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Hankel-Type Operators,

Bourgain Algebras,

and Uniform Algebras

PAMELA GORKIN

Abstract. Let H∞(D) denote the algebra of bounded analytic functions
on the open unit disc in the complex plane. For a function g ∈ L∞(D), the
Hankel-type operator Sg is defined by Sg(f) = gf +H∞(D). We give here
an overview of the study of the symbol of the Hankel-type operator, with
emphasis on those symbols for which the operator is compact, weakly com-
pact, or completely continuous. We conclude with a look at this operator
on more general domains and several open questions.

We look at a uniform algebra A on a compact Hausdorf space X. We let

M(A) denote the maximal ideal space of A. We will consider the Hankel-type

operator Sg : A → C(X)/A with symbol g ∈ C(X) defined by Sg(f) = fg + A

for all f ∈ A.

Even though the space L∞ does not look like an algebra of continuous func-

tions, it is possible to identify it with the space of continuous functions on its

maximal ideal space X as follows: for f in L∞ define the Gelfand transform of

f by f̂(x) = x(f) for all x ∈ X. Since the topology on X is given by saying

that a net xα converges to x in X if and only if xα(f) converges to x(f) for all

f ∈ L∞, we see that the Gelfand transform defines a continuous function on X.

We will be most interested in the case in which A = H∞(U), the algebra

of bounded analytic functions on a bounded domain U in the complex plane,

and C(X) = L∞(U) with respect to area measure. When the domain does not

matter or when we think no confusion should arise, we will write simply H∞ or

L∞.

The purpose of this article is to indicate why we look at such operators, what

one can do with these Hankel-type operators, and some of what remains to be

done in this area.
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1. The Relationship to Classical Hankel Operators

Why are these called Hankel-type operators? To answer this question, we

first consider the Hankel-type operator Sf defined for f ∈ L∞(∂D). Let H2

denote the usual Hardy space of functions on the circle ∂D. Let P denote the

orthogonal projection of L2(∂D) onto H2 and let f ∈ L∞(∂D). Recall that the

multiplication operator with symbol f is defined on L2(∂D) by Mf (g) = fg for

g ∈ L2(∂D). The Toeplitz operator Tf is defined by Tf (g) = P (fg) and the

(classical) Hankel operator Hf with symbol f is defined as the operator from H2

into H2⊥ such that

Hf (g) = (I − P )(fg) for g ∈ H2.

These operators have been studied over the years and there exist many good

references about them. See [Power 1982; Zhu 1990], as well as [Peller 1998] in

this volume, for more information about classical Hankel operators.

Now suppose that we replace the Hilbert space L2 above by the uniform algebra

L∞, and the Hardy space H2 by the algebra H∞ of boundary values of bounded

analytic functions on the open unit disc D. What is the appropriate replacement

for the Hankel operator? If we look closely at the Hankel operator, we see that

it is a multiplication operator followed by an operator with kernel equal to the

space H2. Thus the replacement should ideally be a multiplication operator

followed by a map that annihilates H∞ functions. Our Hankel-type operators

are multiplication operators followed by the quotient map, a map that takes

functions in H∞ to zero.

When we work on the unit disc rather than the unit circle, our Hankel-type

operators are a generalization of the Hankel operator on the Bergman space

L2
a(D), the space of square-integrable analytic functions on the disc. For f ∈

L∞(D) we define the Hankel operator acting on the Bergman space as above,

replacing the Szegő projection with the Bergman projection. We will return to

these Hankel operators frequently for comparison.

2. Why Should We Look at Hankel-Type Operators?

One reason for studying Hankel-type operators is that they are a natural

generalization of classical Hankel operators to uniform algebras. Multiplication

operators, Hankel operators, and Toeplitz operators are important in the study

of closed subalgebras of L∞(∂D) and many interesting results in this area were a

consequence of careful study of these operators. In what follows, we will look at

when these operators are compact (that is, when the norm closure of the image

of the closed unit ball under Sg is compact), weakly compact (the weak closure

of the image of the closed unit ball under Sg is weakly compact), and completely

continuous (Sg takes weakly null sequences to norm null sequences). Complete

continuity and compactness are equivalent in reflexive spaces; this was Hilbert’s
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original definition of compactness. However, as we will see below, these three

types of compactness need not be the same. See [Dunford and Schwartz 1958,

Chapter 5] for elementary information on the subject.

