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1. Motivation

The study of complex dynamics in several variables can be motivated in at
least two natural ways. The first is by analogy with the fruitful study of complex
dynamics in one variable. Since this latter subject is the subject of the parallel
lectures by John Hubbard (the reader is referred to [Carleson and Gamelin 1993]
for a good introduction to the subject), we focus here on the second source of
motivation: the study of real dynamics.

A classical problem in the study of real dynamics is the n-body problem,
which was studied by Poincaré. For instance, we can think of n planets moving in
space. For each planet, there are three coordinates giving the position and three
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coordinates giving the velocity, so that the state of the system is determined by
a total of 6n real variables. The evolution of the system is governed by Newton’s
laws, which can be expressed as a first order ordinary differential equation. In
fact, the state of the system at any time determines the entire future and past
evolution of the system.

To make this a bit more precise, set k = 6n. Then the behavior of the n
planets is modeled by a differential equation

(ẋ1, . . . , ẋk) = F (x1, . . . , xk)

for some F : Rk → Rk . Here ẋ denotes the derivative of x with respect to t.
From the elementary theory of ordinary differential equations, we know that

this system has a unique solution t 7→ ϕt(x1, . . . , xk) satisfying ϕ̇ = F (ϕ) and
ϕ0(x1, . . . , xk) = (x1, . . . , xk).

For purposes of studying dynamics, we would like to be able to say something
about the evolution of this system over time, given some initial data. That is,
given p ∈ R

k , we would like to be able to say something about ϕt(p) as t varies.
For instance, a typical question might be the following.

Question 1.1. For given initial positions and velocities , do the planets have
bounded orbits for all (positive) time? That is , given p = (x1, . . . , xk), is the set
{ϕt(p) : t ≥ 0} bounded?

This question, in fact, particularly interested Poincaré. Unfortunately, the usual
answer to such a question is “I don’t know.” Nevertheless, it is possible to say
something useful about related questions, at least in some settings. For instance,
one related problem is the following.

Problem 1.2. Say something interesting about the set of initial conditions for
which the planets have bounded forward orbits. That is, describe the set

K+ := {p ∈ R
k : {ϕt(p) : t ≥ 0} is bounded}.

Although this question is less precise and gives less specific information than the
original, an answer to it can still tell us quite a bit about the behavior of the
system.

2. Iteration of Maps

In the preceding discussion, we have been taking the approach of fixing a
point p ∈ Rk and following the evolution of the system over time starting from
this point. An alternative approach is to think of all possible starting points
evolving simultaneously, then taking a snapshot of the result at some particular
instant in time.

To make this more precise, assume that the solution ϕt(p) exists for all time t
and all p ∈ Rk . In this case, for fixed t, the map ϕt : Rk → Rk is a diffeomorphism
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of Rk and satisfies the group property

ϕs+t = ϕs ◦ ϕt

for any s and t. The family of diffeomorphisms (ϕt)t∈R is called the flow of the
differential equation.

In order to make our study more tractable, we make two simplifications.

Simplification 1. Choose some number α > 0, called the period, and define
f = ϕα. Then f is a diffeomorphism of Rk and, given p ∈ Rk , the group
property of ϕ implies that

ϕnα(p) = ϕα ◦ · · · ◦ ϕα(p) = fn(p).

That is, studying the behavior of f under iteration is equivalent to studying
the behavior of ϕ at regularly spaced time intervals. By concentrating on f we
ignore those aspects of the behavior of the continuous flow ϕ that occur at time
scales less than α.

Simplification 2. Set k = 2. Although this simplification means that we can
no longer directly relate our model to the original physical problem, the ideas
and techniques involved in studying such a simpler model are still rich enough
to shed some light on the more realistic cases. In fact, there are interesting
questions in celestial mechanics which reduce to questions about two-dimensional
diffeomorphisms, but here we are focusing on the mathematical model rather
than on the physical system.

We also introduce some notation. Given p ∈ R2 , let O+(p), O−(p), and O(p)
be respectively the forward orbit, backward orbit, and full orbit of p under f . In
symbols,

O
+(p) := {fn(p) : n ≥ 0},

O
−(p) := {fn(p) : n ≤ 0},
O(p) := {fn(p) : n ∈ Z}.

Problem 1.2 then becomes the following.

Problem 2.1. Given a diffeomorphism f : R2 → R2 , describe the sets

K+ := {p ∈ R
2 : O+(p) is bounded},

K− := {p ∈ R
2 : O−(p) is bounded},

K := {p ∈ R
2 : O(p) is bounded},

For future reference, note that K = K+ ∩K−.
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3. Regular Versus Chaotic Behavior

For the moment, we will make no attempt to define rigorously what we mean
by regular or chaotic. Intuitively, one should think of regular behavior as being
very predictable and as relatively insensitive to small changes in the system or
initial conditions. On the other hand, chaotic behavior is in some sense random
and can change drastically with only slight changes in the system or initial
conditions. Here is a relevant quote from Poincaré on chaotic behavior:

A very small cause, which escapes us, determines a considerable effect which
we cannot ignore, and we say that this effect is due to chance.

We next give some examples to illustrate both kinds of behavior, starting with
regular behavior. First we make some definitions.

A point p ∈ R2 is a periodic point if fn(p) = p for some n ≥ 1. The smallest
such n is the period of p. A periodic point p is hyperbolic if (Dfn)(p) has no
eigenvalues on the unit circle. (Here Dfn represents the derivative of fn at p, a
linear map R2 → R2 .) If p is a hyperbolic periodic point and both eigenvalues
are inside the unit circle, p is called a sink or attracting periodic point.

Let d denote Euclidean distance in R2 . If p is a hyperbolic periodic point, the
set

W s(p) = {q ∈ R
2 : d(fnq, fnp) → 0 as n→∞} (3.1)

is called the stable manifold of p: it is the set of points whose forward images
become increasingly closer to the corresponding images of p. Dually, the unstable
manifold of p is made up of those points whose backward images approach those
of p:

Wu(p) = {q ∈ R
2 : d(f−nq, f−np) → 0 as n→∞}. (3.2)

(The notation f−n represents the n-th iterate of f−1, which is well defined since
we are assuming that f is a diffeomorphism.) When p is a sink, the stable
manifold W s(p) is also called the attraction basin of p.

Fact. When p is a sink , W s(p) is an open set containing p, and Wu(p) is
empty.

A sink gives a prime example of regular behavior. Starting with any point q
in the basin of attraction of a sink p, the forward orbit of q is asymptotic to
the (periodic) orbit of p. Since the basin is open, this will also be true for any
point q′ near enough to q. Hence we see the characteristics of predictability and
stability mentioned in relation to regular behavior.

For an example of chaotic behavior, we turn to a differential equation studied
by Cartwright and Littlewood in 1940, and given by

ÿ − k(1− y2)ẏ + y = b cos t.

Introducing the variable x = ẏ, we can write this as a first-order system

ẏ = x, ẋ = g(x, y, t),
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where g is a function satisfying g(x, y, t + 2π) = g(x, y, t). This system has
a solution ϕt as before with ϕt : R2 → R

2 a diffeomorphism. Although the
full group property does not hold for ϕ since g depends on t, we still have
ϕs+t = ϕs ◦ ϕt whenever s = 2πn and t = 2πm for integers n and m. Hence
we can again study the behavior of this system by studying the iterates of the
diffeomorphism f = ϕ2π.

