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Elements of Spectral Theory

in Terms of the Free Function Model

Part I: Basic Constructions

NIKOLAI NIKOLSKI AND VASILY VASYUNIN

Abstract. This is a survey of the function model approach to spectral
theory, including invariant subspaces, generalized spectral decompositions,
similarity to normal operators, stability problems for the continuous spec-
trum of unitary and selfadjoint operators, and scattering theory.

Part I contains a revised version of the coordinate-free function model
of a Hilbert space contraction, based on analysis of functional embeddings
related to the minimal unitary dilation of the operator. Using functional
embeddings, we introduce and study all other objects of model theory, in-
cluding the characteristic function, various concrete forms (transcriptions)
of the model, one-sided resolvents, and so on. For the case of an inner
scalar characteristic function we develop the classical H

∞-calculus up to
a local function calculus on the level curves of the characteristic function.
The spectrum of operators commuting with the model operator, and in
particular functions of the latter, are described in terms of their liftings.
A simplified proof of the invariant subspace theorem is given, using the
functional embeddings and regular factorizations of the characteristic func-
tion. As examples, we consider some compact convolution-type integral
operators, and dissipative Schrödinger (Sturm–Liouville) operators on the
half-line.

Part II, which will appear elsewhere, will contain applications of the
model approach to such topics as angles between invariant subspaces and
operator corona equations, generalized spectral decompositions and free in-
terpolation problems, resolvent criteria for similarity to a normal operator,
and weak generators of the commutant and the reflexivity property. Clas-
sical topics of stability of the continuous spectrum and scattering theory
will also be brought into the fold of the coordinate-free model approach.

Vasyunin was supported by INTAS grant no. 93-0249-ext and RFFI grant no. 95-01-00482.
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Foreword

This text is a detailed and enlarged version of an introductory mini-course on

model theory that we gave during the Fall of 1995 at the Mathematical Sciences

Research Institute in Berkeley. We are indebted to the Institute for granting us

a nice opportunity to work side by side with our colleagues, operator analysts,

from throughout the world.

We were rewarded by the highly professional audience that attended our lec-

tures, and are very grateful to our colleagues for making stimulating comments

and for encouraging us to give a course to students whose knowledge of the sub-

ject was sometimes better than ours. Having no possibility to list all of you, we

thankfully mention the initiators of the course, our friends Joseph Ball and Cora

Sadosky.

We are extremely indebted to the editors of this volume for inexhaustible

patience, to Maria Gamal and Vladimir Kapustin for helping to compile the list

of references, and to Alexander Plotkin, David Sherman, and Donald Sarason

for their careful reading the manuscript.
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Introduction: A Brief Account

About the reader. We hope that most of the material in this paper will be

accessible to nonexperts having general knowledge of operator theory and of

basic analysis, including the spectral theorem for normal Hilbert space operators.

Some more special facts and terminology are listed below in Section 0.7 of this

Introduction.

0.1. A bit of philosophy. A model of an operator T : H → H is another

operator, say M : K → K, that is in some sense equivalent to T . There exist

models up to unitary equivalence, T = U−1MU for a unitary operator U : H →
K acting between Hilbert spaces; up to similarity equivalence, T = V −1MV

for a linear isomorphism V : H → K acting between Banach spaces; up to

quasi-similarity; pseudo-similarity; and other equivalences. So, in fact, these

transformations U , V , etc., change the notation, reducing the operator to a

form convenient for computations, especially for a functional calculus admitted

by the operator. The calculus contains both algebraic and analytic features (in

particular, norm estimates of expressions in the operator), and the requirements

to simplify them lay the foundation of modern model theories based on dilations

of the operator under question. As soon as such a dilation is established, any

object related to the analysis of our operator can be the subject of a lifting up to

the level of the dilation (the calculus, the commutant, spectral decompositions,

etc.), the level where they can be treated more easily.

The function model of Livsic, de Branges, Sz.-Nagy, and Foiaş follows pre-

cisely this course. Starting with a Hilbert space contraction T , or a dissipative

operator in the initial Livsic form (Im(Tx, x) ≥ 0, for x ∈ DomT ), it makes use

of a unitary (selfadjoint) dilation U realized by use of the von Neumann spec-

tral theorem as a multiplication operator U : f → eitf . It then uses advanced

trigonometric harmonic analysis on the circle (on the line, in the Livsic case),

including Hardy classes, multiplicative Nevanlinna theory and other developed

techniques. It is exactly these circumstances that gave B. Sz.-Nagy and C. Foiaş

the chance for such an elegant expression as harmonic analysis of operators for

the branch of operator theory based on the function model, and not the fact

that “all is harmonious in the developed theory” as was suggested by M. Krein

in his significant preface to the Russian translation of [Sz.-Nagy and Foiaş 1967].

We can even say that such a function model is a kind of noncommutative dis-

crete Fourier transform of an operator, and mention with astonishment that a

continuous version of this transform exists only nominally—which fact evidently

retards applications to semigroup theory and scattering theory. We will have an

opportunity to observe the absence of an “automatic translator” from the circle

to the line when dealing with the Cayley transform and Schrödinger operators

(Chapter 2).
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0.2. What is the free function model? In constructing the free—that is,

coordinate-free—function model of a Hilbert space contraction, we follow the

Sz.-Nagy–Foiaş turnpike strategy by starting with a unitary dilation

U : H −→ H

of a given contraction

T : H −→ H,

so that we get the dilation (calculus) property

p(T ) = PHp(U)|H

for all polynomials p. The usual way to continue is to realize the action of U by

use of the spectral theorem, and so to represent T as a compression

f 7−→ PKzf, for f ∈ K,

of the multiplication operator f 7→ zf onto the orthogonal difference K of two z-

invariant subspaces of a weighted space L2(T,E,W ), with respect to an operator-

valued weight W (ζ) : E → E, in a way similar to the way that the spectral

theorem itself represents the unitary operator U. (Here ζ is a complex number

on the unit circle T = {ζ ∈ C : |ζ| = 1}.)
The idea of the free function model is to stop this construction halfway from

the unitary dilation to the final formulae of the Sz.-Nagy–Foiaş model. In other

words, we fix neither a concrete spectral representation of a unitary dilation nor

the dilation itself, but work directly with an (abstract) dilation equipped with

two “functional embeddings” that carry the information on the fine function

structure of the operator and the dilation. So, we can say that the free function

model of a contraction T having defect spaces E and E∗ is a class of in some

sense equivalent (see Chapter 1) isometric functional embeddings

π : L2(E) −→ H and π∗ : L2(E∗) −→ H

of E- and E∗-valued L2-spaces (L2(E)
def
= L2(T, E)) into a Hilbert space H sat-

isfying a minimality property, in such a way that the product π∗
∗π is a multipli-

cation operator by a function unitarily equivalent to the characteristic function

ΘT of T ,

ΘT (z)h = (−T + zDT∗(I − zT ∗)−1DT )h for h ∈ E∗, z ∈ D

(where D
def
= {ζ ∈ C : |ζ| < 1}). The minimal unitary dilation U can be defined

by the splitting property Πz = UΠ , where

Π = π ⊕ π∗ : L2(E) ⊕ L2(E∗) → H

and z stands for the shift operator z(f ⊕ f∗) = zf ⊕ zf∗ on this orthogonal sum

of L2-spaces.

At this stage, we have a great deal of freedom: we can write down or not write

down the operator U using the spectral theorem, where the freedom is in a choice
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of spectral coordinates; and we can choose in very diverse ways the functional

embeddings, keeping π∗
∗π unitarily equivalent to ΘT (in fact, equivalent with

respect to a special class of unitary equivalences). These transcription problems

are considering in Chapter 3.

So, we can say that the free model is based on the intrinsic functional struc-

tures of T and the unitary dilation U, and it is a kind of virtual function rep-

resentation of a given operator: we can still stay in the same Hilbert space H

where the initial contraction T is defined, but the pair {H,T} is now equipped

with two isometric embeddings π and π∗ satisfying the above-mentioned condi-

tions. Working with an operator on this free function model {H, T, π∗, π} we

can at any time transfer (by means of π, π∗) an arbitrary operator computation

to functions in the spaces L2(E) and L2(E∗), whose elements have all of the

advantages of concrete objects with concrete local structures. This is the idea,

and in its realization we follow [Vasyunin 1977; Makarov and Vasyunin 1981;

Nikolski and Vasyunin 1989; Nikolski and Khrushchev 1987; Nikolski 1994].

As concrete examples of model computations we consider in Chapter 2 two

operators: the operator of indefinite integration on the space L2((0, 1); µ) with

respect to an arbitrary finite measure µ, and Schrödinger operators with real

potentials and dissipative boundary conditions.

0.3. What is spectral theory? This is a really good question. We can

say, having no intention to give a truism and rather looking for an explanation

of the title, that for us it is the study of intrinsic structures of an operator.

So, for instance, even speaking of such well-studied subjects as selfadjoint and

more generally of normal operators, the attempts to identify the theory with

the spectral theorem are unjustified: this is the main but not sole gist of the

theory. In fact, the structures of invariant subspaces and of the restrictions

of the operator under consideration to them (the parts of the operator) are

far from being straightforward consequences of the spectral theorem, and these

subjects should be considered as independent ingredients of spectral theory. All

the more, the same is true for the interplay between functional calculus and

geometric properties of the operator (recall for example, the problem of density

of polynomials in different spaces related to the spectral measure, or the problem

of the asymptotic behavior of evolutions defined by the operator).

Beyond normality, there is again the study of invariant subspaces as a path to

the parts of an operator, and also the analysis of decompositions into invariant

subspaces (series, integrals), and, of course, the functional calculus admitted by

an operator, and related studies of its “space action”, that is, properties of the

evolution defined by the operator.

(By the way, this is why the famous polar decomposition of a Hilbert space

operator, T = V R with R ≥ 0 and V a partial isometry, is not a crucial reduction

of the problem to the selfadjoint and unitary cases: it does not respect any of

basic properties and operations mentioned above. Another sentence we have the
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courage to put in these parentheses is that the previous paragraph explains why,

in our opinion, spectral theory is something different from an algebraic approach

(say, C∗-algebraic) of replacing an operator by a letter (a symbol) and then

studying it: operator structures are lost in the kernel of such a morphism.)

