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The Abstract Interpolation Problem and

Applications

ALEXANDER KHEIFETS

Abstract. A number of classical interpolation problems can be reduced to
the following scheme. One is interested in the finding Schur class operator
functions w(ζ) : E1 → E2, with ζ ∈ D, that satisfy certain interpolation
conditions. The data of the problem are encoded in the Lyapunov identity

D(T2x, T2y) − D(T1x, T1y) = 〈M1x, M1y〉 − 〈M2x, M2y〉,

where x, y are elements of a vector space X, D is a positive semidefinite
quadratic form on X, T1 and T2 are linear operators on X, and M1, M2

are linear operators from X to the separable Hilbert spaces E1, E2. After
introducing the de Branges–Rovnyak function space Hw associated with
w, we can formulate the interpolation conditions thus: w is a solution
to the interpolation problem if and only if there exists a linear mapping
F : X → Hw such that

‖Fx‖2
Hw ≤ D(x, x)

and

(FT1x)(t) = t(FT2x)(t) −

»

11 w(t)
w(t)∗ 11

– »

−M2x

M1x

–

for a.e. t with |t| = 1. The solutions w turn out to be the scattering
matrices of the unitary colligations that extend the isometric colligation
defined by the Lyapunov identity. These extensions and their scattering
functions can be described using a “universal” extension and its scattering
operator function. The description formula for solutions looks like

w = s0 + s2(1 − ωs)−1ωs1,

where

S =

»

s s1

s2 s0

–

: N2 ⊕ E1 → N1 ⊕ E2

is the scattering matrix of the “universal” extension and ω : N1 → N2 is an
arbitrary parameter from the Schur class. The matrix S is defined essen-
tially uniquely by the data of the problem and is called the scattering matrix
of the problem. Using the functional model and the Fourier representation
of the “universal” extension one can investigate analytic properties of the
scattering matrices S for classes of interpolation problems.
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Lecture 1. The Abstract Interpolation Problem

I will begin with the formal setup of the Abstract Interpolation Problem, or

AIP, then consider several examples and discuss the role of the AIP in their

investigation.

The data of the AIP are encoded in the Fundamental Identity:

D(T2x, T2y) −D(T1x, T1y) = 〈M1x,M1y〉E1
− 〈M2x,M2y〉E2

, (1–1)

where x, y are elements of a vector space X (which has no a priori topological

structure), D is a positive-semidefinite quadratic form on X, T1 and T2 are linear

operators on X, E1 and E2 are separable Hilbert spaces, and M1,M2 are linear

mappings from X into E1, E2.

De Branges–Rovnyak function spaces. Let w be a Schur class operator

function; that is, w associates to each ζ in the unit disk D = {ζ : |ζ| ≤ 1}

a contraction w(ζ) : E1 → E2, varying analytically with ζ. The de Branges–

Rovnyak space Lw consists of the functions f : T → E2 ⊕ E1 (where T =

{ζ : |ζ| = 1} is the unit circle) having the form

f =

[
11E2

w

w∗ 11E1

]1/2

g (1–2)

for some g ∈ L2(E2 ⊕ E1). We set

‖f‖Lw
def
= inf ‖g‖L2 ,

where the infimum is taken over all g ∈ L2(E2 ⊕E1) such that (1–2) is satisfied.

All such preimages g differ by the addition of (arbitrary) elements of Ker
[

11
w∗

w
11

]
,

and the infimum is attained when

g(t) ⊥ Ker

[
11 w(t)

w(t)∗ 11

]
a.e. on T.

Let π−1
w f denote the particular g that achieves the infimum. Thus

‖f‖2
Lw = ‖π−1

w f‖2
L2 =

∫

T

∥∥(π−1
w f)(t)

∥∥2

E2⊕E1

m(dt),
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where m(dt) is Lebesgue measure. The inner product in Lw is defined by

〈f, h〉Lw =
〈
π−1

w f, π−1
w h

〉
L2
.

Now Lw is a Hilbert space. As a set it is contained in L2. It might happen that

a function f ∈ Lw admits the representation

f(t) =

[
11 w(t)

w(t)∗ 11

]
ǧ(t) a.e.,

where ǧ(t) need not be in L2; then, for any h ∈ Lw,

〈f, h〉Lw =

〈[
11 w

w∗ 11

]1/2

ǧ(t), π−1
w h

〉

L2

=

∫

T

〈
ǧ(t), h(t)

〉
E2⊕E1

m(dt).

We also define the space Hw as the subspace of Lw consisting of

f =

[
f2
f1

]
with f2 ∈ H2

+(E2) and f1 ∈ H2
−(E1),

where H2
+ and H2

− are the standard Hardy classes.

Setup of the AIP. The Schur class function w : E1 → E2 is said to be a solution

of the AIP (with the data specified above) if there exists a linear mapping F :

X → Hw such that, for all x ∈ X, the following conditions are satisfied:

(i) ‖Fx‖2
Hw ≤ D(x, x).

(ii) tFT2x− FT1x =

[
11 w

w∗ 11

] [
−M2x

M1x

]
for a.e. t ∈ T.

Property (ii) is, in fact, an implicit formula for the mapping F . Sometimes it

defines F uniquely, sometimes not; but any mapping F that possesses (ii) is very

special. We will describe all such maps in Lecture 4.

If we write

Fx =

[
F+x

F−x

]
,

the conditions Fx ∈ Hw and ‖Fx‖2
Hw ≤ D(x, x) are equivalent to the conjunc-

tion of three conditions:

(a) F+x ∈ H2
+(E2).

(b) F−x ∈ H2
−(E1).

(c) ‖Fx‖2
Lw ≤ D(x, x).

By the definition of the inner product in Lw, property (c) is actually an upper

bound for the average boundary values of Fx.

My goal now is to explain why this abstract problem is an “interpolation”

problem. Before passing to examples I would like to consider a special case of

the data (which was considered earlier than the general case).
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A special case. Assume that the operators (ζT2 − T1) and (T2 − ζ̄T1) are

invertible for all ζ ∈ D except possibly for a discrete set. Because the first

components of the sides of relation (ii) above are H2
+ functions, one can consider

the analytic continuation of the relation inside the unit disk D:

ζ(F+T2x)(ζ) − (F+T1x)(ζ) = −M2x+ w(ζ)M1x. (1–3)

We emphasize that the vectors M2x ∈ E2 and M1x ∈ E1 are independent of ζ.

Fix ζ ∈ D. Because the mapping F is linear, we have

ζ(F+T2x)(ζ) =
(
F+(ζT2x)

)
(ζ).

Actually, for any complex number µ,

µ(F+T2x)(ζ) =
(
F+(µT2x)

)
(ζ);

in particular, this is true for µ = ζ. We can reexpress (1–3) now as
(
F+((ζT2 − T1)x)

)
(ζ) =

(
−M2 + w(ζ)M1

)
x.

Replacing x by (ζT2 − T1)
−1x, we end up with

(Fw
+ x)(ζ) = (w(ζ)M1 −M2)(ζT2 − T1)

−1x. (1–4)

One can see better now the interpolation meaning of the property F+x ∈ H2
+:

the “zeros” of the numerator cancel the “zeros” of the denominator, which means

that w obeys the interpolation constraint

w(ζ)M1x = M2x

at certain “points” ζ.

In a similar way, the second components of the two sides of equality (ii) can

be reexpresed, under the assumptions at hand, as

(Fw
−x)(ζ) = ζ̄(M1 − w(ζ)∗M2)(T2 − ζ̄T1)

−1x. (1–5)

The interpolation meaning of the property Fw
−x ∈ H2

− is similar to the one

considered above, but now for w(ζ)∗.