Rather than study this system itself, we follow the historical development of
the subject and turn to a more easily understood example of chaotic behavior
which was motivated by this system of Cartwright and Littlewood: the Smale
horseshoe.

4. The Horseshoe Map and Symbolic Dynamics

The horseshoe map was first conceived by Steve Smale as a way of capturing
many of the features of the Cartwright–Littlewood map in a system that is easily
understood.

For our purposes, the horseshoe map, h is defined first on a square B in the
plane with sides parallel to the axes. First we apply a linear map that stretches
the square in the x-direction and contracts it in the y-direction. Then we take
the right edge of the resulting rectangle and bend it around to form a horseshoe
shape. The map h is then defined on B by placing this horseshoe over the original
square B so that B ∩ h(B) consists of two horizontal strips in B. See Figure 1.

We can extend h to a diffeomorphism of R2 in many ways. We do it here as
follows. First partition R2 \ B into four regions by using the lines y = x and
y = −x as boundaries. Denote the union of the two regions above and below B

by B+ and the union of the two regions to the left and right of B by B−, as in
Figure 2. Then we can extend h to a diffeomorphism of R2 in such a way that
h(B−) ⊆ B−. In this situation, points in B+ can be mapped to any of the three
regions B+, B, or B−, points in B can be mapped to either B or B−, and points

B

h(B)

Figure 1. The image of B under the horseshoe map h.
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B+

B+

B−B−

B

h(B)
h(B−)

h(B−)

Figure 2. The sets B, B+, and B−.

in B− must be mapped to B−. Further, we require that points in B− go to ∞
under iteration, and we require analogous conditions on f−1. Note in particular
that points that leave B do not return and that K ⊆ B.

It is not hard to see that, under these conditions,

K− ∩B = B ∩ hB ∩ h2B ∩ · · · .
In fact, if we look at the image of the two strips B∩hB and intersect with B, the
resulting set consists of four strips; each of the original two strips is subdivided
into two smaller strips. Continuing this process, we see that K− ∩ B is simply
the set product of an interval and a Cantor set.

In fact, a simple argument shows that h has a fixed point p in the upper left
corner of B, and that the unstable manifold of p is dense in the set K− ∩ B
and the stable manfold of p is dense in K+ ∩ B. The complicated structure of
the stable and unstable manifolds plays an important role in the behavior of the
horseshoe map.

We can describe the chaotic behavior of the horseshoe using symbolic dynam-
ics. The idea of this procedure is to translate from the dynamics of h restricted
to K into the dynamics of a shift map on bi-infinite sequences of symbols.

To do this, first label the two components of B ∩ hB with H0 and H1. Then,
to each point p ∈ K, associate a bi-infinite sequence of 0’s and 1’s (that is, an
element of {0, 1}Z) using the map

ψ : p 7→ s = ( . . . , s1, s0, s−1, . . . ),

where

sj =
{

0 if hj(p) ∈ H0,
1 if hj(p) ∈ H1.
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We can put a metric on the space of bi-infinite sequences of 0’s and 1’s by

d(s, s′) =
∞∑

j=−∞
|sj − s′j |2−|j|.

It is not hard to show that the metric space thus obtained is compact and that
the map ψ given above produces a homeomorphism between K and this space
{0, 1}Z of sequences. For bi-infinite sequences we have the natural concept of a
shift map, which shifts all the entries of a sequence by one position. Formally, the
left shift map on {0, 1}Z is the map that associates to a sequence s = (si)i∈Z the
sequence z = (zi)i∈Z defined by zi = si+1. The definition of ψ(p) implies that if
σ is the left-shift map defined on bi-infinite sequences, then ψ(h(p)) = σ(ψ(p)).

Here are a couple of simple exercises that illustrate the power of using symbolic
dynamics.

Exercise 4.1. Show that periodic points are dense in K. Hint: Periodic points
correspond to periodic sequences.

Exercise 4.2. Show that there are periodic points of all periods.

5. Hénon Maps

The horseshoe was one motivating example for what are known as Axiom A
diffeomorphisms [Bowen 1978]. The features that make the horseshoe easy to
analyze dynamically are the uniform expansion in the horizontal direction and
the uniform contraction in the vertical direction. This behavior is captured in
the notion of hyperbolicity. We say that a diffeomorphism is hyperbolic over a
set X ⊂ R2 if for each x ∈ X there is a direction in which length is uniformly ex-
panded and a direction in which length is uniformly contracted. These directions
can depend on the point x, but the angle between them must be bounded away
from zero. Hyperbolicity is the key ingredient in the definition of Axiom A. Like
the horseshoe, Axiom A diffeomorphisms admit a symbolic description. Another
important property of Axiom A diffeomorphisms is structural stability. This im-
plies that small changes in the parameters do not change the symbolic description
of the diffeomorphism.

Axiom A diffeomorphisms received a great deal of attention in the 1960s and
70s. Much current work focuses either on how Axiom A fails, as in the work of
Newhouse, or on how some Axiom A ideas can be applied in new settings, as in
the work of Benedicks and Carleson [1991] or Benedicks and Young [1993]. For
more information and further references, [Ruelle 1989] provides a fairly gentle
introduction, while [Palis and de Melo 1982; Shub 1978; Palis and Takens 1993]
are more advanced. See also [Yoccoz 1995].

A model system for the study of non-Axiom A behavior that has received a
great deal of attention is the so-called Hénon map. This is actually a family of
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B

f(B)

Figure 3. A square B and its image f(B) for some parameter values a and b.

diffeomorphisms fa,b : R2 → R2 defined by

fa,b(x, y) = (−x2 + a− by, x)

for b 6= 0. These maps arise from a simplification of a simplification of a map
describing turbulent fluid flow.

We can get some idea of the behavior of the map fa,b and the ways in which
it relates to the horseshoe map by considering the image of a large box B under
fa,b. For simplicity, we write f for fa,b. From Figure 3, we see that for some
values of a and b, the Hénon map f is quite reminiscent of the horseshoe map h.

Since the map f is polynomial in x and y, we can also think of x and y as being
complex-valued. In this case, f : C 2 → C

2 is a holomorphic diffeomorphism of
C

2. This is also in some sense a change in the map f , but all of the dynamics of
f restricted to R2 are contained in the dynamics of the maps on C

2, so we can
still learn about the original map by studying it on this larger domain.

We next make a few observations about f . First, note that f is the composi-
tion f = f3 ◦ f2 ◦ f1 of the three maps

f1(x, y) = (x, by),

f2(x, y) = (−y, x),
f3(x, y) = (x+ (−y2 + a), y)

(5.1)

For 0 < b < 1, the images of B under the maps f1 and f2f1 are depicted in
Figure 4, while f is depicted in Figure 3 with some a > 0.

From the composition of these functions, we can easily see that f has constant
Jacobian determinant det(DF ) = b. Moreover, when b = 0, f reduces to a
quadratic polynomial on C .
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B

f1(B)

B

f2f1(B)

Figure 4. The Hénon map can be decomposed as f = f3 ◦ f2 ◦ f1, where the

component functions are defined in (5.1). Left: f1(B) sitting inside B. Right:

f2f1(B) sitting inside B.

A simple argument shows that there is an R = R(a, b) such that if we define
the three sets

B = {|x| < R, |y| < R},
B+ = {|y| > R, |y| > |x|},
B− = {|x| > R, |x| > |y|},

then we have the same dynamical relations as for the corresponding sets for the
horseshoe map. That is, points in B+ can be mapped to B+, B, or B−, points
in B can be mapped to B or B−, and points in B− must be mapped to B−.