So, in this paper, as a spectral theory, we consider the attempts

– to describe and to study invariant subspaces;

– to use them for decompositions of an operator into sums of its restrictions to

such subspaces of a particular type respecting all other operator structures

(so-called spectral subspaces);

– to distinguish operators enjoying the best possible spectral decompositions,

that is, operators similar to a normal one;

– to study stability properties of fine spectral structures of an operator with

respect to small perturbations and to study evolutions defined by it (scattering

problems).

Of course, to construct such a spectral theory and to work with it using the

function model technique, we need to develop some routine prerequisites, in

particular to compute the spectrum and the resolvent of a contraction in terms

of our free function model; this is done in Chapter 5 below.

Now we describe briefly how we intend to realize this program.

0.4. Conceptual value of invariant subspaces. The invariant subspaces

of an operator, their classification and description, have played, explicitly or

implicitly, the central role in operator theory for the last 50 years. The reader

may ask, why?

The first and rather formal reason is that invariant subspaces are a direct ana-

logue of the eigenvectors of linear algebra. Indeed, diagonal or Jordan form rep-

resentations of a matrix are nothing but decompositions of the space an operator

acts on into a direct sum of the operator’s invariant subspaces of particular types.

In the twenties and thirties, the theories of selfadjoint and unitary operators, and

later that of normal operators, culminating in various forms of the spectral the-

orem and its applications, showed that this approach is fruitful. In the fifties

and sixties, making use of distribution theory and advanced functional calculi,

several generalizations followed this approach: the kernel theorem of Gelfand

and L. Schwartz, the spectral operators of Dunford and J. Schwartz, Foiaş’s de-

composable operators, and some more specialized theories. See [Gel’fand and

Vilenkin 1961; Dunford and Schwartz 1971; Dowson 1978; Colojoara and Foiaş

1968].

Another, and even double, reason to put invariant subspaces in the foundation

of general spectral theory was provided by a real breakthrough that happened

fifty years ago when M. Livsic [1946] discovered the notion of the character-

istic function and A. Beurling [1949] established a one-to-one correspondence

between the invariant subspaces of a Hilbert space isometry and the Nevan-
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linna inner functions. During the fifties and sixties, mainly due to efforts by

M. Livsic and M. Brodski, and V. Potapov (for dissipative operators) and by

B. Sz.-Nagy and C. Foiaş, and L. de Branges (for contractions), these observa-

tions together became the cornerstone of the theories linking invariant subspaces

and factorizations (inner or not) of the characteristic function of an operator.

These techniques make it possible to translate spectral decomposition problems

for large classes of operators into the function language, and then to use methods

of hard analysis (of complex analysis and harmonic analysis) to solve them.

The reader will find in Chapter 6 descriptions of the invariant subspaces of

a contraction in terms of its functional embeddings and factorizations of the

characteristic function, as well as some concrete examples of such descriptions.

In the Afterword (page 288), which functions as a preview of the Part II of

this paper, we will briefly outline how this machinery works for several sample

problems: spectral model operators and generalized free interpolation, rational

tests for the similarity to a normal operator, stability of the continuous spectrum

for trace class perturbations of unitary operators, and scattering theory. The

Afterword also contains a brief discussion of factorizations of the characteristic

function related to invariant subspaces of different types, and of operator Bezout

(“corona”) equations.

But first, in the next section, we sketch two of the main technical tools of the

model theory: the commutant lifting theorem (CLT) and local functional calculi.

0.5. The commutant lifting theorem (CLT) and local calculi. As we

have already mentioned, the main trick of model theory is to consider a unitary

dilation U : H → H of a contractive operator T : H → H, where H ⊂ H:

H
U

- H

H

P

?

T
- H

?

P

to try to “lift” all things related to T up to the level of U, and then to work with

these lifted functional objects. One of the main objects related to an operator T is

its commutant {T}′, the set of X : H → H such that XT = TX. All functions

of an operator, that is, operators included in a functional calculus, belong to

{T}′; so do all projections on an invariant subspace parallel to a complementary

invariant subspace (that is, maps P of the form P (x1 + x2) = x1 for x1 ∈ H1

and x2 ∈ H2, where H = H1 +H2, with TH1 ⊂ H1, TH2 ⊂ H2); and hence so

does the spectral measure of an operator if it exists.

The commutant lifting theorem (CLT) says that the commutant of T can be

lifted up to the commutant of U: for X ∈ {T}′ there exists an Y ∈ {U}′, a
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“symbol of X”, such that

X = PHY |H and ‖X‖ = ‖Y ‖.

This fundamental result was proved by B. Sz.-Nagy and C. Foiaş [1968], preceded

by the important partial case of an inner scalar characteristic function ΘT , dis-

covered by D. Sarason [1967]. For more details we refer to Chapter 4 below, and

for the history and more references refer to [Sz.-Nagy and Foiaş 1967].

The functional structure of Y , related to the functional embeddings of the

model, is important, as are the links between this lifting process and the funda-

mental Nehari theorem on “Laurent extension” (lifting) of a Hankel type form.

Without entering into these details now, we refer to [Nikolski 1986; Pták and Vr-

bová 1988] for the interplay between the CLT and Nehari type theorems and to

[Cotlar and Sadosky 1984/85; 1986a; 1986b; 1988; 1992] for an extensive theory

unifying these two techniques. To finish with our appreciation of the CLT, we

mention its basic role for control theory and interpolation by analytic, rational,

and other functions with constraints (of the Carathéodory or Nevanlinna–Pick

type). A vast array of techniques have been developed for these applications:

the Adamyan–Arov–Krein step-by-step extension process, choice sequences by

Apostol, Foiaş et al., Schur parameters techniques, and more; for details we re-

fer to [Foiaş and Frazho 1990; Ball et al. 1990; Bakonyi and Constantinescu 1992;

Nikolski 1986; Alpay ≥ 1998].

However, we will avoid these deep theories and instead give, in Chapter 4,

the simplest direct proof of the CLT based on S. Parrott’s approach [1970] (see

also [Davidson 1988]). This approach makes use of a version of the CLT: the

Ando theorem on commuting unitary dilations of two commuting contractions

[Ando 1963], which says that, if T1 : H → H and T2 : H → H satisfy ‖T1‖ ≤ 1,

‖T2‖ ≤ 1, and

T1T2 = T2T1,

there exist commuting unitary dilations U1 and U2:

U1U2 = U2U1.

We give a short new proof of Ando’s theorem and derive the CLT and de-

scribe the admissible symbols Y in functional terms characterizing the functional

(model) parameters of Y related to the functional embeddings π and π∗. Also,

we give a formula expressing the norm of X as the distance

‖X‖ = inf{‖Y + πΓπ∗
∗‖ : Γ ∈ H∞(E∗→E)},

where H∞(E∗ →E) stands for the space of bounded holomorphic functions in

the unit disc D taking as values operators f(z) : E∗ → E from E∗ to E (see

Chapter 4).

For two-sided inner characteristic functions Θ, that is, for H∞-functions

whose boundary values Θ(ζ) (where ζ ∈ T) are unitary almost everywhere on
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T, the CLT is a partial case of the vector-valued version of the Nehari theo-

rem: if X ∈ {T}′ and H = π∗XPHπ∗, then H is a Hankel operator (that is,

H : H2(E∗) → H2
−(E) and Hz = P−zH), and the function π∗Y π∗ is a symbol

of H (that is, Hf = P−(π∗Y π∗)f for f ∈ H2(E∗)). The formula for the norm

of X is the usual Nehari formula

‖X‖ = distL∞(E∗→E)(π
∗Y π∗,H

∞(E∗→E));

see [Nikolski 1986].

The H∞-calculus exists for every completely nonunitary contraction already

by the initial unitary dilation theorem. It takes the following simplified form for

two-sided inner characteristic functions:

f 7−→ f(T )
def
= PHπ∗fπ

∗
∗ |H,

‖f(T )‖ = distL∞(E∗→E)(Θ
∗f,H∞(E∗→E)).

Dealing with the calculus, and even with the whole commutant, it is important

to localize, if possible, the expressions for f(T ) and for the norm ‖f(T )‖, so

as to make visible their dependence on the local behavior of f near the spec-

trum of T (whereas the definition and aforementioned formulas depend on the

global behavior of f in the disc D and on the torus T). Following [Nikolski and

Khrushchev 1987] we give such expressions for operators T with scalar inner

characteristic functions Θ, showing, for instance, an estimate on level sets of Θ:

‖f(T )‖ ≤ Cε sup{|f(z)| : z ∈ D, |Θ(z)| < ε}, for f ∈ H∞.

Later on we use these estimates for our treatment of free interpolation problems

(Chapter 8).

That is all we include in Part I of the article.

0.6. Prehistory. When writing an expository paper, one automatically accepts

an extra assignment to comment on the history of the subject. Frankly speak-

ing, we would like to avoid this obligation and to restrict ourselves to sporadic

remarks. In fact, model theory is a quite recent subject, and we hope that care-

ful references will be enough. Nonetheless, we will recall a kind of prehistory of

the theory. This consists of four fundamental results by V. I. Smirnov (1928),

A. I. Plessner (1939), M. A. Naimark (1943), and G. Julia (1944), which antici-

pated the subsequent developments of the field and ought to been have its clear

landmarks, but were not identified properly and are still vaguely cited.

Smirnov’s results. The following result, usually attributed to A. Beurling, is

Theorem 2 of [Smirnov 1928a]: If f ∈ H2 is an outer function (see Section 0.7

below), then

span
H2

(znf : n ≥ 0) = H2.
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In [Smirnov 1932, Section 10] there is another proof of this fact—essentially the

same that Beurling published in 1949. Another fundamental result, the inner-

outer factorization f = finn ·fout of Hp functions (see Section 0.7 for definitions),

appears in [1928b, Section 5]. Together, these two results immediately imply the

well-known formula for the invariant subspace generated by a function f ∈ H 2:

span
H2

(znf : n ≥ 0) = finnH
2.

This is the main ingredient of the famous Beurling paper [1949] on the shift

operator, which stimulated the study of invariant subspaces. Unfortunately,

in Smirnov’s time the very notion of a bounded operator was not completely

formulated—Banach’s book dates from 1932—and, what is more, during the

next ten years nobody thought about the shift operator, until H. Wold and

A. I. Plessner.

Plessner’s results. In 1939, A. I. Plessner constructed the H∞-calculus for

isometric operators allowing a unitary extension with an absolutely continuous

spectrum. His paper [1939a] contains a construction of L∞-functions of a maxi-

mal symmetric operator A : H → H having an absolutely continuous selfadjoint

extension A : H → H:

f(A) = PHf(A)|H;

the multiplicativity is proved for H∞ functions.