The meaning of property (c) will be discussed in the examples.

Remark. Under the assumptions of this section, condition (ii) defines F uniquely

and explicitly for any solution w. This allows us to write Fw instead of F . Thus,

under these assumptions, one can give a more explicit setup for the AIP:

Let

Fwx =

[
Fw

+ x

Fw
−x

]

be defined by the formulas (1–4) and (1–5). The Schur class function w is said

to be a solution of the AIP if Fw possesses properties (a), (b), and (c).

Generally, condition (ii) does not define F in a unique way, but we will see in

Lecture 4 how to describe all such mappings F .
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References for Lecture 1 are [Katsnelson et al. 1987; Kheifets 1988a; 1988b;

1990b; Kheifets and Yuditskii 1994].

Lecture 2. Examples

Example 1: The Nevanlinna–Pick Problem. Let ζ1, . . . , ζn, . . . be a finite

or infinite sequence of points in the unit disk D; let w1, . . . , wn, . . . be a sequence

of complex numbers. One is interested in describing all the Schur class functions

w such that

w(ζk) = wk.

The well-known solvability criterion is
[
1 − w̄kwj

1 − ζ̄kζj

]n

k,j=1

≥ 0 for all n.

We define the data of the AIP associated with this problem. Because the func-

tions w are scalar, E1 = E2 = C
1. Consider the space X that consists of all

sequences

x =




x1

...

xn
...




that have only a finite number of nonvanishing components. No topology is

assumed on X.

Define the sesquilinear form D on X by

D(x, y) =
∑

k,j

ȳk
1 − w̄kwj

1 − ζ̄kζj
xj , for x, y ∈ X.

The (diagonal) linear operators

T = T1 =




ζ1
. . .

ζn
. . .




and T2 = 11X are well defined on the space X. We can now check the Funda-

mental Identity (1–1):

D(x, y) −D(Tx, Ty) =
∑

k,j

ȳk(1 − w̄kwj)xj

=
∑

k,j

ȳkxj −
∑

k,j

ȳkw̄kwjxj

=
∑

k

ȳk ·
∑

j

xj −
∑

k

ȳkw̄k ·
∑

j

wjxj .



356 ALEXANDER KHEIFETS

By defining M1x =
∑

j xj and M2x =
∑

j wjxj , we end up with

D(x, y) −D(Tx, Ty) = M1y ·M1x−M2y ·M2x.

The products on the right-hand side are actually the standard inner product in

C
1.

Consider now the AIP associated with these data. Let w be a solution of this

AIP. This means that there exists a mapping F : X → Hw such that conditions

(i) and (ii) on page 353 hold. Because (ζ11 − T )−1 exists for all ζ, such that

|ζ| < 1 and ζ 6= ζj , and because (11− ζ̄T )−1 exists for all ζ with |ζ| < 1, we know

that F has the following form (see Lecture 1, special case on page 354):

(Fw
+ x)(ζ) = (w(ζ)M1 −M2)(ζ11 − T )−1x

(Fw
−x)(ζ) = (M1 − w(ζ)M2)(11 − ζ̄T )−1x.

Thus, Fw is defined uniquely for any solution w. It is easy to compute these

expressions more explicitly for this example. Because

(ζ11 − T )−1




x1

...

xn
...


 =




1
ζ−ζ1

x1

...
1

ζ−ζn
xn

...



,

we obtain

(Fw
+ x)(ζ) = w(ζ)

∑

j

1

ζ − ζj
xj −

∑

j

wjxj

ζ − ζj
=

∑

j

w(ζ) − wj

ζ − ζj
xj ;

in the same way

(Fw
−x)(ζ) = ζ̄

∑

j

1 − w(ζ)wj

1 − ζ̄ζj
xj .

The function w is a solution of the AIP if and only if Fwx ∈ Hw and

‖Fwx‖2
Hw ≤ D(x, x) for all x ∈ X; that is, if and only if properties (a), (b),

(c) of page 353 hold. One can see from the explicit formula that property (a)

holds if and only if w(ζj) = wj . Property (b) holds automatically. To see what

property (c) means, compute the left-hand side. On the boundary (for|t| = 1),

Fw
+ x and Fw

−x look like

(Fw
+ x)(t) = w(t)

∑

j

xj

t− ζj
−

∑

j

wjxj

t− ζj
,

(Fw
−x)(t) =

∑

j

xj

t− ζj
− w(t)

∑

j

wjxj

t− ζj
.

Or we can put these two formulas together:

(Fwx)(t) =

[
11 w(t)

w(t)∗ 11

] [
−

∑
j

wjxj

t−ζj∑
j

xj

t−ζj

]
.
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Now,

‖Fwx‖2
Hw =

〈[
Fw

+ x

Fw
−x

]
,

[
−

∑
j

wjxj

t−ζj∑
j

xj

t−ζj

]〉

L2

=

〈
Fw
−x,

∑

j

xj

t− ζj

〉

L2

=
∑

j

x̄j
(Fw

−x)(ζj)

ζ̄j
=

∑

j

x̄j

∑

k

1 − w̄jwk

1 − ζ̄jζk
xk = D(x, x).

The latter computation depends on property (a), Fw
+ x ∈ H2

+. Thus, we can see

that w is a solution of the AIP with these data if and only if w is a solution of

the Nevanlinna–Pick problem. For this particular problem, condition (a) actually

carries all the interpolation information, (b) holds automatically, and (c) follows

from (a). Moreover, we emphasize that for any solution w of this problem we

have the equality ‖Fwx‖2
Hw = D(x, x) for all x ∈ X, instead of inequality.

To continue on to the second (more general) example, I will reformulate the

first one. Consider the closed linear span of the functions

{
1

t− ζj

}

and denote by Kθ̄ ⊆ H2
− the space H2

− 	 θ̄H2
−, where θ is the Blaschke product

with zeros ζj if they satisfy the Blaschke condition and θ ≡ 0 otherwise (in this

case Kθ̄ = H2
−). We can associate the function

x̃(t) =
∑

j

xj

t− ζj
∈ Kθ̄

with any x ∈ X of the first example. Kθ̄ is invariant under P−t, where t is

the independent variable, and P− is the orthogonal projection onto H2
−. It is

easy to see that the operator T from the first example acts as P−t under this

correspondence; in fact,

P−t
∑

j

xj

t− ζj
=

∑

j

ζjxj

t− ζj
.

Let W be the operator on the space X defined by

W




x1

...

xn
...


 =




w1x1

...

wnxn
...


 .

Obviously WT = TW . Under the correspondence,

W̃x(t) =
∑

j

wkxj

t− ζj
.
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A Schur class function w is a solution of the Nevanlinna–Pick problem if and

only if W̃x = P−wx̃. In fact,

P−w
1

t− ζj
= P−

w − w(ζj)

t− ζj
+ P−

w(ζj)

t− ζj
=
w(ζj)

t− ζj
.

Observe that

M1x =
∑

j

xj = (x̃)−1,

where the last notation stands for the Fourier coefficient of index −1 of the H 2
−

function x̃. And M2x = (W̃x)−1. Since W̃x = P−wx̃ for any solution w of

the Nevanlinna–Pick problem, then ‖W̃x‖H2

−

≤ ‖x̃‖H2

−

. We can reexpress the

quadratic form D as

D(x, y) = 〈x̃, ỹ〉H2

−

− 〈W̃x, W̃y〉H2

−

.

In fact, let

x̃ =
1

t− ζj
and ỹ =

1

t− ζk
;

then

W̃x =
wj

t− ζj
,

〈x̃, ỹ〉 =
1

1 − ζ̄kζj
,

W̃ y =
wi

t− ζi
,

〈W̃x, W̃y〉 =
w̄kwj

1 − ζ̄kζj
.

