contradicts our assumption

that the gi were not C
� close to an Einstein metric.

If we assume that kR� c g � gkl ! 0, we have in particular

kRicg �(n� 1) c gkl ! 0:

So the limit metric is again C1 and Einstein. We will, in addition, have kWkl !
0, where W is the Weyl tensor. Since kWkl varies semicontinuously in the C�

topology, the limit space must satisfy kWkl = 0. But then the metric will also

be conformally 
at, and this makes it a constant curvature metric. �

It is worthwhile pointing out that if we �x c 2 R and assume that kRic�c gkp
or kR� c g � gkp is small, where p > n=2, then we have Lp bounds on curvature.

It is, therefore, possible to get some better pinching results in this case. Let's

list some examples.

Theorem 6.2. Let p > n=2 � 1, l; V > 0, and c 2 R be given. There exists " =

"(n; p; l; V; c) such that any (Mn; g) with scg � l, vol � V , and kRg�c g�gkp � "

is Lp;2 close to a constant curvature metric on M .

Proof. The proof, of course, uses Example 5.9 and proceeds as Theorem 1 with

the added �nesse that, since kR � c g � gkp ! 0, we can achieve convergence in

Lp;2 rather than in the weaker C� topology, � < 2� n=p. �

Theorem 6.3. Let p > n=2 � 1, i0; D > 0, and c 2 R be given. There

exists " = "(n; p; i0; D; c) such that any (Mn; g) with inj rad � i0; diam � D and

kRic�c gkp � " is Lp;2 close to an Einstein metric.

Proof. Same as before. �

Finally, we can also improve Gao's result on Ln=2 curvature pinching.



194 PETER PETERSEN

Theorem 6.4. Let n � 2, �; v;D > 0, and c 2 R be given. There exists

" = "(n;�; v;D) such that any (Mn; g) satisfying jRic j � �, vol � v, diam � D,

and kR � c g � gkn=2 � " is C1+� close to a constant curvature metric for any

� < 1.

Proof. Notice that the smallness of kR�c g�gkn=2 implies that kRjB(p;r0)k will
be su�ciently small for some small r. Thus, the class is precompact in the C1+�

topology for any � < 1. We can then use Theorem 6.1 to �nish the proof. �

When dim � 3 we know from Schur's lemma and the identity d Scal = 2 divRic

that pointwise constant sectional curvature implies constant curvature and that

pointwise constant Ricci curvature implies constant Ricci curvature. This can

be used to establish further pinching results, where instead of assuming that the

curvature is close to a constant, we assume smallness of the tensors

R� (n(n� 1))�1 Scal g � g

or Ric�n�1 Scal g. With the background we have established so far, it is not

hard to �nd the appropriate pinching theorems. Further details are left to the

energetic reader.

Appendix A:

Useful Results from [Gilbarg and Trudinger 1983]

Fix a nice bounded domain 
 � Rn , n � 2. For f 2 C1(
) and 0 < � � 1,

de�ne

kfkk+�;

= max

�
sup
x2


j@jf(x)j : jjj � k

�
+max

�
sup
x;y2


j@jf(x)� @jf(y)j
jx� yj� : jjj = k

�
:

Since we don't allow � = 0, there should be no ambiguity about what kfkk+1

is. Also de�ne

kfkp;k;
 =
X

0�jjj�k

�Z



j@jf(x)jpdx
�1=p

:

Then de�ne Ck+�(
) and Lp;k(
) as the completions of C1(
) with respect to

the norms k � kk+�;
 and k � kp;k;
, respectively.
Sobolev embeddings. Any closed and bounded subset of Lp;k is compact with

respect to the weaker norms k � kl+� (or k � kq;l) provided l + � < k � n=p (or

l < k and 1=q > 1=p� (k � l)=n). In other words, we have compact inclusions

Cl+� � Lp;k for l+� < k�n=p and Lq;l � Lp;k for l < k and 1=q > 1=p�(k�l)=n.
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Elliptic estimates. Fix again a nice bounded 
 � Rn and a compact 
0 �
�
. We shall work exclusively with functions u 2 C1(
) and operators whose

coe�cients are in C1(
). The issues here are, therefore, quantitative rather than

qualitative. Fix a second-order operator L = aij@i@j , where faijg : 
! Rn�Rn
is a positive de�nite symmetric matrix with eigenvalues in [e�Q; eQ] whose entries

satisfy either kaijkk+�;
 � Q or kaijkp;l;
 � Q.