Plessner [1939b] also proved that any Hilbert space isometry V : H → H is

unitarily equivalent to an orthogonal sum of a unitary operator U and a number

of copies of the (now standard!) H2-shift operator S : H2 → H2, given by

Sf = zf :

V ' U ⊕
(∑

i

∈ I ⊕ S

)
, with card(I) = dim(H 	 V H).

To apply to isometries the calculus from the first paper, Plessner proved that

an isometry V having an absolutely continuous unitary part U is an inner func-

tion of a maximal symmetric operator of the previous type: V = f(A).

Clearly, the missing link to complete the construction of the H∞-calculus for

contractions would be the existence of isometric dilations (and their absolute

continuity). The first step to such a dilation was accomplished by G. Julia

in 1944, but his approach remained overlooked until the mid-fifties.

Julia’s result. Julia [1944a; 1944b; 1944c] discovered a “one-step isometric

dilation” of a Hilbert space contraction T : H → H. Precisely, he observed that

the operator defined on H ⊕H by the block matrix

V =

(
T DT∗

−DT T ∗

)

is an isometry, and that T = PHV |H.
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Of course, V is not necessarily a “degree-two dilation” T 2 = PHV
2|H, nor

a full polynomial dilation T n = PHV
n|H, for n ≥ 0. We know now that to

get such a dilation one has to extend the isometry V by the shift operator of

multiplicity H, or simply take

V (x, x1, x2, . . .) = (Tx,DTx, x1, x2, . . .)

for (x, x1, . . .) ∈ H ⊕H ⊕ · · · . But Julia did not make by this observation.

In fact, isometric and even unitary dilations were discovered ten years later by

B. Sz.-Nagy [1953], ignoring Julia’s step but using Naimark’s dilation theorem.

Naimark’s result. Historically, this was the last latent cornerstone of model

theory. M. A. Naimark [1943] proved that every operator-valued positive measure

E(σ) : H → H taking contractive values, 0 ≤ E(σ) ≤ I, has a dilation that is a

spectral measure: there exists an orthoprojection-valued measure E(σ) : H → H,

where H ⊃ H, such that E(σ) = PHE(σ)|H for all σ.

Later, Sz.-Nagy [1953] derived from this result the existence of the minimal

unitary dilation for an arbitrary contraction, and the history of model theory

started. In fact, as already mentioned, it started seven years earlier, with Livsic

[1946], motivated rather by the theory of selfadjoint extensions of symmetric

operators (developed by Krein, Naimark, and many others) than by the dilation

philosophy.

0.7. Prerequisites. For the reader’s convenience, we collect here some more

specialized facts and terminology used throughout the paper.

General terminology. All vector spaces are considered over the complex num-

bers C; a subspace of a normed space means a closed vector subspace. For a

subset A of a normed space X, we denote by

span(A)
def
= clos(Lin(A))

the closed linear hull of A, and by

distX(x,A)
def
= inf{‖x− y‖ : y ∈ A}

the distance of a vector x ∈ X from A. For a subspace E ⊂ H, the orthogonal

complement is denoted by E⊥ or H 	 E, and the orthogonal projection on E

by PE . The orthogonal sum of a family {En} of subspaces of a Hilbert space is

denoted by
∑

n

⊕En
def
=
{∑

n xn : xn ∈ En and
∑

n ‖xn‖2 <∞
}
.

Operators on a Hilbert space. “Operator” means a bounded linear operator

unless otherwise indicated; L(E→F ) stands for the space of all operators from

E to F . A subspace E ⊂ H is called invariant with respect to an operator

T : H → H if TE ⊂ E; the restriction of T to E is denoted by T |E and T is

called an extension of T |E. The set of all T -invariant subspaces is denoted by
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LatT (or Lat(T )). Reducing subspaces are subspaces from LatT ∩ LatT ∗; T ∗

stands for the (hermitian) adjoint of T . We denote by Range(T ) the range of T ,

that is, the linear set {Th : h ∈ H}, and by KerT
def
= {x : Tx = 0} for the kernel

of T .

A partial isometry V : H → K is an operator between Hilbert spaces such

that V |(KerV )⊥ is an isometry; the subspaces (KerV )⊥ and RangeV are called,

respectively, the initial and final subspaces of V . The final subspace of a partial

isometry V is the initial subspace of the adjoint V ∗, and vice versa; moreover

V ∗V = P(Ker V )⊥ .

The polar decomposition of an operator T : H → K is the representation

T = V R, where R = |T | def
= (T ∗T )1/2 ≥ 0 is the positive square root of T ∗T

(the modulus of T ) and V : H → K a partial isometry with the initial space

RangeR = (KerT )⊥ and the final space RangeT . The equation A∗A = B∗B is

equivalent to saying that B = V A, where V stands for a partial isometry with

the initial space RangeA and the final space RangeB.

The spectral theorem (in the von Neumann form) says that a normal operator

N : H → H (that is, one such that N ∗N = NN∗) is unitarily equivalent to the

multiplication operator

f(z) 7−→ zf(z)

on the space

{f ∈ L2(H,µN ) : f(z) ∈ EN (z)H a.e. with respect to µN},

where EN ( · ) stands for a mesurable family of orthoprojections on H, and µN

stands for a so-called scalar spectral measure of N carried by the spectrum σ(N);

the class of measures equivalent to µN and the dimension function z 7→ dimH(z)

defined µN -a.e. are complete unitary invariants of N .

Isometries and co-isometries. The Wold–Kolmogorov theorem says that an

isometry V : H → H gives rise to an orthogonal decomposition

H = H∞ ⊕
(∑

n

≥ 0 ⊕ V nE

)
,

where H∞ =
⋂

n≥0 V
nH and E = H	V H = KerV ∗. The subspace H∞ reduces

V and the restriction V |H∞ is unitary; any other subspace with these properties

is contained in H∞. An isometry V with H∞ = {0} is called pure (or an abstract

shift operator), and a subspace L ⊂ H satisfying V nL ⊥ V mL for n 6= m ≥ 0

is called a wandering subspace of V ; in particular, E = H 	 V H is a wandering

subspace. A pure isometry V is unitarily equivalent to the shift operator of

multiplicity dimE = dimKerV ∗, defined by

f 7−→ zf for f ∈ H2(E),
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where

H2(E) =
{
f =

∑
n≥0 f̂(n)zn : f̂(n) ∈ E and

∑
n≥0 ‖f̂(n)‖2 <∞

}

stands for E-valued Hardy space (see also below).

A co-isometry V : H → K is an operator (a partial isometry) whose adjoint

V ∗ is an isometry; it is called pure if V ∗ is pure.

Contractions. A contraction T : H → K is an operator with ‖T‖ ≤ 1. The

defect operators of T are DT = (I − T ∗T )1/2 and DT∗ = (I − TT ∗)1/2; the

closures of their ranges DT
def
= closRangeDT and DT∗ are called the defect

subspaces, and dim DT = rank(I − T ∗T ) and dim DT∗ are the defect numbers.

The defect operators are intertwined by the contraction, TDT = DT∗T , and

hence the restriction T |D⊥
T is an isometry from D⊥

T to D⊥
T∗ . A contraction T is

called completely nonunitary if there exists no reducing subspace (or invariant

subspace) where T acts as a unitary operator.

Function spaces and their operators. Lebesgue spaces of vector-valued

functions are defined in the standard way: the notation Lp(Ω, E, µ) means the

Lp-space of E-valued functions on a mesure space (Ω, µ). We can abbreviate

Lp(Ω, E, µ) as Lp(E,µ), Lp(E), Lp(Ω, E), or Lp(Ω) (this last when E = C).

Our standard case is Ω = T, endowed with normalized Lebesgue measure

µ = m. The Hardy subspace of Lp(E) = Lp(T, E) is defined in the usual way,

Hp(E) = {f ∈ Lp(E) : f̂(n) = 0 for n < 0},

where the f̂(n), for n ∈ Z, are the Fourier coefficients. Obviously, L2(E ⊕ F ) =

L2(E) ⊕ L2(F ). Also as usual, Hp(E) is identified with the space of boundary

functions of the corresponding space of functions holomorphic in the unit disc D

(for p = 2, see above). The reproducing kernel of the space H2(E) is defined by

the equality
(
f,

e

1 − λ̄z

)
H2(E)

= (f(λ), e)E for f ∈ H2(E) and e ∈ E.

The Riesz projections PH2 = P+ and P− = I − P+ are defined on L2(E) by

P+

(∑

n∈Z

f̂(n)zn

)
=
∑

n≥0

f̂(n)zn, for |z| = 1.

Clearly, L2(E) = H2(E) ⊕H2
−(E), where H2

−(E) = P−L
2(E).

The Lp and Hp spaces with values in the space L(E → F ) of all operators

from E to F are denoted by Lp(E → F ) and Hp(E → F ) respectively. Any

operator A acting from L2(E1) to L2(E2) and intertwining multiplication by

z on these spaces (which means that Az = zA) is the multiplication operator

induced by a function Θ ∈ L∞(E1→E2), namely (Af)(z) = Θ(z)f(z); moreover,

‖A‖ = ‖A|H2(E1)‖ = ‖Θ‖L∞(E1→E2). We often identify A and Θ; we have

Θ ∈ H∞(E1→E2) if and only if Θ ∈ L∞(E1→E2) and ΘH2(E1) ⊂ H2(E2). A
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contractive-valued function Θ ∈ H∞(E1→E2) is called pure if it does not reduce

to a constant isometry on any subspace of E1, or, equivalently, if ‖Θ(0)e‖E2
<

‖e‖E1
for all nonzero e ∈ E1.

The last point is to recall the Nevanlinna–Riesz–Smirnov canonical factoriza-

tion of scalar H1-functions:

Θ = BS · F = Θinn · Θout,

where B is a Blaschke product, S a singular inner function, and F an outer

function. We have

B(z) =
∏

λ∈D

b
k(λ)
λ (z),

where

bλ(z) =
|λ|
λ

λ− z

1 − λ̄z
, with |λ| < 1,

is a Blaschke factor and k(λ) is the divisor of zero multiplicities, satisfying the

Blaschke condition
∑

λ∈D
k(λ)(1 − |λ|) <∞. We also have

S(z) = exp
(
−
∫

T

ζ + z

ζ − z
dµs(ζ)

)
,

µs being a positive measure singular with respect to Lebesgue measure m, and

F (z) = exp
(
−
∫

T

ζ + z

ζ − z
log

1

|Θ(ζ)| dm(ζ)
)
.