If x̃ =
∑

j

xj

t− ζj
, then

‖x̃‖2 − ‖W̃x‖2 =
∑

k,j

x̄k
1 − w̄kwj

1 − ζ̄kζj
xj = D(x, x).

Define the operator W̃ on Kθ̄ by

W̃ (x̃) = W̃x.

This is well defined and D ≥ 0 if and only if W̃ is a contraction.

Example 2. Sarason’s Problem. Now let θ be an arbitrary inner function

(not necessarily a Blaschke product). Set Kθ̄ = H2
−	θ̄H2

−; this space is invariant

under P−t. Set T = P−t|Kθ̄. Let W be a contractive operator on Kθ̄ with

WT = TW . One is interested in finding all the Schur class functions w such

that

Wx = P−wx for all x ∈ Kθ̄.

Associate the following AIP data to the Sarason problem: X = Kθ̄, T1 = T ,

T2 = 11, D(x, x) = ‖x‖2 − ‖Wx‖2, M1x = (x)−1, M2x = (Wx)−1; here

E1 = E2 = C
1. One can check the Fundamental Identity (see the beginning
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of Lecture 1). For this data the implicit definition (ii) of the mapping F yields

an explicit formula for F :

Fwx =

[
1 w

w̄ 1

] [
−Wx

x

]
a.e. t ∈ T,

for all x ∈ X and any solution w of the AIP. Thus, Fw is unique for any solution

w. Then again w is a solution of the AIP if and only if Fwx ∈ Hw for all x ∈ X

and ‖Fwx‖2
Hw ≤ D(x, x), that is, if and only if conditions (a), (b) and (c) of

page 353 hold.

For condition (a) we have

Fw
+ x = wx−Wx ∈ H2

+ ⇐⇒ P−(wx−Wx) = 0 ⇐⇒ P−wx = Wx

for all x ∈ X. In other words, condition (a) is satisfied if w solves the Sarason

problem.

Condition (b), Fw
−x = x − w̄ ·Wx ∈ H2

−, holds automatically for any Schur

class function w.

For condition (c) we get

‖Fwx‖2
Lw =

〈[
Fw

+ x

Fw
−x

]
,

[
−Wx

x

]〉

L2

= 〈Fw
−x, x〉L2

= 〈x− w̄ ·Wx, x〉 = 〈x, x〉 − 〈Wx,wx〉

= 〈x, x〉 − 〈Wx,P−wx〉 = 〈x, x〉 − 〈Wx,Wx〉 = D(x, x).

Thus, for this data w is a solution of the AIP if and only if w is a solution of

the Sarason problem. Property (a) carries all the interpolation information, (b)

holds automatically, and (c) follows from (a). And we again have the equality

‖Fwx‖2
Hw = D(x, x) for all x ∈ X and for all solutions w, instead of inequality.

Example 2′. We now associate another AIP to the same Sarason problem.

This AIP is best considered as being different (nonequivalent) from the one in

Example 2, though they have a common set of solutions. The reason is that the

coefficient matrices in the description formulas for the solution sets (see the last

theorem of Lecture 4) are different and the associated universal colligations (see

Section 2 of Lecture 4) are nonequivalent.

Let θ be an inner function, and set Kθ = H2
+ 	 θH2

+ and T ∗
θ x2 = P+t̄x2

for x2 ∈ Kθ. Let W ∗
2 be a contractive operator on Kθ that commutes with

T ∗
θ : W ∗

2 T
∗
θ = T ∗

θW
∗
2 . Find all the Schur class functions w such that

W ∗
2 x2 = P+w̄x2.

One can check that the solutions of this problem and of the one in the previous

example coincide (if the operator W of Example 2 and the operator W2 are

properly connected). Consider the AIP with the data X = Kθ, T1 = 11, T2 = T ∗
θ ,

E1 = E2 = C
1, M1x2 = (W ∗x2)0, and M2x2 = (x2)0, where the notation ( · )0

stands for the Fourier coefficient of index 0 of an H2
+ function. As in Example 2,
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F can be expressed explicitly and uniquely for any solution w of the AIP with

this data:

Fwx2 =

[
1 w

w̄ 1

] [
x2

−W ∗
2 x2

]
.

Now consider properties (a), (b) and (c). For (a) we have

Fw
+ x2 = x2 − w ·W ∗

2 x2 ∈ H2
+;

this holds automatically for any Schur class function w. Property (b) becomes

Fw
−x2 = w̄x2 −W ∗

2 x2 ∈ H2
−;

this holds if and only if P+w̄x2 = W ∗
2 x2; that is, if and only if w solves the

Sarason problem. Finally, for (c) we can write

‖Fwx2‖
2
Lw = D(x2, x2) for all x2 ∈ X

for any solution w. Thus, for these data property (b) carries all the interpolation

information, (a) holds automatically for any Schur class w, and (c) follows from

(b). The equality

‖Fwx2‖
2
Hw = D(x2, x2) for all x2 ∈ X

holds for any solution w.

Example 3. The boundary interpolation problem. Property (c) domi-

nates in this example and (a) and (b) follow. The equality in condition (c) holds

for some solutions but not for all of them. We will need some preliminaries.

A Schur class function w in the unit disk D is said to have an angular derivative

in the sense of Carathéodory at the point t0 ∈ T if w(ζ) has a nontangential

unimodular limit w0 as ζ goes to t0, |w0| = 1, and

w(ζ) − w0

ζ − ζ0

has a nontangential limit w′
0 at t0.

Theorem (Carathéodory). A Schur class function w(ζ) has an angular

derivative at t0 ∈ T if and only if

Dw,t0
def
= lim inf

ζ→t0

1 − |w(ζ)|2

1 − |ζ|2
<∞

(here |ζ| ≤ 1 and ζ → t0 in an arbitrary way). In this case w′
0 = Dw,t0 ·

w0

t0
and

1 − |w(ζ)|2

1 − |ζ|2
−→ Dw,t0

as ζ goes to t0 nontangentially . Dw,t0 vanishes if and only if w is a constant of

modulus 1.
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Moreover, a Schur class function w has an angular derivative in the sense of

Carathéodory at the point t0 ∈ T if and only if there exists a unimodular constant

w0 such that
∣∣∣w(t) − w0

t− t0

∣∣∣
2

+
1 − |w(t)|2

|t− t0|2
∈ L1;

that is, if and only if this function is integrable over T against Lebesgue measure.

In particular, this guarantees that

w − w0

t− t0
∈ H2

+,

because the denominator is an outer function. In that case

∫

T

(∣∣∣w(t) − w0

t− t0

∣∣∣
2

+
1 − |w(t)|2

|t− t0|2

)
m(dt) = Dw,t0 .

Now consider the following interpolation problem. Let t0 be a point of the

unit circle T, let w0 be a complex number with |w0| = 1, and let 0 ≤ D <∞ be

a given nonnegative number. One wants to describe all the Schur class functions

w such that w(ζ) → w0 as ζ → t0 (nontangentially) and Dw,t0 ≤ D.

Associate to this problem the AIP data X = C
1, D(x, x) = x̄Dx, T1x = t0x,

T2x = x, M1x = x, M2x = w0x, E1 = E2 = C
1; then we can check the

Fundamental Identity (1–1). The left-hand side of the identity is

x̄Dx− x̄t̄0Dt0x = 0,

and the right-hand side is

M1x ·M1x−M2x ·M2x = x̄x− x̄w̄0w0x = 0.