Recall from Problem 2.1 that K+ denotes the set of points with bounded
forward orbit, K− the set of points with bounded backward orbit, and K to be
the intersection of these two sets.

When a is large, the tip of fa,b(B) is outside B. For certain larger values
of a, Devaney and Nitecki [1979] proved that fa,b “is” a horseshoe. By this we
mean that f is hyperbolic on the set X of points that remain in B for all time,
and the dynamics of f restricted to X are topologically conjugate to those on
the standard horseshoe of Section 4. Using complex techniques, Oberste-Vorth
[1987] improved this result by showing that it works for any a such that the tip
of fa,b(B) is outside of B.

In Theorem 14.3 we will describe an optimal result in this direction.

Example 5.1. To compare the dynamics of f in the real and complex cases,
consider fa,b with a and b real. As an ad hoc definition, let KR be the set of
p ∈ R2 with bounded forward and backward orbits, and let KC be the set of
p ∈ C

2 with bounded forward and backward orbits. Then another result of
Oberste-Vorth [1987] is that KC = KR.

Thus we already have a mental picture of K for these parameter values. We
can also get a picture of K+ and K− in the complex case, since we can extend
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the analogy between f and the horseshoe map by replacing the square B by a
bidisk B = D(R) ×D(R) contained in C

2, where D(R) is the disk of radius R
centered at 0 in C . In the definitions of B+ and B−, we can interpret x and y

as complex-valued, in which case the definitions of these sets still make sense.
Moreover, the same mapping relations hold among B+, B−, and B as before. In
this case, B ∩K+ is topologically equivalent to the set product of a Cantor set
and a disk, B ∩K− is equivalent to the product of a disk and a Cantor set, and
B ∩K is equivalent to the product of two Cantor sets.

Thesis. A surprising number of properties of the horseshoe (when properly
interpreted) hold for general complex Hénon diffeomorphisms.

The “surprising” part of the above thesis is that the horseshoe map was de-
signed to be simple and easily understood, yet it sheds much light on the less
immediately accessible Hénon maps.

6. Properties of Horseshoe and Hénon Maps

We again consider some properties of the horseshoe map in terms of its peri-
odic points. The investigation of periodic points plays an important role in the
study of many dynamical systems. In Poincaré’s words,

What renders these periodic points so precious to us is that they are, so
to speak, the only breach through which we might try to penetrate into a
stronghold hitherto reputed unassailable.

As an initial observation, recall that from symbolic dynamics, we know that the
periodic points are dense in K. In fact, it is not hard to show that these periodic
points are all saddle points; that is, if p has period n, then (Dhn)(p) has one
eigenvalue larger than 1 in modulus, and one smaller. After recalling if necessary
the definition of stable and unstable manifolds from (3.1) and (3.2), you should
attempt to prove the following fact:

Exercise 6.1. For any periodic saddle point of the horseshoe map h, W s(p) is
dense in K+ and Wu(p) is dense in K−.

Now suppose p ∈ K+, and let n ∈ N and ε > 0. By exercise 4.2, there is a
periodic point q with period n, and by this last exercise, the stable manifold
for q comes arbitrarily close to p. In particular, we can find p′ ∈ W s(q) with
d(p, p′) < ε. Hence in any neighborhood of p, there are points that are asymptotic
to a periodic point of any given period. We can contrast this with a point p in
the basin of attraction for a sink. In this case, for a small enough neighborhood
of p, every point will be asymptotic to the same periodic point.

This example illustrates the striking difference between regular and chaotic
behavior. In the case of a sink, the dynamics of the map are relatively insen-
sitive to the precise initial conditions, at least within the basin of attraction.
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But in the horseshoe case, the dynamics can change dramatically with an arbi-
trarily small change in the initial condition. In a sense, chaotic behavior occurs
throughout K+.

A second basic example of Axiom A behavior is the solenoid [Bowen 1978,
p. 4]. Take a solid torus in R3 and map it inside itself so that it wraps around
twice. The image of this new set then wraps around 4 times. The solenoid is
the set that is the intersection of all the forward images of this map. Moreover,
the map extends to a diffeomorphism of R3 and displays chaotic behavior on the
solenoid, which is the attractor for the diffeomorphism.

Example 6.2. Consider fa,b : C 2 → C
2 when a and b are small. It is shown

in [Hubbard and Oberste-Vorth 1995] that fa,b has both a fixed sink and an
invariant set having the topological and dynamical structure of a solenoid, so
that it displays both regular and chaotic behavior in different regions.

Note that if q is a sink, then W s(q) ⊆ K+ is open, and hence W s(q) ⊆ K̊+.
On the interior of K+, there is no chaos. To see this, suppose p ∈ K̊+, and
choose ε > 0 such that B ε (p) ⊆ K+. A simple argument using the form of f and
the definitions of B, B+, and B− shows that any point in K+ must eventually
be mapped into B. Hence by compactness, there is an n sufficiently large that
fn(B ε(p)) ⊆ B. Since B is bounded, we see by Cauchy’s integral formula that
the norm of the derivatives of fn are uniformly bounded on B ε (p) independently
of n ≥ 0. This is incompatible with chaotic behavior. For more information and
further references, see [Bedford and Smillie 1991b].

To start our study of sets where chaotic behavior can occur, we define J+ :=
∂K+ and J− := ∂K−, where K+ and K− are as in problem 2.1. The following
theorem gives an analog of exercise 6.1 in the case of a general complex Hénon
mapping, and is contained in [Bedford and Smillie 1991a].

Theorem 6.3. If p is a periodic saddle point of the Hénon map f , then W s(p)
is dense in J+, and Wu(p) is dense in J−.

We will see in Corollary 13.4 that a Hénon map f has saddle periodic points of
all but finitely many periods, so just as in the argument after exercise 6.1, we
see that chaotic behavior occurs throughout J+, and a similar argument applies
to J− under backward iteration.

7. Dynamically Defined Measures

In the study of dynamics in one variable, there are many tools available coming
from classical complex analysis, potential theory, and the theory of quasiconfor-
mal mappings. In higher dimensions, not all of these tools are available, but one
tool that remains useful is potential theory. The next section will provide some
background for the ways in which this theory can be used to study dynamics;
but before talking about potential theory proper, we first discuss some measures
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associated with the horseshoe map h. With notation as in section 4, we define
the level-n set of h to be the set h−nB∩hnB. Since the forward images of B are
horizontal strips and the backward images of B are vertical strips, we see that
the level-n set consists of 22n disjoint boxes.

Assertion. For j sufficiently large, the number of fixed points of hj in a com-
ponent of the level-n set of h is independent of the component chosen.

In fact, there is a unique probability measure m on K that assigns equal weight
to each level-n square, and the above assertion can be rephrased in terms of this
measure. Let Pk denote the set of p ∈ C

2 such that hk(p) = p. Then it follows
from the above assertion that

1
2k

∑
p∈Pk

δp → m (7.1)

in the topology of weak convergence.
We can use a similar technique to study the distribution of unstable manifolds.