Let δλ be the measure of mass 1 concentrated at the point λ (Dirac measure).

We associate with the function Θ the measure on the closed unit disc defined by

dµΘ = log
1

|Θ| dm+ dµs +
∑

λ∈D

k(λ)(1 − |λ|2)δλ.

This is often called the representing measure of Θ.

Chapter 1. Construction of the Function Model

1.1. Unitary dilation. We start constructing the function model for a con-

traction on a Hilbert space with an explicit description of its minimal unitary

dilation. An operator U acting on a Hilbert space H is called a dilation of an

operator T acting on H, where H ⊂ H, if

Tn = PHUn|H for all n ≥ 1.

The dilation is called minimal if span{UnH : n ∈ Z} = H. It is called unitary if

U is a unitary operator.

The structure of the space H where a dilation of an operator acts is given by

the following lemma of Sarason [1965].
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1.2. Lemma. U : H → H is a dilation of T : H → H if and only if

H = G∗ ⊕H ⊕G, (1.2.1)

with

UG ⊂ G, U∗G∗ ⊂ G∗, and PHU|H = T.

G and G∗ are called the outgoing and the incoming subspace, respectively.

Proof. To prove the “only if” part, put

G = span{UnH : n ≥ 0} 	H,

G∗ = H 	 span{UnH : n ≥ 0}.

If g = lim pn(U)hn is orthogonal to H, hn ∈ H, and f ∈ H, then

(Ug, f) = lim(Upn(U)hn, f) = lim(Tpn(T )hn, f) = lim(pn(T )hn, T
∗f)

= lim(pn(U)hn, T
∗f) = (g, T ∗f) = 0,

that is, UG ⊂ G. The inclusion U∗G∗ ⊂ G∗ is obvious.

For the converse, we use the block matrix representation of U with respect to

the decomposition (1.2.1). We get

U =




∗ 0 0

∗ T 0

∗ ∗ ∗


 =⇒ Un =




∗ 0 0

∗ Tn 0

∗ ∗ ∗


 =⇒ PHUn|H = Tn,

for all n ≥ 1. ˜

1.3. The matrix of a unitary dilation. We need a unitary operator U : H →
H, where H = G∗ ⊕H ⊕G, of the form:

U =




E∗ 0 0

A T 0

C B E


 .

In matrix form, the conditions U∗U = I and UU∗ = I become




E∗
∗E∗ +A∗A+ C∗C A∗T + C∗B C∗E

T ∗A+B∗C T ∗T +B∗B B∗E

E∗C E∗B E∗E


 = I,




E∗E∗
∗ E∗A

∗ E∗C
∗

AE∗
∗ AA∗ + TT ∗ AC∗ + TB∗

CE∗
∗ CA∗ +BT ∗ CC∗ +BB∗ + EE∗


 = I.
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We put DT
def
= (I − T ∗T )1/2 and DT

def
= closDTH. Twelve different entries

give twelve different equations. Here are ten of them:





E∗E = I =⇒ E is an isometry;

E∗E∗
∗ = I =⇒ E∗ is a co-isometry;

AA∗ + TT ∗ = I =⇒ A∗ = V∗DT∗ (polar decomposition);

E∗A
∗ = 0 =⇒ V∗ : DT∗ → Ker E∗;

T ∗T +B∗B = I =⇒ B = V DT (polar decomposition);

E∗B = 0 =⇒ V : DT → Ker E∗;

CA∗ +BT ∗ = 0 =⇒ CV∗ + V T ∗ = 0 =⇒ C = −V T ∗V ∗
∗ + C0,

C0|RangeV∗ = 0;

A∗T + C∗B = 0 =⇒ C∗
0V DT = 0 =⇒ C∗

0 |RangeV = 0;

E∗
∗E∗ +A∗A+ C∗C = I =⇒ V∗V

∗
∗ + C∗

0C0 = PKer E∗
;

CC∗ +BB∗ + EE∗ = I =⇒ V V ∗ + C0C
∗
0 = PKer E∗ .

The last two of these identities mean that C0 is a partial isometry with initial

space Ker E∗ 	 RangeV∗ and final space Ker E∗ 	 RangeV ; therefore, the two

other identities E∗C = 0 and CE∗
∗ = 0 are fulfilled automatically.

Now, if we introduce

G(1) =
∑

n

≥ 0 ⊕ EnVDT ,

G(2) = G	G(1),

G
(1)
∗ =

∑

n

≥ 0 ⊕ E∗n
∗ V∗DT∗ ,

G
(2)
∗ = G∗ 	G

(1)
∗ ,

then G
(2)
∗ ⊕G(2) is a reducing subspace of U:

U|G(2)
∗ ⊕G(2) =

(
E∗|G(2)

∗ 0

C0 E|G(2)

)
.

Therefore, the operator

U|G(1)
∗ ⊕H ⊕G(1) =




E∗|G(1)
∗ 0 0

DT∗V ∗
∗ T 0

−V T ∗V ∗
∗ V DT E|G(1)




is also a unitary dilation of T . Moreover, the dilation is minimal. Indeed, since

UH =




0

T

V DT


H,

we see that span{UH,H} = H ⊕ VDT , whence span{UnH : n ≥ 0} = H ⊕G(1).

In a similar way we obtain span{UnH : n ≤ 0} = G
(1)
∗ ⊕ H. So the dilation

is minimal if and only if E and E∗
∗ are pure isometries and RangeV = Ker E∗,

RangeV∗ = Ker E∗.

Thus, we arrive at the following theorem.
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1.4. Theorem. An operator U : H → H is a minimal unitary dilation of

T : H → H if and only if there exist subspaces G and G∗ of H such that

H = G∗ ⊕H ⊕G,

and , with respect to this decomposition, U has matrix

U =




E∗ 0 0

DT∗V ∗
∗ T 0

−V T ∗V ∗
∗ V DT E


 ,

where E = U|G and E∗
∗ = U∗|G∗ are pure isometries, V is a partial isometry

with initial space DT and final space Ker E∗, and V∗ is a partial isometry with

initial space DT∗ and final space Ker E∗. ˜

1.5. First glimpse into the function model. In principle, the construction of

the minimal unitary dilation could be split into two steps: first we can construct

a minimal isometric dilation (or a minimal co-isometric extension), and then

apply the same procedure to the adjoint of the operator obtained. As a result,

we get a minimal unitary dilation. It is worth mentioning that in our terms the

restriction of U to H⊕G is a minimal isometric dilation of T and the compression

of U onto G∗ ⊕H is a minimal co-isometric extension of T .

A function model of a contraction T arises whenever we realize E and E∗
∗,

which are abstract shift operators, as the operators of multiplication by z on

appropriate Hardy spaces. Such a realization provides us with two functional

embeddings of the corresponding Lebesgue spaces in the space of the minimal

unitary dilation. All other objects needed for handling such a model operator

(the characteristic function, formulas for the projection onto H, for the dilation,

and for the operator itself, etc.) are computed in terms of these embeddings. We

present the necessary constructions in the rest of this chapter. In Chapter 3 we

give some explicit formulas for the model as examples of the above-mentioned

functional realizations of the coordinate-free model in terms of multiplication by

z on certain L2-spaces.

1.6. Functional embeddings. As already mentioned, after fixing a minimal

unitary dilation of a given contraction T , we begin with a spectral representation

of the pure isometry E and the pure co-isometry E∗ using the Wold decomposi-

tion. Let E and E∗ be two auxiliary Hilbert spaces such that

dimE = dim DT = dimKer E∗,

dimE∗ = dim DT∗ = dimKer E∗.

Since Ker E∗ = G	 EG = G	 UG and Ker E∗ = G∗ 	 E∗
∗G = G∗ 	 U∗G∗, there

exist unitary mappings

v : E → G	 UG and v∗ : E∗ → G∗ 	 U∗G∗ (1.6.1)
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identifying these spaces. Now we can define a mapping

Π = (π∗, π) : L2(E∗) ⊕ L2(E) → H (1.6.2)

by the formulas

π
(∑

k∈Z

zkek

)
=
∑

k∈Z

Ukvek for ek ∈ E,

π∗

(∑

k∈Z

zke∗k

)
=
∑

k∈Z

Uk+1v∗e∗k for e∗k ∈ E∗,

Π(f∗ ⊕ f) = π∗f∗ + πf.

The operators Π, π, and π∗ are called functional mappings or functional embed-

dings. Immediately from the above definition we deduce the following properties

of the embeddings π and π∗:

(i) π∗π = IL2(E) and π∗
∗π∗ = IL2(E∗).

(ii) πz = Uπ and π∗z = Uπ∗.

(iii) πH2(E) = G and π∗H
2
−(E∗) = G∗.

Property (i) is a consequence of the fact that G 	 UG and G∗ 	 U∗G∗ are

wandering subspaces for U; that is,

Un(G	 UG) ⊥ Um(G	 UG) and Un(G∗ 	 U∗G∗) ⊥ Um(G∗ 	 U∗G∗)

for distinct n,m ∈ Z. Property (ii) is obvious, as are the relations πzn = Unπ

and π∗z
n = Unπ∗ for all n ∈ Z. To check (iii) we write

πH2(E) =
{
π
∑

k≥0 z
kek : ek ∈ E,

∑
n≥0 ‖ek‖2 <∞

}

=
{∑

k≥0 Ukvek : ek ∈ E,
∑

n≥0 ‖ek‖2 <∞
}

=
∑

k ≥ 0 ⊕ Uk(G	 UG) = G,

π∗H
2
−(E∗) =

{
π∗
∑

k<0 z
ke∗k : e∗k ∈ E∗,

∑
n≥0 ‖e∗k‖2 <∞

}

=
{∑

k<0 Uk+1v∗e∗k : e∗k ∈ E∗,
∑

n≥0 ‖e∗k‖2 <∞
}

=
∑

k ≥ 0 ⊕ U∗k(G∗ 	 U∗G∗) = G∗.

In general, the space closRangeΠ may be different from the entire space H

of the minimal unitary dilation of T . Now we describe this range as follows.