The mapping F of Lecture 1 (pages 353–354) is unique for any solution w and

can be computed explicitly for this data:

Fwx =

[
1 w

w̄ 1

][
− w0

t−t0
1

t−t0

]
x

We can analyse now what conditions (a), (b), and (c) tell us. Condition (a)

becomes

F+x =
w − w0

t− t0
x ∈ H2

+; that is,
w − w0

t− t0
∈ H2

+.

Condition (b) becomes

F−x =
1 − w̄w0

t− t0
x = t̄

w̄ − w̄0

t̄− t̄0
·
w0

t0
x ∈ H2

−.
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Hence (a) and (b) coincide. Finally, condition (c) becomes

‖Fx‖2
Lw =

∫

T

〈
(Fx)(t),

[
− w0

t−t0
1

t−t0

]
x

〉

C2

m(dt)

=

∫

T

x̄
−w̄0(w − w0) + (1 − w̄w0)

|t− t0|2
xm(dt)

= x̄

∫

T

(w̄ − w̄0)(w − w0) + 1 − w̄w

|t− t0|2
m(dt)x

= x̄

∫

T

(∣∣∣w − w0

t− t0

∣∣∣
2

+
1 − |w|2

|t− t0|2

)
m(dt)x = x̄Dw,t0x.

Thus, ‖Fx‖2
Lw ≤ D if and only if Dw,t0 ≤ D; that is, w is a solution of the

AIP with this data if and only if w is a solution of the boundary interpolation

problem.

A reference for Examples 2 and 2′ is [Kheifets 1990a]. References for Exam-

ple 3 are [Kheifets 1996; Sarason 1994].

Lecture 3. Solutions of the Abstract Interpolation Problem

Role of the AIP. In Lecture 2 we showed how some specific analytic problems

can be included in the AIP scheme. The AIP, as formulated in Lecture 1, is very

well adapted to this inclusion (actually it arose from the experience of treating

a number of problems of this type). To include a specific problem in the scheme

one has to realize (if it is possible) what the associated data is and to prove the

coincidence of two solution sets: that of the original analytic problem and that

of the AIP with the associated data. The mapping F suggests an algorithm for

what exactly is to be checked to prove this coincidence.

In this lecture we will slightly reformulate the AIP to adapt it better to solving

the problem (now the origin of the data is unimportant to a certain extent).

Thus, the AIP can be viewed as an intermediate link between specific inter-

polation problems and their resolution. It has two sides: one of them looks at

the specific interpolation problem and is devoted to proving the equivalence of

the original problem and associated AIP, the second concerns solutions. As soon

as a specific problem is included in the scheme, the analysis of its solutions goes

in a standard and universal way.

Isometric colligation associated with the AIP data. Reformulation

of the AIP. Let [x] stand for the equivalence class of x with respect to the

quadratic form D. (The equivalence relation is defined as follows: x ∼ 0 if and

only if D(x, y) = 0 for all y ∈ X, and x1 ∼ x2 if and only if x1 − x2 ∼ 0).

Consider the linear space of equivalence classes
{
[x] : x ∈ X

}
and define an

inner product in it by 〈
[x], [y]

〉 def
= D(x, y).
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This product is well defined. One can complete it and obtain a Hilbert space,

which we denote by H0.

Rewrite the Fundamental Identity (1–1) as

D(T1x, T1y) + 〈M1x,M1y〉E1
= D(T2x, T2y) + 〈M2x,M2y〉E2

.

Using the notations introduced above one can reexpress this as
〈
[T1x], [T1y]

〉
H0

+ 〈M1x,M1y〉E1
=

〈
[T2x], [T2y]

〉
H0

+ 〈M2x,M2y〉E2
. (3–1)

Set

dv
def
= Clos

{[
[T1x]

M1x

]
: x ∈ X

}
⊆ H0 ⊕E1

and

∆v
def
= Clos

{[
[T2x]

M2x

]
: x ∈ X

}
⊆ H0 ⊕ E2.

Define a mapping V : dv → ∆v by the formula

V :

[
[T1x]

M1x

]
−→

[
[T2x]

M2x

]
. (3–2)

Because of (3–1), V is an isometry. This implies that V is well-defined. In fact,

if [
[T1x

′]

M1x
′

]
=

[
[T1x

′′]

M2x
′′

]
, that is,

[
[T1(x

′ − x′′)]

M1(x
′ − x′′)

]
= 0,

then (3–1) implies that [
[T2(x

′ − x′′)]

M2(x
′ − x′′)

]
= 0.

Now, if x′ and x′′ generate the same vector on the left-hand side of (3–2), they

generate the same vector on the right-hand side of (3–2), which shows that V is

well-defined.

Let w be a solution of the AIP; that is, suppose there exists a mapping

F : X → Hw possessing properties (i) and (ii) of page 353. Property (i) says

that

‖Fx‖2
Hw ≤ D(x, x) ≡

∥∥[x]
∥∥2

H0

.

Hence, Fx depends only on the equivalence class [x], not on the representative

x. This means that F generates a mapping G of the equivalence classes

G[x]
def
= Fx, (3–3)

and

‖G[x]‖2
Hw ≡ ‖Fx‖2

Hw ≤
∥∥[x]

∥∥2

H0

.

Thus G is a contraction. Since
{
[x] : x ∈ X

}
is dense in H0 and G is a contrac-

tion, it can be extended to a contraction of H0 into Hw. Thus, any F : X → Hw

with properties (i) and (ii) (actually up to now we used only (i)) generates a

contraction G : H0 → Hw such that G[x] = Fx for all x ∈ X.
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We now try to interpret property (ii). To this end we reexpress (ii) as

FT2x+ t̄

[
11

w∗

]
M2x = t̄

(
FT1x+

[
w

11

]
M1x

)
,

or

G[T2x] + t̄

[
11

w∗

]
M2x = t̄

(
G[T1x] +

[
w

11

]
M1x

)
(3–4)

Our further goal is to realize the latter equality as one of the form
[
G[T2x]

M2x

]
= Aw

[
G[T1x]

M1x

]
, (3–5)

where Aw : Hw ⊕E1 → Hw ⊕E2 is a linear operator. As we know, G maps H0

into Hw, M1 maps H0 into E1, and M2 maps H0 into E2. The relation (3–4) is

of the type

f ′′ + t̄

[
11

w∗

]
e2 = t̄

(
f ′ +

[
w

11

]
e1

)
, (3–6)

where f ′, f ′′ ∈ Hw and e1 ∈ E1, e2 ∈ E2. Observe that the three subspaces
{[

w

11

]
e1 : e1 ∈ E1

}
, Hw,

{
t̄

[
11

w∗

]
e2 : e2 ∈ E2

}

are mutually orthogonal in Lw (see page 352 for the definition of Lw). Let Pw

be the orthogonal projection from Lw onto Hw; then, for any

f =

[
f2
f1

]
∈ Lw,

we have

Pw

[
f2
f1

]
=

[
f2
f1

]
−

[
11 w

w∗ 11

] [
P−f2
P+f1

]
(3–7)

Obviously this difference is in Lw. It can be rewritten as

Pw

[
f2
f1

]
=

[
P+f2 − wP+f1
P−f1 − w∗P−f2

]
.

Hence, it is in Hw. Because
[

11 w

w∗ 11

] [
P−f2
P+f1

]

is orthogonal to Hw, Pw is really the orthogonal projection.