Again we consider the horseshoe map h, and we suppose that p0 is a fixed saddle
point of h and that S is the component of Wu(p0)∩B containing p0. In this case,
S is simply a horizontal line segment through p0. Next, let T be a line segment
from the top to the bottom of B so that T is transverse to every horizontal line.
See Figure 5. From the discussion of h, we know that hn(S) ∩ B consists of 2n

horizontal line segments, so hn(S) intersects T in 2n points.
We can define a measure on T using an averaging process as before. This time

we average over points in hn(S) ∩ T to obtain a measure m−
T . Thus we have

1
2n

∑
p∈hn(S)∩T

δp → m−
T , (7.2)

B

S

T

p0

Figure 5. S is a component of W u(p0) ∩ B, and T is a line transversal to all

such components.
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where again the convergence is in the weak sense. This gives a measure on T

which assigns equal weight to each level-n segment; i.e., to each component of
hn(B) ∩ T .

Note that if T ′ is another segment like T , the unstable manifolds of h give a
way to transfer the above definition to a measure on T ′. That is, given a point
p ∈ hn(S) ∩ T , we can project along the component of hn(S) ∩ B containing p
to obtain a point p′ ∈ T ′. Using this map we obtain a measure ϕ(m−

T ) on T ′.
It is straightforward to show that this is the same measure as m−

T ′ obtained by
using T ′ in place of T in (7.2).

This family of measures on transverse segments is called a transversal measure
and we denote it bym−. Using an analogous construction with stable manifolds,
we can likewise define a measure m+ defined on “horizontal” segments.

Finally, we can take the product of these two measures to get a measure
m = m− × m+ defined on B. Then one can show that this product measure
is the same as the measure m defined in (7.1). Hence there are at least two
dynamically natural ways to obtain this measure.

The two transversal measures m+ and m− and the product measure m can
be defined for general Axiom A diffeomorphisms [Ruelle and Sullivan 1975].

8. Potential Theory

To provide some physical motivation for the study of potential theory, consider
two electrons moving in Rd , each with a charge of −1. Then the repelling force
between them is proportional to 1/rd−1. If we fix one electron at the origin,
the total work in moving the other electron from the point z0 to the point z1
is independent of the path taken and is given by P (z1) − P (z0), where P is a
potential function that depends on the dimension:


P (z) = |z| if d = 1,
P (z) = log |z| if d = 2,
P (z) = −‖z‖−(d−2) if d ≥ 3.

(8.1)

From the behavior of P at 0 and ∞ we see that, if d ≤ 2, the amount of work
needed to bring a unit charge in from the point at infinity is infinite, while this
work is finite for d ≥ 3. On the other hand, if d ≥ 2, the amount of work needed
to bring two electrons together is infinite, but for d = 1 this work is finite.

We can think of a collection of electrons as a charge, and we can represent
charges by measures µ on Rd . Then, for S ⊆ Rd , the amount of charge on S is
µ(S).

Example 8.1. A unit charge at the point z0 corresponds to the Dirac delta
mass δz0 .

By using measures to represent charges, we can use convolution to define poten-
tial functions for general charge distributions. That is, given a measure µ on Rd ,
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we define

Pµ(z) =
∫
Rd

P (z − w) dµ(w), (8.2)

where P is the appropriate potential function from (8.1). Note that this definition
agrees with the previous definition of potential functions in the case of point
charges. Note also that the assignment µ 7→ Pµ is linear in µ.

In order to be able to use potential functions to study dynamics, we first need
to understand a little more about their properties. In particular, we would like
to know which functions can be the potential function of a finite measure.

In the case d = 1, the definition of Pµ and the triangle inequality imply that
potential functions are convex, hence also continuous. We also have Pµ(x) =
c|x| +O(1), where c = µ(R). In fact, any function f satisfying these two condi-
tions is a potential function of some measure. Hence a natural question is: How
do we recover the measure from f?

In particular, given a convex function f of one real variable, we can consider
the assignment

f 7→ 1
2

(
∂2

∂x2
f

)
dx, (8.3)

where the right-hand side is interpreted in the sense of distributions. By convex-
ity, this distribution is positive. That is, it assigns a positive number to positive
test functions, and a positive distribution is actually a positive measure. Hence
we have an explicit correspondence between convex functions and positive mea-
sures, and with the additional restriction on the growth of potential functions
given in the previous paragraph, we have an explicit correspondence between
potential functions and finite positive measures. (The 1

2 in the above formula
occurs because we have normalized by dividing by the volume of the unit sphere
in R, which consists of the two points 1 and −1.)

In the case d = 2, the integral definition of Pµ implies that potential functions
satisfy the subaverage property. That is, given a potential function f , any z0 in
the plane, and a disk D centered at z0, the value f(z0) is bounded above by the
average of f on ∂D. That is, if σ represents one-dimensional Legesgue measure
normalized so that the unit circle has measure 1, and if r is the radius of D, then

f(z0) ≤ 1
r

∫
∂D

f(ζ) dσ(ζ).

Moreover, (8.2) implies that potential functions are upper-semicontinuous; a
real-valued function f is said to be upper-semicontinuous if its sub-level sets
f−1(−∞, a), for all a ∈ R, are open. A function that is upper-semicontinuous
and satisfies the subaverage property is called subharmonic.

Finally, if f is subharmonic and satisfies f(z) = c log |z|+O(1) for some c > 0,
then f is said to be a potential function. Just as before, a potential function has
the form Pµ for some measure µ.
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In fact, if f is subharmonic and of class C2, the Laplacian of f is always posi-
tive. This is an analog of the fact that the second derivative of a convex function
is positive. If f is subharmonic but not C2, then ∆f is a positive distribution,
hence a positive measure. Thus the Laplacian gives us a correspondence between
potential functions and finite measures much like that in (8.3):

f 7→ 1
2π

(∆f) dx dy,

where this is to be interpreted in the sense of distributions and again we have
normalized by dividing by the volume of the unit sphere.

Example 8.2. Applying the above assignment to the function log |z| produces
the delta mass δ0 in the sense of distributions.

Now suppose that K ⊂ R
2 = C is compact. Put a unit charge on K and allow

it to distribute itself through so that the mutual repulsion of the electrons is
minimized. The distribution of charge on K is described by a measure µ. We
will find µ by finding its potential function Pµ, which is usually written G. The
function G satisfies the following properties:

1. G is subharmonic.
2. G is harmonic outside K.
3. G = log |z|+O(1).
4. G is constant on K.

If G satisfies properties 1 through 3, and also property

4′. G ≡ 0 on K,

we say that G is a Green function for K. If G exists, it is unique, and in this
case we can take the Laplacian of G in the sense of distributions. Thus, we say
that

µK :=
1
2π

∆Gdxdy

is the equilibrium measure for K.

Example 8.3. Let D be the unit disk. Then the Green function for D is

G(z) = log+ |z|,

where log+ |z| := max{log |z|, 0}, and the equilibrium measure is

µD =
1
2π

(∆ log+ |z|) dx dy,

which is simply arc length measure on ∂D, normalized to have mass 1.
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9. Potential Theory in One-Variable Dynamics

In this section we discuss some of the ways in which potential theory can
be used to understand the dynamics of polynomial maps of the complex plane.
These ideas were introduced in [Brolin 1965]. In the next section we will see how
they help us understand higher-dimensional complex dynamics.

For this section, let f be a monic polynomial in one variable of degree d ≥ 2,
and let K ⊆ C be the set of z such that the forward orbit of z is bounded. Then
K has a Green function GK , given by the formula

GK(z) = lim
n→∞

1
dn

log+
∣∣fn(z)

∣∣.
It is difficult to understand Brolin’s paper without knowing this formula.

However, it was in fact first written down by Sibony in his UCLA lecture notes
after Brolin’s paper had already been written.

