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The Comparison Geometry of Ricci Curvature

SHUNHUI ZHU

Abstract. We survey comparison results that assume a bound on the man-
ifold’s Ricci curvature.

1. Introduction

This is an extended version of the talk I gave at the Comparison Geometry
Workshop at MSRI in the fall of 1993, giving a relatively up-to-date account of
the results and techniques in the comparison geometry of Ricci curvature, an
area that has experienced tremendous progress in the past five years.

The term “comparison geometry” had its origin in connection with the suc-
cess of the Rauch comparison theorem and its more powerful global version,
the Toponogov comparison theorem. The comparison geometry of sectional cur-
vature represents many ingenious applications of these theorems and produced
many beautiful results, such as the 1

4
-pinched Sphere Theorem [Berger 1960;

Klingenberg 1961], the Soul Theorem [Cheeger and Gromoll 1972], the Gener-
alized Sphere Theorem [Grove and Shiohama 1977], The Compactness Theorem
[Cheeger 1967; Gromov 1981c], the Betti Number Theorem [Gromov 1981a], and
the Homotopy Finiteness Theorem [Grove and Petersen 1988], just to name a
few. The comparison geometry of Ricci curvature started as isolated attempts
to generalize results about sectional curvature to the much weaker condition
on Ricci curvature. Starting around 1987, many examples were constructed to
demonstrate the difference between sectional curvature and Ricci curvature; in
particular, Toponogov’s theorem was shown not to hold for Ricci curvature. At
the same time, many new tools and techniques were developed to generalize re-
sults about sectional curvature to Ricci curvature. We will attempt to present
the highlights of this progress.

As often is the case, a survey paper becomes outdated before it goes to press.
The same can be said about this one. In the past year, many beautiful results
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were obtained in this area, mainly by T. Colding and J. Cheeger [Colding 1996a;
1996b; 1995; Cheeger and Colding 1995] (see also Colding’s article on pages 83–
98 of this volume). These results are not included here. To compensate for this,
we have tried to give complete proofs of the results we discuss; these results now
constitute the “standard” part in the comparison theory of Ricci curvature. We
benefited a lot from a course taught by J. Cheeger at Stony Brook in 1988 and
from [Cheeger 1991]. Thanks also go to the participants of a topic course I gave
at Dartmouth in the winter of 1995.

2. The Main Comparison Theorem through Weitzenböck
Formula

The relation between curvature and the geometry is traditionally introduced
through the second variation of arclength, as was first used by Myers. We chose
to introduce it from the Weitzenböck formula, which gives a uniform starting
point for many applications, including the recent results of Colding.

For a smooth function f , we define its gradient, Hessian, and Laplacian by

〈∇f,X〉 = X(f), Hess f(X, Y ) = 〈∇X(∇f), Y 〉, 4f = tr(Hess f).

For a bilinear form A, we write |A|2 = tr(AAt).

Theorem 2.1 (The Weitzenböck formula). Let (Mn, g) be a complete
Riemannian manifold . Then, for any function f ∈ C3(M), we have

1
24|∇f |2 = |Hess f |2 + 〈∇f,∇(4f)〉+ Ric(∇f,∇f)

pointwise.

Proof. Fix a point p ∈ M . Let {Xi}n
1 be a local orthonormal frame field such

that

〈Xi, Xj〉 = δij , ∇XiXj(p) = 0.

Computation at p gives

1
24|∇f |2 = 1

2

∑
i

XiXi〈∇f,∇f〉=
∑

i

Xi〈∇Xi∇f,∇f〉=
∑

i

Xi Hess(f)(Xi ,∇f)

=
∑

i

Xi Hess(f)(∇f,Xi) (Hessian is symmetric)

=
∑

i

Xi〈∇∇f(∇f), Xi〉=
∑

i

〈∇Xi∇∇f(∇f), Xi〉+〈∇∇f(∇f),∇XiXi〉

=
∑

i

〈∇Xi∇∇f(∇f), Xi〉 (the other term vanishes at p)

=
∑

i

〈R(Xi,∇f)∇f,Xi〉+
∑

i

〈∇∇f∇Xi∇f,Xi〉+
∑

i

〈∇[Xi,∇f]∇f,Xi〉.
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The first term is by definition Ric(∇f,∇f); the second term is∑
i

(∇f)〈∇Xi∇f,Xi〉 − 〈∇Xi∇f,∇∇fXi〉 = (∇f)
∑

i

〈∇Xi∇f,Xi〉 − 0 (at p)

= (∇f)4f = 〈∇f,∇(4f)〉,
and the third term is∑

i

Hess(f)([Xi,∇f ], Xi) =
∑

i

Hess(f)(∇Xi∇f −∇∇fXi, Xi)

=
∑

i

Hess(f)(∇Xi∇f,Xi)−Hess(f)(∇∇fXi, Xi)

=
∑

i

Hess(f)(∇Xi∇f,Xi)− 0 (at p)

=
∑

i

Hess(f)(Xi,∇Xi∇f)

=
∑

i

〈∇Xi∇f,∇Xi∇f〉 = |Hess(f)|2.

The theorem follows. �

The power of this formula is that we have the freedom to choose the function
f . Most of the results of comparison geometry are obtained by choosing f to be
the distance function, the eigenfunction, and the displacement function, among
others.

We will consider the distance function. Fix a point p, and let r(x) = d(p, x)
be the distance from p to x. This defines a Lipschitz function on the manifold,
smooth except on the cut locus of p. It also satisfies |∇r| = 1 where it is
smooth. In geodesic polar coordinates at p, we have ∇r = ∂/∂r. Let m(r)
denote the mean curvature of the geodesic sphere at p with outer normal N , i.e.,
if {e1, . . . , en−1} be an orthonormal basis for the geodesic sphere, let

m(r) =
n−1∑
i=1

〈∇eiN, ei〉.

In geodesic polar coordinates, the volume element can be written as

d vol = dr ∧Aω(r) dω

where dω is the volume form on the standard Sn−1. In what follows, we will
suppress the dependence of Aω(r) on ω for notational convenience. With these
notations, we are now ready to state our main result of this section.

Theorem 2.2 (Main comparison theorem). Let (Mn, g) be complete, and
assume Ric(M) ≥ (n− 1)H . Outside the cut locus of p, we have:
(1) Volume element comparison:

A(r)
AH(r)

is nonincreasing along radial geodesics.
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(2) Laplacian comparison:

4r ≤ 4Hr.

(3) Mean curvature comparison:

m(r) ≤ mH(r).

(Here quantities with a superscript H are the counterparts in the simply con-
nected space form of constant curvature H .) Furthermore, equality holds if and
only if all radial sectional curvatures are equal to H .

Proof. We will prove the second part, the Laplacian comparison. The first and
third parts follow from a lemma that we will prove momentarily.

Let f(x) = r(x) in Theorem 2.1 and note that |∇r| = 1. We obtain, outside
the cut locus of p,

|Hess r|2 +
∂

∂r
(4r) + Ric

(
∂

∂r
,
∂

∂r

)
= 0.

Let λ1, . . . , λn be the eigenvalues of Hess r. Since the exponential function is a
radial isometry, one of the eigenvalues, say λ1, is zero. By the Cauchy–Schwarz
inequality, we have

|Hess(r)|2 = λ2
2 + · · ·+ λ2

n ≥
(λ2 + · · ·+ λn)2

n− 1
=

tr2(Hess(f))
n− 1

=
(4r)2
n− 1

.

Thus, if Ric ≥ (n − 1)H , then

(4r)2
n− 1

+
∂

∂r
(4r) + (n− 1)H ≤ 0.

Let u = (n− 1)/4r. Then
u′

1 +Hu2
≥ 1.

Note that 4r → (n − 1)/r when r → 0; thus u → r. Integrating the above
inequality gives

4r ≤ 4Hr =




(n− 1)
√
H cot

√
Hr for H > 0,

(n− 1)/r for H = 0,
(n− 1)

√−H coth
√−Hr for H < 0.

We now discuss the equality case. If equality holds at r0, then for any r ≤ r0,
all the inequalities in the above argument become equalities. In particular, the
n− 1 eigenvalues of Hess(r) are equal to

√
N cot

√
Hr (to simplify the notation,

we assume H > 0. For H ≤ 0, replace cot by coth.) Let Xi for i = 2, 3, . . . , n,
be the orthonormal eigenvectors of Hess(r) at r; thus

∇Xi

∂

∂r
=
√
H cot

√
HrXi.
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Extend Xi in such a way that [Xi, ∂/∂r] = 0 at r, then

sec
(
Xi,

∂

∂r

)
= −

〈
∇∂/∂r∇Xi

∂

∂r
,Xi

〉
= −〈∇∂/∂r(

√
H cot

√
Hr)Xi, Xi〉

= H csc2
√
Hr − 〈∇∂/∂rXi, Xi〉

= H csc2
√
Hr −

√
H cot

√
Hr
〈
∇Xi

∂

∂r
,Xi

〉
= H csc2

√
Hr − (

√
H cot

√
Hr)2 = H. �

We now give a more geometric interpretation of 4r, which proves parts (1) and
(3) of Theorem 2.2.

Lemma 2.3. Given a complete Riemannian manifold (Mn, g) and a point p ∈M ,
we have 4r = m(r) and m(r) = A′(r)/A(r).

Proof. By definition,

4r = tr(Hess r) =
n−1∑
i=1

〈∇ei(∇r), ei〉 + 〈∇N(∇r), N〉

=
n−1∑
i=1

〈∇eiN, ei〉+ 〈∇NN,N〉 =
n−1∑
i=1

〈∇eiN, ei〉 = m(r).

This proves the first equality. For the second, consider the map φ : TpM → M

defined by φ(v) = expp(rv). Let {v1, . . . , vn−1} be an orthonormal basis for the
unit sphere in TpM . Then

A(r) = d vol
(
∂

∂r
, φ(v1), . . . , φ(vn−1)

)
= d vol

(
∂

∂r
, d expp(rv1), . . . , d expp(rvn−1)

)
= J1(r) ∧ J2(r) ∧ · · · ∧ Jn−1(r),

where Ji(r) = d expp(rvi). Fix r0. We have

A′(r0)
A(r0)

=
∑n−1

i=1 J1(r0) ∧ · · · ∧ J ′i(r0) ∧ · · · ∧ Jn−1(r0)
J1(r0) ∧ J2(r0) ∧ · · · ∧ Jn−1(r0)

.

Let J̄1(r), . . . , J̄n−1(r) be linear combinations (with constant coefficients) of the
Ji(r)’s such that J̄1(r0), . . . , J̄n−1(r0) form an orthonormal basis. Then

A′(r0)
A(r0)

=
∑n−1

i=1 J1(r0) ∧ · · · ∧ J ′i(r0) ∧ · · · ∧ Jn−1(r0)
J1(r0) ∧ J2(r0) ∧ · · · ∧ Jn−1(r0)

=
∑n−1

i=1 J̄1(r0) ∧ · · · ∧ J̄ ′i(r0) ∧ · · · ∧ J̄n−1(r0)
J̄1(r0) ∧ J̄2(r0) ∧ · · · ∧ J̄n−1(r0)

=
n−1∑
i=1

J̄1(r0) ∧ · · · ∧ J̄ ′i(r0) ∧ · · · ∧ J̄n−1(r0) =
n−1∑
i=1

〈J̄ ′i(r0), J̄i(r0)〉.
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Let fi(t, s) = expp(svi + t~n). Then

Ji(r0) = d expp(r0vi) =
∂

∂s

∣∣∣
s=0

fi(t, s)

and

J ′i(r0) =
∂

∂t

∣∣∣
t=r0

∂

∂s

∣∣∣
s=0

fi(t, s) =
∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=r0

fi(t, s) = ∇Ji(r0)N

Therefore, we also have J̄ ′i(r0) = ∇J̄i(r0)N . Thus

A′(r0)
A(r0)

=
n−1∑
i=1

〈∇J̄i(r0)N, J̄i(r0)〉 = m(r0). �

3. Volume Comparison and Its Applications

The applications of the volume comparison theorem are numerous; we will
divide them into several sections. A common feature is that all results in this
section are about the fundamental group and the first Betti number.

Bishop–Gromov volume comparison and its direct applications. For
most applications of the volume comparison theorem, an integrated form is used.
One can integrate the inequality in Theorem 2.2 along radial directions and along
a subset of the unit sphere at p. Then:

Theorem 3.1. Let r ≤ R, s ≤ S, r ≤ s, R ≤ S, and let Γ be any measurable
subset of Sn−1

p . Let AΓ
r,R(p) be the set of x ∈M such that r ≤ r(x) ≤ R and any

minimal geodesic γ from p to x satisfies γ̇(0) ∈ Γ. Then

vol(AΓ
s,S(p))

vol(AΓ
r,R(p))

≥ volH(AΓ
s,S)

volH(AΓ
r,R)

,

with equality if and only if the radial curvatures are all equal to H .