There are two more good reasons for studying the operators Sg, both con-

nected with the properties of compactness. The first has a long history and

began with work of Sarason in 1967. As usual, C(∂D) denotes the algebra of

continuous functions on the unit circle. Sarason [1976] looked at the linear space

H∞(∂D) + C(∂D) and showed the following:

Theorem 2.1. The space H∞(∂D) + C(∂D) is a closed subalgebra of L∞(∂D).

In fact, H∞(∂D) + C(∂D) is the closed algebra generated by H∞ and the con-

jugate of the inner function z on the unit circle. Hartman’s theorem [Power

1982] tells us that the classical Hankel operator Hg is compact if and only if

the symbol g belongs to H∞(∂D) + C(∂D). Douglas, in connection with the

study of Toeplitz operators on the circle, asked whether every closed subalgebra

B of L∞(∂D) containing H∞(∂D) was generated by H∞(∂D) together with the

set of conjugates of inner functions invertible in B. Algebras with this prop-

erty became known as Douglas algebras, and Sarason’s theorem inaugurated the

study of closed subalgebras of L∞(∂D) containing H∞(∂D). One of the most

important theorems in this study is the Chang–Marshall theorem [Chang 1976;

Marshall 1976], which answers Douglas’s question affirmatively and gives a beau-

tiful description of all closed subalgebras of L∞(∂D) containing H∞(∂D). This

theory does not generalize well to spaces of bounded functions on other domains

in the complex plane, but Sarason’s theorem above does. Rudin [1975] showed

that the same is true of algebras on the disc:

Theorem 2.2. The space H∞(D) + C(D) is a closed subalgebra of L∞(D).

It turns out that whenever U is a bounded open subset of the complex plane and

σ is area measure on U , the closure of H∞(U) + C(U) is a closed subalgebra of

L∞(σ) [Dudziak et al. ≥ 1998]. So the interesting part of the question really is:

When is H∞(U) + C(U) closed? Looking at the proofs of Theorems 2.1 and 2.2

(see [Axler and Shields 1987; Garnett 1981, p. 137], for example), one observes

that they share a common ingredient: both use approximation of functions by a

related harmonic extension of the function via the Poisson kernel.

Zalcman [1969] extended Sarason’s theorem to algebras of analytic functions

on certain infinitely connected domains (to be studied later in this paper). Davie,

Gamelin and Garnett continued work along this line [Davie et al. 1973] and

looked at algebras on a bounded open subset U of the complex plane for which the

functions in A(U) = H∞(U) ∩ C(U) are pointwise boundedly dense in H∞(U);

that is, every function in H∞(U) can be approximated pointwise on U by a

bounded sequence in A(U). They asked the following question: if H∞(U)+C(U)

is a closed subspace of L∞(U), is A(U) pointwise boundedly dense in H∞(U)?
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Their work contains many related results and seems to suggest that this must

be correct, yet this problem remains open.

Study of sums of closed algebras and investigation of when the sum is again a

closed algebra continued. Aytuna and Chollet [1976] extended Sarason’s result

to strictly pseudoconvex domains in Cn. Cole and Gamelin [1982] continued this

work in a natural way and studied the problem of when the double dual A∗∗ of

a uniform algebra A has the property that A∗∗ + C(X) is a closed subalgebra of

C(X)∗∗. One of their main results is that Sg is weakly compact for all g ∈ C(X)

if and only if A∗∗+C(X) is a closed subalgebra of C(X)∗∗. Thus, knowing when

Sg is weakly compact is connected to the question of when sums of uniform

algebras are closed algebras. If Sg is not weakly compact for all g ∈ C(X), can

we determine the space of functions for which Sg is weakly compact?

As it turns out, Cole and Gamelin showed that many of the algebras had

the seemingly stronger property that Sg is compact for all g ∈ C(X). In the

same paper, they defined the notion of tightness: a uniform algebra A is said

to be tight if Sg is weakly compact for all g ∈ C(X). They showed that under

certain conditions on the domain, one can use the fact that A(U) is tight to show

that H∞(U) + C(U) is a closed algebra of continuous functions on U . Cole and

Gamelin’s results are quite general, and they gave plenty of examples of tight

algebras. Their work concentrated on looking at algebras for which Sg is weakly

compact for all g ∈ C(X). Saccone [1995] continued studying tight algebras as

well as strong tightness; a uniform algebra A is strongly tight if Sg is compact

for all g ∈ C(X). He discusses in some depth properties of tight and strongly

tight algebras as well as the problem of tightness versus strong tightness.