It is not hard to show that the limit in the definition of GK converges uni-
formly on compact sets, and since each of the functions on the right-hand side is
subharmonic, the limit is also subharmonic. Moreover, on a given compact set
outside of K, each of these functions is harmonic for sufficiently large n, so that
the limit is harmonic on the complement of K. The property G = log |z|+O(1)
follows by noting that for |z| large we have |z|d/c ≤ |f(z)| ≤ c|z|d for some c > 1,
then taking logarithms and dividing by d, then using an inductive argument to
bound

∣∣log+ |fn(z)|/dn− log |z|∣∣ independently of d. Finally, the property G ≡ 0
on K is immediate since log+ |z| is bounded for z ∈ K. In fact, GK has the
additional property of being continuous.

Hence we see that GK really is the Green function for K, and we can define
the equilibrium measure

µ := µK =
1
2π

(∆GK) dx dy.

The following theorem provides a beautiful relationship between the measure
µ and the dynamical properties of f . It says that we can recover µ by taking
the average of the point masses at the periodic points of period n and passing
to the limit or by taking the average of the point masses at the inverse images
of any nonexceptional point and passing to the limit. (A point p is said to be
nonexceptional for a polynomial f if the set {f−n(p) : n ≥ 0} contains at least
three points. It is a theorem that there is at most one exceptional point for any
polynomial.)

Theorem 9.1 [Brolin 1965; Tortrat 1987]. Let f be a monic polynomial of degree
d, and let c ∈ C be a nonexceptional point . Then

µ = lim
n→∞

1
dn

∑
z∈An

δz,
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in the sense of convergence of measures, where An is either the set of z satis-
fying fn(z) = c (counted with multiplicity), or the set of z satisfying fn(z) = z

(counted with multiplicity).

Proof. We prove only the case fn(z) = c here. Let

µn =
1
dn

∑
fn(z)=c

δz.

Then we want to show that µn → µK . Since the space of measures with the
topology of weak convergence is compact, it suffices to show that if some subse-
quence of µn converges to a measure µ∗, then µ∗ = µK . By renaming, we may
assume that µn converges to µ∗.

We can show µ∗ = µK by showing the convergence of the corresponding
potential functions. The potential function for µn is

Gn(z) =
1
dn

∑
fn(w)=c

log |z −w| = 1
dn

log

∣∣∣∣
∏

fn(w)−c=0

(z −w)

∣∣∣∣ =
1
dn

log |fn(z)− c|.

Here the sum and products are taken over the indicated sets with multiplicities,
and the last equality follows from the fact that we are simply multiplying all the
monomials corresponding to roots of the monic polynomial fn(z)− c.

Let G∗(z) := limn→∞Gn(z). Then G∗ is the potential function for µ∗, and

G∗(z) = lim
n→∞

1
dn

log
∣∣fn(z)− c

∣∣,
while

GK(z) = lim
n→∞

1
dn

log+
∣∣fn(z)

∣∣,
and we need to show that G∗(z) = GK(z). If z 6∈ K, then fn(z) tends to ∞ as n
increases, so that G∗(z) = GK(z) in this case. Since G∗ is the potential function
for µ∗, it is upper-semicontinuous, so it follows that G∗(z) ≥ 0 for z ∈ ∂K. On
the other hand, since G∗ = G on the set where G = ε, the maximum principle
for subharmonic functions implies that G ≤ ε on the region enclosed by this set.
Letting ε tend to 0 shows that G∗ ≤ 0 on K.

Finally, using some knowledge of the possible types of components for the
interior of K, one can show that, if c is nonexceptional, the measure µ∗ assigns
no mass to the interior of K. This implies that G∗ is harmonic on K, since µ∗ is
the Laplacian of G∗. Hence both the maximum and minimum principles apply
to G∗ on K, which implies that G∗ ≡ 0 on K.

Thus G∗ ≡ GK and hence µ∗ ≡ µK as desired. �

Remark. This theorem provides an algorithm for drawing a picture of the Julia
set J for a polynomial f . Start with a nonexceptional point c, and compute
points on the backward orbits of c. These points will accumulate on the Julia
set for f , and by discarding points in the first several backwards iterates of c,
we can obtain a reasonably good picture of the Julia set. This algorithm has
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the disadvantage that these backwards orbits tend to accumulate most heavily
on points in J that are easily accessible from infinity. That is, it favors points at
which a random walk starting at infinity is most likely to land and avoids points
such as inward pointing cusps.

Exercise 9.2. Since G is harmonic both in the complement of K and in the
interior of K, we see that suppµ ⊆ J , where J = ∂K is the Julia set. Show that
suppµ = J . Hint: Use the maximum principle.

Note that an immediate corollary of this exercise and Theorem 9.1 is that peri-
odic points are dense in J .

10. Potential Theory and Dynamics in Two Variables

In Theorem 9.1, we took the average of point masses distributed over either
the set {z : fn(z) = c}, or the set {z : fn(z) = z}. In the setting of polyno-
mial diffeomorphisms of C 2, there are two natural questions motivated by these
results.

(i) What happens when we iterate one-dimensional submanifolds (forwards or
backwards)?

(ii) Is the distribution of periodic points described by some measure µ?

In C , we can loosely describe the construction of the measure µ as first counting
the number of points in the set {z : fn(z) = c} or {z : fn(z) = z}, then using
potential theory to describe the location of these points.

Before we consider such a procedure in the case of question (i) for C 2, we first
return to the horseshoe map and recall the measure m− defined in Section 7.
Suppose that B is defined as in that section, that p is a fixed point for the
horseshoe map h, that S is the component of Wu(p) ∩B containing p, and that
T is a line segment from the top to the bottom of B as before. Then orient T
and S so that these orientations induce the standard orientation on R2 at the
point of intersection of T and S.

Now apply h to S. Then h(S) and T will intersect in two points, one of
which is the original point of intersection, and one of which is new. See Figure 6.
Because of the form of the horseshoe map, the intersection of h(S) and T at
the new point will not induce the standard orientation on R2 , but rather the
opposite orientation. In general, we can apply hn to S, then assign +1 to each
point of intersection that induces the standard orientation, and −1 to each point
that induces the opposite orientation. Unfortunately, the sum of all such points
of intersection for a given n will always be 0, so this doesn’t give us a way to
count these points of intersection.

A second problem with real manifolds is that the number of intersections may
change with small perturbations of the map. For instance, if the map is changed
so that h(S) is tangent to T and has no other other intersections with T , then for
small perturbations g near h, g(S) may intersect T in zero, one, or two points.
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h(S)

T

B

Figure 6. T and h(S).

Now suppose that B is a bidisk in C
2 (that is, the product of the disk with

itself), that h is a complex horseshoe map, and that T and S are complex
submanifolds. In this case, there is a natural orientation on T at any point given
by taking a vector v in the tangent space of T over this point and using the set
{v, iv} to define the orientation at that point. We can use the same procedure
on S, then apply hn as before. In this case, the orientation induced on C

2 by
hn(S) and T is always the same as the standard orientation. Hence assigning
+1 to such an intersection and taking the sum gives the number of points in
T ∩ hn(S).

Additionally, if both S and T are complex manifolds, the number of intersec-
tions between hn(S) and T , counted with multiplicity, is constant under small
perturbations.

Thus, in studying question (i), we will use complex one-dimensional submani-
folds.

Recall that, in the case of one variable, the Laplacian played a key role by
allowing us to relate the potential function G to the measure µ. Here we consider
an extension of the Laplacian to C 2 in order to achieve a similar goal.