Because

f ′ =

[
f ′+
f ′−

]
∈ Hw,

we can obtain from (3–6) and (3–7)

t̄

[
11

w∗

]
e2 = (11Lw − Pw)

{
t̄

(
f ′ +

[
w

11

]
e1

)}
=

[
11 w

w∗ 11

] [
P−t̄(f

′
+ + we1)

P+t̄(f
′
− + e1)

]

=

[
11 w

w∗ 11

] [
t̄(f ′+(0) + w(0))e1

0

]
= t̄

[
11

w∗

] (
f ′+(0) + w(0)e1

)
.
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Thus

e2 = f ′+(0) + w(0)e1. (3–8)

Now, from (3–6) and (3–8),

f ′′ = t̄(f ′ +

[
w

11

]
e1) − t̄

[
11

w∗

]
e2 = t̄(f ′ +

[
w

11

]
e1) −

[
11

w∗

] (
f ′+(0) + w(0)e1)

)
.

That is,

f ′′ = t̄

(
f ′ −

[
11 w

w∗ 11

] [
f ′+(0)

0

])
+ t̄

[
11 w

w∗ 11

] [
−w(0)

11

]
e1. (3–9)

Putting (3–8) and (3–9) together we obtain

[
f ′′

e2

]
= Aw

[
f ′

e1

]
, Aw =

[
Aw

in (Aw
1 )∗

Aw
2 Aw

12

]
:

[
Hw

E1

]
→

[
Hw

E2

]

where

Aw
inf = Pw t̄f = t̄

(
f −

[
11 w

w∗ 11

] [
f+(0)

0

])
: Hw → Hw,

(Aw
1 )∗e1 = t̄

[
11 w

w∗ 11

] [
−w(0)

11

]
: E1 → Hw,

Aw
2 f = f+(0) : Hw → E2,

Aw
12e1 = w(0)e1 : E1 → E2.

Thus, condition (ii) of the AIP, equivalently (3–4) or (3–5), can be expressed as

[
G 0

0 11E2

] [
[T2x]

M2x

]
= Aw

[
G 0

0 11E1

] [
[T1x]

M1x

]
. (3–10)

According to the definition (3–2) of the isometry V ,

[
[T2x]

M2x

]
= V

[
[T1x]

M1x

]
.

Combining this with (3–10) we conclude that

[
G 0

0 11E2

]
V

∣∣ dv = Aw

[
G 0

0 11E1

] ∣∣ dv. (3–11)

To give (3–11) a further interpretation we digress to recall some basic facts related

to unitary colligations, their characteristic functions, and functional models.
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Digression on unitary colligations, characteristic functions, and func-

tional models. Let H,E1, E2 be separable Hilbert spaces. A unitary mapping

A of H ⊕ E1 onto H ⊕ E2 is said to be a unitary colligation. The space H is

called the state space of the colligation, E1 is called the input space, and E2 is

called the response space. Both E1 and E2 are called exterior spaces.

The operator-valued function w(ζ) : E1 → E2 defined by the formula

w(ζ) = PE2
A(11H⊕E1

− ζPHA)−1
∣∣ E1

is called the characteristic function of the colligation A. Because A is unitary,

w(ζ) is well defined for ζ ∈ D; w is a contractive-valued analytic operator-

function in D.

Using the block decomposition

A =

[
Ain A1

A2 A12

]
:

[
H

E1

]
→

[
H

E2

]
,

the characteristic function can be reexpressed as

w(ζ) = A12 + ζA2(11H − ζAin)−1A1.

The unitary colligation A is said to be simple with respect to the exterior

spaces E1 and E2 if there is no nonzero reducing subspace for A in H; that is,

if there is no nonzero subspace Hres ⊆ H that is invariant for A and A∗. We

shall call the maximal reducing subspace for A in H the residual subspace of

the colligation A. Thus a unitary colligation is simple if the residual subspace is

trivial.

Let Hres ⊆ H be the residual subspace of A. Let Hsimp = H 	 Hres. Then

A : Hsimp ⊕ E1 → Hsimp ⊕ E2 is a simple unitary colligation, and A |Hres is a

unitary operator on Hres.

Two unitary colligations

A : H ⊕ E1 → H ⊕ E2 and A′ : H ′ ⊕ E1 → H ′ ⊕ E2

with the same exterior spaces are said to be unitarily equivalent if there exists a

unitary mapping G : H → H ′ such that

[
G 0

0 11E2

]
A = A′

[
G 0

0 11E1

]
.

Theorem. Two simple unitary colligations A and A′ are unitarily equivalent if

and only if their characteristic functions coincide.

Let w be a Schur class operator function, w(ζ) : E1 → E2. The unitary colliga-

tion Aw considered above is simple and w is the characteristic function of this

colligation. Thus any Schur class operator function is the characteristic function

of a unitary colligation.
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Let A : H ⊕E1 → H ⊕E2 be a simple unitary colligation, with characteristic

function w. Then a unitary mapping G : H → Hw that performs an equivalence

between A and Aw is defined as follows:

(Gh)(ζ) =

[
(G+h)(ζ)

(G−h)(ζ)

]
=

[
PE2

A(11H⊕E1
− ζPHA)−1h

ζ̄PE1
A∗(11H⊕E2

− ζ̄PHA
∗)−1h

]
(3–12)

The colligation Aw is called a functional model of A and the mapping G is called

the Fourier representation of H.

If A is not simple, the Fourier representation G defined by the same formula

(3–12) is a unitary mapping from Hsimp onto Hw and performs an equivalence

between the simple parts of A and Aw. It vanishes on Hres:
[

G 0

0 11E2

]
A = Aw

[
G 0

0 11E1

]
.

Solutions of the AIP as characteristic functions. We are ready to proceed

with the analysis of the AIP solutions. We begin with (3–11). Assume for

simplicity that we have the equality

‖Fx‖2
Hw = D(x, x) for all x ∈ X.

We noticed in Lecture 2 that for some problems this is the case for any solution

w. In other words, our assumption means that the map G defined in (3–3) is an

isometry:

‖Gh0‖
2
Hw = ‖h0‖

2
H0
.

Set H1 = Hw 	GH0 and H = H0 ⊕H1. Define a mapping G : H → Hw by

setting

G |H0 = G, G |H1 = 11H1
,

and observe that G is a unitary mapping of H onto Hw. We can write
[

G 0

0 11E2

]
V

∣∣ dV = Aw

[
G 0

0 11E1

] ∣∣ dV , (3–13)

instead of (3–11), because

dV ⊆ H0 ⊕ E1 ⊆ H ⊕ E1,

∆V ⊆ H0 ⊕ E2 ⊆ H ⊕ E2.

Finally, we obtain

V =

[
G∗ 0

0 11E2

]
Aw

[
G 0

0 11E1

] ∣∣ dV . (3–14)

Define the operator A by

A
def
=

[
G∗ 0

0 11E2

]
Aw

[
G 0

0 11E1

]
. (3–15)

A is a simple unitary colligation from H ⊕ E1 onto H ⊕ E2, and is unitarily

equivalent to Aw. Hence, the characteristic function of A is w. By definition,
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H0 ⊆ H and A | dV = V (see (3–14)); that is, A is a unitary extension of V . Thus

any solution w of the AIP is the characteristic function of a unitary extension

A of the isometry V associated with the data:

A : H ⊕ E1 → H ⊕ E2 with H ⊇ H0, A | dV = V.

In general, the equality ‖Fx‖2
Hw = D(x, x) for all x ∈ X does not hold, only

the inequality ‖Fx‖2
Hw ≤ D(x, x) for all x ∈ X. Nevertheless, the conclusion

is still valid, but it is more difficult to prove. (A short and simple proof was

recently found by J. Ball and T. Trent [Ball and Trent ≥ 1997].)