Remark. The strength of this theorem is that now the balls do not have to lie
inside the cut locus; hence it is a global result.

We will give a detailed proof of this theorem, since it does not seem to be in the
literature.

Lemma 3.2. Let f, g be two positive functions defined over [0,+∞). If f/g is
nonincreasing , then for any R > r > 0, S > s > 0, r > s, R > S, we have∫ R

r f(t) dt∫ S

s
f(t) dt

≤
∫R

r g(t) dt∫ S

s
g(t) dt

.

Proof. It suffices to show that the function

F (x, y) =

∫ y

x
f(t) dt∫ y

x
g(t) dt
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satisfies
∂F

∂x
≤ 0,

∂F

∂y
≤ 0.

In fact, if this is true, then∫ R

r
f(t) dt∫R

r
g(t) dt

≤
∫ S

r
f(t) dt∫ S

r
g(t) dt

≤
∫ S

s
f(t) dt∫ S

s
g(t) dt

,

which is what we want.
We now compute

∂F

∂y
=

1
(
∫ y

x
g(t) dt)2

(
f(y)

∫ y

x

g(t) dt− g(y)
∫ y

x

f(t) dt
)

=
g(y)

∫ y

x
g(t) dt

(
∫ y

x
g(t) dt)2

(
f(y)
g(y)

−
∫ y

x
f(t) dt∫ y

x
g(t) dt

)
.

But
f(t)
g(t)

≥ f(y)
g(y)

for x ≤ t ≤ y.

Thus ∫ y

x

f(t) dt ≥
∫ y

x

f(y)
g(y)

· g(t) dt =
f(y)
g(y)

∫ y

x

g(t) dt,

that is,

f(y)
g(y)

≤
∫ y

x f(t) dt∫ y

x g(t) dt
,

which implies ∂F/∂y ≤ 0. �

Proof of Theorem 3.1. Just as in lemma 3.2, we only need to show that

vol(AΓ
x,y)

vol(AH(x, y))

is nonincreasing.
Note that

vol(AΓ
x,y) =

∫
Γ

dω

∫ min{y,cut(ω)}

min{x,cut(ω)}
A(r, ω) dr,

where cut(ω) is the distance to the cut locus in the direction ω ∈ Sn−1
p .

Since A(r, ω)/AH(r) is nonincreasing for any ω and r < cut(ω), Lemma 3.2
implies that, for z ≥ y,

∫ min{y,cut(ω)}
min{x,cut(ω)} A(r, ω) dr∫ min{y,cut(ω)}
min{x,cut(ω)} A

H(r) dr
≥
∫ min{z,cut(ω)}
min{x,cut(ω)} A(r, ω) dr∫ min{z,cut(ω)}
min{x,cut(ω)} A

H(r) dr
,
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that is,

∫ min{y,cut(ω)}

min{x,cut(ω)}
A(r, ω) dr ≥

∫min{y,cut(ω)}
min{x,cut(ω)} A

H(r) dr∫ min{z,cut(ω)}
min{x,cut(ω)} A

H(r) dr
·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω) dr

≥
∫min{y,cut(ω)}
x

AH(r) dr∫ min{z,cut(ω)}
x AH(r) dr

·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω) dr

≥
∫ y

x
AH(r) dr∫ z

x
AH(r) dr

·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω) dr,

where the last inequality follows by considering the three possibilities cut(ω) ≤
y ≤ z, y ≤ cut(ω) ≤ z, and y ≤ z ≤ cut(ω). The inequality before that uses the
fact that

∫ a

x
AH(r) dr

/∫ b

x
AH(r) dr is nonincreasing when a < b. Integrate the

above over Γ, and we get

vol(AΓ
x,y) ≥

∫ y

x A
H(r) dr∫ z

x A
H(r) dr

· vol(AΓ
x,z) =

vol(AH(x, y))
vol(AH(x, z))

· vol(AΓ
x,z).

The equality part follows from the equality discussion in Theorem 2.2. �

By taking s = r = 0 and Γ = Sn−1, one gets the following frequently used
corollary.

Corollary 3.3. (1) Gromov’s relative volume comparison theorem:

vol(Bp(r))
vol(Bp(R))

≥ vol(BH(r))
vol(BH(R))

.

(2) Bishop volume comparison theorem:

vol(Bp(r)) ≤ vol(BH(r)).

In both cases, equality holds if and only if Bp(r) is isometric to BH(r).

We will give two applications of this result.

Theorem 3.4. Assume Ric ≥ (n− 1)H > 0.
(1) Myers’ Theorem [1935]: diam(M) ≤ π/

√
H , and π1(M) is finite.

(2) Cheng’s Maximal Diameter Sphere Theorem [1975]: If in addition
diam(M) = π/

√
H, then Mn is isometric to Sn(H).

Proof. Without loss of generality, we will assume H = 1.
(1) The classical proof of Myers’ theorem is through second variation of

geodesics, but one can easily see that it also follows from volume comparison.
We will now use Theorem 2.2(2) to prove this.

Let p, q be such that d(p, q) > π, and let γ be a minimal geodesic from p to
q. Since γ is minimal, γ(π) is outside the cut locus of p; thus dp is smooth at
γ(π), and 4dp ≤ (n− 1) cot dp by Theorem 2.2. Let dp → π from the left. Then
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4dp ≤ −∞. This is a contradiction, since the left-hand side is a finite number.
Therefore the diameter of M is at most π.

Using the same argument for the universal cover of M , we conclude that the
universal cover also has diameter less than π, and thus is compact. It then
follows that π1(M) is finite.

(2) Cheng’s original proof used an eigenvalue comparison theorem; we will use
the volume comparison theorem Corollary 3.3 to give a more geometric argument.
The first such proof in print seems to be in [Shiohama 1983].

Let p, q ∈M be such that d(p, q) = π. Consider two balls Bp(π
2 ) and Bp(π

2 ).
If the interiors of the two balls intersect, then there is a point x in the intersection
such that d(x, p) < π

2
and d(x, q) < π

2
; therefore d(p, q) ≤ d(x, p)+d(x, q)< π, a

contradiction. Thus the two balls do not intersect in the interior. It follows that

vol(M) ≥ vol(Bp(π
2
)) + vol(Bq(π

2
))

≥ vol(Bp(π)) · vol(B1(π
2 ))

vol(B1(π))
+ vol(Bq(π)) · vol(B1(π

2 ))
vol(B1(π))

= vol(M) · 1
2 + vol(M) · 1

2 = vol(M).

Thus all inequalities are equalities. In particular, equality holds in the vol-
ume comparison. Therefore M has constant curvature 1, and vol(Bp(π

2 )) =
vol(B1(π

2 )). It then follows M is simply connected and therefore isometric to
Sn(1). �

Remark. Myers’ theorem is almost the only statement we can make about the
fundamental group of manifolds with positive Ricci curvature. One conclusion
one can draw from it is that the connected sum of two non-simply connected
manifolds does not support any metric with positive Ricci curvature. The ques-
tion remains open for the connected sum of simply connected manifolds.

We now turn to the second application of the relative volume comparison theo-
rem, which was originally proved by analytic methods by Calabi and Yau.

Theorem 3.5 [Yau 1976]. If Mn is complete and noncompact with nonnegative
Ricci curvature, then vol(Bp(r)) ≥ cr for some c > 0.

Remark. This, together with Bishop’s theorem, gives the growth of the volume
of geodesic balls in noncompact manifolds with nonnegative Ricci curvature as
cr ≤ vol(Bp(r)) ≤ ωnr

n, where ωn is the volume of the n-dimensional unit disc.

Proof. Since M is noncompact, there is a ray γ with γ(0) = p. By the relative
volume comparison theorem for an annulus, we have

vol(Bγ(t)(t − 1))
vol(Aγ(t)(t− 1, t+ 1))

≥ ωn(t− 1)n

ωn(t + 1)n − ωn(t− 1)n
= c(n)t;

therefore

vol(Bγ(t)(t− 1)) ≥ c(n) vol(Aγ(t)(t − 1, t + 1))t ≥ c(n) vol(Bp(1))t = c(M)t,
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and then vol(Bp(t)) ≥ vol(Bγ(t/2)(t/2− 1)) ≥ ct. �

Packing and Gromov’s precompactness theorem. One of the most useful
consequences of a lower bound on Ricci curvature is the following.

Lemma 3.6 (Packing lemma [Gromov 1981c]). Let Mn be such that Ric ≥
(n−1)H . Given r, ε > 0, and p ∈M , there is a covering of Bp(r) by balls Bpi (ε),
where pi ∈ Br(p), such that the number of balls satisfies N ≤ C1(n,Hr2, r/ε)
and the multiplicity of the covering is bounded by C2(n,Hε2).

Proof. Take a maximal set of points pi ∈ Bp(r − ε/2) such that dist(pi, pj) ≥
ε/2 for i 6= j. It then follows that Bpi (ε/4) ∩Bpj (ε/4) = ?. Therefore

N ≤ vol(Bp(r))
mini vol(Bpi (ε/4))

=
vol(Bp(r))

vol(Bp0 (ε/4))
for some p0

≤ vol(Bp0 (2r))
vol(Bp0 (ε/4))

since Bp(r) ⊂ Bp0 (2r)

≤ vol(BH (2r))
vol(BH (ε/4))

= C1(n,Hr2, r/ε).

Next, if Bpi (ε/4) ∩Bp0 (ε/4) 6= ?, then dist(pi, p0) ≤ 2ε. Then the disjointness
of Bpi (ε/4) and Bpj (ε/4) implies

multiplicity≤ vol(Bp0 (2ε+ ε))
mini vol(Bpi (ε/4))

=
vol(Bp0 (3ε))
vol(Bp1 (ε/4))

for some p1

≤ vol(Bp0 (5ε))
vol(Bp1 (ε/4))

since Bp0 (3ε) ⊂ Bp1 (5ε)

≤ vol(BH(5ε))
vol(BH(ε/4))

= C2(n,Hε2). �

It is easy to construct examples to see this is not true if one drops the curvature
condition—for example, by connecting two spheres with many thin tunnels.

The packing lemma says that under the assumption of Ricci curvature bounded
below, there are only finitely many local intersection patterns on a fixed scale.
This is made precise by introducing the Hausdorff distance between metric
spaces, which induces a very coarse topology on the space of all compact metric
spaces.

Definition 3.7. Let X, Y be two compact metric spaces. A map φ : X → Y is
called an ε-Hausdorff approximation if the ε-neighborhood of φ(X) is equal to
Y , and |d(x1, x2)− d(φ(x1), φ(x2))| < ε, for any x1, x2 ∈ X.
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We can then define the Hausdorff distance between two compact metric spaces
X, Y , denoted by dH(X, Y ), to be the infimum of all ε such that there is a
ε-Hausdorff approximation from X to Y and vice versa.

Theorem 3.8 (Gromov’s Precompactness Theorem [1981c]). The set of
n-dimensional Riemannian manifolds satisfying Ric ≥ (n − 1)H and diam ≤ D

is precompact with respect to the Hausdorff topology .

Proof. By the packing lemma, for any Mn satisfying the conditions and any
j > 0, there is a subset x1, x2, . . . , xNj with Nj ≤ N(n,D,H, j), which is 1/j
dense and has diameter less than D. Thus, for any manifold under consideration,
we have a sequence

M1 ⊂M1/2 ⊂M1/3 ⊂ · · ·
such that M1/j is (1/j)-dense in M , and |M1/j| ≤ N1 +N2 + · · ·+Nj .

Let Mα be an infinite sequence. Since each {M1
α} has N1 elements and has

bounded diameter, the precompactness of bounded sets in RN1 implies the ex-
istence of a subsequence, still denoted by M1

α, whose elements have pairwise
distance less than 1. Thus the corresponding manifolds Mα,1 have pairwise
Hausdorff distance less than 1. For each {Mα,1}, we can again find a subse-
quence M1/2

α with pairwise distance less than 1
2 , and therefore a subsequence of

manifolds Mα,1/2, with pairwise Hausdorff distance less than 1
2 . Proceeding in

this fashion, and using the diagonal argument, we will get a convergent subse-
quence. This proves that the set is precompact. �

Growth of fundamental groups. Volume comparison is most often used to
get information about the fundamental group. The key idea is that the condition
on Ricci curvature is local, and so can be lifted to the universal covering space,
and control over the volume will give control over the relative size of fundamental
domains. In this section, we will begin this study by examining the size of the
fundamental group, as measured by its growth.