For a function f of two real variables x and y, the exterior derivative of f is

df =
∂f

∂x
dx+

∂f

∂y
dy,

which is invariant under smooth maps. If we identify R2 with C in the usual
way, multiplication by i induces the map (i)∗ on the cotangent bundle, and this
map takes dx to dy and dy to −dx. Hence, defining dc = (i)∗d, we have

dcf =
∂f

∂x
dy − ∂f

∂y
dx,

which is invariant under smooth maps preserving the complex structure, that
is, holomorphic maps. Hence ddc is also invariant under holomorphic maps.
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Expanding ddc gives

ddcf = d

(
∂f

∂x

)
dy − d

(
∂f

∂y

)
dx =

(
∂2f

∂x2
+
∂2f

∂y2

)
dx dy,

which is nothing but the Laplacian. This shows that the Laplacian, when viewed
as a map from functions to two-forms, is invariant under holomorphic maps, and
also shows that this procedure can be carried out in any complex manifold of
any dimension. Moreover, it also shows that the property of being subharmonic
is invariant under holomorphic maps.

Exercise 10.1. Let Dr be the disk of radius r centered at 0 in the plane, and
compute ∫

Dr

ddc log |z|.

(Hint: This is equal to
∫

∂Dr
dc log |z|.)

We next need to extend the idea of subharmonic functions to C 2.

Definition 10.2. A function f : C 2 → R is plurisubharmonic if h is upper-
semicontinuous and if the restriction of h to any one-dimensional complex line
satisfies the subaverage property.

Intrinsically, an upper-semicontinuous function h is plurisubharmonic if and only
if ddch is nonnegative, where again we interpret this in the sense of distributions.

In fact, in the above definition we could replace the phrase “complex line” by
“complex submanifold” without changing the class of functions, since subhar-
monic functions are invariant under holomorphic maps. As an example of the
usefulness of this and the invariance property of ddc, suppose that ϕ is a holo-
morphic embedding of C into C 2 and that h is smooth and plurisubharmonic on
C

2. Then we can either evaluate ddch and pull back using ϕ, or we can first pull
back and then apply ddc. In both cases we get the same measure on C .

11. Currents and Applications to Dynamics

In this section we provide a brief introduction to the theory of currents. A cur-
rent is simply a linear functional on the space of smooth differential forms; that
is, a current µ acts on a differential form of a given degree, say ϕ = f1 dx+ f2 dy

in the case of a one-form, to give a complex number µ(ϕ), and this assignment
is linear in ϕ. This is a generalization of a measure in the sense that a measure
acts on zero-forms (functions) by integrating the function against the measure.

As an example, suppose that M ⊆ C
2 is a submanifold of real dimension n.

Then integration over M is a current [M ] acting on n-forms ϕ; it is given simply
by

[M ](ϕ) =
∫

M

ϕ.
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In this example the linearity is immediate, as is the relationship to measures. In
particular, if p ∈ C

2, then [p] = δp, the delta mass at p, acts on zero-forms.

Example 11.1. Suppose P : C → C is a polynomial having only simple roots,
and let R be the set of roots of P . Then [R] is a current acting on 0-forms, and

[R] =
1
2π
ddc log |P |.

This formula is still true for arbitrary polynomials if we account for multiplicities
in constructing [R].

We can extend this last example to the case of polynomials from C
2 to C . This

is the content of the next proposition.

Proposition 11.2 (Poincaré–Lelong formula). If P : C 2 → C is a poly-
nomial and V = {P = 0}, then

[V ] =
1
2π
ddc log |P |,

where again [V ] is interpreted with weights according to multiplicity .

Suppose now that f : C 2 → C
2 is a Hénon diffeomorphism (see Section 5), and

define
G+(p) = lim

n→∞
1
2n

log+
∣∣π1(fn(p))

∣∣,
G−(p) = lim

n→∞
1
2n

log+
∣∣π2(f−n(p))

∣∣,
where πj is projection to the j-th coordinate. As in the case of the function
G defined for a one-variable polynomial, it is not hard to check that G+ is
plurisubharmonic, is identically 0 on K+, is pluriharmonic on C

2 \K+ (i.e., is
harmonic on any complex line), and is positive on C 2 \K+. In analogy with the
function G, we say that G+ is the Green function of K+. Likewise, G− is the
Green function of K−.

Note that for n large and p 6∈ K, the value of
∣∣π1f

n(p)
∣∣ is comparable to

the square of
∣∣π2f

n(p)
∣∣, and hence we may replace

∣∣π1f
n(p)

∣∣ by
∥∥fn(p)

∥∥ in the
formula for G+, and likewise for G−.

Again in analogy with the one-variable case, and using the equivalence be-
tween the Laplacian and ddc outlined earlier, we define

µ+ =
1
2π
ddcG+, µ− =

1
2π
ddcG−.

Then µ+ and µ− are currents supported on J+ = ∂K+ and J− = ∂K−, respec-
tively. Moreover, µ± restrict to measures on complex one-dimensional subman-
ifolds in the sense that we can pull back G± from the submanifold to an open
set in the plane, then take ddc on this open set.

As an analog of the case fn(z) = c of Theorem 9.1, we have the following
theorem.
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Theorem 11.3. Let V be the (complex ) x-axis in C
2, i .e., the set where π2

vanishes , and let f be a complex Hénon map. Then

lim
n→∞

1
2n

[f−nV ] = µ+.

Proof. Note that the set f−nV is the set where the polynomial π1f
n vanishes.

Hence the previous proposition implies that

[f−nV ] =
1
2π
ddc log |π1f

n|.

Passing to the limit and using an argument like that in Theorem 9.1 to replace
log by log+, we obtain the theorem. See [Bedford and Smillie 1991a] or [Fornæss
and Sibony 1992a] for more details. �

Here is a more comprehensive form of this theorem:

Theorem 11.4. If S is a complex disk and f is a complex Hénon map, then

lim
n→∞

1
2n

[f−nS] = cµ+,

where c = µ−[S]. An analogous statement is true with µ+ and µ− interchanged
and fn in place of f−n.

As a corollary, we obtain the following theorem from [Bedford and Smillie 1991b].

Corollary 11.5. If p is a periodic saddle point , Wu(p) is dense in J−.

Proof. Replacing f by fn, we may assume that p is fixed. Let S be a small
disk in Wu(p) containing p. Then the forward iterates of S fill out the entire
unstable manifold. Moreover, by the previous theorem, the currents associated
with these iterates converge to cµ− where c = µ+[S]. If c 6= 0, the proof is
complete since then Wu(p) must be dense in suppµ− = J−.

But c cannot be 0: if it were, G+|S would be harmonic, hence identically 0
by the minimum principle since G is nonnegative on S and 0 at p. Hence S
would be contained in K, which is impossible since the iterates of S fill out all
of Wu(p), which is not bounded. Thus c 6= 0, so Wu(p) is dense in J−. �

This corollary gives some indication of why pictures of invariant sets on complex
slices in C

2 show essentially the full complexity of the map. If we start with any
complex slice transverse to the stable manifold of a periodic point p, then the
forward iterates of this slice accumulate on the unstable manifold of p, hence on
all of J− by the corollary. All of this structure is then reflected in the original
slice, giving rise to sets that are often self-similar and bear a striking resemblance
to Julia sets in the plane.
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12. Currents and Hénon Maps

In this section we continue the study of the currents µ+ and µ− in order to
obtain more dynamical information.

We first consider this in the context of the horseshoe map. Recall that B is a
square in the plane and that we have defined measures m+ and m−, and their
product measure m, in Section 7.