Remark. I would like to emphasize one basic difference between the general case

(inequality) and the special case (equality) considered in this section. We need

one more definition: a unitary extension A : H ⊕ E1 → H ⊕ E2 of an isometric

colligation V : dV → ∆V , with dV ⊆ H0⊕E1, ∆V ⊆ H0⊕E2, H0 ⊆ H is said to

be a minimal extension if A has no nonzero reducing subspace in H 	H0. If an

extension A is nonminimal we can discard the reducing subspace in H 	H0 and

end up with a unitary colligation that has the same characteristic function and

that still extends V , so we can consider minimal extensions only. But a minimal

extension need not be a simple colligation. The absence of a reducing subspace

for A in H 	 H0 does not mean that A has no reducing subspace in H at all.

By discarding such a reducing subspace, we end up with a unitary colligation

that has the same characteristic function but that no longer extends V . In the

case of equality, ‖Fx‖2
Hw = D(x, x) for all x ∈ X, the corresponding minimal

extension is a simple colligation, as it is equivalent to Aw (see (3–14)); in the

case of inequality, there exists x ∈ X such that ‖Fx‖2
Hw < D(x, x), and it is not

simple.

A natural question arises now: does an arbitrary unitary extension A of the

isometry V produce a solution of the AIP? The answer is yes, and it is easy to

prove.

Let A : H ⊕E1 → H ⊕E2 be a unitary extension of V . Let G be the Fourier

representation associated with the colligation A; see (3–12). Then G maps H

into Hw, where w is the characteristic function of A. Thus G is a contractive

operator and
[

G 0

0 11E2

]
A = Aw

[
G 0

0 11E1

]
. (3–16)

Define the mapping F : X → Hw by

Fx
def
≡G[x]

def
≡ G[x].

Recall that [x] ∈ H0 ⊆ H. Since G is a contraction, we have

‖Fx‖2
Hw ≤

∥∥[x]
∥∥2

H0
= D(x, x);
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that is, F satisfies (i). Since A extends V , (3–16) yields

[
G 0

0 11E2

]
V

∣∣ dV = Aw

[
G 0

0 11E1

] ∣∣ dV .

Since dV ⊆ H0 ⊕ E1 and ∆V ⊆ H0 ⊕E2, we can replace G with G:

[
G 0

0 11E2

]
V

∣∣ dV = Aw

[
G 0

0 11E1

] ∣∣ dV .

As we have seen, the latter is equivalent to (ii). Thus w, the characteristic

function of A, is a solution of the AIP.

Remark. Starting with an extension A of V we do not need the unitarity

of G to check that the characteristic function of A is a solution. Neither the

characteristic function nor the mapping G, much less F , feels the residual part.

Starting with the solution w in the general case we actually are given information

on the simple part of the corresponding extension of V only. But we have to

restore the residual part also in order to obtain the extension.

I will finish this lecture with the following summary of the discussion.

Theorem. Let V be the isometric colligation associated with the AIP data

V : dV → ∆V , dV ⊆ H0 ⊕ E1, ∆V ⊆ H0 ⊕E2.

(no special assumptions are made on the data at present). Let A : H ⊕ E1 →

H⊕E2 be a minimal unitary extension of V , where H ⊇ H0, so A | dV = V . Let

w(ζ) be the characteristic function of the colligation A:

w(ζ)
def
= PE2

A(11H⊕E1
− ζPHA)−1

∣∣ E1.

Then w is a solution of the AIP . The corresponding mapping F : X → Hw is

defined by

Fx = G[x],

where

(Gh)(ζ) =

[
(G+h)(ζ)

(G−h)(ζ)

]
=

[
PE2

A(11H⊕E1
− ζPHA)−1h

ζ̄PE1
A∗(11H⊕E2

− ζ̄PHA
∗)−1h

]
for h ∈ H.

All solutions of the AIP and the corresponding mappings F that satisfy (i) and

(ii) are of this form.

References to Lecture 3 are [Katsnelson et al. 1987; Kheifets 1988a; 1988b; 1990b;

Kheifets and Yuditskii 1994].
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Lecture 4. Description of the Solutions of the AIP

In a sense, the description of all the solutions of the AIP and the corresponding

mappings F was given in the last theorem of Lecture 3. The goal of this lecture

is to give a description that separates explicitly the common part (related to the

data) and the free parameters. The first step is the description of the unitary

extensions of the given isometric colligation V in this fashion.

Unitary extensions of isometric colligations Let V be an isometric colli-

gation,

V : dV → ∆V with dV ⊆ H0 ⊕E1, ∆V ⊆ H0 ⊕E2.

Let A be a minimal unitary extension of V ,

A : H ⊕ E1 → H ⊕ E2 with H ⊇ H0, A | dV = V.

Let d⊥V and ∆⊥
V be the orthogonal complements of dV in H0 ⊕ E1 and ∆V in

H0 ⊕E2. Let H1 = H 	H0. Then the orthogonal complement of dV in H ⊕E1

is H1 ⊕ d⊥V and the orthogonal complement of ∆V in H ⊕E2 is H1 ⊕∆⊥
V . Since

A is a unitary operator mapping dV onto ∆V (since A | dV = V ), A has to map

the orthogonal complement H1 ⊕ d⊥V onto the orthogonal complement H1 ⊕∆⊥
V .

Denote by A1 the restriction of A to H1⊕d
⊥
V . Thus, A1 : H1⊕d

⊥
V → H1⊕∆⊥

V is

a unitary colligation. Since A is a minimal extension, A1 is a simple colligation.

Conversely, take an arbitrary simple unitary colligation A1 with the same

exterior spaces d⊥V and ∆⊥
V and an arbitrary admissible state space H1:

A1 : H1 ⊕ d⊥V → H1 ⊕ ∆⊥
V . (4–1)

Let H = H0 ⊕H1 and define an extension of V by

A
∣∣ dV = V, A

∣∣ H1 ⊕ d⊥V = A1.

The result is a minimal unitary extension of V . Thus, the free parameter of

a minimal unitary extension of V is an arbitrary simple unitary colligation A1

with fixed exterior spaces d⊥V and ∆⊥
V and arbitrary admissible state space H1.

The word “admissible” means here that there exists a unitary colligation with

this state space. For example: If d⊥V and ∆⊥
V are finite dimensional but their

dimensions are different, then H1 cannot be of finite dimension; if the dimensions

of d⊥V and ∆⊥
V are equal then H1 can be of arbitrary dimension. To give a full

explanation it is enough to consider model colligations. Let ω : d⊥V → ∆⊥
V be an

arbitrary Schur class operator function (contractive-valued and analytic in the

unit disc). One can take as A1 the (model) unitary colligation

Aω =

[
Aω

in (Aω
1 )∗

Aω
2 Aω

12

]
:

[
Hω

d⊥V

]
→

[
Hω

∆⊥
V

]
,
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where Hω is the de Branges–Rovnyak space corresponding to the operator func-

tion ω (see page 352) and

Aω
inf = Pω t̄f = t̄

(
f −

[
11 ω

ω∗ 11

] [
f+(0)

0

])
: Hω → Hω,

(Aω
1 )∗ = t̄

[
11 ω

ω∗ 11

] [
−ω(0)

11

]
: d⊥V → Hω,

Aω
2 f = f+(0) : Hω → ∆⊥

V ,

Aω
12 = ω(0) : d⊥V → ∆⊥

V .

Let A1 : H1 ⊕ d⊥V → H1 ⊕ ∆⊥
V and A′

1 : H ′
1 ⊕ d⊥V → H ′

1 ⊕ ∆⊥
V be two simple

unitary colligations. If they are unitarily equivalent, that is, if there exists a

unitary mapping G1 : H1 → H ′
1 such that

[
G1 0

0 11∆⊥

V

]
A1 = A′

1

[
G1 0

0 11d⊥

V

]
,

the corresponding minimal unitary extensions of V are unitarily equivalent col-

ligations: [
G 0

0 11E2

]
A = A′

[
G 0

0 11E1

]
,

with G |H1 = G1 and G |H0 = 11H0
.