Let G be a finitely generated group, G = 〈g1, g2, . . . , gk〉, and define the r-
neighborhood with respect to the set of generators g = {g1, g2, . . . , gk} as

Ug(r) = {g ∈ G | g is a word of length ≤ r} = {g ∈ G | g = gi1
1 · · ·gik

k ,
P|ij| ≤ r}.

Definition 3.9. G has polynomial growth if there exists a set of generators g
and a positive number s such that |Ug(r)| ≤ rs for r large. G has exponential
growth if there exists a set of generators g and a positive number c such that
|Ug(r)| ≥ ecr for r large.

In this definition, we may take for g any set of generators. Indeed, if g =
{g1, g2, . . . , gk} and h = {h1, h2, . . . , hl} are two sets of generators, there are
constants r0, s0 such that hi ∈ Ug(r0) and gi ∈ Uh(s0), so that Uh(s) ⊂ Ug(r0s)
and Ug(s) ⊂ Uh(s0s). Therefore, if G is of polynomial growth because g satisfies
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an inequality as in the definition, h also satisfies such an inequality; and likewise
for exponential growth. In fact, this shows that the quantity

ord(G) = liminf
ln |Ug(r)|

r

does not depend on g; we call it the growth order of G.
It is easy to check that the free abelian groups Zk have polynomial growth

of order k. In general, the order is related to the degree of commutativity of
the group. One of the most striking results is the following characterization of
groups with polynomial growth.

Theorem 3.10 [Gromov 1981b]. A group has polynomial growth if and only if
it is almost nilpotent , that is, contains a nilpotent subgroup of finite index .

Remark. It was shown by Milnor [1968b] that solvable groups have exponential
growth unless they are polycyclic.

Theorem 3.11 [Milnor 1968a]. If Mn is a complete n-dimensional manifold
with Ric ≥ 0, then any finitely generated subgroup of π1(M) has polynomial
growth of order at most n.

Proof. Take the universal cover (M̃, p̃) → (M, p) with the pullback met-
ric. We identify π1(M) with the group of deck transformations of M̃ . Let
H = 〈g1, . . . , gk〉 be a finitely generated subgroup of G. Then gi can each be
represented by a loop σi at p with length li. Let σ̃i be the liftings of σi at p̃;
then, as deck transformations, we have gi(p̃) = σ̃i(li). Let

ε < min{l1, . . . , lk}, l = max{l1, . . . , lk}.
Then, for any distinct h1, h2 ∈ H , we have h1(Bp̃(ε)) ∩ h2(Bp̃(ε)) = ?, and⋃

h∈U(r) h(Bp̃(ε)) ⊂ Bp̃(rl+ ε). Thus

|U(r)| · vol(Bp̃(ε)) =
∑

h∈U(r)

vol(h(Bp̃(ε)) ≤ vol(Bp̃(rl+ ε)),

and also

|U(r)| ≤ vol(Bp̃(rl+ ε))
vol(Bp̃(ε))

=
ωn

vol(Bp̃(ε))
(rl + ε)n ≤ crn. �

Remark. If the sectional curvature is nonpositive, one can also show that π1(M)
has exponential growth. Note however, that Ric ≤ 0 is not enough.

Theorems 3.11 and 3.12 together show that, for manifolds M with Ric ≥ 0, any
finitely generated subgroup of π1(M) is almost nilpotent. We can ask whether
the converse is true. It was shown by Wei [1995] that any torsion-free nilpotent
group is the fundamental group of some manifold with positive Ricci curvature,
although the growth rate of the examples are far from optimal.

We end this section with a conjecture of Milnor [1968a]:
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Conjecture 3.12. If M is complete with Ric(M) ≥ 0, then π1(M) is finitely
generated .

Short loops and the first Betti number. Because of the relation between the
fundamental group and the first Betti number given by the Hurewicz Theorem
[Whitehead 1978], Ricci curvature can also give control on the first Betti number.
This can also be seen through the Bochner technique. In this section, we will
prove the following theorem.

Theorem 3.13 [Gromov 1981c; Gallot 1983]. If Mn is such that Ric ≥ (n−1)H
and diam(M) ≤ d, then b1(M,R) ≤ c(n,Hd2) and limHd2→0 c(n,Hd2) = n.

Remark. If Ricci curvature is replaced by sectional curvature, then the cel-
ebrated Betti number theorem of Gromov [1981a] shows that all higher Betti
numbers can be bounded by sectional curvature and diameter. It was shown by
Sha and Yang [1989a] that such an estimate is not true for Ricci curvature. Also
note that in the above theorem, we used homology with real coefficients. The
Betti number theorem of [Gromov 1981a] works for coefficients in any field. It
is not known whether Theorem 3.13 is true for finite fields.

Remark. The second part of the theorem should be compared with earlier
results. Recall that Bochner showed that if Ric > 0 then b1(M,R) = 0. Using an
extension of Bochner’s techniques, Gallot proved that if Ric ≥ 0 then b1(M,R)≤
n. For the Bochner Technique, see [Wu 1988; Berard 1988]. We will present the
geometric proof due to Gromov [1981c].

Proof. We first show that it is sufficient to prove that there is a finite cover
M̂ → M such that π1(M̂) has at most c(n,Hd2) generators. In fact, if G′ =
π1(M̂) = 〈γ1, . . . , γk〉, and G = π1(M), then |G/G′| = m < ∞, i.e., there
are g1, . . . , gm such that gm

i ∈ G′ and G decomposes into left cosets as G =
g1G

′ ∪ g2G′ ∪ · · · ∪ gmG
′. Consider the Hurewicz map

G
f→ G/[G,G] i→ H1(M,R).

Since {γ1, . . . , γk, g1, . . . , gm} generates G, {f(γ1), . . . , f(γk), f(g1), . . . , f(gm)}
generates G/[G,G]. But

m · (i ◦f)(gi) = (i ◦f)(gm
i ) = (i ◦f)(h)

for some h ∈ G′, and (i ◦f)(gi) can be generated by {(i ◦f)(γi)}. Therefore the
set {(i ◦ f)(γ1), . . . , (i ◦ f)(γk)} generates H1(M,R). Thus, to bound b1(M,R),
it is sufficient to bound the number of generators for π1(M̂).

We will now construct a finite cover M̂ and, at the same time, give a set of
generators whose size can be bounded by Ricci curvature and diameter. To this
end, let π̃ : M̃ → M be the universal cover. Fix x̃0 ∈ M̃ with π̃(x̃0) = x0 and
ε > 0. Define ‖g‖ = d(x̃0, g(x̃0)). Take a maximal set of elements {g1, . . . , gk}
of π1(M) such that ‖gi‖ ≤ 2d+ ε, and ‖gig

−1
j ‖ ≥ ε, for i 6= j.
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Let Γ be a subgroup of π1(M) generated by {gi}k
1 , and let π̂ : M̂ →M be the

covering of M with π1(M̂) = Γ. We need to show that π̂ is a finite cover, and
to give a bound for the number k.

To show π̂ is finite, we will show that diam(M̂) ≤ 2d + 2ε. Let x̂0 ∈ M̂ be
such that π̂(x̂0) = x0. If diam(M̂) > 2d+ 2ε, then there is a point ẑ ∈ M̂ with
dM̂(x̂0, ẑ) = d+ ε. But dM (x0, π̂(ẑ)) ≤ diam(M) = d; therefore there is a deck
transformation α ∈ π1(M) \ Γ such that dM̂(ẑ, αx̂0) ≤ d. Then

dM̂(x̂0, αx̂0) ≥ dM̂(x̂0, ẑ) − dM̂ (ẑ, αx̂0) ≥ ε,

dM̂(x̂0, αx̂0) ≤ dM̂(x̂0, ẑ) + dM̂ (ẑ, αx̂0) ≤ 2d+ ε.

Note there is a β ∈ π1(M̂) = Γ such that

dM̃ (Γx̃0, αx̃0) = dM̃(βx̃0 , αx̃0).

Therefore
‖β−1α‖ = dM̃(x̃0, β

−1αx̃0) = dM̃ (βx̃0, αx̃0)

= dM̃(Γx̃0, αx̃0) = dM̂(x̂0, αx̂0) ≤ 2d+ ε.

Furthermore, for any g ∈ π1(M̂) = Γ, we have

‖g−1β−1α‖ = dM̃(x̃0, g
−1β−1αx̃0) = dM̃ (βgx̃0, αx̃0)

≥ dM̃(Γx̃0, αx̃0) = dM̂(x̂0, αx̂0) ≥ ε.

Thus β−1α should also be in Γ, since Γ is maximal. But α is not in Γ, so this is
a contradiction. Therefore diam(M̂) ≤ 2d+ 2ε.

We now bound k. Since ε ≤ ‖g−1
i gj‖ = dM̃(g−1

i gj x̃0, x̃0) = dM̃(gj x̃0, gix̃0),
we have

BM̃
gi x̃0

(ε/2) ∩BM̃
gj x̃0

(ε/2) = ? for i 6= j

and
k⋃

i=1

BM̃
gix̃0

(ε/2) ⊂ BM̃
x̃0

(2d+ 3ε/2).

Therefore, choosing d = ε/2, we get

k =
vol(

⋃k
1 B

M̃
gi x̃0

(d))

vol(BM̃
x̃0

(d))
≤ vol(BM̃

x̃0
(2d+ 3d))

vol(BM̃
x̃0

(d))
≤ volH(B(2d+ 3d))

volH(B(d))
= c(n,Hd2).

We are now going to refine the preceding argument by choosing longer loops
to generate H1(M,R).

Again, let φ : G → H1(M,R) be the Hurewicz map, and let {g1, . . . , gk} be
chosen as before, with ε = 2d. Then {φ(g1), . . . , φ(gk)} is a basis for H1(M,R).
Let Γ = 〈g1, . . . , gk〉. If Γ contains an element γ such that ‖γ‖ < 2d and φ(γ) 6= 0,
then φ(γ) is of infinite order, and there exists anm > 0 such that 2d ≤ ‖γ‖ ≤ 4d.
Since

φ(γ) = a1φ(g1) + · · ·+ akφ(gk) 6= 0,
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we can assume, without loss of generality, that a1 6= 0. Let Γ1 = 〈γm, g2, . . . , gk〉.
Obviously, φ(γm), φ(g2), . . . , φ(gk) form a basis for H1(M,R). Furthermore, γ 6∈
Γ1. In fact, if

γ = b1 · (γm)k1 · b2 · (γm)k2 · · · (γm)kl · bl+1 ,

where the bi’s are words in {g2, . . . , gk}, then

φ(γ) = φ(b1) + φ(γmk1 ) + · · ·+ φ(γmkl )

= φ(b1b2 · · · bl+1) +m(k1 + k2 + · · ·+ kl)φ(γ),

that is,

φ(b1b2 · · · bl+1) = (1−m(k1 + k2 + · · ·+ kl))φ(γ).

Since m ≥ 2, the coefficient is not zero; therefore

φ(γ) =
1

1−m(k1 + k2 + · · ·+ kl)
φ(b1b2 · · · bl+1) = a2φ(g2) + · · ·+ akφ(gk),

which contradicts a1 6= 0.
Thus, each time we have an element γ ∈ Γ with ‖γ‖ < 2d and φ(γ) 6= 0, we

can replace it by γm such that ‖γm‖ ≥ 2d, and still have a basis. By repeating
this process a finite number of times (since π1(M) contains finitely many γ with
‖γ‖ < 2d), we get a set, still denoted by {g1, . . . , gk}, such that
(1) {φ(g1), . . . , φ(gk)} is a basis for H1(M,R);
(2) 2d ≤ ‖gi‖ ≤ 4d; and
(3) ‖g‖ < 2d for every element g ∈ 〈g1, . . . , gk〉 with φ(g) 6= 0.

Let

U(N) =
{
g ∈ H1(M,R)

∣∣∣g =
∑

riφ(gi),
∑

|ri| ≤ N
}
.

By (3), ‖g−1h‖ ≥ 2d, which implies that for all g ∈ U(N) such that φ(g) 6= 0,
the balls Bg(x̃0)(d) are disjoint. Furthermore,⋃

g∈U(N)

Bg(x̃0)(d) ⊂ Bx̃0 (2Nd+ 4d).