In all cases that have been studied, the operators Sg are weakly compact if

and only if they are compact. This brings us to one more question: For which

g ∈ C(X) is Sg compact?

It is not difficult to see that every compact operator is weakly compact and

completely continuous. However, one can give examples to show that the three

properties may be different in a space. (Saccone’s thesis [1995] and Diestel’s

work [1984] are excellent references for some of these examples.)

It is an interesting problem to try to discover spaces in which these types of

compactness or complete continuity actually coincide. A well-known problem

in this direction is to characterize Banach spaces that have the Dunford–Pettis

property, that is, those on which any weakly compact operator is completely

continuous. This property was named after N. Dunford and B. J. Pettis, who first

introduced it [1940] and showed that it holds for L1 spaces. Grothendieck [1953]

showed that C(X) spaces have the Dunford–Pettis property. Bourgain [1984]

showed that H∞(D) has the same property, using the theory of ultra-products.

In studying his work, Cima and Timoney [1987] noted that if the operators Sg

are completely continuous for all g ∈ C(X), then A has the Dunford–Pettis

property. Using this approach, these authors were able to show that certain

spaces from rational approximation theory have the property. It was their hope
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that they could do the same for H∞(D) by characterizing the subalgebra of

L∞(∂D) consisting of those symbols g for which Sg is completely continuous.

They defined the Bourgain algebra of an algebra B to be

Bcc = {f ∈ C(X) : Sf is completely continuous}.

Their work is another version of the question we looked at above in connection

with Cole and Gamelin’s work; that is, for which g ∈ C(X) is Sg completely

continuous?

Thus we are interested in knowing three things: for which g ∈ C(X) is the

Hankel-type operator Sg compact, weakly compact, or completely continuous.

3. Bourgain Algebras

Cima and Timoney [1987] showed that the Bourgain algebra of a uniform

algebra B is a closed subalgebra of C(X) and that B ⊂ Bcc. A great deal of

work on Bourgain algebras followed; the reader is referred to the exposition in

[Yale 1992] for a description of early work on the subject. One can change the

domain of definition of the functions (see, for example, [Cima et al. 1993; Dudziak

et al. ≥ 1998]), the subalgebra B (as in [Gorkin et al. 1992]), the superalgebra

C(X) [Izuchi et al. 1994], or the space on which the continuous functions act

[Ghatage et al. 1992]. Finally, one can try to work in as general a context as

possible [Izuchi 1992].

Many related questions arose. For example, Izuchi, Stroethoff and Yale [Izuchi

et al. 1994] looked at the Bourgain algebra of closed linear subspaces rather than

closed algebras. Tonev and Yale [1996] study invariance of Hankel-type operators

under isomorphisms. One can also ask how the second Bourgain algebra of an

algebra is related to the first [Cima et al. 1993; Gorkin et al. 1992; Izuchi 1992];

sometimes they are the same, sometimes not. Another interesting question is

when the Bourgain algebras are monotonic; that is, if A ⊂ B, when is Acc ⊂ Bcc?

4. Compactness of Hankel-Type Operators on the Circle

From here on, unless otherwise stated, we will only be concerned with algebras

H∞(U) of bounded analytic functions on a domain U in the complex plane

as subalgebras of L∞(U) with respect to area measure. One can also look at

algebras on the boundary of these domains [Dudziak et al. ≥ 1998], but we will

do so only for H∞(∂D) as a subalgebra of L∞(∂D) on the unit circle. We now

return to the question of compactness of Hankel type operators.

As we mentioned above, for classical Hankel operators on the Hardy space we

have this result:

Theorem 4.1. Let f ∈ L∞(∂D). The Hankel operator Hf defined on H2 is

compact if and only if f ∈ H∞(∂D) + C(∂D).
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Cima, Janson and Yale [Cima et al. 1989] proved the following.

Theorem 4.2. Let f ∈ L∞(∂D). Then the Hankel-type operator Sf defined on

H∞ is completely continuous if and only if f ∈ H∞(∂D) + C(∂D).