Theorem A.1 (Schauder estimates). If kaijkk+� � Q, there exists C =

C(k + �; n; Q; 
0 � 
) such that

kukk+2+�;
0 � C
�kLukk+�;
 + kukC0;


�
:

Proof. For k = 0, this is [Gilbarg and Trudinger 1983, Theorem 6.2]. For

k � 1, we can proceed by induction. Suppose we have established the inequality

for some k. Fix @j and use

k@jukk+2+� � C(k)(kL@jukk+� + k@jukC0)

� C(k)(k@jLukk+� + k[L; @j ]akk+� + k@jukC0)

� C(k)(kLukk+1+� + kalmkk+�kukk+2+� + k@jukC0)

� C(k)(kLukk+1+� + (Q+ 1)kukk+2+�)

� C(k)(kLukk+1+� + (Q+ 1)C(k)(kLukk+� + kukC0))

� C(k + 1)(kLukk+1+� + kukC0):

Since kukk+1+2+� � kukk+2+� +
P

j k@jukk+2+�, we get the desired inequality.

�

Theorem A.2 (Lp estimates). If vol
 � V and kaijkp;k � Q, where p > n if

k = 1 and p > n=2 if k � 2, there exists C = C(p; k; n;Q;
0 � 
; V ) such that

kukp;k+1;
0 � C (kLukp;k�1;
 + kukLp;
) :

Furthermore, if 
 = B(0; r) is a euclidean ball and u = 0 on @B(0; r) = S(0; r),

then we can �nd C = C(p; n;Q; r) such that

kukp;2;B(0;r) � C (kLukp;B(0;r) + kukp;B(0;r)):

Proof. The condition p � n=k > 0 implies by the Sobolev imbedding results

that kaijkl+�;
 � K(n; p; k; l; �)Q for l + � < p � n=k. In particular, the

functions aij have moduli of continuity bounded on 
 in terms ofQ;n; p; k. When

k = 1, we can, therefore, use Theorem 9.11 (or 9.13 for the second inequality) in

[Gilbarg and Trudinger 1983] to get the estimate. When k � 2, we use induction

again. Assume the inequality holds for some k and that kaijkp;k+1;
 � Q. Since

p > n=2, we have 1=(2p) > 1=q � 1=n, so kaijk2p;k;
 � K(n; p; k)Q. Also, recall

that kfkp;
 � C(p; q; vol
)kfkq;
 for q > p by H�older's inequality. Now we
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compute as with the Schauder estimates:

k@lukp;k+1;
0 � C(k; p)(kL@lukp;k�1 + k@lukLp)
� C(k; p)(kLukp;k + k[L; @l]ukp;k�1 + k@lukLp)
� C(k; p)(kLukp;k + k@laijk2p;k�1 kuk2p;k�1 + k@lukLp)
� C(k; p)(kLukp;k + (KQ+ 1)kuk2p;k�1)

� C(k + 1; p)(kLukp;k + kukp):
By adding up, we therefore have

kukp;k+2;
0 � C(n; p) (kLukp;k;
 + kukp;
) : �

Now suppose our operator is given to us in divergence form, L = @i(a
ij@j),

where aij is a positive de�nite symmetric matrix with eigenvalues in [e�Q; eQ].

All Laplacians are written in this form unless we use harmonic coordinates, so

it is obviously important for our theory to understand this case as well.

Theorem A.3 (Lp estimates for divergence operators). Assume 
0 �R

 is compact , 
 is bounded with vol
 � V and kaijkp;k � Q, where p > n if

k = 1 and p > n=2 if k � 2. There exists C = C(p; k; n;Q;
0 � 
; V ) such that

kukp;k+1;
0 � C (kLukp;k�1;
 + kukp;
):
Furthermore, if 
 = B(0; r) and u = 0 on @
, there is C = C(p; n; r;Q) such

that

kukp;2;B(0;r) � C (kLukp;B(0;r)):

Proof. We will concentrate on the second inequality. The proof of the �rst

inequality is similar but simpler for the case where k = 1. For general k one

can just use induction as before. The proof proceeds on two steps. First we

show that there is a C such that kukp;2 � C (kLukp + kukp). Then we show by

a simple contradiction argument that there is a C such that kukp � C kLukp.
These two inequalities clearly establish our result.