By taking the volume on both sides, we get

|U(N)| = vol(
⋃

g∈U(N) Bg(x̃0)(d))

vol(Bx̃0 (d))

≤ vol(Bx̃0(2Nd+ 4d))
vol(Bx̃0(d))

≤ volH(B(2Nd+ 4d))
volH(B(d))

=

∫ 2Nd+4d

0
1√
H

sinhn−1
√
Ht dt∫ d

0
1√
H

sinhn−1
√
Ht dt

=

∫ (2N+4)d
√

H

0
sinhn−1 t dt∫ d

√
H

0
sinhn−1 t dt,

which is bounded by cNn when Hd2 is small. This implies that b1(M,R)≤ n. �
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Short geodesics and the fundamental group. We now consider a bigger
class of manifolds, the set M of n-dimensional manifolds satisfying

Ric ≥ −(n − 1)Λ2,

diam ≤ D, and vol ≥ v > 0. Note that the first condition will not yield any
restriction on π1, and the first two conditions allow infinitely many isomorphism
classes of π1 (as the example of lens spaces shows). In this section, we will prove
the following theorem.

Theorem 3.14 [Anderson 1990a]. The class M contains only finitely many
isomorphism classes of π1.

To control the size of the fundamental group is to count the number of fun-
damental domains, as was shown in the previous sections. For this to work, the
fundamental domain should not be too thin, i.e., it should contain a geodesic
ball of size bounded from below. This is controlled by the first systol, defined as

sys1(M, g) = inf{length(γ) | γ is noncontractible}.
The following result gives an estimate of most noncontractible curves for the
class M.

Lemma 3.15. For any Λ, v, D, there exist positive numbers N(n,Λ, v, D) and
L(n,Λ, v, D) such that if M ∈M and [γ] ∈ π1(M) have order ≥ N , then

length(γ) ≥ L.

Proof. Let Γ ⊂ π1(M, x0) be the subgroup generated by γ, so that |Γ| ≥ N .
Let π : M̃ → M be the universal cover, and let F ⊂ M̃ be a fundamental
domain with x̃0 ∈ F . Then Bx̃0 (r) ∩ F is mapped isometrically by π onto
Bx0(r), modulo a set of measure zero corresponding to the boundary of F . In
particular, vol(Bx̃0 ∩ F ) = vol(Bx0 (r)).

Let U(r) = {g ∈ Γ | g = γi, |i| < r}. Note that dM̃(γx̃0 , x̃0) ≤ length(γ) =
l(γ); therefore dM̃(gx̃0, x̃0) ≤ 2N · l(γ), for any g ∈ U(N). Then⋃

g∈U(N)

g(Bx̃0 (D) ∩ F ) ⊂ Bx̃0 (2N · l(γ) +D).

Taking the volume, we obtain

(2N + 1) vol(M) ≤ vol(Bx̃0(2N · l(γ) +D)) ≤ vol(BΛ(2N · l(γ) +D)).

If l(γ) < D/2N , then,

N ≤ vol(Bx̃0 (2N · l(γ) +D))
2 vol(M)

<
vol(BΛ(2D))

2v
.

Thus, if we set N = N(n,Λ, D, v) = bvol(BΛ(2D))/2vc+ 1, we will have

l(γ) ≥ D

2N
=

Dv

vol(BΛ(2D))
= L(n,Λ, D, v).
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�

Remark. In this proof we only considered a subgroup generated by one loop.
The same argument applies to subgroups generated by several loops. We thus
can prove that the subgroup of π1(M) generated by loops of length ≤ L must
have order ≤ N .

Remark. If the sectional curvature is bounded below by −Λ2, one can bound
the length of closed geodesics, which gives a lower bound on sys1. This was
proved by Cheeger [1970] in connection with his finiteness theorem.

Lemma 3.16 [Gromov 1981c]. For any compact manifold M with diameter D,
one can choose a set of generators {g1, . . . , gm} of π1(M, p) and representative
loops {γ1, . . . , γm} such that length (γi) ≤ 2D and all relations are of the form
gigjg

−1
k = 1.

Remark. In this lemma, we do not have a bound on the number of generators.
This number is in general very big, and thus such a representation is not efficient
for other purposes.

Proof. Fix a constant ε smaller than the injectivity radius. Choose a triangu-
lation K of M such that any n-simplex lies in a ball of radius less than ε. Let
{xi} be the vertices and {eij} the edges. Since cut(p) has measure zero, we can
assume that all xi are not in cut(p). Let γ1 be the minimal geodesic from p to xi,
and set σij = γieijγ

−1
j . Then σij ∈ π1(M, p) and the length of σi,j is less than

2D+ ε. Given any loop σ at p, we can deform σ to lie in the one-skeleton of K.
Thus, σ can be written as a product of σijs. This shows that the σij generate
π1(M, p).

If ∆ijk is a two-simplex with vertices xi, xj, xk, we have

σijσjk = σik.

If σ = e is a relation with σ a product of σijs, the homotopy can be represented
by a collection of two simplices (e.g., take simplicial approximations of σ and
the homotopy.) Therefore it can be generated by the above set of relations.

Let gij be a geodesic loop at p in the homotopy class of σij. Since the set
of lengths of such loops form a discrete set, we can choose δ small enough such
that there are no loops with length in [2D, 2D+ δ]. Hence if we further require
ε < δ, each gij has length at most 2D. �

Proof of Theorem 3.14. By Lemma 3.5.2, we only need to bound the number
of generators: in fact, if there are p generators as in Lemma 3.16, the relations
can be chosen from among a finite number (p3) of possibilities.

Let {g1, . . . , gp} be such a set of generators. Fix x̃0 ∈ M̃ in the universal
cover. Consider Bgi x̃0(L/2) with L as in Lemma 3.14. Since length(gi) ≤ 2D,
we have

p⋃
i=1

Bgi x̃0(L/2) ⊂ Bx̃0 (2D + L/2).
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These balls can intersect, but if

Bgi x̃0(L/2) ∩Bgj x̃0 (L/2) 6= ?,
then gig

−1
j is represented by a loop of length less than 2 · L/2 = L. By Lemma

3.14, there are at most N such loops. Therefore the balls {Bgi x̃0(L/2)} have
multiplicity bounded by N . Thus

vol(Bx̃0 (2D+ L/2)) ≥ vol

( p⋃
i=1

Bgi x̃0(L/2)

)
≥ vol

( ⋃
Bgj x̃0(L/2)

)

≥ p

N
vol(Bx0 (L/2)),

where the second union is taken over the balls that do not intersect. It then
follows that

p ≤ N · vol(Bx̃0 (2D+ L/2))
vol(Bx0 (L/2))

≤ N · vol(BΛ(2D+ L/2))
vol(BΛ(L/2))

. �

4. Laplacian Comparison and Its Applications

Weak maximum principle and regularity. It is clear now that in order to
apply any analysis to the distance function, we have to either restrict ourselves to
the complement of the cut locus, or to extend the analysis to Lipschitz functions.
In this section we will extend the maximum principle to this situation. Much of
this section is adapted from [Cheeger 1991].

Definition 4.1. A lower barrier (or support function) for a continuous function
f at the point x0 is a C2 function g, defined in a neighborhood of x0, such that
g(x0) = f(x0) and g(x) ≤ f(x) in the neighborhood.

Definition 4.2. If f is continuous, we say that 4f ≥ a at x0 in the barrier
sense if, for any ε > 0, there is a barrier fx0,ε of f at x0 such that

4fx0,ε ≥ a− ε.

Theorem 4.3 (Weak Maximum Principle, Hopf–Calabi). Let M be a
connected Riemannian manifold and let f ∈ C0(M). Suppose that 4f ≥ 0 in
the barrier sense. Then f attains no weak local maximum value unless it is a
constant function.

Proof. Let p be a weak local maximum, so that f(p) ≥ f(x) for all x0 near
p. Take a small normal coordinate ball Bp(δ), and assume that there exists a
point z ∈ ∂Bp(δ) such that f(p) > f(z). Then, by continuity, f(p) > f(z′) for
z′ ∈ ∂Bp(δ) sufficiently close to z. Choose a normal coordinate system {xi} such
that z = (δ, 0, . . . , 0). Put φ(x) = x1 − d(x2

2 + · · ·+ x2
n), where d is a number so

large that if y ∈ ∂Bp(δ) and f(y) = f(p), then φ(y) < 0. Note that

∇φ =
∂

∂x1
− · · · 6= 0.
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Put ψ = eaφ− 1. Then 4ψ = (a2|∇φ|2 + a4φ)eaφ. Thus, for a large enough,
4ψ > 0. Moreover, ψ(p) = 0. Thus, for η > 0 sufficiently small,

(f + ηψ)|∂Bp(δ) < f(p), (f + ηψ)(p) = f(p).

Therefore f + ηψ has an interior maximum at some point q ∈ Bp(δ).
If fq,ε is a barrier for f at q with 4fq,ε ≥ −ε, then fq,ε + ηψ is also a barrier

for f + ηψ at q. For ε sufficiently small, we have 4(fq,ε + ηψ) > 0. Since f + ηψ

has a local maximum at q, and

fq,ε + ηψ < f + ηψ, (fq,ε + ηψ)(q) = (f + ηψ)(q),

we find that fq,ε + ηψ has a local maximum at q. This is not possible because
4(fq,ε + ηψ) > 0.

It follows that for all small δ, we have f |∂Bp(δ) = f(p). Since M is connected,
this implies that f is constant. �

The following regularity theorem is not necessary for the proof of later results,
but it simplifies the proof of the Splitting Theorem considerably.

Theorem 4.4 (Regularity). If 4f = 0 in the barrier sense, then f is smooth.

Proof. Since regularity is a local property, this theorem follows from standard
elliptic regularity [Gilbarg and Trudinger 1983, Theorem 6.17]. �

The Splitting Theorem. Recall that a geodesic γ : [0,+∞) → M is a ray
if d(0, γ(t)) = t for all t > 0. A geodesic γ : (−∞,+∞) → M is a line if
d(γ(s), γ(t)) = |s− t| for all t, s. It is easy to see that if M is noncompact, it
contains a ray. If it has at least two ends, it contains a line.

The purpose of this section is to prove the Splitting Theorem of Cheeger
and Gromoll [1971]. We will first provide some preliminary properties of the
Busemann functions.

Let σ be a ray, and define bσr : M → R by bσr (x) = r − d(x, σ(r)).

Lemma 4.5. (1) bσr is increasing in r when x is fixed .
(2) bσr is bounded by d(x, σ(0)).
(3) The family bσr is uniformly continuous.

Proof. (1) By the triangle inequality, for any r > s,

d(x, σ(r))− d(x, σ(s)) ≤ d(σ(r), σ(s)) = r − s,

so that bσr (x) ≥ bσs (x). (2) By the triangle inequality,

bσr (x) = r − d(x, σ(r)) = d(σ(0), σ(r))− d(x, σ(r)) ≤ d(σ(0), x).

(3) We have |bσr (x)− bσr (y)| = |d(x, σ(r))− d(y, σ(r))| ≤ d(x, y); uniform conti-
nuity follows. �
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Definition 4.6. The Busemann function associated to σ is defined as

bσ(x) = lim
r→∞ bσr (x) = lim

r→∞(r − d(x, σ(r))).

Lemma 4.7. If Ric ≥ 0 and σ is a ray , then 4bσ ≥ 0 in the barrier sense.

Proof. Fix a point p ∈ M . We will construct a barrier for bσ at p. For this,
we first define the asymptote of σ. Take a sequence of points ti → ∞, and let
δi be a minimizing geodesic from p to σ(ti). A subsequence of δi converges to a
ray δ, which is called an asymptote of σ at p.

We now show that, for any r > 0, bδr(x) + bσ(p) is a barrier for bσ at p.
In fact, since δ is a ray, δ(r) is not a cut point of p, hence p is not a cut point of

δ(r), therefore bδr is a smooth function near p. Furthermore, (bδr(x)+ bσ(p))(p) =
bσ(p). We thus only need to prove that bδr(x) + bσ(p) ≤ bσ(x) near p.

For any k > 0, there exists a geodesic δk from p to σ(tk) such that

d(δ(t), δk(t)) ≤ 1/k

for t ∈ [0, tk]. Thus,

bσtk
(x) − bσtk

(p) = d(p, σ(tk)) − d(x, σ(tk))

= d(p, δk(r)) + d(δk(r), σ(tk)) − d(x, σ(tk))

≥ r + (d(δ(r), σ(tk)) − 1/k)− d(x, σ(tk)) ≥ r − 1/k − d(δ(r), x).

As k → ∞, we obtain bσ(x) − bσ(p) ≥ r − d(δ(r), x) = bδr(x), that is, bδr(x) +
bσ(p) ≤ bσ(x). This proves the claim.

Now we use the Laplacian comparison theorem to compute

4(bδr(x) + bσ(p)) = 4(r − d(δ(r), x)) = −4d(δ(r), x) ≥ − n− 1
d(δ(r), x)

≥ −ε,

for d(x, δ(r)) big enough. Thus 4bσ ≥ 0 in the barrier sense. �

If σ is a line, then we have two rays σ+ and σ−, and thus also two Busemann
functions b+ and b−.