We emphasize here that this is more than just equivalence of unitary col-

ligations, as G is the identity on H0. We will call such extensions equivalent

extensions. The following proposition follows from the previous discussion.

Claim 1. Two minimal unitary extensions A and A′ of V are equivalent exten-

sions if and only if the corresponding simple unitary colligations A1 and A′
1 are

unitarily equivalent colligations.

The next claim is a straightforward consequence of the formulas of the last

theorem of Lecture 3.

Claim 2. Two equivalent minimal extensions of V generate the same solution

w and the same mapping F : X → Hw.

Thus, a solution w of the AIP and a corresponding mapping F : X → Hw

represent equivalence classes of simple unitary colligations A1 : H1 ⊕ d⊥V →

H1 ⊕ ∆⊥
V . Hence, the latter may serve as free parameters. But we know from

the digression on page 366 that the only invariant of this equivalence class is the

characteristic function of A1. In other words:

Claim 3. The free parameter of pairs (w,F ) (consisting of a solution w and

a corresponding mapping F ) is an arbitrary Schur class (contractive-valued and

analytic in D) operator function ω(ζ) : d⊥V → ∆⊥
V .
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Universal unitary colligations associated with isometric colligations.

In the previous section we extracted the free parameter ω that the solution w

and the corresponding mapping F depend on. It is clear that the common part

of all the extensions of the isometry V is the isometry V itself. To obtain nice

and explicit formulas it is convenient to associate a universal unitary colligation

to the isometry V . Let V be an isometric colligation,

V : dV → ∆V with dV ⊆ H0 ⊕E1, ∆V ⊆ H0 ⊕E2,

and let d⊥V and ∆⊥
V be the orthogonal complements of dV and ∆V . Let N1 be

an isomorphic copy of d⊥V (that is, there exists a unitary and surjective mapping

u1 : d⊥V → N1). Let N2 be an isomorphic copy of ∆⊥
V (that is, there exists a

unitary and surjective mapping u2 : ∆⊥
V → N2). Define a unitary colligation

A0 : H0 ⊕ E1 ⊕N2 → H0 ⊕ E2 ⊕N1 by setting

A0 | dV = V (dV ⊆ H0 ⊕ E1),

A0 | d
⊥
V = u1, A0 |N2 = u∗2.

Remark. A0 is not a unitary extension of V in the sense considered earlier,

because we now do not extend the state space H0, only the exterior spaces:

E1 ⊕N2 instead of E1 and E2 ⊕N1 instead of E2. Of course, A0 extends V but

in a different sense. We will call this extension a universal extension; the name

is motivated by category theory. We will see the role of this colligation below.

From now on we fix the unitary mappings u1 and u2, and also their imagesN1 and

N2. Also we fix the notation A1 for a simple unitary colligation A1 : H1 ⊕N1 →

H1 ⊕N2 (this class of colligations is obviously related to the colligations of the

form (4–1) defined earlier, and is denoted by the same symbol). Thus, now the

equivalence classes of the simple unitary colligations A1 : H1 ⊕ N1 → H1 ⊕N2

will be free parameters of the solutions w and the corresponding mappings F ;

that is, the Schur class functions ω(ζ) : N1 → N2 are free parameters now.

Coupling of unitary colligations and unitary extensions of isometric

colligations. Let V be an isometric colligation,

V : dV → ∆V with dV ⊆ H0 ⊕ E1, ∆V ∈ H0 ⊕E2.

Let A0 be the universal colligation associated with V :

A0 : H0 ⊕ E1 ⊕N2 → H0 ⊕ E2 ⊕N1,

with A0 | dV = V , A0(d
⊥
V ) = N1, A0(N2) = ∆⊥

V . Let A be a minimal unitary

extension of V :

A : H ⊕ E1 → H ⊕ E2 with H ⊇ H0, A | dV = V.
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We have seen that one can associate a simple unitary colligation A1 : H1⊕N1 →

H1 ⊕N2 with A, where H1 = H 	H0:

A1 =

[
11H1

0

0 (A∗
0) |∆

⊥
V

]
(A |H1⊕d

⊥
V )

[
11H1

0

0 (A∗
0) |N1

]
(4–2)

An arbitrary simple unitary colligation A1 with the exterior spaces N1 and N2

arises this way.

I will now give a procedure for recovering A from A0 (fixed colligation) and

A1 (arbitrary parameter). Let A1 : H1 ⊕N1 → H1 ⊕N2 be an arbitrary simple

unitary colligation. Let


h′0
e2
n1


 = A0



h0

e1
n2


 and

[
h′1
n′2

]
= A1

[
h1

n′1

]
. (4–3)

We can choose vectors on the right-hand sides of these relations in an arbitrary

way and compute the vectors on the left-hand sides, or we can choose vectors on

the left-hand sides in an arbitrary way and compute the vectors on the right-hand

sides (because A0 and A1 are unitary operators).

Let us consider, in addition to the relations above, two more relations

n1 = n′1 and n2 = n′2, (4–4)

and see what can be chosen now in an arbitrary way. Observe that the colligation

A0 possesses the property

PN1
A0 |N2 = 0,

because A0 sends N2 onto ∆⊥
V ⊆ H0 ⊕ E2, which is orthogonal to N1. This

property of A0 guarantees (although it is not necessary) that we can choose

h0, h1, e1 in an arbitrary way and compute h′0, h
′
1, e2 from the system of equations

(4–3), (4–4) in a unique way, along with n1 = n′1 and n2 = n′2 as well. Take the

result of this computation as the definition of the new linear operator A:

A



h1

h0

e1


 def

=



h′1
h′0
e2


 . (4–5)

It is easy to see that A is a unitary colligation, A : H1⊕H0⊕E1 → H0⊕H0⊕E2.

Moreover, A extends V . To see this, take an arbitrary vector
[
h0

e1

]
∈ dV ;

then take [
h′0
e2

]
= V

[
h0

e1

]
∈ ∆V ,

and take also

h1 = h′1 = 0, n1 = n′1 = 0, n2 = n′2 = 0.



374 ALEXANDER KHEIFETS

This collection of vectors satisfies the system of equations (4–3), (4–4): it obvi-

ously fits (4–4) and the second equality in (4–3); it satisfies the first equality in

(4–3) because A0 | dV = V ; i.e.,

[
V

[
h0

e1

]

0

]
= A0



h0

e1
0


 if

[
h0

e1

]
∈ dV .

Hence, by the definition of the colligation A, these vectors (actually, a part of

them) satisfy (4–5):

[
0

V
[

h0

e1

]
]

= A




0

h0

e1


 if

[
h0

e1

]
∈ dV .

This means that A extends V .

We will say that the colligation A is the feedback coupling of A0 with A1 (or

the loading of A0 with A1). It is also easy to check that these two procedures—

the extraction of A1 from the extension A and the feedback coupling of A0 with

A1—are mutually inverse: performing the two successively we come back to the

colligation that we started with.

Our next goal is to express the characteristic function w and the Fourier

representation G of the colligation A in terms of the characteristic functions and

Fourier representations of the colligations A0 and A1. But we need a digression

first.

Digression: Unitary colligations, characteristic functions, Fourier rep-

resentation, and discrete time dynamics. Let A : H ⊕ E1 → H ⊕ E2 be

a unitary colligation. One can associate with A the discrete-time dynamical

system [
h(k + 1)

e2(k)

]
= A

[
h(k)

e1(k)

]
, (4–6)

where k is a nonnegative integer, h(0) is an arbitrary vector from H, and

{e1(k)}
∞
k=0 is an arbitrary input signal.