Write L = @i(a
ij@j) = aij@i@j + bj@j = ~L + bj@j . We then have, from the

previous Lp estimates,

kukp;2;
 � C1 (k~Lukp;
 + kukp;
)
� C1 (kLukp;
 + kbj@jukp;
 + kukp;
)
� C1 (kLukp;
 + kbjkp;
 k@jukC0;
 + kukp;
)
� C1 (kLukp;
 +Q k@jukC0;
 + kukp;
):

Thus we need to bound k@jukC0 in terms of kLukp and kukp. This is done

by a bootstrap method beginning with an L2 estimate for @ju. To get this L2

estimate, we use

uLu = u @i(a
ij@ju) = @iu a

ij @ju� @i(u a
ij@ju) � e�Q@iu�

ij@ju� @i(u a
ij@ju):
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Integration over B(0; r), together with the fact that u = 0 on @B(0; r), then

yieldsZ
B(0;r)

uLu � e�Q
Z
B(0;r)

P
i
(@iu)

2 �
Z
B(0;r)

@i(u a
ij@ju) = e�Q

Z
B(0;r)

P
i
(@iu)

2:

Thus kruk22 � eQ kuk2 kLuk2 � eQ c(n; r) kukp kLukp. In particular kruk2 �
maxfkukp; eQ C(n; r) kLukpg � C2(kLukp + kukp). This implies that

kukr1;2 � C1(k~Lukr1 + kukr1) � C1(kLukr1 + kbjkp k@juk2 + kukr2)
� C3(kLukp + kukp);

where 1=r1 = 1=p+1=2. Now recall that we have a Sobolev inequality k@jukq1 �
C(r1; q1; n)kukr1;2 where 1=q1 = 1=r1 � 1=n = 1=2 + (1=p � 1=n) > 0; also

q1 > 2, so we now have a better bound on @ju. Doing this over again we get

kukr2;2 � C4 (kLukp+kukp), where 1=r2 = 1=p+1=q1 = (1=p�1=n)+1=p+1=2

and k@jukq2 � C kukr2;2, where 1=q2 = 1=r2 � 1=n = 1=2 + 2(1=p� 1=n). After

l iterations of this type, we end up with

kukrl;2 � C2+l (kLukp + kukp); k@jukql � C kukrl;2

where 1=rl = l(1=p � 1=n) + 1=p + 1=2 and 1=ql = 1=2 + (l + 1)(1=p � 1=n).

This will end as soon as 1=2 + (l + 1)(1=p � 1=n) < 0, in which case we can

use the other type of Sobolev inequality: k@jukC0 � C kukrl;2 if rl > n. Since

the number of iterations we need to go through in order for this to happen only

depends on p and n, we get the desired C0 estimate on @ju.

We now need to show that there is a constant C(p; n; r) such that kukp �
C kLukp. If such a C does not exist we can �nd a sequence ul with kulkp = 1,

ul = 0 on @
, and Ll = @i(a
ij
l @j) with kLlulkp ! 0 as l ! 1. Since all the

operators Ll have the same bounds we get

kulkp;2 � C (kLlulkp + kulkp) � 2C as l !1:

So we can, in addition, assume that ul converges in the C1+� topology, � <

1� n=p, to a function u with kukp = 1. On the other hand, we also know that

krulk22 � eQ kulk2kLlulk2 ! 0 as l !1:

The C1 function u must therefore satisfy ru = 0 and u = 0 on @
, which implies

that u � 0 on 
. This contradicts kukp = 1. �

Elliptic regularity results. Let's return to the case where L = aij@j@i and

aij is a symmetric matrix whose eigenvalues lie in [e�Q; eQ]. Suppose u 2 Lp;2

solves the equation Lu = f; aij 2 Cl+� and f 2 Lp;l (or f 2 Cl+�). Then

u 2 Lp;l+2 (or Cl+2+�).
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Appendix B: On R and the coe�cients of �

Suppose that we have a sequence of metrics on a �xed domain B(0; r). How

will the curvature operator R and the coe�cients of � vary when these metrics

are assumed to converge in the Lp;k topology? We will show below that kRkp
varies continuously in the Lp;2-topology if p > n=2 and that the coe�cients of �

vary continuously in the Lp-norm if the metrics converge in the Lp;1-topology,

for p > n.