In fact, m+ and m− generalize to µ+ and µ− in the case that the Hénon map
is a horseshoe. More explicitly, let Dλ be a family of complex disks in C 2 indexed
by the parameter λ, such that each Dλ intersects R2 in a horizontal segment in
B and such that these segments fill out all of B. Then we can recover µ+, at
least restricted to B, by

µ+|B =
∫

[Dλ] dm+(λ).

In analogy with the construction ofm as a product measure usingm+ andm−,
we would like to combine µ+ and µ− to obtain a measure µ. Since µ+ and µ−

are currents, the natural procedure to try is to take µ = µ+∧µ−. While forming
the wedge product is not well-defined for arbitrary currents, it is well-defined
in this case using the fact that these currents are obtained by taking ddc of a
continuous plurisubharmonic function and applying a theorem of pluripotential
theory. In this way we get a measure µ on C

2.

Definition 12.1. µ = µ+ ∧ µ−.

Definition 12.2. J = J+ ∩ J−.

We next collect some useful facts about µ.

(1) µ is a probability measure. For a proof of this, see [Bedford and Smillie
1991a].

(2) µ is invariant under f . To see this, note that, since

G± = lim
n→∞

1
2n

log+ ‖f±n‖,

we have G±
(
f(p)

)
= 2±G±(p). Since µ± = (1/2π)ddcG±, this implies that

f∗(µ±) = 2±µ±, and hence

f∗(µ) = f∗(µ+) ∧ f∗(µ−) = 2µ+ ∧ 1
2µ

− = µ+ ∧ µ− = µ.

(3) suppµ ⊆ J . This is a simple consequence of the fact that the support of
µ is contained in the intersection of suppµ+ = J+ and suppµ− = J− and the
definition of J .

In order to examine the support of µ more precisely, we turn our attention
for a moment to Shilov boundaries. Let X be a subset either of C or C 2. We
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say that a set B is a boundary for X if B is closed and if for any holomorphic
polynomial P we have

max
X

|P | = max
B

|P |.
With the right conditions, the intersections of any set of boundaries is a again
a boundary by a theorem of Shilov, so we can intersect them all to obtain the
smallest such boundary. This is called the Shilov boundary for X .

Example 12.3. Let X = D1 ×D1, where D1 is the unit disk. Then the Shilov
boundary for X is (∂D1)× (∂D1), while the topological boundary for X is

∂X = (D1 × ∂D1) ∪ (∂D1 ×D1).

The following theorem is contained in [Bedford and Taylor 1987].

Theorem 12.4. suppµ = ∂ShilovK.

We have already defined J as the intersection of J+ and J−, and the choice of
notation is designed to suggest an analogy with the Julia set in one variable.
However, in two variables, the support of µ is also a natural candidate for a kind
of Julia set. Hence we make the following definition.

Definition 12.5. J∗ = suppµ.

For subsets of C there is no distinction between the topological boundary and
the Shilov boundary; hence we could have defined the Julia set J as either the
topological or the Shilov boundary of K.

13. Heteroclinic Points and Pesin Theory

In the previous section, we discussed some of the formal properties of µ arising
from considerations of the definition and of potential theory. In this section we
concentrate on the less formal properties of µ and on the relation of µ to periodic
points. The philosophy here is that since µ+ and µ− describe the distribution of
one-dimensional objects, µ should describe the distribution of zero-dimensional
objects.

An example of a question using this philosophy is the following. For a periodic
point p, we know that µ+ describes the distribution of W s(p) and µ− describes
the distribution of Wu(p). Does µ describe (in some sense) the distribution of
intersections W s(p) ∩Wu(q)?

Definition 13.1. Let p and q be saddle periodic points of a diffeomorphism
f . A point in the set (Wu(p) ∩W s(q)) \ {p, q} is called a heteroclinic point. If
p = q, then such a point is called a homoclinic point.

Unfortunately, the techniques discussed so far do not allow us to prove the ex-
istence of even one heteroclinic point. We will imagine how it might be possible
for the unstable manifold of p to avoid the stable manifold of q. The stable
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and unstable manifolds are conformally equivalent to copies of C , so we have
parametrizations ϕu : C →Wu(p) and ϕs : C →W s(q).

Now, if πj represents projection onto the j-th coordinate, then π1ϕu : C → C

is an entire function, and as such can have an omitted value. As an example,
π1ϕu(z) could be equal to ez and hence would omit the value 0. It could happen
that there is a second saddle point q such that W s(q) is the x-axis, in which case
Wu(p) ∩W s(q) = ?.

At first glance, it may seem that this contradicts some of our earlier results. It
might seem that Theorem 11.4 should imply that Wu(p) intersects transversals
which cross J−, but in fact, that statement is a statement about convergence of
distributions. Each of the distributions must be evaluated against a test function,
and the test function must be positive on an open set. Thus there is still room
for Wu(p) and W s(p) to be disjoint.

Hence, in order to understand more about heteroclinic points, we need a better
understanding of the stable and unstable manifolds. One possible approach is
to use what is known as Ahlfors’ three-island theorem. This theorem concerns
entire maps ψ : C → C . Roughly, it says that if we have n open regions in the
plane and consider their inverse images under ψ, then some fixed proportion of
them will have an inverse image that is compact and that maps injectively under
ψ onto the corresponding original region.

If we apply this theorem to the map π1ϕu giving Wu(p), we can divide the
plane into increasingly more and smaller islands, and we can do this in such a way
that at each stage we obtain more of Wu(p) as the injective image of regions in
the plane. The result is that we get a picture of Wu(p) which is locally laminar.

Since Wu(p) is dense in J−, this gives us one possible approach to studying
µ−, and we can use a similar procedure to study µ+. However, recall that our
goal here is to describe heteroclinic points. Thus in order for this approach
to apply, we need to be able to get the disks for µ+ to intersect the disks for
µ−. Unfortunately, we don’t get any kind of uniformity in the disks using this
approach, so getting this intersection is difficult.

An alternate approach is to use the theory of nonuniform hyperbolicity (see
[Young 1995] for more information). This is an extension of parts of the hyper-
bolic theory to a very general situation. This theory applies to the measure µ,
which is to say that we have expanding and contracting directions at µ-almost
every point, though the expansion and contraction need not be uniform and
these directions need not depend continuously on the point. This is enough to
produce stable and unstable manifolds through µ-almost every point.

We can then identify the stable and unstable manifolds obtained using this
theory with the disks obtained in the previous nonuniform laminar picture to
guarantee that we get intersections between stable and unstable manifolds and
hence heteroclinic points. Putting all of this together, we obtain the following
theorem, contained in [Bedford, Lyubich, and Smillie 1993a].
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Theorem 13.2. J∗ is the closure of the set of all periodic saddle points, and
also the closure of the union of all Wu(p) ∩W s(q) over all periodic saddles p
and q.

This theorem can be viewed as an analog of the theorem in one variable dynamics
saying that the Julia set is the closure of the repelling periodic points. For
this reason, the set J∗ is perhaps a better analogue of the Julia set in the two
dimensional case than is J .

Recall that J∗ = ∂shilovK ⊆ ∂K = J . When f is an Axiom A diffeomorphism,
it is a theorem that J∗ = J . However, it is an interesting open question whether
this equality holds in general. If it were the case that J 6= J∗, then there would
be a saddle periodic point q and another point p such that p ∈ W s(q) ∩Wu(q),
but p 6∈ W s(q) ∩Wu(q).