Their proof uses a theorem of P. Beurling, as well as the theory of BMO and

the Chang–Marshall theorem. It turns out to be relatively easy to eliminate the

BMO theory, and this allows one to study Bourgain algebras of closed subal-

gebras of L∞(∂D) containing H∞(∂D) [Gorkin et al. 1992]. The proof of the

theorem as stated above also does not use the full strength of the Chang–Marshall

theorem. However, the theorem of P. Beurling, or ideas therein, turn out to be

essential to the study of Hankel-type operators. As we shall see, once one has

all these ideas in place it is not too difficult to show that complete continuity,

compactness, and weak compactness are equivalent for these operators in this

context. This seems to have first been noticed in [Dudziak et al. ≥ 1998].

In order to prove any result in this direction, one needs examples of weakly

convergent sequences. Because we are working in the uniform algebra context,

the Lebesgue dominated convergence theorem shows that a sequence of bounded

analytic functions {fn} on D converges weakly to zero if and only if it is uniformly

bounded and its Gelfand transform tends to zero pointwise on X. This makes it

a bit easier to think about weakly null sequences, but Beurling’s theorem helps

us to construct many more weakly null sequences. Beurling’s theorem is actually

much more general than the version stated as Theorem 4.3 below; see [Garnett

1981].

Recall that if zn are points in the disc satisfying
∑

(1−|zn|) < ∞ the Blaschke

product with zeroes zn is given by

B(z) =
∏ z̄n

|zn|

zn − z

1 − zz̄n

.

A sequence {zn} of points in D is called interpolating if it has the property

that, whenever {wn} is a bounded sequence of complex numbers, there exists

a function f ∈ H∞ with f(zn) = wn. While it is not clear that interpolating

sequences exist in general, for the disc such sequences have been characterized;

see, for example, [Garnett 1981, Chapter 7]. In fact, every sequence tending to

the boundary of the disc has an interpolating subsequence. An infinite Blaschke

product B is called an interpolating Blaschke product if the zero sequence of

B forms an interpolating sequence. The following general result of P. Beurling

[Garnett 1981, p. 298] is what we need to prove a version of Theorem 4.2; see

Theorem 4.5 below.

Theorem 4.3. Let {zn} be an interpolating sequence in the disc. Then there

are H∞(D) functions {fn} such that

fn(zn) = 1,

fn(zm) = 0 for n 6= m,
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and a constant M such that
∑

|fn(z)| < M for all z ∈ D.

Note that any such sequence of functions must converge to zero weakly, since,

for any element ϕ in the dual of H∞ and any positive integer N , if we let

an = sgn (ϕ(fn)), we have

N
∑

1

|ϕ(fn)| =
N

∑

1

an(ϕ(fn)) = ϕ

( N
∑

1

anfn

)

≤ ‖ϕ‖M.

Thus ϕ(fn) → 0 for all ϕ in the dual space of H∞.

In the setting of this paper one can show [Dudziak et al. ≥ 1998] that, if Sg

not compact, then it is an isomorphism (a bicontinuous operator onto its range)

on a subspace J of H∞(U) isomorphic to `∞. This implies that Sg cannot

be completely continuous or weakly compact. That is why, in all situations

presented here, these properties are all equivalent.

The following theorem, which is a special case of the Chang–Marshall theorem,

can be used to give a quick proof of Theorem 4.5.

Theorem 4.4. Suppose that f is in L∞(∂D) but not in H∞(∂D) + C(∂D).

Then the closed subalgebra of L∞(∂D) generated by H∞ and f contains the

conjugate of an interpolating Blaschke product .

This theorem has the advantage that it gives an easily understood proof of Cima,

Janson and Yale’s result containing the major ingredients of many of the proofs

in this area. It has the disadvantage that it does not generalize easily to functions

on general domains. Before turning to the proof, note that as long as Sg(z
n)

converges to zero in norm, we have g ∈ H∞ + C, for

dist(g,H∞ + C) ≤ dist(g, z̄nH∞) = dist(gzn,H∞) = ‖Sgz
n‖ → 0.

Thus, the strength of the following theorem really lies in the final assertion.

Theorem 4.5. Let g ∈ L∞(∂D). Then the Hankel-type operator Sg defined on

H∞ is compact if and only if g ∈ H∞(∂D) + C(∂D). Furthermore, if g is not

in H∞(∂D) + C(∂D), then Sg is neither compact , completely continuous, nor

weakly compact .

Proof. First we need to show that Sg is compact if g ∈ H∞(∂D) + C(∂D).

Since the result is clear for functions in H∞(∂D), we only have to show it for

continuous functions. In addition, one can check that the space of symbols for

which Sg is compact is a closed algebra, so it suffices to show that Sg is compact

if g(z) = z̄.