1.7. Lemma. The orthogonal complement

Hu
def
= (RangeΠ)⊥ =

(
πL2(E) + π∗L

2(E∗)
)⊥

is contained in H and is a reducing subspace of T . Moreover , Hu is maximal

among all T -invariant subspaces H ′ ⊂ H for which the restriction T |H ′ is uni-

tary .
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Proof. Since G = πH2(E) ⊂ RangeΠ and G∗ = π∗H
2
−(E∗) ⊂ Range Π,

we have Hu ⊂ H. The intertwining property (ii) implies that Hu reduces U.

Therefore, the operator T |Hu = U|Hu is unitary.

It remains to prove the maximality of Hu. Let TH ′ ⊂ H ′ ⊂ H, and let T |H ′

be unitary. Then for h ∈ H ′ and n ≥ 0 we have

‖h‖ = ‖Tnh‖ = ‖PHUnh‖ ≤ ‖Unh‖ = ‖h‖.

Therefore, Unh = PHUnh ∈ H, whence UnH ′ ⊂ H, n ≥ 0. Thus, UnH ′ ⊥
πH2(E) and H ′ ⊥ U∗nπH2(E), which yields H ′ ⊥ πL2(E) because

span{U∗nπH2(E) : n ≥ 0} = span{πz̄nH2(E) : n ≥ 0} = πL2(E).

Similarly, the relations

‖h‖ = ‖T ∗nh‖ = ‖PHU∗nh‖ ≤ ‖U∗nh‖ = ‖h‖

imply that H ′ ⊥ π∗L
2(E∗), whence H ′ ⊂ Hu. ˜

The lemma yields the well-known decomposition of a contraction into a unitary

and a completely nonunitary part. We recall that a contraction is called com-

pletely nonunitary if Hu = {0}, that is, if the restriction of it to any nontrivial

invariant subspace is not a unitary operator.

1.8. Corollary. A contraction T on H can be uniquely represented in the form

T = Tu ⊕ T0, where Tu = T |Hu is unitary and T0
def
= T |H0, for H0

def
= H 	Hu,

is completely nonunitary . Therefore, a contraction is completely nonunitary if

and only if

(iv) clos RangeΠ = H.

In what follows we shall deal with completely nonunitary contractions only.

1.9. Characteristic function. We continue the construction of the function

model of a given completely nonunitary contraction T . We use the functional

embeddings to introduce the central object of model theory, the characteristic

function of an operator.

We define

Θ
def
= π∗

∗π : L2(E) → L2(E∗). (1.9.1)

By property (ii) on page 228, the mapping Θ intertwines the operators of mul-

tiplication by z in the two L2-spaces above:

Θz = zΘ.

We saw in Section 0.7 that such a Θ is the operator of multiplication by a

bounded operator-valued function, which we denote by the same symbol:

(Θf)(ζ) = Θ(ζ)f(ζ) for ζ ∈ T.

We shall write Θ ∈ L∞(E→E∗), which means that Θ is a measurable function

defined and bounded almost everywhere on the unit circle whose values are
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operators acting from E to E∗. Moreover, this function is contractive-valued

(‖Θ‖ ≤ ‖π∗
∗‖ · ‖π‖ = 1) and analytic. Indeed, we have

πH2(E) = G ⊥ G∗ = π∗H
2
−(E∗),

whence

ΘH2(E) = π∗
∗πH

2(E) ⊂ H2(E∗);

that is, Θ ∈ H∞(E→E∗).

Definition. The function Θ defined by (1.9.1) is called the characteristic func-

tion of the given completely nonunitary contraction T .

Thus, formally, the “characteristic function” of a contraction T is a family of

functions (depending on U and Π). Our next goal is to describe the family of

characteristic functions corresponding to all operators unitarily equivalent to a

given operator. Later, in Remark 1.12, we shall make somewhat more precise

the notion of a characteristic function.

1.10. Equivalence relations. The definition of the functional embeddings,

and therefore that of the characteristic function, involve two arbitrary Hilbert

spaces E and E∗, only their dimensions being essential. So, it is natural to

regard all the objects obtained as equivalent if a pair of spaces E, E∗ is replaced

by another one, say E′, E′
∗, of the same dimension. By definition, two functions

Θ ∈ L∞(E→E∗) and Θ′ ∈ L∞(E′→E′
∗) are said to be equivalent if there exist

unitary mappings

u : E → E′ and u∗ : E∗ → E′
∗ (1.10.1)

such that

Θ′u = u∗Θ. (1.10.2)

In what follows, being in the framework of Hilbert space theory, we shall often

view our initial object, a Hilbert space contraction, up to unitary equivalence.

The minimal unitary dilation of such a contraction is also defined up to the

corresponding unitary equivalence W : H → H′ intertwining U and U′ and

preserving the structure (1.2.1), that is, satisfying

WG = G′, WG∗ = G′
∗, WH = H ′. (1.10.3)

Therefore, the following definition is natural. Two functional embeddings Π and

Π′ are said to be equivalent if there exist unitary mappings (1.10.1) and a unitary

operator (1.10.3) such that

Π′

(
u∗ 0

0 u

)
= WΠ.

1.11. Theorem. Let T , T ′ be two completely nonunitary contractions; we de-

note by Π, Π′ their functional embeddings and by Θ, Θ′ their characteristic

functions. The following assertions are equivalent .
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(i) T and T ′ are unitarily equivalent .

(ii) Π and Π′ are equivalent .

(iii) Θ and Θ′ are equivalent .

Proof. (1) =⇒ (2). Let W0 be a unitary operator, W0T = T ′W0. We define

W on finite sums
∑

Unhn, where hn ∈ H, by the formula

W
(∑

Unhn

)
=
∑

U′nW0hn.

We check that W is norm-preserving; this will imply that W is well-defined and

can be extended to an isometry acting on the whole of H. Since the finite sums∑
U′nW0hn are dense in H′, such an extension will be surjective and, therefore,

unitary. We have

∥∥∥∥W
(∑

n

U′nhn

)∥∥∥∥
2

=
∑

n

‖U′nW0hn‖2 + 2Re
∑

k>l

(U′k−l
W0hk, W0hl)

=
∑

n

‖hn‖2 + 2Re
∑

k>l

(T ′k−l
W0hk,W0hl)

=
∑

n

‖Unhn‖2 + 2Re
∑

k>l

(Uk−lhk, hl) =

∥∥∥∥
∑

n

Unhn

∥∥∥∥
2

.

From the definition we see that WU = U′W and WH = W0H = H ′. More-

over,

W (G⊕H) = W span{UnH : n ≥ 0} = span{U′nW0H : n ≥ 0}
= span{U′nH ′ : n ≥ 0} = G′ ⊕H ′;

that is, WG = G′, whence W (G	 UG) = G′ 	 U′G′. Similarly, WG∗ = G′
∗ and

W (G∗ 	 U∗G∗) = G′
∗ 	 U′∗G′

∗. Using the unitary mappings v and v∗ of (1.6.1),

we can define

u = v′
∗
Wv : E → E′, u∗ = v′

∗
∗Wv∗ : E∗ → E′

∗.

Now we show that these operators provide an equivalence between Π and Π′:

Wπ

(∑
zkek

)
= W

∑
Ukvek =

∑
U′kWvek

=
∑

U′kv′uek = π′

(∑
zkuek

)
= π′u

(∑
zkek

)
.

Thus Wπ = π′u. That Wπ∗ = π′
∗u∗ can be checked similarly.

(2) =⇒ (3). We have

Θ′u = π′∗
∗π

′u = π′∗
∗Wπ = (W ∗π′

∗)
∗π = (π∗u

∗
∗)

∗π = u∗π
∗
∗π = u∗Θ.
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(3) =⇒ (2). Defining an operator W on the dense set ΠL2(E∗ ⊕ E) by the

identity

WΠ = Π′

(
u∗ 0

0 u

)

we check that W is norm-preserving. As in the first part of the proof, this will

imply that W is well-defined and extends to a unitary operator.

First, we note that property (i) of page 228, combined with the definition of

Θ, can be written as

Π∗Π =

(
I Θ

Θ∗ I

)
.

Using this relation and the identity Θ′u = u∗Θ, we obtain

‖WΠx‖2 =

∥∥∥∥Π′

(
u∗ 0

0 u

)
x

∥∥∥∥
2

=

((
u∗∗ 0

0 u∗

)(
I Θ′

Θ′∗ I

)(
u∗ 0

0 u

)
x, x

)

=

((
I Θ

Θ∗ I

)
x, x

)
= ‖Πx‖2,

which completes the proof that Π and Π′ are equivalent.

(2) =⇒ (1). We put

Π′

(
u∗ 0

0 u

)
= WΠ.

Then WG = WπH2(E) = π′uH2(E) = π′H2(E′) = G′ and, similarly, WG∗ =

G′
∗, whence WH = H ′. Thus, W0

def
= W |H defines a unitary operator from H

to H ′. Since

WUΠ = WΠz = Π′

(
u∗ 0

0 u

)
z = U′Π′

(
u∗ 0

0 u

)
= U′WΠ

and Range Π is dence in H, we have U′W = WU. This yields

W0T = W0PHU|H = PH′WU|H = PH′U′W |H = T ′W0;

that is, T and T ′ are unitarily equivalent. ˜

1.12. The dilations and the characteristic function of a given con-

traction. The same arguments show that a minimal unitary dilation of a given

contraction T is unique up to a unitary equivalence WU = U′W such that

WG = G′, WG∗ = G′
∗, and W |H = I|H.

Returning to the main definition 1.9 and taking Theorem 1.11 into account,

we see that it is natural that the characteristic function of a contraction should

mean any function Θ defined by (1.9.1) for any operator T unitarily equivalent

to the given one.

Now we find an expression for the characteristic function of a completely

nonunitary contraction in terms of the contraction itself.



SPECTRAL THEORY IN TERMS OF THE FREE FUNCTION MODEL, I 233

1.13. Theorem. The characteristic function Θ of a completely nonunitary

contraction T is equivalent to the function in H∞(DT → DT∗) defined on the

unit disc by the formula

ΘT (λ) =
(
−T + λDT∗(I − λT ∗)−1DT

)
|DT for λ ∈ D. (1.13.1)

Proof. Let Θ be the function (1.9.1) defined by the embeddings (1.6.2) related

to the unitary dilation described in Theorem 1.4. We shall prove that

Θ(λ) = Ω∗
∗

(
−T + λDT∗(I − λT ∗)−1DT

)
Ω

where

Ω = V ∗v : E → H and Ω∗ = V ∗
∗ v∗ : E∗ → H,

V , V∗ being defined in Theorem 1.4 and v, v∗ in (1.6.1). The above Ω and Ω∗ map

E and E∗ isometrically onto DT and DT∗ , respectively. In particular, choosing

E = DT , E∗ = DT∗ and v = V |DT , v∗ = V∗|DT∗ , we get the function ΘT as

one of the possible choices among equivalent representations of the characteristic

function.