To make the formulation easier, suppose G : 
 � Rn ! Rn �Rn is a positive

de�nite matrix whose entries gij are functions on some bounded domain 
 � Rn .

If we write � = gij@ij + bi@i, b
i = @jg

ij + (gij=g)@jg, then clearly gij = G�1

and bi = @jg
ij+ 1

2g
ij@j(log g). So we must check howG

�1 and logG depend onG.

Now @iG
�1 = �G�1(@iG)G

�1, so if we vary G in the Lp;1-topology, for p > n,

then G, G�1, detG, and detG�1 vary continuously in the C0 topology @iG,

@iG
�1 vary continuously in the Lp topology. To see that bi varies continuously

in the Lp topology, it su�ces to check that @jg = @j detG varies continuously in

the Lp topology. But @j detG = F (G; @jG) for some algebraic function which is

linear in the second matrix variable. This observation leads to the desired result.

To check the continuity of R, recall that Rl
ijk = @i�

l
jk � @j�lik +

P
r �

r
jk�

l
ir �

�rik�
l
jr, where

�ijk =
1
2

X
l

gil(@jgkl + @kglj � @lgjk):

So if G varies continuously in Lp;2, for p > n=2, then @G varies continuously in

L2p; and from the above we conclude that �ijk varies continuously in L
1;p � L2p,

so R varies continuously in Lp.

If we vary G in Lp;k, for k � 2 and p > n=2, we can also easily check that R

varies continuously in Lp;k�2, that G�1 varies continuously in Lp;k, and that bi

(�rst order term in �) varies continuously in Lp;k�1.

From the remarks about the coe�cients of �, we see that conditions (h2) and

(h3) imply that we can use the results from Appendix A without further ado.

Appendix C: The Eguchi{Hanson metric

(See also [Petersen and Zhu 1994].)

Let �1; �2 and �3 be the standard left- or right-invariant one-forms on S3 =

SU(2) with d�i = �2�i+1^�i+2 (indices taken modulo 3). The canonical metric

of curvature 1 can be written ds2 = �21 + �22 + �23 . We shall consider metrics

on I � S3 of the form dr2 + '2(r)�21 +  2(r)(�22 + �23), where r 2 I and I is an

interval. We think of ' as being a function adjusting the length of the Hopf �ber

in S3. The volume form of this metric is dr^'(r)�1^ (r)�2^ (r)�3. Using this
choice, we can de�ne the Hodge � operator, which, in particular, maps �2 to �2

and satis�es �2 = 1. The two-forms dr ^'�1 � 2�2 ^�3, dr ^ �2� �3 ^'�1,
and dr^ �3�'�1^ �2 have eigenvalues �1 for �, and form a basis for �2TpM
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for all p 2 M . Normalizing these vectors by 1=
p
2 we get an orthonormal basis

for �2TpM . In this basis, the curvature operator R has the form�
A B

B� D

�
;

where A and D are the parts of the curvature tensor on the eigenspaces corre-

sponding to the eigenvalues 1 and �1, respectively. It is a simple algebraic ex-

ercise to see that a four-dimensional manifold is Einstein if and only if sec(�) =

sec(�?) for all planes � and their orthogonal components �?. Using this, one

can check that the metric is Einstein if and only if B � 0. In our case, A, B,

and D are diagonal matrices. If we set Sij = sec(�i ^ �j), where �0 = dr etc.,

and further set M = ( _' � _ ')= 3, the diagonal matrices bemoce

B = 1
2 diag(�S01 + S23;�S02 + S13;�S03 + S12);

A = 1
2 diag(S01 + S23 � 4M;S02 + S13 + 2M;S03 + S12 + 2M);

D = 1
2 diag(S01 + S23 + 4M;S02 + S13 � 2M;S03 + S12 � 2M):