Suppose that {fn} is a bounded sequence of H∞(∂D) functions. By Montel’s

theorem there is a subsequence of {fn} converging uniformly on compacta to an

H∞(∂D) function. Thus we may assume that fn → 0 uniformly on compacta.

Note that, since |z| = 1, we have for f ∈ H∞(∂D)

z̄f =
f − f(0)

z
+ z̄f(0).
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Now z̄fn(0) → 0 and

z̄f + H∞ =
f − f(0)

z
+ z̄f(0) + H∞ = z̄f(0) + H∞,

so

‖Sz̄(fn)‖ = ‖z̄fn + H∞(∂D)‖ ≤ ‖z̄fn(0)‖ → 0.

Therefore, Sg is compact.

For the other direction, suppose that g is not in H∞(∂D) + C(∂D). By

Sarason’s theorem (Theorem 4.4), there is an interpolating Blaschke product b

with b̄ ∈ H∞[g]. Let {zn} denote the zero sequence of b. By Beurling’s theorem,

we can obtain a constant M and a sequence {fn} tending to zero weakly with
∑

|fn| < M such that fn(zm) = δnm. Let α = {αn} be an arbitrary sequence in

`∞. Let g̃ =
∑

αnfn. Then g̃ ∈ H∞ and ‖g̃‖ ≤ ‖α‖M . Now ‖Sb̄g̃‖ = ‖b̄g̃+H∞‖.

But |b| = 1 almost everywhere on ∂D, so we see that

‖Sb̄g̃‖ = ‖g̃ + bH∞‖ ≥ sup |g̃(zn)| ≥ sup |αn| ≥ ‖g̃‖/M.

Now the map defined for each α ∈ `∞ by α →
∑

αnfn is an embedding

of `∞ into H∞, and therefore Sb̄ is an isomorphism on a subspace J of H∞

isomorphic to `∞. This implies that Sb̄ is not compact, weakly compact, or

completely continuous. Since b̄ ∈ H∞[g] and the spaces of symbols f for which

Sf is compact, weakly compact, or completely continuous are uniformly closed

algebras containing H∞, we see that Sg cannot be compact, weakly compact, or

completely continuous. ˜

One can also obtain the isomorphism statement directly for the operator Sg by

using the full strength of the Chang–Marshall theorem rather than Sarason’s

theorem.

5. Compact Hankel-Type Operators on General Domains

The next result that appeared in this context was by Cima, Stroethoff and

Yale. They replaced the domain above by the disc, but they used the result for

the circle to obtain their result in this new situation.

Let’s try to guess what the result might be. Obviously Sg is completely

continuous for g in H∞(D). We probably expect that it would be completely

continuous for continuous symbols. Is there any other symbol that might make

this operator completely continuous? We are looking for a symbol g such that

fn → 0 weakly implies that ‖gfn+H∞(D)‖ → 0. Now we know from the uniform

boundedness principle that the ‖fn‖ are uniformly bounded. Thus fn → 0 on

compact subsets of D. So if we have a symbol for which fn converging uniformly

to zero on compacta implies ‖gfn‖ → 0, the corresponding Hankel type operator

would be completely continuous. Of course any L∞(D) function that vanishes

outside a compact subset of D will have this property. Since such a function could

be discontinuous on D, we see that it need not be in the algebra H∞(D)+C(D).
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Following Cima, Stroethoff, and Yale, we define the space L∞
o to be the closure

of the set of functions in L∞ that vanish outside a compact set contained in D.

This space of functions turns out to be precisely the space of functions for which

the multiplication operator is compact. (See [Dudziak et al. ≥ 1998] for this

result and a similar result for multiplication operators on general domains.)

Now we can state the result.

Theorem 5.1. Let g ∈ L∞(D). Then Sg is completely continuous if and only

if g ∈ H∞(D) + C(D) + L∞
o (D).

The original proof of the above result used Cima, Janson, and Yale’s theorem.

The first obstacle to be overcome is that it is difficult to start with a function

in L∞ and pass in a natural way to a function on the boundary. Later proofs

actually went the other way around, proving the result on an open subset of the

plane rather than the boundary. Many of these proofs can be adapted to work

on the boundary of the domain as well.

Cima, Stroethoff, and Yale’s result appears to be quite different from the

result on the circle. It was Izuchi who first noticed what the connection is. In

order to state Izuchi’s result here, we need to recall some definitions. Izuchi’s

result was stated for a general uniform algebra. However, we will continue to

work on algebras of bounded analytic functions on domains in the plane.