Let e ∈ E and e∗ ∈ E∗. Then, for |λ| < 1,

(Θ(λ)e, e∗)E∗
=
(
Θe,

e∗

1 − λ̄z

)
L2(E∗)

=
(
πe, π∗

e∗

1 − λ̄z

)
H

=

(
ve, π∗

∑

k≥0

λ̄kzke∗

)

H

=

(
ve,

∑

k≥0

λ̄kUk+1v∗e∗

)

H

=

(
v∗∗
∑

k≥0

λkU∗(k+1)ve, e∗

)

E∗

.

Therefore,

Θ(λ) = v∗∗
∑

k≥0

λkU∗(k+1)v = v∗∗
(I − λU∗)−1 − I

λ
v =

1

λ
v∗∗(I − λU∗)−1v,

because Range v ⊥ Range v∗ (the latter fact follows from the relations G ⊥ G∗

and Range v ⊂ G, Range v∗ ⊂ G∗).

The proof of the following formula for the inverse of a block matrix operator

is left to the reader:


X A B

0 Y C

0 0 Z




−1

=



X−1 −X−1AY −1 X−1(−B +AY −1C)Z−1

0 Y −1 −Y −1CZ−1

0 0 Z−1


 .

We apply this formula to the operator

I − λU∗ =



I − λE∗

∗ −λV∗DT∗ λV∗TV
∗

0 I − λT ∗ −λDTV
∗

0 0 I − λE∗



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(compare the expression for U in Theorem 1.4). This results in the relation

Θ(λ) =
1

λ
(v∗∗ , 0, 0)(I − λU∗)−1




0

0

v




=
1

λ
v∗∗(I − λE∗

∗)
−1
(
−λV∗TV ∗ + (−λV∗DT∗)(I − λT ∗)−1(−λDTV

∗)
)

× (I − λE∗)−1v

= Ω∗
∗

(
−T + λDT∗(I − λT ∗)−1DT

)
Ω,

because v∗∗E∗
∗ = 0 and E∗v = 0. ˜

1.14. Two more expressions for ΘT . Multiplying (1.13.1) from the right by

DT we get the following useful formula

ΘT (λ)DT = DT∗(I − λT ∗)−1(λI − T ); (1.14.1)

and multiplying from the left by DT∗
we get

DT∗ΘT (λ) = (λI − T )(I − λT ∗)−1DT |DT . (1.14.2)

1.15. Corollary. The characteristic function is a pure contractive-valued func-

tion; that is,

‖Θ(0)e‖E∗
< ‖e‖E for any nonzero e ∈ E.

Indeed, if ‖Θ(0)e‖E∗
= ‖e‖E , then

‖Ωe‖ = ‖e‖ = ‖Θ(0)e‖ = ‖Ω∗
∗TΩe‖ = ‖TΩe‖,

that is, Ωe ∈ KerDT . However, since Ωe ∈ DT , we have Ωe = 0, whence e = 0.

1.16. Coordinate-free function model. Now we are ready to construct the

coordinate-free function model for a contraction on a Hilbert space. This will

help us to solve the following inverse problem: given a purely contractive-valued

function Θ analytic in the unit disc, find a completely nonunitary contraction

whose characteristic function is equivalent to Θ.

To this end, the following steps can be taken.

(i) We take a function Θ ∈ H∞(E→E∗) such that ‖Θ‖∞ ≤ 1 and ‖Θ(0)e‖E∗
<

‖e‖E for all nonzero e ∈ E.

(ii) We take any functional embedding Π = π∗ ⊕ π acting from L2(E∗ ⊕ E) to

an arbitrary Hilbert space with the prescribed modulus

Π∗Π =

(
I Θ

Θ∗ I

)
. (1.16.1)

(iii) We put H = closRangeΠ.

(iv) We introduce a unitary operator U on H by the relation

UΠ = Πz.
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(v) We introduce the model subspace

KΘ
def
= H 	

(
πH2(E) ⊕ π∗H

2
−(E∗)

)
,

where, as before, π = Π|L2(E) and π∗ = Π|L2(E∗).

(vi) Finally we define a model operator by the formula

MΘ
def
= PΘU|KΘ,

where PΘ stands for the orthogonal projection from H onto KΘ.

The next theorem shows that these six steps really solve the inverse problem in

question.

1.17. Theorem. MΘ is a completely nonunitary contraction with the charac-

teristic function Θ. The operator U is the minimal unitary dilation of MΘ.

Proof. First of all, it is worth mentioning that the operator U described in

step (4) above is well-defined and unitary. Clearly, the norm is preserved, since

‖UΠx‖2 = ‖Πzx‖2 =

((
I Θ

Θ∗ I

)
zx, zx

)
=

((
I Θ

Θ∗ I

)
x, x

)
= ‖Πx‖2;

therefore, U is well-defined and isometric. By step (3), U is densely defined and

possesses a dense range; hence, it admits a unitary extension to H.

Now, we prove that U is a minimal unitary dilation of M = MΘ. From the

definition it is clear that U is a dilation. More precisely, this follows from the

fact that the subspaces G
def
= πH2(E) and G∗

def
= π∗H

2
−(E∗) are invariant under

U and U∗, respectively, which shows that H = G∗⊕KΘ⊕G is the decomposition

from Lemma 1.2. Thus, all we need to verify is minimality.

We check the identity

UPΘπz̄e+ PΘπ∗Θ0e = π(I − Θ∗
0Θ0)e for e ∈ E, (1.17.1)

where Θ0
def
= Θ(0). Using step (v), we get for the orthogonal projection onto KΘ

the formula

PΘ = I − πP+π
∗ − π∗P−π

∗
∗ ,

where P+ and P− stand for the Riesz projections (see Section 0.7). Thus, we

obtain

UPΘπz̄e = U(πP− − π∗P−Θ)z̄e = U(πz̄e− π∗Θ0z̄e) = πe− π∗Θ0e,

PΘπ∗Θ0e = (π∗P+ − πP+Θ∗)Θ0e = π∗Θ0e− πΘ∗
0Θ0e,

which implies (1.17.1).

Since Θ is pure, the operator I − Θ∗
0Θ0 has a dense range, whence

πE ⊂ span{KΘ,UKΘ},

and

G = πH2(E) = span{UnπE : n ≥ 0} ⊂ span{UnKΘ : n ≥ 0}.
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In a similar way, using the identity

PΘπ∗e∗ + UPΘπz̄Θ
∗
0e∗ = π∗(I − Θ0Θ

∗
0)e∗,

we get

G∗ = π∗H
2
−(E∗) = span{Unπ∗E∗ : n < 0} ⊂ span{UnKΘ : n ≤ 0}.

Hence, H = G∗ ⊕ KΘ ⊕G ⊂ span{UnKΘ : n ∈ Z}, so U is a minimal dilation.

By construction, π and π∗ are functional embeddings with v = π|E and

v∗ = π∗z̄|E∗. Therefore, Θ is the characteristic function of MΘ. ˜

Now comes the main result of the Chapter, to complete the construction of the

function model.

1.18. Theorem. If Θ = ΘT is the characteristic function of a completely

nonunitary contraction T , then T is unitarily equivalent to the model operator

MΘ constructed with the help of the six steps in 1.16.

Proof. Obvious from Theorems 1.11 and 1.17. ˜

Let T be a completely nonunitary contraction and let Θ = ΘT be the charac-

teristic function of T . We say that MΘ is a coordinate-free model of T acting

on the model space KΘ. Some explicit formulas for the function model will be

obtained as transcriptions of this free model by specifying a representation of

the Hilbert space H and a solution Π of equation (1.16.1). Several examples of

such transcriptions are given in Chapter 3.

1.19. Residual subspaces. In this section we introduce and briefly discuss

two more functional mappings related to the function model of a contraction;

these are quite useful for the study of the commutant lifting (see Chapter 4) and

invariant subspaces (see Chapter 6). These mappings, denoted below by τ and

τ∗, arise necessarily when one studies the absolutely continuous spectrum of a

contraction, because they give spectral representations of the restrictions of the

unitary dilation U to the so called residual and ∗-residual parts of H, that is, to

R
def
= H 	 π∗L

2(E∗) and R∗
def
= H 	 πL2(E).

Clearly,

R = (I − π∗π
∗
∗)H = clos(I − π∗π

∗
∗)πL

2(E) = clos(π − π∗Θ)L2(E).

Since

(π − π∗Θ)∗(π − π∗Θ) = (π∗ − Θ∗π∗
∗)(π − π∗Θ) = I − Θ∗Θ = ∆2,

the polar decomposition

π − π∗Θ = τ∆ (1.19.1)

provides us with a partial isometry τ acting from L2(E) to H, which is isometric

on L2(∆E)
def
= clos ∆L2(E) and whose range is R. It turns out to be more
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convenient to view τ as defined only on L2(∆E). Then τ is an isometry that

intertwines z on L2(∆E) with U|R; that is, it provides a unitary equivalence of

these operators. Algebraically, these properties can be written as follows:

τ∗τ = I,

ττ∗ = I − π∗π
∗
∗ ,

τz = Uτ.

In a similar way,

R∗ = τ∗L
2(∆∗E∗),

where τ∗ is the partial isometry occurring in the polar decomposition

π∗ − πΘ∗ = τ∗∆∗. (1.19.2)

Then
τ∗∗ τ∗ = I,

τ∗τ
∗
∗ = I − ππ∗,

τ∗z = Uτ∗.

Below we list some more relations for the embeddings τ , τ∗ and π, π∗, which

are simple consequences of the definitions:

τ∗π = ∆,

τ∗π∗ = 0,

τ∗τ∗ = −Θ∗,

τ∗∗π∗ = ∆∗,

τ∗∗π = 0,

τ∗∗ τ = −Θ.

Chapter 2. Examples

In this chapter, we give two examples where the characteristic function is

computed. Both deal with dissipative operators, rather than contractions. How-

ever, as is well known, the theories of these two classes are related by the Cayley

transform, which allows us to transfer information obtained for dissipative oper-

ators to contractions and vice versa. This transfer is not completely automatic,

and we start with some prerequisites.