Lemma 4.8. If Ric ≥ 0, and σ is a line, then
(1) b+ + b− = 0, and b+, b− are smooth; and
(2) through every point in M , there is a unique line perpendicular to the set
V0 = {b+ = 0}.
Proof. (1) By lemma 4.7, 4(b+ + b−) ≥ 0. The triangle inequality implies
b+ + b− ≤ 0. Obviously (b+ + b−)(σ(0)) = 0. By Theorem 4.3, b+ + b− = 0.

This, together with 4b+ ≥ 0 and 4b− ≥ 0, implies that 0 ≤ 4b+ = −4b− ≤
0. Thus, 4b+ = 4b− = 0, and is therefore smooth by the regularity theorem.
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(2) Fix a point p ∈M . We have at least two asymptotes δ+, δ−. Note that

b+(δ+(t)) = lim
r→∞(r − d(δ+(t), δ+(r)))

= lim
r→∞(r − d(δ+(0), δ+(r))) + lim

r→∞(d(δ+(0), δ+(r))− d(δ+(t), δ+(r)))

= b+(δ+(0)) + t.

Similarly, b−(δ−(s)) = bs(δs(0)) + s.
Thus,

d(δ+(t), δ−(s)) ≥ b+(δ+(t)) − b+(δ−(s))

≥ b+(δ+(t)) + b−(δ−(s)) = b+(δ+(0)) + t + b−(δ−(0)) + s

= t+ s+ b+(p) + b−(p) = t + s.

Thus, δ+, δ− fit together to form a line. Since δ+, δ− are arbitrary asymptotes,
they are unique.

Moreover, for any y ∈ V0,

d(y, δ+(t)) ≥ b+(δ+(t)) − b+(y) = b+(δ+(0)) + t− b+(y) = t.

Thus δ+ is perpendicular to V0. �

Theorem 4.9 (Splitting theorem [Cheeger and Gromoll 1971]). If M has
nonnegative Ricci curvature , and contains a line, then M is isometric to the
product R× V , for some (n−1)-dimensional Riemannian manifold V .

Proof. We can now define a map φ : V0 ×R→M as

φ(v, t) = expv(tσ̇(0)),

where V0 is as in Lemma 4.8, and σ is the unique line passing through v ∈ V0.
We claim that φ is an isometry.

To see that φ is a bijection, note that, for any x ∈ M , there is a line γ such
that γ ⊥ V0, γ(0) ∈ V0, and x = γ(t0). Thus φ(γ(0), t0) = x, which shows that
φ is surjective. If φ(v1, t1) = φ(v2, t2) = x, then t1 = t2 = d(x, V0). Now since
σ1 and σ2 are lines, they cannot intersect unless they are the same, i.e., v1 = v2.
Therefore φ is injective. Since σ is a line, expv is a local diffeomorphism. This
implies that φ is a diffeomorphism.

To see that φ is an isometry, we let S(t) = (b+)−1(t). Then the mean curvature
of S(t) is m(t) = 4b+ = 0. On the other hand, letting f = b+ in Theorem 2.1
(note that b+ is smooth by Lemma 4.8) gives

m′(t) = Ric + |Hess(b+)|2,
which, together with Ric ≥ 0, gives

|Hess(b+)|2 ≤ 0.
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Thus, Hess(b+) = 0, and S(t) is totally geodesic. Therefore, for any X tangent
to V0 and N = ∇b+,

R(N,X)N = ∇N∇XN −∇X∇NN −∇[X,N]N = ∇N∇XN = 0.

Let J(t) = φ∗(X). Then J is a variational vector field of geodesics, and satisfies
the Jacobi equation, which, with vanishing curvature, says that J ′′(t) = 0. Thus
J is a constant, implying |φ∗(X)| = |X|, and hence φ is an isometry. �

From the proof of the Splitting Theorem, it seems natural to make the following
conjecture.

Conjecture 4.10 (Local splitting). Let M be complete, and let γ be a line.
If M has nonnegative Ricci curvature in a neighborhood of γ, then a (smaller)
neighborhood of γ splits as a product .

The main difficulty in proving this conjecture is that in proving Lemma 4.7 and
in using the Laplacian Comparison Theorem to conclude that 4b ≥ 0, it is
necessary that the asymptotes stay in the region where Ric ≥ 0. In general,
this is very hard to achieve. In [Cai et al. 1994], it was proved that if the Ricci
curvature is nonnegative outside of a compact set, then any line in this region
will cause a splitting. Furthermore, under the condition 0 ≤ sec ≤ c, the local
splitting conjecture is true.

We now prove two corollaries on the fundamental group of manifolds with
nonnegative Ricci curvature. They generalize Myers’s theorem to manifolds with
Ric ≥ 0, and strengthen the result of Milnor (Theorems 3.11 and 3.4).

Corollary 4.11. If M is compact with nonnegative Ricci curvature, there is a
finite group F and a Bieberbach group Bk of Rn such that the sequence

0 → F → π1(M) → Bk → 0

is exact .

Proof. By Theorem 4.9, we may write the universal covering space M̃ of M
as N ×Rk, where N contains no lines. Since isometries map lines to lines, the
covering transformations Γ = π1(M) (actually all isometries) are of the form
(f, g)(x, y) = (f(x), g(y)) where f : N → N and g : Rk → Rk are isometries. Let
ρ be the projection of M̃ on the first factor in N ×Rk, and let F be a compact
fundamental domain for Γ, which exists because M is compact. Then the orbit
ρ(F ) under ρ(Γ) is all of N . We claim that N is compact. Otherwise there
exists a ray γ and a sequence gi ∈ ρ(Γ) such that g−1

i (γ(i)) ∈ ρ(F ). By the
compactness of ρ(F ) we can find a subsequence, still denoted by gi, such that
(g−1

i )∗(γ′(i)) converges to a tangent vector v at some point p ∈ ρ(F ). If σ is a
geodesic of N with σ′(0) = v, then σ is a line. This contradiction shows that N
is compact.
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Now let ψ : (f, g) → g be the projection of the isometry group of M̃ into the
second factor, and consider the short exact sequence:

0 → kerφ→ π1(M) → imφ→ 0.

Since kerφ = (f, 1), and f acts discretely on N which is compact, ker φ is thus
finite. The image imφ acts on Rk with compact quotients (since M is compact).
Therefore imφ is a Biebabach group. The corollary follows. �

Corollary 4.12. Let Mn be a complete Riemannian manifold with nonnega-
tive Ricci curvature. Then any finitely generated subgroup of π1 has polynomial
growth of order n − 1 unless M is a compact flat manifold , in which case the
order is n.

Proof. Let π : M̃ →M be the universal cover of M with the pullback metric,
and let M̃ = N×Rk be a splitting such that N does not contain any line. Fixing
(p, 0) ∈ N ×Rk, we will estimate the volume of Bp(r)∩Γ(p, 0) for r large. Note
that any deck transformation in Γ = π1(M) is of the form (f, g), where f and g
act as isometries of the two factors. We claim that there are no sequences (fi, gi)
such that fi(p) = γi(ti) for a geodesic γi, and that γi|[ti−i,ti+i] is minimal. In
fact, if such a sequence exists, then f−1

i ◦ γi|[−i,i] is minimal with base point p,
and a subsequence will converge to a line in N , contradicting the fact that N
contains no lines. Thus there is a number i0 > 0 such that, for any (f, g) ∈ Γ
and any geodesic γ from p to f(p) with f(p) = γ(t), the restriction γ|[t−io,t+i0]

is not minimizing. Denote by C the set of points x ∈ N such that x ∈ Bp(i0) or
any geodesic γ from p to x = γ(t) does not minimize to t + io. We have shown
that

Γ(p, 0) ∈ C ×Rk.

Since C is the image under expp of a set contained in TpN , which is the union of
sections of annular regions with width i0 and a ball of radius i0, it follows from
the volume comparison theorem (unless dimN = 0, in which case M is flat) that

vol(Bp(r) ∩ C) ≤ c(idim N
0 + i0r

dim N−1) ≤ crn−1.

As in the proof of Theorem 3.11, let H = 〈g1, . . . , gk〉 be a finitely generated
subgroup of Γ. Then gi can each be represented by a loop σi at π(p, 0), with
length li. Let σ̃i be the lifting of σi at (p, 0); then gi(p, 0) = σ̃i(li) as deck
transformations. Let

ε < min{l1, . . . , lk}, l = max{l1, . . . , lk}.

Then, for any distinct h1, h2 ∈ H , we have h1(Bp̃(ε)) ∩ h2(Bp̃(ε)) = ? and⋃
h∈U(r)

h(Bp̃(ε)) ⊂ B(p,0)(rl + ε) ∩ C.
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Thus

|U(r)| · vol(Bp̃(ε)) =
∑

h∈U(r)

vol(h(Bp̃(ε))) ≤ vol(Bp̃(rl + ε) ∩ C),

and

|U(r)| ≤ vol(Bp̃(rl+ ε) ∩ C)
vol(Bp̃(ε))

=
c

vol(Bp̃(ε))
(rl + ε)n−1 ≤ crn−1. �

Abresch and Gromoll’s estimate of the excess function. Given two points
p, q ∈M , the excess function is defined as

ep,q(x) = d(p, x) + d(x, q)− d(p, q).

(When no confusion can occur, we will drop the reference to p, q.) Thus, the
excess function measures how much the triangle inequality fails to be an equality.
Since the excess function is made up of distance functions, the properties below
follow directly from those of the distance function.

Lemma 4.13. (1) e(x) ≥ 0;
(2) dil(e) ≤ 2, where dil(f) = inf |f(x) − f(y)|/d(x, y);
(3) e|γ = 0 where γ is a minimizing geodesic from p to q; and
(4) if Ric ≥ 0, then

4e ≤ (n − 1)
( 1
d(x, p)

+
1

d(x, q)

)
in the barrier sense.

The following analytic lemma uses the Weak Maximum Principle, Theorem 4.3.

Lemma 4.14. Suppose Ric ≥ 0, and let u : By(R + η) → R
1 (for some η > 0)

be a Lipschitz function satisfying
(1) u ≥ 0;
(2) u(y0) = 0 for some y0 ∈ By(R);
(3) dil(u) ≤ a; and
(4) 4u ≤ b in the barrier sense.
Then, for all c ∈ (0, R), u satisfies u(y) ≤ a · c +G(c), where G is defined as

G(x) =
b

2n

(
x2 +

2
n− 2

Rnx2−n − n

n− 2
R2
)
.

Proof. Take ε < η, and define the function G using the value R + ε in place
of R. Since we can eventually let ε→ 0, it will suffice to prove the inequality in
this case.

If d denotes the distance function to any point in the n-dimensional space form
Sn(H) of curvature H , then G ◦ d is the unique function on Sn(H) satisfying
(i) G ◦ d(x) > 0 for 0 < d(x) < R,
(ii) G is decreasing for 0 < d(x) < R,
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(iii) G(R) = 0, and
(iv) 4HG ◦ d = b.

Now fix c ∈ (0, R) and suppose the bound is false. Then u(y) ≥ a · c +G(c),
and it follows that

u|∂By(c) ≥ u(y) − c · dil(u) ≥ a · c+G(c)− c · a = G(c) = G|∂By(c),

and u|∂By(R) ≥ 0 = G|∂By(R). Thus, for ε small, we have u|∂A ≤ 0 for the
annulus A = By(R) − By(ε). But (G − u)(y0) = G(y0) > 0; hence G − u

has a strict interior maximum in A. This violates the maximum principle since
4(G− u) ≥ 0. �

For convenience, we set s(x) = min(d(p, x), d(q, x)) and define the height h(x) =
dist(x, γ) for any fixed minimal geodesic γ, from p to q.

Theorem 4.15 (Excess Estimate [Abresch and Gromoll 1990]). If Ric ≥ 0
and h(x) ≤ s(x)/2, then

e(x) ≤ 8
(
h(x)n

s

)1/(n−1)

.

Proof. By Lemma 4.13, we can choose a = 2, b = 4(n− 1)/s(x), and R = h(x)
in Lemma 4.14, and let

c =
(2hn

s

)1/(n−1)

.

Then

e ≤ 2
(2hn

s

)1/(n−1)

+G(c)

=
b

2n

((2hn

s

)2/(n−1)

− n

n− 2
h2 +

2
n− 2

hn22−n
(2hn

s

)(2−n)/(n−1)
)

≤ 8
(
h(x)n

s

)1/(n−1)

. �

Remark. In the above, we only stated the case where the Ricci curvature is
nonnegative. It is easy to see that an estimate holds for general lower bounds
on Ricci curvature, and takes the form

e(x) ≤ E
(
h

s

)
· h,

for some function E and E(0) = 0.