The sectional curvatures can be computed using the tube formula, Gauss equa-

tions, and Codazzi{Maimardi equations, if we think of S3 as sitting in I �S3 as

a hypersurface for each r. We get

S23 =
4 2 � 3'2

 4
�

_ 2

 2
;

S10 = � �'

'
;

Sj0 = �
� 

 

S1i =
'2

 4
� _' _ 

' 

for j = 2; 3;

for i = 2; 3:

Hence the metric is Einstein if

� �'

'
=

4 2 � 3'2

 4
�

_ 2

 2
; �

� 

 
=
'2

 4
� _' _ 

' 
:

One can explicitly solve these equations, but we will only be interested in the

special case where ' =  _ and _ 2 = 1�(�=6) 2+k �4, where � is the Einstein

constant and k is just some integration factor. When � = 6 and k = 0, we see

that  = sin r and ' = sin r cos r; this corresponds to the Fubini{Study metric

on C P 2. When � = 0 and k < 0, we get a family of Ricci-
at metrics. These

are the examples of Eguchi and Hanson. You may want to check that changing

k in this case is the same as scaling the metric.

To get a smooth complete metric, we need the initial condition  (0) =

(�k)�1=4. This implies _ (0) = 0, '(0) = 0, and _'(0) = 2. Since _'(0) is

twice as large as we would like, we divide out by the antipodal maps on S3,

which is still an isometry of dr2 + '2�21 + '2(�22 + �23). Then our metric lives

on I � RP3 = I � SO(3), and the Hopf �ber now has length � rather than 2�.

As r ! 0, we can then check that the above metric de�nes a smooth metric on

TS2 =
�
[0;1) � RP3

�
=(0 � RP3), where 0 � RP3 � S2 by the Hopf �bration.
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The level set r = 0 is a totally geodesic S2 of constant curvature 4(�k)1=2, while
the level sets r = r0 are SO(3) with the metric '2(r0)�

2
1 +  2(r0)(�

2
2 + �23).

The di�erential equation _ 2 = 1 + k �4 shows that  is on the order of r as

r !1. Thus _ ' 1, � = �4k �5 ' 0 as r !1. Using this, one can easily see

that the norm of the curvature operator, jRj, is of order r�6 at in�nity.

The volume form satis�es

dr ^ '(r)�1 ^  2(r)�2 ^ �3 =  3 (1 + k �4)1=2 dr ^ �1 ^ �2 ^ �3
' r3 dr ^ �1 ^ �2 ^ �3:

Thus the metric at 1 is very close to the cone over RP3, namely dr2 + r2(�21 +

�22+�3) on [0;1)�SO(3). This implies that volB(p; r) � 1
2!4r

4 for all r and p.

Also, kRkp =
R jRjp d vol � C

R1
1 r�3pr3dr = C

R1
1 r3�3pdr < 1 for p > 4

3 .

In particular, kRkn=2 = kRk2 is �nite.
As k ! �1, the level set r = 0 will degenerate to a point and the whole

metric converges to the cone metric dr2 + r2(�21 + �22 + �23) on [0;1) � SO(3).

At the same time, kRk2 stays bounded, but will go to zero on sets r � " > 0.

What happends is that the collapse of S2 absorbs all of the kRk2.
We have now constructed some interesting complete Ricci-
at metrics. To

get compact examples, we can just use the fact that these examples as k ! �1
look like cones, and then glue them into compact examples which locally have

such cones. We illustrate this as done in [Anderson 1990a]: The graphs for '

and  look approximately like r at 1. The larger k is, the faster they get to

look linear. For large k, take ';  on [0, 5] and then bend them to have zero

derivatives at r = 5. This can be done keeping Ric � 0 and without changing

the volume much. Next re
ect ' and  in the line r = 5. This yields metrics on

TS2 [ TS2 = S2 �S2 that, near r = 0 and r = 10, look like the Eguchi{Hanson

metric, and otherwise don't change much. As k ! �1, these compact examples

degenerate at r = 0; 10 and the space in the limit becomes a suspension over RP3.

One can see that this process can happen through metrics with 0 � Ric � 1000,

vol � 1
5 , diam � 10, and kRk2 � 1000.
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