Izuchi noticed that the results obtained depend on the circle having the prop-

erty that every point of ∂D is what is called a peak point for the algebra H∞(D).

We can state this for more general domains (and it can be stated for more general

algebras; see [Gamelin 1969]).

Let U be a domain in C and let λ ∈ U . The fiber Mλ(H∞) over λ is defined

by

Mλ(H∞) = {ϕ ∈ M(H∞) : ϕ(z) = λ}.

We say that λ is a peak point for H∞ if there exists a function f ∈ H∞ such

that f |Mλ(H∞) = 1 (that is, ϕ(f) = 1 for all ϕ∈Mλ(H∞)) and
∣

∣f |Mα(H∞)
∣

∣ < 1

for all α 6= λ. In the case of the unit circle, every point is a peak point, since

a rotation of the function (z + 1)/2 produces a peaking function. However, no

point of the open unit disc can be a peak point of H∞(D), for this would violate

the maximum principle.

Note that when our domain is the unit disc or unit circle the function z̄ is

constant on every fiber, so if f is continuous, then f restricted to each fiber is

constant as well. Therefore, in both results above we see if we let

Bcc = {g ∈ L∞ : Sg is completely continuous},

then Bcc|Mλ(H∞) = (H∞+C)|Mλ(H∞) = H∞|Mλ(H∞) over every peak point

λ. Thus it seems that our algebra does not change over a peak point, while it

may change over a nonpeak point. Izuchi’s result deals with general uniform

algebras, but an inspection of the proof shows the following:
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Theorem 5.2. Suppose that every point of ∂U is a peak point for H∞(U). If

g ∈ L∞(U) and Sg is completely continuous, then g|Mλ(H∞) ∈ H∞|Mλ(H∞)

for all λ ∈ ∂U .

Izuchi’s proof uses the peak functions to construct a sequence of functions that

have properties similar to the P. Beurling functions. His proof is like an earlier

proof of Gamelin and Garnett [1970], which shows that a point λ ∈ U is a peak

point if and only if every sequence of points in U tending to λ has an interpolating

subsequence.

If we set
Bc = {g ∈ L∞ : Sg is compact},

Bwc = {g ∈ L∞ : Sg is weakly compact},

the next theorem tells us that what one now expects to be true is in fact so; see

[Dudziak et al. ≥ 1998].

Theorem 5.3. Let U be a domain and λ ∈ U be a peak point for H∞(U). Then

Bc|Mλ(H∞) = H∞|Mλ(H∞).

If , in addition, every point of ∂U is a peak point for H∞(U), then Sg is compact

if and only if g is in the uniform closure of

H∞(U) + C(U) + L∞
o (U).

Finally , if Sg is not compact , there is a subspace J of H∞(U) isomorphic to `∞

on which Sg is an isomorphism.

6. Nonpeak Points and Hankel-Type Operators

The last result along these lines is one in which not every point of the boundary

of the domain is a peak point. The so-called L-domains or roadrunner domains

are well-known examples of this behavior. Denote an open disc of radius rn and

center cn by ∆n. The roadrunner domain that we will work on consists of the

unit disc minus the union of the origin and a sequence of disjoint closed discs

∆n. We require that the centers cn be positive real numbers decreasing to 0,

and that the discs accumulate only at zero. Such domains were first studied by

Zalcman [1969], who showed that 0 is a peak point if and only if
∑

rn/cn = ∞.

He also showed that, if this sum is finite, one can define a homomorphism ϕ0 by

setting

ϕ0(f) =
1

2πi

∫

∂U

f(z)

z
dz for f ∈ H∞(D).

Such a homomorphism, called a distinguished homomorphism, is special in that

it is the only weak-star continuous homomorphism in the fiber over 0. In fact,

if we identify a point z with the linear functional that is evaluation at z, there

exists a sequence of points {zn} of U converging to ϕ0 in the norm of the dual

space of H∞! Now any point z0 ∈ U has a trivial fiber consisting only of
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such a homomorphism, and in some sense ϕ0 thinks of itself as one of these

homomorphisms, living in U . For this reason, the results and proofs mentioned

above do not extend to the roadrunner set when 0 is not a peak point. One has

to replace Beurling’s result by something more general.