Let ζ ∈ D be the corresponding spectral parameter (complex frequency). Let

h̃+(ζ), ẽ+1 (ζ), and ẽ+2 (ζ) be the discrete Laplace transforms of h(k), e1(k), and

e2(k), respectively; that is,

h̃+(ζ) =

∞∑

k=0

ζkh(k), ẽ+1 (ζ) =

∞∑

k=0

ζke1(k), ẽ+2 (ζ) =

∞∑

K=0

ζke2(k).

If the input signal {e1(k)} is square summable,

∞∑

k=0

∥∥e1(k)
∥∥2
<∞,

then the state evolution {h(k)}∞k=0 and the output signal {e2(k)}
∞
k=0 possess the

same property.
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Multiplying (4–6) by ζk and taking the summation over k, one obtains the

spectral form of the dynamics equation:

h̃+(ζ) = (11H − ζAin)−1 · h(0) + G−(ζ)∗ẽ+1 (ζ)

ẽ+2 (ζ) = G+(ζ) · h(0) + w(ζ) · ẽ+1 (ζ),
(4–7)

where w(ζ) is the characteristic function of the colligation A, and G+,G− are the

components of the Fourier representation G (see (3–12)).

One can also rewrite (4–6) as

A∗

[
h(k + 1)

e2(k)

]
=

[
h(k)

e1(k)

]
. (4–8)

Now consider the negative integers k ≤ −1. (This actually means inverting time

and exchanging the roles of the input and the output). Considering the past

Laplace transform,

h̃−(ζ) =
−1∑

k=−∞

ζ̄ |k|h(k), ẽ−2 (ζ) =
−1∑

k=−∞

ζ̄ |k|e2(k), ẽ−1 (ζ) =
−1∑

k=−∞

ζ̄ |k|e1(k),

one can rewrite (4–8) as

h̃−(ζ) = ζ̄(11 − ζ̄A∗
in)−1h(0) + G+(ζ)∗ẽ−2 (ζ),

ẽ−1 (ζ) = G−(ζ) · h(0) + w(ζ)∗ẽ−2 (ζ).
(4–9)

The second formulas in (4–7) and (4–9) are the most convenient for our purposes:

ẽ+2 (ζ) = G+(ζ)h(0) + w(ζ)ẽ+1 (ζ)

ẽ−1 (ζ) = G−(ζ)h(0) + w(ζ)∗ẽ−2 (ζ).
(4–10)

Formulas describing the solutions w of the AIP and the corresponding

mappings F . Let A be the feedback coupling of A0 with A1. Denote the

characteristic function of A0 by S(ζ) : E1 ⊕ N2 → E2 ⊕ N1. Denote also the

entries of S corresponding to this decomposition of the spaces as follows:

S =

[
s0 s2
s1 s

]
:

[
E1

N2

]
−→

[
E2

N1

]
.

Let the characteristic function of A1 be ω(ζ) : N1 → N2. Now write the dynamics

related to A0 and the dynamics related to A1 in the form (4–10). I am going to

consider the “+” parts only now; the treatment of the “−” parts is analogous.

We have

ñ+
2 (ζ) = G1

+(ζ)h1(0) + ω(ζ)ñ+
1 (ζ),

[
ẽ+2 (ζ)

ñ′1
+(ζ)

]
= G0

+(ζ)h0(0) + S(ζ)

[
ẽ+1 (ζ)

ñ′
+

2 (ζ)

]
.

The coupling condition is

ñ+
1 = ñ′

+

1 , ñ+
2 = ñ′

+

2 .
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Express ẽ+2 (ζ) in terms of [
h1(0)

h0(0)

]

and ẽ+1 (ζ), excluding ñ+
1 = ñ′

+

1 and ñ+
2 = ñ′

+

2 . What we obtain now has to

coincide (see (4–10)) with

ẽ+2 (ζ) = G+(ζ)

[
h1(0)

h0(0)

]
+ w(ζ)ẽ+1 (ζ).

This leads to the formulas

w(ζ) = s0(ζ) + s2(ζ)ω(ζ)(11N1
− s(ζ)ω(ζ))−1s1(ζ)

G+(ζ)

[
h1(0)

h0(0)

]
=

[
ψ(ζ)ω(ζ), 11E2

]
G0

+(ζ)h0(0) + ψ(ζ)G1
+(ζ)h1(0),

(4–11)

where

ψ(ζ) = s2(ζ)(11N2
− ω(ζ)s(ζ))−1. (4–12)

Remark. By the definition of the characteristic function,

S(0) = PE2⊕N1
A0 | (E1 ⊕N2).

In particular, s(0) = PN1
A |N2 = 0. This guarantees that the formulas (4–11)

and (4–12) make sense, since ‖s(ζ)‖ ≤ |ζ| when |ζ| < 1 by Schwarz’s lemma.

Considering the “−” parts of (4–10) for A0, A1, and A we obtain

G−(ζ)

[
h1(0)

h0(0)

]
=

[
ϕ(ζ)∗ω(ζ)∗, 11E1

]
G0
−(ζ)h0(0) + ϕ(ζ)∗G1

−(ζ)h1(0), (4–13)

where

ϕ(ζ) = (11N1
− s(ζ)ω(ζ))−1s1(ζ). (4–14)

Combining the expressions (4–11) and (4–12) for G+ and G− we arrive at

G

[
h1

h0

]
=

[
ψω 11E2

0 0

0 0 ϕ∗ω∗ 11E1

]
G0h0 +

[
ψ 0

0 ϕ∗

]
G1h1. (4–15)

As we saw in the last theorem of Lecture 3,

Fx = G[x] for all x ∈ X,

where [x] ∈ H0 is the equivalence class generated by the quadratic form D.

Hence

Fx =

[
ψω 11E2

0 0

0 0 ϕ∗ω∗ 11E1

]
G0[x].

The following theorem summarizes this lecture.
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Theorem. Let V be the isometric colligation associated with the AIP data

(page 362). Let A0 be the unitary colligation associated with V (page 372). Let

S be the characteristic function of A0:

S(ζ) = PE2⊕N1
A0(11H0⊕E1⊕N2

− ζPH0
A0)

−1
∣∣ (E1 ⊕N2),

S(ζ) =

[
s0(ζ) s2(ζ)

s1(ζ) s(ζ)

]
:

[
E1

N2

]
−→

[
E2

N1

]
.

Then the solutions w of the AIP and the corresponding mappings F : X → Hw

are described by

w = s0 + s2ω(11N1
− sω)−1s1

Fx =

[
ψω 11E2

0 0

0 0 ϕ∗ω∗ 11E1

]
G0[x] for x ∈ X

where ω is an arbitrary Schur class function ω(ζ) : N1 → N2, for |ζ| < 1,

ψ = s2(11N2
− ωs)−1, ϕ = (11N1

− sω)−1s1,

G0(ζ)h0 =

[
G0

+(ζ)h0

G0
−(ζ)h0

]
=

[
PE2⊕N1

A0(11 − ζPH0
A0)

−1h0

ζ̄PE1⊕N2
A∗

0(11 − ζ̄PH0
A∗

0)
−1h0

]
.

S and G0 depend on the data of the AIP only , whereas ω is arbitrary .

We can see that the parameter ω defines uniquely not only the solution w but also

the corresponding mapping F : X → Hw. This suggests denoting the mappings

F by Fω : X → Hw. In particular cases, when the mapping F is unique for

a solution w, that is, when the F ω coincide if the corresponding solutions w

coincide, it can be denoted by Fw.

References to Lecture 4 are [Arov and Grossman 1983; Katsnelson et al. 1987;

Kheifets 1988a; 1988b; 1990b; Kheifets and Yuditskii 1994].
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