Critical points of the distance function and Toponogov’s theorem. One
of the most useful theories of differential topology is Morse theory. The main
idea is that, if f : M → R is a smooth function, the topology of M is reflected by
the critical points of f . In geometry, the classical application of Morse theory is
the energy functional of the loop space. As we have seen, the distance function
is a natural function closely tied to the geometry and topology of a manifold.
In this section, we will try to develop a Morse theory for the distance function.
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This theory was originally proposed by Grove–Shiohama [1977], and formally
formulated by Gromov [1981a].

Definition 4.16. A point x is a critical point of dp if, for all vectors v ∈ Mp,
there is a minimizing geodesic γ from x to p such that the angle \(v, γ̇(0)) ≤ π/2.

The main result we will use from Morse theory is the following theorem.

Theorem 4.17 (Isotopy Lemma). If r1 < r2 ≤ +∞ and Bp(r2) \Bp(r1) has
no critical point , then this region is homeomorphic to ∂Bp(r1)× [r1, r2].

Proof. If x is not critical, there is a vector wx ∈ Mx with \(wx, γ̇(0)) < π/2
for all minimizing geodesics γ from x to p. By continuity, we can extend wx

to a vector field Wx in an open neighborhood Ux of x, such that if y ∈ Ux and
σ is any minimizing geodesic from y to p, then \(σ̇(0),Wx(y)) < π/2. Take a
finite subcover of Bp(r2) \Bp(r1) by sets Uxi (locally finite if r2 = +∞), and a
smooth partition of unity

∑
φi = 1. Let W =

∑
φiWxi . From the restriction

on angles, it follows that W is nonvanishing. Let ψx(t) be the integral curve of
W through x, and let σt(s) be a minimal geodesic from p to ψx(t). The first
variation formula gives

d(ψx(t2)) − d(ψx(t1)) =
∫ t2

t1

d

dt
d(ψx(t)) =

∫ t2

t1

− cos\(σ̇t(0),W (ψx(t)) dt

≤ − cos(π/2− ε)(t2 − t1),

for some ε > 0. This implies that d is strictly decreasing along ψ(t). It now
follows that the flow along ψ gives a homeomorphism: φ : ∂Br1 × [r1, r2) → M

with φ(x, t) = ψx(t). �

Since the definition of critical points requires a control on the angle, the standard
application of this Morse theory requires the following result:

Theorem 4.18 (Toponogov Comparison Theorem). Let Mn be a complete
Riemannian manifold with sec ≥ H .
(1) Let {γ0, γ1, γ2} be a triangle in M , and assume that all three geodesics are
minimizing . Then there is a triangle γ̄0, γ̄1, γ̄2 in the two-dimensional space form
S2(H) of curvature H with length(γi) = length(γ̄i). Furthermore, if αi is the
angle opposite γi, then ᾱi ≤ αi.
(2) Let {γ1, γ2, α} be a hinge in M , and assume that γ1 and γ2 are minimizing .
Then there is a hinge γ̄1, γ̄2 in S2(H) with length(γi) = length(γ̄i) = li and same
angle α. Furthermore, d(γ1(l1), γ2(l2)) ≤ dH(γ̄1(l1), γ̄2(l2)).

We have not stated this theorem in the strongest possible form. For a complete
statement and proof, we refer the reader to [Cheeger and Ebin 1975].

To show typical applications for the Morse theory, and provide background
for later results, we prove the following two well-known results.
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Theorem 4.19 (Grove–Shiohama Diameter Sphere Theorem [1977]). Let
Mn be a Riemannian manifold with sec ≥ H > 0. If diam(M) > (π/2

√
H), then

M is homeomorphic to the sphere Sn.

Proof. Without loss of generality, we assume H = 1. Let p, q ∈ M be such
that d(p, q) = diam(M), a simple first variation argument shows that p, q are
mutually critical. The theorem follows from the following claim.

Any x ∈M \ {p, q} is noncritical for dp and dq.
To prove the claim, assume x is a critical point of dp. Let σ1 be a minimal

geodesic from q to x, with length l1. Since x is critical, there is a minimal
geodesic σ2 from x to p with length l2 such that \(σ̇2(0), σ̇1(l1)) ≤ π/2. Since
p, q are mutual critical points, there are minimal geodesics σ3, σ̃3 from q to p such
that \(σ̇3(0), σ̇1(0)) ≤ π/2, and \(− ˙̃σ3(0),−σ̇2(l2)) ≤ π/2. Let {σ̄1, σ̄1, σ̄1}
be the comparison triangle in Sn(1). Applying Toponogov’s theorem twice—
once to the triangle {σ1, σ2, σ3}, then to the triangle {σ1, σ2, σ̃3}—we obtain
ᾱi ≤ π/2, for i = 1, 2, 3. It now follows from elementary spherical geometry that
length(σ̄3) ≤ π/2. But then Toponogov’s theorem implies d(p, q) = length(σ3) ≤
length(σ̄3) ≤ π/2, a contradiction. �

Theorem 4.20. If M is complete and has nonnegative sectional curvature, it
has finite topological type, i .e., it is homeomorphic to the interior of a compact
manifold with boundary .

Proof. We first prove that if x is a critical point of dp, and y is such that
d(y) ≥ µd(x), then for any minimal geodesic γ1 of length l1 from p to x and for
any minimal geodesic γ2 of length l2 from p to y the angle θ = \(γ̇1(0), γ̇2(0)) is
at least cos−1(1/µ).

In fact, using part (2) of Toponogov’s theorem, we have

l23 = d(x, y)2 ≤ l21 + l22 − 2l1l2 cos θ.

Choose an arbitrary minimal geodesic γ3 from x to y. Since x is critical, there
is a minimal geodesic γ̄1 from x to p such that \( ˙̄γ1(0), γ̇3(0)) ≤ π/2. Applying
Toponogov’s theorem again to this triangle we get l22 ≤ l21 + l23 . Combining these
two inequalities gives the desired lower bound on θ.

We now claim that dp does not have critical points outside a compact set. If
not, we would have a sequence of critical points xi such that d(xi+1) ≥ µd(xi),
for any i. Let γi be a minimal geodesic from p to xi. From what we just proved
in the preceding paragraph, we have

\(γ̇i, γ̇j) ≥ cos−1(1/µ),

and setting µ = 2 we get \(γ̇i, γ̇j) ≥ π/3. This gives a covering of the unit sphere
at p by an infinite number of balls of fixed size (corresponding to solid angles
of π/6), no two of which intersect. This is not possible since Sp is compact.
Therefore dp has no critical point outside of a compact set. By the isotopy
lemma, M has finite topological type. �
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Remark. This result is a weaker version of the Soul Theorem [Cheeger and Gro-
moll 1972], which says any complete manifold with nonnegative sectional cur-
vature is diffeomorphic to the normal bundle of a compact totally geodesic sub-
manifold, called the soul. The argument given above is due to Gromov [1981a].

Diameter growth and topological finiteness. Given the results just seen, it
is quite natural to ask whether the conclusion of Theorem 4.20 is still true if one
replaces nonnegative sectional curvature by nonnegative Ricci curvature. The
examples of Sha and Yang showed this not to be the case [Sha and Yang 1989a;
1989b; Anderson 1990a]. In this section, we will prove a topological finiteness
theorem for Ricci curvature under some additional conditions, due to Abresch
and Gromoll [1990]. The excess estimate of section 4.3 was originally designed
for this purpose. It turned out to be useful for other applications, as we will see
in next section.

Definition 4.21. For r > 0, the open set M \Bp(r) contains only finitely many
unbounded components, and each such component has finitely many boundary
components Σr. Define the diameter growth function D(r, p) as the maximum
diameter of the Σr, as measured in M .

Theorem 4.22 [Abresch and Gromoll 1990]. Let Mn be a complete Riemannian
manifold of nonnegative Ricci curvature, sectional curvature bounded below by
H > −∞, and satisfying D(r, p) = o(r1/n). Then dp has no critical point outside
of a compact set . In particular , M has finite topological type.

Given the lower bound on the Ricci curvature, the excess estimate in the last
section gives a upper bound for the excess function. To see the relevance of the
lower sectional bound in the above theorem, we state the following lemma, which
gives a lower bound for the excess.

Lemma 4.23. If Mn is complete with sec ≥ −1, and x a critical point of dp,
then for any ε > 0, there is a δ > 0 such that if d(q, x) ≥ 1/δ, then

ep,q(x) ≥ ln
(

2
1 + e−2d(p,x)

)
− ε.

Proof. Take an arbitrary minimal geodesic γ from x to q. Since x is critical
for dp, there is a minimal geodesic σ from x to p such that \(σ̇(0), γ̇)(0) ≤ π

2
.

By Toponogov’s theorem, we have

cosh d(p, q) ≤ cosh d(x, p) · cosh d(x.q).

When d(x, q)→∞, d(p, q)→∞ with d(p, x) fixed, the above inequality becomes

ed(p,q)

2
≤ cosh d(x, p)

ed(x,q)

2
,

and the lemma follows from the definition of the excess function. �
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Proof of Theorem 4.22. Given a boundary component Σr for a noncompact
component of M \ Bp(r), we can construct a ray γ such that γ(t) ∈ U(r), for
all t > r. Thus, if x ∈ Σr is critical, then D(r, p) = o(r1/n), and Theorem 4.15
implies e(x) → 0. But Lemma 4.23 gives a positive lower bound for e(x). This
is not possible. Thus, for any r > r0, no point of any set Σr is critical for dp.

Now fix r0, Ur0 , a boundary component Σr0 , and a ray γ with γ(r0) ∈ Σr0 and
γ(t) ∈ Ur0 for t > r0. For each t ≥ r0, let Σt denote the boundary component of
the unbounded component ofM \Bp(t) with γ(t) ∈ Σt. Using the isotopy lemma
we can construct an embedding ψ : (r0,∞)×Σ0 → Ur0 such that ψ((t,Σr0 )) =
Σt. It follows easily that ψ((r0,∞) × Σr0)) is open and closed in Ur0 . Hence
ψ((r0,∞)× Σr0) = Ur0 . �

Remark. Opinions are divided as to whether the lower bound on sectional cur-
vature is necessary. For that matter, it is interesting to consider the finiteness
question for complete manifolds with positive Ricci curvature and bounded di-
ameter. The techniques in [Perelman 1994] may help to settle this question in
the negative.

Because of the relation between Ricci curvature and the volume growth of geo-
desic balls, as given by Theorem 3.5, for example, another approach to obtaining
a finiteness theorem is to put conditions on the volume growth of geodesic balls,
e.g., to require vol(Bp(r)) to be close to ωnr

n or close to cr. A positive result is
the following theorem due to Perelman, which we will prove in the next section.

Theorem 4.24 [Perelman 1994]. For any n > 0, there is a positive number ε(n)
such that if M is a complete n-dimensional manifold with Ric ≥ 0 and

vol(Bp(r)) ≥ (1− ε)ωnr
n,

then M is contractible.

This is a topological stability result for the maximal volume growth condition.
From [Perelman 1994], it seems possible to construct examples of complete man-
ifolds of positive Ricci curvature with infinite topological type and satisfying the
condition that vol(Bp(r)) ≥ crn, for some positive constant c. But the detailed
computation still needs to be completed. No such example is known about the
case where the volume grows slowly.

These finiteness considerations are closely related to the attempt to generalize
Cheeger’s Finiteness Theorem [1970] and Grove–Petersen’s Homotopy Finiteness
Theorem [1988] to Ricci curvature. The latter theorem says that the class of
n-dimensional manifolds of sectional curvature ≥ H , volume ≥ v > 0, and
diameter ≤ d contains only finitely many homotopy types. The crucial step
in the proof is to show that geodesic balls of a fixed (small) size have simple
topology. When the sectional curvature condition is replaced by Ricci curvature,
a small geodesic ball (when rescaled) will resemble a complete manifold with
Ric ≥ 0 and vol(Bp(r)) ≥ crn. The above example of Perelman also shows that
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this finiteness conjecture is false in dimensions four and above. In dimension
three, there is a homotopy finiteness theorem due to Zhu [1990].

Perelman’s almost maximal volume sphere theorem. Because of the
Grove–Shiohama diameter sphere theorem (Theorem 4.19), efforts were made
to generalize the result to Ricci curvature. This turned out not to be possible
in dimension four and above. In fact, Anderson [1990b] and Otsu [1991] con-
structed metrics on CP n #CP n and Sn ×Sm that have Ricci curvature at least
equal to the dimension minus one, and diameter arbitrarily close to π. In di-
mension three, it was shown recently by Shen and Zhu [1995] that the diameter
sphere theorem for Ricci curvature is still true (with slightly bigger diameter
requirement).