One well-known general result in this direction is the Rosenthal–Dor theorem

[Diestel 1984, p. 201; Dor 1975]: In order that each bounded sequence in a Banach

space X have a weakly Cauchy subsequence, it is necessary and sufficient that

X contain no isomorphic copy of `1. The next theorem is the version of the P.

Beurling theorem that one needs in our situation [Dudziak et al. ≥ 1998].

Theorem 6.1. Let {µn} be a sequence of measures on U converging weak-star

in the dual of C(U) to the point mass at z0 ∈ ∂U . Then either {µn} converges in

norm (in (H∞(U))∗) or for every ε > 0 there is a subsequence {µnj
}, a constant

M , and a sequence of H∞(U) functions {fk} such that
∑

|fk(z)| < M for every

z ∈ U and
∫

fkdµnj
= δjk for all j and k.

More can be said in this setting; see [Dudziak et al. ≥ 1998] for this information

and a proof of the preceding theorem. What is important for us is that, when

the sequence converges in the norm of the dual space, it converges to the distin-

guished homomorphism. When this does not happen, we are in a situation in

which every sequence has an interpolating subsequence.

Unfortunately, results obtained thus far require that the roadrunner have one

more property. We need to require that there exist disjoint closed discs Dn with

center cn and radius Rn containing ∆n and satisfying
∑

rn/Rn < ∞. Note that

there is always a distinguished homomorphism in this kind of domain, since

∑ rn

cn

<
∑ rn

Rn

< ∞.

Such domains were studied by Behrens [1970], who discovered that they have

the following property.

Theorem 6.2. Given ε > 0 and M > 0 there exists an integer N such that , if

fn ∈ H∞(∆c
n) satisfies fn(∞) = 0 and ‖fn‖ < M , then

∑

m≥N

|fm(z)| < ε for z /∈
⋃

n≥N

Dn,

∑

m≥N
m6=n

|fm(z)| < ε for z ∈ Dn.

This property and the use of certain projections allowed Behrens to prove the

Corona theorem in such domains. The projections are defined as follows: for

f ∈ H∞(U) and an integer n > 0, define

Pn(f)(z) =
1

2πi

∫

∂∆n

f(ζ)

z − ζ
dζ for z /∈ ∆n.
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This allows us to take functions from H∞(U) to functions in H∞(∆c
n) vanishing

at ∞. One can then use Theorem 6.2 to sum the resulting functions. These

same properties are used to describe the Bourgain algebra H∞(U)cc, the algebra

H∞(U)c (consisting of symbols of compact Hankel-type operators), and the alge-

bra H∞(U)wc (consisting of symbols of weakly compact Hankel-type operators)

for the algebra H∞(U) when U is a Behrens roadrunner. A precise description

of this result is given in [Dudziak et al. ≥ 1998]. We note here only that the

three algebras turn out to be equal even in this general situation, but not equal

to H∞(U) + C(U) + L∞
o (U).

7. Open Questions

We conclude by mentioning some open questions in this area, the first two of

which arose in [Dudziak et al. ≥ 1998]. In order to help the reader, we write Bcc

rather than the usual notation Bb for the Bourgain algebra.

Question 7.1. In every situation that we know of , Bcc = Bc = Bwc. Are any

or all of these equalities true in H∞(U) for an arbitrary domain U in the plane?

As mentioned above, in the case of the Behrens roadrunner the algebra H∞(U)c

turns out to be different from H∞(U) + C(U) + L∞
o (U). In fact, any function

g ∈ L∞(U) that is the constant value 1 or the constant 0 on Dn \ ∆n for every

n is the symbol of a compact Hankel-type operator. If we take such a g and

require that it be identically 1 on D2n\∆2n and identically 0 on D2n+1\∆2n+1,

the operator Sg will be compact, but g /∈ H∞(U)+C(U)+L∞
o (U). At the time

of this writing the following question remains open:

Question 7.2. Let U be a domain in C. For which g ∈ L∞(U) is the Hankel-

type operator Sg compact? weakly compact? completely continuous?

The answer in the case of the Behrens roadrunner depends on a description of

points tending to the distinguished homomorphism. In the general case, one

would expect the distance in the pseudohyperbolic metric to the distinguished

homomorphism to play an important role.

Question 7.3. The study of Bourgain algebras arose in an effort to find a

simpler proof of the fact that H∞(D) has the Dunford–Pettis property . Does

H∞(U) have the Dunford–Pettis property?
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