2.1. Definition. A densely defined operator A is said to be dissipative if

Im(Ax, x) ≥ 0 for all x ∈ DomA.

A dissipative operator is maximal if it has no proper dissipative extension. A

dissipative operator is completely nonselfadjoint if it has no selfadjoint restriction

on a nonzero invariant subspace.

The next lemma collects some properties of dissipative operators and their

relations to contractions. The proof of the lemma is classical; see [Sz.-Nagy and

Foiaş 1967], for example.
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2.2. Lemma. 1. If A is a dissipative operator , the operator

T = C(A)
def
= (A− iI)(A+ iI)−1

is a contraction acting from (A+ iI)DomA to (A− iI)DomA and such that

1 /∈ σp(T ). Conversely , if T is a contraction such that 1 is not an eigenvalue

of T , the operator

A = C−1(T ) = i(I + T )(I − T )−1

is well-defined on DomA = (I − T )DomT and is dissipative. The operator

C(A) is called the Cayley transform of A, and C−1(T ) is called the Cayley

transform of T .

2. Every dissipative operator has a maximal dissipative extension. A maximal

dissipative operator is closed . A dissipative operator A is maximal if and only

if Dom C(A) = H.

3. The operator A is selfadjoint if and only if C(A) is unitary .

4. Two dissipative operators A1 and A2 are unitarily equivalent if and only if

are C(A1) and C(A2) so.

A bounded operator A is maximal dissipative if and only if it is defined on

the whole space (DomA = H) and its imaginary part is nonnegative (ImA =
1
2i (A−A∗) ≥ 0). In this simplest case, we compute the defect operators and the

characteristic function of the Cayley transform.

2.3. Lemma. Let A be a bounded dissipative operator and let T = C(A) be the

Cayley transform of A. Then

D2
T = 2i(A∗ − iI)−1(A∗ −A)(A+ iI)−1,

D2
T∗ = 2i(A+ iI)−1(A∗ −A)(A∗ − iI)−1.

Moreover , there exist partial isometries V and V∗ with initial space

closRange(ImA)

and final spaces DT and DT∗ , respectively , such that

DT = V 2(ImA)1/2(A+ iI)−1 = (A∗ − iI)−12(ImA)1/2V ∗, (2.3.1)

DT∗ = V∗2(ImA)1/2(A∗ − iI)−1 = (A+ iI)−12(ImA)1/2V ∗
∗ . (2.3.2)

In particular , rankDT = rankDT∗ = rank(ImA).

Proof. The first two formulas are straightforward consequences of the defini-

tions of DT , DT∗ , and C(A). The second two relations follow from the polar

decomposition; see Section 0.7. ˜

2.4. Lemma. The characteristic function ΘT (z) is equivalent to the function

SA

(
i
1 + z

1 − z

)
,
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where z ∈ D and

SA(ζ)
def
=
(
I+i(2 ImA)1/2(A∗−ζI)−1(2 ImA)1/2

)∣∣Range(ImA), for Im ζ > 0.

(2.4.1)

Proof. Using the the expressions for T = C(A) and formulas (2.3.1)–(2.3.2) we

can rewrite formula (1.14.1) for ΘT as follows:

V ∗
∗ ΘT (z)DT

= V ∗
∗ DT∗(I−zT ∗)−1(zI−T )

= 2(ImA)1/2(A∗− iI)−1
(
I−z(A∗+ iI)(A∗− iI)−1

)−1(
zI−(A− iI)(A+ iI)−1

)

= 2(ImA)1/2
(
(A∗− iI)−z(A∗+ iI)

)−1(
z(A+ iI)−(A− iI)

)
(A+ iI)−1

= −2(ImA)1/2
(
A∗− i 1+z

1−z I
)−1(

A− i 1+z

1−z I
)
(A+ iI)−1

= −2(ImA)1/2(A∗−ζI)−1(A−ζI)(A+ iI)−1

= −2(ImA)1/2(A∗−ζI)−1(2i ImA+A∗−ζI)(A+ iI)−1

= −
(
I+2i(ImA)1/2(A∗−ζI)−1(ImA)1/2

)
2(ImA)1/2(A+ iI)−1.

Taking into account (2.3.1), we get for ΘT an expression equivalent to (2.4.1). ˜

The function (2.4.1) is called the characteristic function of the dissipative oper-

ator A.

2.5. Example: The dissipative integration operator. Let µ be a positive

finite Borel measure on the interval [0,1]. We consider the integration operator

A acting on the space L2(µ) and defined by

(Af)(x) = i

∫

[0,x}

f(t) dµ(t)
def
= i

∫

[0,x)

f(t) dµ(t) +
i

2
µ({x})f(x) for x ∈ [0, 1].

Obviously, A is well-defined and bounded (even compact) on L2(µ), and its

adjoint operator is given by

(A∗f)(x) = −i
∫

{x,1]

f(t) dµ(t).

Therefore, A is a dissipative operator with rank-one imaginary part:

(2 ImA)f =

∫

[0,1]

f(t) dµ(t) = (f,1)1,

(
(2 ImA)f, f

)
= |(f,1)|2 ≥ 0 for f ∈ L2(µ).

Our goal is to construct the model for the Cayley transform C(A) of the

operator A. In accordance with the general theory of Chapter 1, the only thing
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we need is to find the completely nonunitary part of C(A) and to compute its

characteristic function. However, it turns out thatA is completely nonselfadjoint,

so C(A) is completely nonunitary (see part 3 of Lemma 2.2). Taking into account

Lemma 2.4, we will compute not the characteristic function of C(A), but the

characteristic function of A itself.

2.6. Theorem. The operator A is a completely nonselfadjoint dissipative oper-

ator with characteristic function

SA(ζ) =

( ∏

0≤t≤1

ζ − i
2µ({t})

ζ + i
2µ({t})

)
exp
(
−i µc([0, 1])

ζ

)
. (2.6.1)

To check that A is a completely nonselfadjoint operator and to compute its

characteristic function SA, we need to compute the resolvent (A∗ − ζI)−1, that

is, to find a solution f of the equation

(A∗ − ζI)f = h, (2.6.2)

or

−i
∫

{x,1]

f(t) dµ(t) − ζf(x) = h(x).

Putting M = µ([0, 1]), we introduce the map ϕ : [0, 1] → [0,M ] given by

ϕ(x) =

{
1
2µ({0}) if x = 0,

µ([0, x)) + 1
2µ({x}) if x > 0,

and the map ψ : [0,M ] → [0, 1] given by

ψ(t) =

{
inf{x : µ([0, x)) > t} if t < µ([0, 1)),

1 if t ≥ µ([0, 1)).

Then the solution of (2.6.2) can be described as follows.

2.7. Lemma. If Re ζ 6= 0 and h ∈ L2(µ), equation (2.6.2) has a unique solution

f ∈ L2(µ), which can be recovered from the solution g of the differential equation

g′(τ) =
g(τ) − h(ψ(τ))

τ − ϕ(ψ(τ)) − iζ
(2.7.1)

satisfying the initial condition g(M) = 0. Namely , the function

f
def
=

1

ζ
(g ◦ ϕ− h)

solves (2.6.2).

Proof. For ζ away from the imaginary line, the function in the denominator

of (2.7.1) is bounded away from zero; hence equation (2.7.1) has an absolutely

continuous solution g. Thus we need only to check that the function f(x) =
1
ζ

(
g(ϕ(x)) − h(x)

)
solves equation (2.6.2).
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Further, we note that ϕ is continuous at every point x of the interval [0, 1]

for which µ({x}) = 0, and that each jump of ϕ, that is, each point mass of the

measure µ, corresponds to an interval
(
ϕ(x−0), ϕ(x+0)

)
=
(
µ([0, x)), µ([0, x])

)

where the function ψ is constant. In turn, the function ψ is continuous every-

where off the set of points t such that ϕ(x1) = ϕ(x2) = t for at least two different

points x1 6= x2. If x is not a mass point for µ and x1 = inf{x : ϕ(x) = t},
x2 = sup{x : ϕ(x) = t}, then ψ has a jump at t with ψ(t−0) = x1 and

ψ(t+0) = x2.

We introduce functions f1, h1, and g on [0,M ] by the formulas

f1(t) = f(ψ(t)), h1(t) = h(ψ(t)), g(t) = −i
M∫

t

f1(s) ds.

From the definition we see that g is an absolutely continuous function, piecewise

linear on the intervals where ψ is constant. We prove that g coincides with

h1 + ζf1 on the image of ϕ.

Changing the variable, we get the relations

ϕ(x)∫

0

f1(s) ds =

∫

[0,x}

f(t) dµ(t) and

M∫

ϕ(x)

f1(s) ds =

∫

{x,1]

f(t) dµ(t).

In particular,

g(ϕ(x)) = −i
∫

{x,1]

f(t) dµ(t) = h(x) + ζf(x). (2.7.2)

If τ is an arbitrary point in [0,M ] and x = ψ(τ), then f1(s) = f1(τ) = f(x)

on the interval s ∈ (ϕ(x−0), ϕ(x+0)), and

g(τ) = −i
M∫

τ

f1(s) ds = −i
M∫

ϕ(x)

f1(s) ds− i

ϕ(x)∫

τ

f1(s) ds

= −i
∫

{x,1]

f(t) dµ(t) − i(ϕ(x) − τ)f1(τ) = h(x) + ζf(x) − i(ϕ(x) − τ)f1(τ)

= h1(τ) + i(τ − ϕ(ψ(τ)) − iζ)f1(τ),

which yields

if1(τ) =
g(τ) − h1(τ)

τ − ϕ(ψ(τ)) − iζ
.

Since the definition of g is equivalent to the equation g′ = if1 with the initial

condition g(M) = 0, the latter relation implies that g is a solution of (2.7.1).

Therefore, the conclusion of the lemma follows from (2.7.2). ˜

2.8. Corollary. The operator A is completely nonselfadjoint .
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Proof. Let H0 be the maximal invariant subspace such that the restriction

A|H0 is selfadjoint. Then H0 is a reducing subspace for A (see Lemma 2.2

and Corollary 1.8), hence σ(A|H0) ⊂ σ(A∗). By Lemma 2.7, equation (2.6.2)

has an L2-solution for all h and for all ζ, Re ζ 6= 0; that is, A∗ has no real

spectrum, except, maybe, the point ζ = 0. Thus, to check that A is completely

nonselfadjoint it suffices to check that the kernel of A∗ is trivial.