It follows from Bishop’s Volume Comparison Theorem that if the volume of
an n-dimensional manifold with Ric ≥ n − 1 is close to that of the unit sphere,
then the diameter is close to π. One can thus attempt to prove a sphere theorem
with conditions on the Ricci curvature and volume. This result was proved by
Perelman, using the excess estimate of Abresch and Gromoll (Theorem 4.15).

Theorem 4.25 [Perelman 1995]. For any n > 0, there is a positive number ε(n),
such that if Mn satisfies Ric ≥ n − 1 and vol(M) ≥ (1− ε) vol(Sn(1)), then M

is homeomorphic to Sn .

Remark. One needs only to prove that πk(M) = 0 for all k < n, which implies
that M is a homotopy sphere. Then the above theorem follows from the solution
to Poincaré’s conjecture when n ≥ 4 (see [Smale 1961] and [Freedman 1982]),
and from Hamilton’s result [1982] when n = 3.

Theorem 4.24 can be considered as a noncompact version of Theorem 4.25. Both
results are consequences of the next lemma.

Main Lemma 4.26. For any C2 > C1 > 1 and any integer k ≥ 0, there is a
constant δ = δk(C1, C2, n) > 0 such that , if Mn has Ricci curvature bounded
below by n − 1 and satisfies vol(Bq(ρ)) ≥ (1 − δ) vol(B1(ρ)) for any Bq(ρ) ⊂
Bp(C2R) and 0 < R < π/C2, the following two k-parametrized properties hold:

A(k) Any continuous map f : Sk = ∂Dk+1 → Bp(R) can be extended to a
continuous map g : Dk+1 → Bp(C1R).

B(k) Any continuous map f : Sk →M \Bp(R) can be continuously deformed to
a map h : Sk →M \Bp(C1R).

Theorem 4.25 follows from A(k) and B(k). Theorem 4.24 follows from A(k).

Proof. We will work by induction on k. The induction step will be stated in
Lemma 4.29 below, but first we need two other lemmas.

Lemma 4.27. If Ric ≥ n − 1, there is a continuous function E : R→ R
+ such

that
ep,q(x) ≤ E

(
h(x)
d(p, x)

)
· h(x),
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assuming that d(p, x) ≤ d(q, x) and h(x) is the height function, i .e., the distance
from x to a minimal geodesic from p to q.

This is a restatement of Theorem 4.15.

Lemma 4.28. For any C2 > C1 > 1 and ε > 0, there is a positive constant
γ(C1, C2, ε, n) such that , if Ric≥ n−1 and vol(Bp(C2R))≥ (1−γ) vol(B1(C2R)),
for any 0 < R < π/C2, then for any a ∈ Bp(R) there is a point b ∈M \Bp(C1R)
such that

d(a, pb) ≤ εR,

where pb denotes a minimal geodesic from p to b.

Thus, under the curvature and volume conditions, there are lots of thin and
long triangles. The excess estimate in Lemma 4.27 is a good estimate only when
applied to such thin and long triangles.

Proof. Set Γ = {σ̇ | d(a, σ) ≤ εR} ⊂ Sn−1
p . Assume that, for all v ∈ Γ, the cut

point in the direction of v is less than C1R. We will derive a contradiction. In
fact, under this assumption, it follows that

vol(Bp(C2R)) =
∫

Γ

∫ cut(v)

0

AM (t) dt dv +
∫

Sn−1\Γ

∫ min{C2R,cut(v)}

0

AM (t) dt dv

≤ vol(Γ)
∫ C1R

0

A1(t) dt + (vol(Sn−1) − vol(Γ))
∫ C2R

0

A1(t) dt

= − vol(Γ)
∫ C2R

C1R

A1(t) dt+ vol(Sn−1)
∫ C2R

0

A1(t) dt

≤ − vol(Γ)
∫ C2R

C1R

A1(t) dt+ vol(B1(C2R)).

(Note that A1(t) = sinn−1 t.) Thus

(1− γ) vol(B1(C2R)) ≤ − vol(Γ)
∫ C2R

C1R

A1(t) dt+ vol(B1(C2R)),

which implies that

vol(Γ) ≤ γ · vol(B1(C2R))∫ C2R

C1R A1(t) dt
.

Also note that

vol(Ba(εR)) ≤ vol(AΓ
0,C1R(p)) ≤ vol(Γ)

∫ C1R

0

A1(t) dt

≤ γ · vol(B1(C2R))∫ C2R

C1R
A1(t) dt

·
∫ C1R

0

A1(t) dt.
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(For the definition of AΓ
r,R(p), see Theorem 3.1.) By the relative volume com-

parison, we have

vol(Ba(εR)) ≥ vol(Ba(R+ C2R)) ·
∫ εR

0
A1(t) dt∫ R+C2R

0
A1(t) dt

≥ vol(Bp(C2R)) ·
∫ εR

0 A1(t) dt∫R+C2R

0
A1(t) dt

≥ (1 − γ) vol(B1(C2R)) ·
∫ εR

0 A1(t) dt∫R+C2R

0
A1(t) dt

.

These two inequalities together imply that

(1− γ) vol(B1(C2R)) ·
∫ εR

0 A1(t) dt∫ R+C2R

0
A1(t) dt

≤ γ · vol(B1(C2R))∫ C2R

C1R
A1(t) dt

·
∫ C1R

0

A1(t) dt,

which gives a bound γ > C(C1, C2, n, ε). This is a contradiction if we choose
γ(C1, C2, n, ε) = C. �

We now give an outline of the proof of A(k), which, as we have mentioned,
uses induction on k. As usual, we view Dk+1 as Sk × [1, 0) plus a point. In
order to extend a function f : Sk → Bp(R) to Dk+1, we need to be able to
get a map f̃ : Sk → Bp(αR), for α < 1; we can then add the final point by
continuity. The usual requirement is that f̃ be homotopic to f , so the function
g is obtained by extending gradually along the radial direction from Sk ×{1} to
Sk × {0}. Perelman’s idea is that, in fact, one does not have to require f̃ to be
homotopic to f . Instead, one only needs f̃ to be close to f . Then f and f̃ give an
extension to the k-skeleton of a cell decomposition K0 of Dk+1, as in the figure.

K0 K1
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The requirement that f̃ and f be close guarantees that each k-cell of K0 is
mapped into a smaller ball. Now regard the boundary of each k-cell as Sk, and
proceed in each such cell to extend the map to a finer cell decomposition K1 of
Dk+1, as in the second figure. Continuing in this fashion, one obtains the desired
extension by adding infinitely many points (corresponding to the center of the
k-cells of Kj when j →∞.) Thus, the main difficulty is to construct the map f̃
that maps into a smaller ball and is close to f . We will prove the existence of
f̃ in the following lemma, which uses Lemmas 4.27 and 4.28, and the induction
hypothesis A(k− 1). In the lemma, d0 is a (small) positive number to be chosen
later.

Lemma 4.29 (Induction Lemma P(k)). Assume A(k−1) is true. Then, given
any map φ : Sk → Bq(ρ), and a fine triangulation T of Sk with diam(φ(∆)) ≤
d0ρ for any ∆ ∈ T , there exists a continuous map φ̃ : Sk → Bq((1− d0)ρ) such
that

diam(φ(∆) ∪ φ̃(∆)) ≤ βρ,

for any ∆ ∈ T , where β = (4 + 2d0/k)−k(1− 1/C1).

Proof. We will construct the map φ̃ on the skeletons skeli(T ) of T , for i =
0, 1, . . . , k. We proceed by induction on i.

When i = 0, for any x ∈ skel0(T ), let γx be a minimal geodesic from q

to φ(x). Define φ̃(x) = γx((1 − 2d0)ρ). Then φ̃(∆) ⊂ Bq((1 − 2d0)ρ) and
diam(φ(∆) ∪ φ̃(∆)) ≤ 10d0ρ (we could use 2d0ρ on the right-hand side for the
latter inequality).

Assume that φ̃ has already been defined on the i-skeleton skeli, with φ̃(∆) ⊂
Bq((1−d0(2− i

k
))ρ) and diam(φ(∆)∪φ̃(∆)) ≤ 10diρ, where di will be determined

later. We now construct φ̃ on skeli+1.
For any ∆ ∈ skeli+1, we can assume that φ(∆) 6⊂ Bq((1 − 2d0)ρ); otherwise

we are done. By Lemma 4.28, there is a point y∆ ∈M \Bq(C1ρ) such that

d(φ(∆), qy∆) ≤ 2d0ρ.

Let σ be a minimal geodesic from q to y∆, and let q∆ = σ((1 − di+1)ρ). Then,
for any x ∈ ∂∆, we check that the triangle φ̃(x)q4q is thin and long:

d(φ̃(x), ¯q∆y∆)≤d(φ(x), ¯q∆y∆)+diam(φ(∂(∆))∪ φ̃(∂∆))≤2d0ρ+10diρ≤20diρ,

d(φ̃(x), q∆)≥d(q∆, φ(∆))−diam(φ(∂∆)∪ φ̃(∂∆))≥di+1ρ−10diρ≥ di+1

2
ρ,

d(φ̃(x), y∆)≥d(y∆, q)−d(φ̃(x), q)≥C1ρ−(1−d0(2− i/k))ρ≥ 1
2di+1ρ.

Here we have assumed that di+1 ≥ 100di and dk ≤ C1 − 1.
By Lemma 4.27, we have

d(φ̃(x), y∆) + d(φ̃(x), q∆)− d(q∆, y∆) ≤ 20diρE
(100di

di+1

)
.
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The triangle inequality gives

d(q∆, y∆) + ρ(1− di+1) = d(q, y∆) ≤ d(φ̃(x), y∆) + d(φ̃(x), q).

Adding these two inequalities, we obtain

d(φ̃(x), q∆) ≤ d(φ̃(x), q) + 20diρE
(100di

di+1

)
− ρ(1 − di+1)

≤ (1− d0(2− i

k
))ρ+ 20diρE

(100di

di+1

)
− ρ(1 − di+1)

≤
(
di+1 − d0

(
2− 2i+ 1

2k

))
ρ,

where we need

20diE
(100di

di+1

)
≤ d0/2k.

Since A(i) is true (note that i ≤ k − 1), we can use A(i) to extend the map
(using 1 + d0/2k as the factor C1; we thus require δi+1 < δi(1 + d0/2k, C2)). We
get

φ̃
(
∆, q∆

)
≤
(
1 +

d0

2k

)(
di+1 − d0

(
2− 2i+ 1

2k

))
ρ

≤
(
di+1 − d0

(
2− i+ 1

k

))
ρ.

Therefore

diam(φ(∆) ∪ φ̃(∆)) ≤ diam(φ(∂∆) ∪ φ̃(∂∆)) + diam(φ(∆)) + diam(φ̃(∆))

≤ 10diρ+ d0ρ+
(
di+1 − d0

(
2− i+ 1

k

))
ρ ≤ 10di+1ρ ≤ β.

Here we require 10dk ≤ β. Also,

d(φ̃(∆), q) ≤ d(q, q∆) + d(φ̃(x), q∆)

≤ (1− di+1)ρ+
(
di+1 − d0

(
2− i+ 1

k

))
ρ ≤ (1 − d0)ρ.

Thus we complete the proof of the Induction Lemma if we choose

δk ≤ min{γ(C1, C2, d0), δi(1 + d0/(2k), C2) for i = 0, 1, . . . , k − 1}. �

We now turn to the proof of Lemma 4.26 proper, by induction on k. The case
k = 0 is obvious. Assume A(k − 1) is true, i.e., any map f : Si → Bp(R),
for i ≤ k − 1, can be extended to g : Di+1 → Bp(αR), with α = 1 + d0/2k.
Now consider a map f : Sk → Bp(R) and view Sk = ∂Dk+1. Give a fine
triangulation T of Sk, view Dk+1 = T × (0, 1]∪{0}. We define a sequence of cell
decompositions Kj(j = 0, 1, . . .) of Dk+1 as discussed before Lemma 4.29. We
only give the k-skeleton; the lower skeletons are naturally induced from T :

skelk(K0) = ∂Dk+1 = Sk

skelk(K1) = (Sk × { 1
2}) ∪ (Sk × {1}) ∪ (skelk−1(T ) × [ 12 , 1])
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Each k-simplex in K1 can be considered as a map σ : Sk → Bp(R), and then can
be further subdivided to define Kj inductively using the above formula for each
k-cell ofKj−1. We then define a function fj onKj so that f0 = f , fj+1|Sk×{1} =
fj , fj+1|

Sk×{ 1
2 }

= f̃j , by Lemma 4.29 P (j), and fj+1|
skelk−1(T )×[

1
2 ,1]

(extension

by induction hypothesis on skeli(T ) × [ 12 , 1], for i = 0, 1, . . . , k − 1).
We will let the desired extension be g = lim fj. To see that this gives a

continuous function with the desired properties, we estimate the size of its image
as follows.