In fact, using the ideas of Pesin theory, one can get precise information about
the number of periodic points of a given period and how their distribution relates
to the measure µ. This is contained in the following theorem and corollary from
[Bedford, Lyubich, and Smillie 1993b].

Theorem 13.3. Let f : C 2 → C
2 be a complex Hénon map, and let Pn be either

the set of fixed points of fn or the set of saddle points of minimal period n. Then

lim
n→∞

1
2n

∑
p∈Pn

δp = µ.

For the following corollary, let Pn be the set of saddle points of f of minimal
period n, and let |Pn| denote the number of points contained in this set.

Corollary 13.4. There are periodic saddle points of all but finitely many
periods . More precisely, we have limn→∞ |Pn|/2n = 1.

Recall that the horseshoe map had periodic points of all periods, so while we
haven’t achieved that result for general Hénon maps, we have still obtained a
good deal of information about periodic points and heteroclinic points.

14. Topological Entropy

Recall that the horseshoe map is topologically equivalent to the shift map
on two symbols. One could also ask if it is topologically equivalent to the shift
on four symbols. That is, if h is the horseshoe map defined on the square
B, then h(B) ∩ h−1(B) consists of four components, and we can label these
components with four symbols. However, with this labeling scheme, one can
check by counting that not all sequences of symbols correspond to an orbit of
a point in the way that sequences of two symbols did. In fact, the number
of symbol sequences of length 2 corresponding to part of an orbit is 8, and the
number of such sequences of length 3 is 16. Allowing longer sequences and letting
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S(n) denote the number of sequences of length n which correspond to part of an
orbit, we obtain the formula

lim
n→∞

1
n

logS(n) = log 2.

The number log 2 is the topological entropy of the horseshoe map, and can be
defined as the maximum growth rate over all finite partitions. In general, the
shift map on N symbols has entropy logN and, since entropy is a topological
invariant, we see that all of these different shift maps are topologically distinct.

In the case of a general Hénon map, we have the following theorem, contained
in [Smillie 1990].

Theorem 14.1. The topological entropy of a complex Hénon map is log 2.

Topological entropy is a useful idea because it is connected to many different
aspects of polynomial diffeomorphisms. It is a measure of area growth and of
the growth rate of the number of periodic points, both of which are closely
related to the degree of the map as a polynomial. Moreover, it is related to
measure-theoretic entropy in the sense that, for any probability measure ν, the
measure-theoretic entropy hν(f) is bounded from above by the topological en-
tropy htop(f). Moreover, µ is the unique measure for which hµ(f) = htop(f)
[Bedford, Lyubich, and Smillie 1993a].

We can also consider topological entropy for real Hénon maps, that is, fa,b :
R2 → R2 as in Section 5 with a, b ∈ R. In contrast to the theorem above, in
this case we have 0 ≤ htop(fR) ≤ log 2, and all values are possible. However,
one can show that not all values are possible for Axiom A diffeomorphisms, but
only logarithms of algebraic numbers [Milnor 1988]. Moreover, we also have the
following theorem [Bedford, Lyubich, and Smillie 1993a].

Theorem 14.2. For a Hénon map f with real coefficients, the following are
equivalent .

1. htop(fR) = log 2.
2. J∗ ⊆ R2 .
3. K ⊆ R2 .
4. All periodic points are real .

Moreover , these conditions imply that J = J∗.

Proof. Condition 1 implies that fR has a measure µ′ of maximal entropy with
suppµ′ ⊆ R2 . By uniqueness we have µ′ = µ∗, so suppµ∗ ⊆ R2 , thus giving
condition 2.

Condition 2 implies that J∗ = ∂ShilovK is contained in R2 , which implies that
K is contained in R2 . This gives condition 3, and in fact, since polynomials
in R2 are dense in the set of continuous functions of R2 , this also implies that
∂ShilovK = K, and hence J∗ = K and thus J∗ = J since J∗ ⊆ J ⊆ K.

Condition 3 immediately implies condition 4.
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Condition 4 together with theorem 13.2 implies that J∗ ⊆ R2 , which implies
that suppµ∗ ⊆ R

2 , which implies condition 1. �

These conditions are true for the set of real Hénon maps that are horseshoes. We
can identify such maps with their parameter values in R2 , in which case the set of
horseshoe maps is an open set in R2 . Since topological entropy is continuous for
C∞ diffeomorphisms, we see that maps on the boundary of this set also satisfy
the above conditions.

Let’s call a real Hénon map that satisfies the conditions of Theorem 14.2
a maximal entropy map. Real horseshoes are maximal entropy maps. As we
will see shortly, there are maximal entropy maps that are not horseshoes. The
following result shows that any maximal entropy map is either Axiom A or fails
to be Axiom A in a very specific way. Recall that a homoclinic tangency is an
intersection of Wu(p) and W s(p) at some point q 6= p for some saddle point p.
This intersection is a homoclinic tangency if the stable and unstable manifolds
are tangent at q, and this is a quadratic tangency if the manifolds have quadratic
contact at q. A diffeomorphism with a homoclinic tangency violates one of the
defining properties of hyperbolicity and hence is not Axiom A.

Theorem 14.3. If the conditions in Theorem 14.2 hold , then

(i) periodic points are dense in K,
(ii) every periodic point is a saddle with expansion constants bounded below ,
(iii) either f is Axiom A or f has a quadratic homoclinic tangency.

Theorem 14.3 gives a picture of how the property of being a horseshoe is lost
as the parameters change. (Recall that horseshoes are by definition Axiom A.)
Suppose we have a one-parameter family ft of real Hénon maps that starts out
as a horseshoe then loses the Axiom A property. The set of parameters for which
the map is a horseshoe is open because of structural stability, so there is some
first parameter value t0 at which the map is not Axiom A. What happens at
this parameter value? The function htop(fR) is continuous, so ft0 is a maximal
entropy map but it is not Axiom A. According to the previous theorem there are
pieces of stable and unstable manifolds that have a quadratic tangency. Let us
assume that for t past t0 the pieces of stable and unstable manifolds pull through
each other. This means that the intersection point of the stable and unstable
manifolds is moving out of R2 and into C 2 . This causes a decrease in the topolog-
ical entropy htop(fR). Since the topological entropy is continuous as a function
in parameter space and is an invariant of topological conjugacy, we pass through
uncountably many topological conjugacy classes as we vary the parameter. This
presents a striking contrast to the horseshoe example, in which small variations
in the parameters produce topologically conjugate diffeomorphisms.



COMPLEX DYNAMICS IN SEVERAL VARIABLES 145

15. Suggestions for Further Reading

We have presented here one point of view on complex dynamics in several
variables. For other viewpoints on polynomial diffeomorphisms the reader can
consult [Hubbard and Oberste-Vorth 1994; 1995; Fornæss and Sibony 1992a;
1994]. Other related directions include the study of rational maps on complex
projective spaces [Fornæss and Sibony 1992b; Hubbard and Papadopol 1994;
Ueda 1986; 1991; 1994; 1992; ≥ 1998]. There is also interesting work on non-
polynomial diffeomorphisms of C 2 by Buzzard [1995; 1997; ≥ 1998].
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mappings in the complex domain, I: The global topology of dynamical space”, Inst.
Hautes Études Sci. Publ. Math. 79 (1994), 5–46.

[Hubbard and Oberste-Vorth 1995] J. H. Hubbard and R. W. Oberste-Vorth, “Hénon
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