If j = 0, we have f0 : skelk(K0) → Bp(R).
If j = 1, the map f1 : skelk(K1) → M satisfies, for any ∆ ∈ skelk(K1),

f1|∆k×{1} = f0 ⊂ Bp(R),

f1|
∆k×{ 1

2}
= f̃0 ⊂ Bp((1− d0)R);

therefore

diam(f1|skelk(K1)(∆))≤diam(f1(∆k×{1})∪f1(∆k×{ 1
2}))+diam(f1|∂∆×[

1
2

,1]
)

≤βR+αkβR=(1+αk)βR

and

d(f1|skelk(K1), p) ≤ d(f1|
∆k×{1

2 }
) + diam(f1|skelk(K1)) ≤ (1− d0)R+ (1 + αk)βR,

where we denote by p∆ the center of the ball containing f1(∂∆).
We have spelled out these two cases to make it easier to see the general

formula. For general j, we have

diam(fj |skelk(Kj)(∆))≤((1+αk)β
)j
R,

d(fj |skelk(Kj)(∆), p∆))≤(1−d0)R+R
j∑

i=1

(
(1+αk)β

)i+R(1−d0)
j−1∑
i=1

(
(1+αk)β

)i

≤(1−d0)R+2R
j∑

i=1

(
(1+αk)β

)i≤ 1−C−1
1

2
,

where we used the definition of α.
Therefore

diam(fj |skelk(Kj)(∆)) ≤
(1−C−1

1

2

)j

R→ 0

d(fj|skelk(Kj)(∆), p∆)) ≤
(

(1− d0) +
1−C−1

1

1− 1
2
(1−C−1

1 )

)
R

≤ C1R.

Thus, each cell is mapped into a ball that is smaller by a factor bounded away
from 1. Therefore when j → ∞, the limit g = lim fj is continuous. This
concludes the proof of Lemma 4.26. �
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5. Mean Curvature Comparison and its Applications

Direct applications of the Mean Curvature Comparison Theorem as stated in
Theorem 2.2(3) have not been numerous. On the other hand, we should point
out that Ricci curvature naturally enters into the second variation for the area
of hypersurfaces. This aspect of the relation between Ricci curvature and mean
curvature was explored extensively in dimension three by Meeks, Schoen, and
Yau, among others, as in the proof of the Positive Mass Conjecture by Schoen
and Yau. In this section, we will only give one application of the mean curvature
comparison, to the Diameter Sphere Theorem of Perelman. The result was also
obtained by Colding by a different method.

Recall that the direct generalization of the Grove–Shiohama Diameter Sphere
Theorem to Ricci curvature is not correct in dimensions four and above, as
shown by the examples of Anderson and Otsu. In dimension three, it holds by a
recent result of Shen and Zhu [1995]. In the preceding section we strengthened
the condition to volume. Here we will keep the diameter condition, but add a
condition on the sectional curvature.

Theorem 5.1 [Perelman 1997]. For any positive integer n and any number H ,
there exists a positive number ε(n,H) such that if a n-dimensional manifold Mn

satisfies Ric ≥ n− 1, sec ≥ H , and diam ≥ π − ε, then M is a twisted sphere.

Lemma 5.2. For any δ > 0 and any positive integer n, there is a positive
number ε(δ, n) such that if p, q ∈ Mn satisfy Ric ≥ n − 1 and d(p, q) ≥ π − ε,
then ep,q(x) ≤ δ.

Proof. Let e = ep,q(x). The triangle inequality implies that the three geodesic
balls Bp(d(x, p) − e/2), Bq(d(x, q) − e/2), and Bx(e/2) have disjoint interiors.
Therefore

vol(M)≥vol(Bx(e/2))+vol(Bp(d(x, p)−e/2))+vol(Bq(d(x, q)−e/2))

≥vol(M)
(

vol(B1(e/2))
vol(B1(d(p, q)))

+
vol(B1(d(p, x)−e/2))

vol(B1(d(p, q)))
+

vol(B1(d(q, x)−e/2))
vol(B1(d(p, q)))

)
.

Thus

vol(d(p, q)) ≥ vol(B1(e/2)) + vol(B1(d(p, x)− e/2)) + vol(B1(d(q, x)− e/2))

≥ vol(B1(e/2)) + 2 vol
(
B1
( (d(p, x)− e/2) + (d(q, x)− e/2)

2

))
= vol(B1(e/2)) + vol

(
B1
(
d(p, q)

2

))
,

where, for the second inequality, we used the fact that the volume of balls in
Sn(1) is a convex function of the radius. Therefore

vol(B1(e/2)) ≤ vol(B1(d(p, q)))− 2 vol(B1(
d(p, q)

2
)).

The right-hand side approaches 0 when ε→ 0. This gives the desired bounds. �
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Corollary 5.3. For any ρ > 0, any H , and any positive integer n, there is a
positive number ε(n, ρ,H) such that if p, q ∈ Mn satisfy Ric ≥ n − 1, sec ≥ H ,
and d(p, q) ≥ π − ε, then no x with min{d(x, p), d(x, q)} > ρ is not a critical
point of dp, dq.

Proof. Without loss of generality, we will assume H = −K2 is negative.
Denoting by α the angle at x, and applying Toponogov’s theorem to the triangle
pqx, we obtain

coshKd(p, q) ≤ coshKd(p, x) coshKd(x, q)− sinhKd(p, x) sinhKd(x, q) cosα.

Using the excess estimate of the previous lemma, we immediately conclude that
cosα→ −1 as ε→ 0. �

Proof of Theorem 5.1. By the preceding discussion, we only need to consider
points that are very close to p or q. Let m be a critical point of dp such that
dp(m) ≤ ρ. Define a function g : M → R by

g(x) = min
y∈[pm]

{d(x, y) + (d(p, y) − d(m, y))2 − d(p,m)2},

where [pm] denotes the union of all minimal geodesics from p to m.

Lemma 5.4. (1) g(x) < d(x,m).
(2) If M(R) = {x|g(x) ≤ R} and R1 = inf{r > 0|M(R) ∩Bq(r) 6= ?}, then for
any x0 ∈M(R) ∩Bq(R1), we have g(x0) < d(x0, p).
(3) |R+ R1 − π| < 2ρ.

Remark. This lemma implies that M(R)∩Bq(R1) 6= {m, p}. This is the reason
for considering the function g; we could just use the distance function to [pm] if
[pm] forms a close geodesic.

Proof. (1) Note that if we let y = m, then d(x, y) + (d(p, y) − d(m, y))2 −
d(p,m)2 = d(x,m). Thus g(x) ≤ d(x,m). Too see the strict inequality, we note
that since m is a critical point, the angle at m is at most π/2. By Toponogov’s
theorem,

d(x, y) ≤
√
d2(x,m) + d2(m, y) = d(x,m) +O(d2(m, y)).

Thus

d(x, y)+(d(p, y)−d(m, y))2−d(p,m)2=d(x, y)−4d(p, y)d(y,m)

≤d(x,m)+O(d2(m, y))−4d(p, y)d(y,m)

<d(x,m).

(2) Since d(q,m) ≤ d(q, p) ≤ d(q, x0) + d(x0, p) = R1 + d(x0, p), we have

d(m,Bq(R1)) ≤ d(x0, p).



258 SHUNHUI ZHU

Thus, there exists a point x1 ∈ ∂Bq(R1), such that d(m, x1) ≤ d(x0, p). This,
together with the definition of R1, implies that

g(x0) ≤ g(x1) < d(x1, m) ≤ d(x0, p).

(3) Take x0 as in (2). Then

R+ R1 = g(x0) + d(x0, q) < d(x0, q) + d(x0, q) ≤ d(p, q) ≤ π.

Similarly, if g(x0) is realized at y0, an interior point of some shortest line from
p to m, then

R+ R1 = g(x0) + d(x0, q) = d(x0, y0)− 4d(p, y0)d(y0, m) + d(x0, q)

≥ d(y0, q)− ρ ≥ π − 2ρ,

if we choose ε in Corollary 5.3 smaller than ρ. �

Lemma 5.5. For any point x0 ∈ ∂M(R), let ~n be the unit normal vector pointing
away from p. Then the mean curvature of ∂M(R) can be estimated as

m~n(x0) ≤ (n− 2) coth
√
KR+ tanh

√
KR+ 10.

Proof. By Lemma 5.4, at x0, the value of g(x0) is achieved at an interior
point y0 of some minimal geodesic γ from p to m. Then the function g(x) is a
perturbation of the distance function to the geodesic γ, whose mean curvature
does not exceed (n− 2) coth

√
KR + tanh

√
KR.

For convenience of notation, we parametrize γ so that γ(0) = y0. Let σ be a
minimal geodesic from y0 to x0 with σ(t0) = x0. Let V (t) be the vector field along
σ obtained by parallel translation of γ̇(0) along σ. Let v1 be the projection of
V (t0) in the tangent plane of ∂M(R) (v1 is not a unit vector). Let {v2, . . . , vn−1}
be orthonormal tangent vectors of ∂M(R) that are all perpendicular to v1. By
the first variation formula, the vi are all perpendicular to σ̇(t0), and the values of
g along the directions vi are all achieved at y0. It now follows from the Hessian
Comparison Theorem that 〈∇vi σ̇(t0), vi〉 ≤ coth

√
Kt0 for i = 2, . . . , n− 1.

We now consider the direction v1. Let J(t) be a Jacobian field along σ such
that J(0) = γ̇(0) and J(t0) = v1. We decompose J into directions along σ and
orthogonal to σ, then call the orthogonal component W (t), i.e.,

J(t) = (at + b)σ̇(t) +W (t).

In general, W (t0) is not a unit vector. Let J̄(t) = cJ(t) be such that the or-
thogonal component W̄ of J̄ at t0 has unit length. Then the Hessian comparison
theorem applied to this case implies

〈∇W̄ (t0)σ̇(t0), W̄(t0)〉 ≤ tanh
√
Kt0.

To get the desired estimate on the mean curvature of ∂M(R), we need to estimate
the numbers a, b, c in this decomposition, which in return depend on the angle
\(σ̇(0), γ̇(0)).
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Note that g(x0) = d(x0, y0) − 4d(y0, p)d(y0, m). The first variation formula
gives

0 = − cos\(σ̇(0), γ̇(0))− 4(ρ− 2d(y0, m));

thus

| cos\(σ̇(0), γ̇(0))| ≤ 4ρ.

This will give a uniform bound for a, b, c. Note also that

|R− t0| = 4d(y0, p)d(y0, m) ≤ 4ρ2.

The lemma follows if we choose ρ small enough. �

We continue with the proof of Theorem 5.1. Choose R > 0 such that

(n− 1) cotR− (n− 2)
√
K coth

√
KR−

√
K tanh

√
KR− 10 > 0.

Thus, R depends on n,K. Then choose ρ small enough so that Lemma 5.5 holds;
this in return determines the number ε. For such an ε, by Corollary 5.3, there
are no critical points at distance ρ from p and q. Assume there is a critical point
m such that (.p,m) ≤ ρ; we will derive a contradiction using the mean value
comparison.

On the one hand, using the condition Ric ≥ n− 1 and applying Theorem 2.2
to dq, we conclude, letting m1(R1) be the mean curvature of the sphere of radius
R1 in Sn(1):

m∂Bq(R1)(x0) ≤ m1(R1) ≤ (n − 1) cotR1

≤ (n− 1) cot(π − R− 2ρ) = −(n− 1) cot(R+ 2ρ)

≤ −(n− 1) cotR+ κ,

where κ = κ(n, ρ) and limρ→0 κ = 0. On the other hand, Lemma 5.5 implies

m∂M(R),N(x0) ≥ −(n− 2)
√
K coth

√
KR−

√
K tanh

√
KR− 10.

Denote by N the unit normal vector pointing away from q. Since ∂M(R) and
∂Bq(R1) are tangent to each other at x0, and ∂M(R) lies outside (with respect
to N) of ∂Bq(R1), we can write

m∂M(R),N(x0) ≤ m∂Bq(R1)(x0),

which implies

(n− 1) cotR− (n− 2)
√
K coth

√
KR−

√
K tanh

√
KR− 10 ≤ κ.

We get a contradiction if we choose ε so small that κ violates this inequality. �
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