Let A∗f = 0, that is,

1

2
µ({x})f(x) +

∫

(x,1]

f(t) dµ(t) = 0 ∀x ∈ [0, 1].

Putting x+ ε in place of x and letting ε tend to zero, we obtain
∫

(x,1]

f(t) dµ(t) = 0 for all x ∈ [0, 1],

or ∫

(x,y]

f(t) dµ(t) = 0 for all x, y ∈ [0, 1],

which implies that f vanishes µ-a.e. ˜

We mention that T. Kriete [1972] found a criterion for complete nonselfadjoint-

ness for a class of dissipative operators with rank-one imaginary part. Our

operator A corresponding to an absolutely continuous measure µ is contained in

this class.

2.9. Proof of Theorem 2.6. That A is completely nonselfadjoint has already

been proved. Now we compute the characteristic function SA:

SA(ζ) =
((
I + i

√
2 ImA(A∗ − ζI)−1

√
2 ImA

)
1, 1

)
‖1‖−2

= 1 + i‖1‖−2(
(A∗ − ζI)−1

√
2 ImA1,

√
2 ImA1

)

= 1 + i
(
(A∗ − ζI)−11, 1

)
,

because
√

2 ImAf = ‖1‖−1(f,1)1.

So, for computing SA(ζ) we need the solution f of (2.6.2) with h = 1. Actually,

we need not f itself, but

∫

[0,1]

f(t) dµ(t) =

M∫

0

f1(s) ds = ig(0),

where g is the solution of

g′(τ) =
g(τ) − 1

τ − ϕ(ψ(τ)) − iζ
with g(M) = 0.
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Putting g1 = 1 − g and ω(τ) = (τ − ϕ(ψ(τ)) − iζ)−1, we see that SA(ζ) =

1 − g(0) = g1(0) and that

g′1(τ) = ω(τ)g1(τ), g1(M) = 1.

Thus

g1(τ) = exp

(
−

M∫

τ

ω(t) dt

)
,

and

SA(ζ) = exp

(
−

M∫

0

ω(t) dt

)
. (2.9.1)

As mentioned in Section 2.7, ψ is constant on the intervals

Ωx
def
=
(
ϕ(x−0), ϕ(x+0)

)
=
(
µ([0, x)), µ([0, x])

)
,

where its value is x; that is, ω(t) = (t−ϕ(x)− iζ)−1 for t ∈ Ωx. Set Ω
def
=
⋂
{Ωx :

µ({x}) > 0}. For almost all t /∈ Ω (in fact for all t except for the ends of Ωx) we

have ϕ(ψ(t)) = t, that is, ω(t) = const = −1/(iζ) for t ∈ [0,M ] \ Ω, whence

M∫

0

ω(t) dt = −M
iζ

+

∫

Ω

(ω(t) +
1

iζ
)dt = −µ([0, 1])

iζ
+

∑

x:µ({x})>0

∫

Ωx

(ω(t) +
1

iζ
) dt.

The integral over Ω can naturally be split into the sum of the integrals over the

intervals Ωx =
(
ϕ(x−0), ϕ(x+0)

)
on which ω(t) = (t− ϕ(x) − iζ)−1, and

ϕ(x+0)∫

ϕ(x−0)

(ω(t) +
1

iζ
) dt =

ϕ(x+0)∫

ϕ(x−0)

ds

s− ϕ(x) − iζ
+

1

iζ

(
ϕ(x+0) − ϕ(x−0)

)

= log
ϕ(x+0) − ϕ(x) − iζ

ϕ(x−0) − ϕ(x) − iζ
+

1

iζ

(
ϕ(x+0) − ϕ(x−0)

)

= log
1 − iµ({x})/(2ζ)
1 + iµ({x})/(2ζ) +

µ({x})
iζ

,

because ϕ(x+0) − ϕ(x) = ϕ(x) − ϕ(x−0) = 1
2µ({x}). Finally, substituting this

in (2.9.1), we obtain

SA(ζ) =

( ∏

0≤t≤1

ζ − i
2µ({t})

ζ + i
2µ({t})

)
exp
(
−i µc([0, 1])

ζ

)
,

where µc is the continuous part of µ:

µc([0, 1]) = µ([0, 1]) −
∑

µ({t}). ˜
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2.10. Unitary classification. Thus, the characteristic function of A is a scalar

inner function whose singular part has only one singularity, at ζ = 0 (with mass

µc([0, 1])) and whose zeros on the imaginary axis are at ζ = i
2µ({t}) and have

multiplicity equal to the number of points on [0, 1] with the same mass µ({t}).
We see that SA is independent of the distribution of µ on the interval [0, 1],

depending only on the total continuous mass µc([0, 1]) and on the values of the

point masses µ({t}) (regardless of their location). Therefore, two operators A

determined by measures µ1 and µ2 are unitarily equivalent if and only if

µ1c([0, 1]) = µ2c([0, 1])

and

card{t : µ1({t})=λ} = card{t : µ2({t})= λ} for all λ > 0.

We know the characteristic function of the operator, so we can describe its

spectrum (see Chapter 5). In our case the spectrum of the operator A consists

of the eigenvalues of multiplicity one at the points iλ such that

k(λ)
def
= card{t : µ({t}) = 2λ} > 0.

Moreover, k(λ) is the size of the corresponding Jordan block. If A is not a finite

rank operator—that is, if the support of µ is not a finite set—the point λ = 0 is

the sole point of the essential spectrum of A.

2.11. The matrix case. As an illustration to the previous computations, we

rewrite a partial case of the operator A in a matrix form.

Set µ =
∑

k≥1 µkδtk
, where µk > 0, tk > 0 and

∑
k≥1 µk < ∞. Then our

operator A is unitarily equivalent to the operator A : `2(µk) → `2(µk) defined

by the formula

Af =
{
i
(∑

tj<tk
fjµj + 1

2fkµk

)
: k ≥ 1

}

on the sequence space

`2(µk) =
{
f = (fk)k≥1 :

∑
k≥1 |fk|2µk <∞

}
.

Taking the unitary transformation V : `2(µk) → `2 given by

V f = (akfk)k≥1,

where the ak are complex numbers satisfying |ak|2 = µk for k ≥ 1, we get a

unitarily equivalent operator Ja : `2 → `2 given by

Jax =
{
i
(∑

tj<tk
akājxj + 1

2 |ak|2xk

)
: k ≥ 1

}
for x ∈ `2.

From the preceding discussion we know that two operators Ja and Jb, with

a, b ∈ `2, are unitarily equivalent if and only if the decreasing rearrangements

of |a| and |b| coincide, and that the spectrum of Ja is σ(Ja) = i
2 Range |a|2 =

i
2{0, |a1|2, |a2|2, . . .}. Every invariant subspace of Ja is generated by the eigen-

vectors and root vectors it contains; see Section 6.20.
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For two special distributions of tk the operators Ja are related to the triangular

truncation of matrices on the space `2. If we take an increasing sequence, tk <

tk+1 for k ≥ 1 the corresponding operator 1
i Ja is a kind of lower truncation of a

selfadjoint matrix a = (akāj)k,j≥1:

J(l)
a = i




1
2 |a1|2 0 0 0 · · ·
a2ā1

1
2 |a2|2 0 0 · · ·

a3ā1 a3ā2
1
2 |a3|2 0 · · ·

a4ā1 a4ā2 a4ā3
1
2 |a4|2 · · ·

· · · · · · · · · · · · · · ·



.

Likewise, if we take a decreasing sequence, 1
i Ja acts as upper truncation:

J(u)
a = i




1
2 |a1|2 a1ā2 a1ā3 a1ā4 · · ·

0 1
2 |a2|2 a2ā3 a2ā4 · · ·

0 0 1
2 |a3|2 a3ā4 · · ·

0 0 0 1
2 |a4|2 · · ·

· · · · · · · · · · · · · · ·



.

It is clear that the matrix a represents the rank-one operator (·, a)a, and that

the operators J
(u)
a and J

(l)
a are unitarily equivalent.

2.12. Example 2: The dissipative Sturm–Liouville operator. We con-

sider the differential operator `h arising from the differential expression

`y = −y′′ + qy,

where q is a real function, and by the boundary condition y′(0) = hy(0), where h

is a complex number. The operator `h has domain Dom(`h) = {y ∈W 2
2,loc(R+) :

`y ∈ L2(R+), y′(0) = hy(0)}, and is defined by

`h(y) = `y ∈ L2(R+). (2.12.1)

The general facts about the operators `h can be found in [Reed and Simon 1975]

or [Atkinson 1964]. In particular,

`∗h = `h̄.

Moreover, `h is a rank-one perturbation of the operator `∞ defined by the

differential expression ` and by the boundary condition y(0) = 0. The operator

`∞ is selfadjoint. The operator `h is dissipative if and only if Imh > 0.

Our goal is to compute the characteristic function S`h
of `h and, thus, to

include the study of `h in the model theory.

To this end, we consider two solutions ϕζ and ψζ of the equation `y = ζy,

satisfying the boundary conditions
{
ϕζ(0) = 0,

ϕ′
ζ(0) = 1

and

{
ψζ(0) = −1,

ψ′
ζ(0) = 0.
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It is well known that for every ζ with Re ζ 6= 0 there exists a unique L2-solution

yζ of our equation `y = ζy representable as a linear combination of ϕζ and ψζ :

yζ = ψζ +m(ζ)ϕζ .

The function m(ζ) determined by this condition for all ζ 6= ζ̄ is called the Weyl

function.

Following B. Pavlov [1976], we can compute the characteristic function of `h

in terms of the Weyl function m.

An important remark is that now we cannot use the formulas from Lemmas 2.3

and 2.4 for the defect operators and for the characteristic function, because

our operator A = `h is unbounded, its domain is different from the domain of

the adjoint, and the imaginary part is not well-defined. This difficulty can be

overcome; we refer the reader to [Solomyak 1989], for example.

If T = C(A) = (A− iI)(A+ iI)−1, then T ∗ = (A∗ + iI)(A∗− iI)−1. Taking an

arbitrary vector f ∈ DomA and putting x = (A+ iI)f , we have Tx = (A− iI)f ,

whence

D2
Tx = (A+ iI)f − T ∗(A− iI)f = (A+ iI)f − (A∗ + iI)(A∗ − iI)−1(A− iI)f.

Set g
def
= (A∗ − iI)−1(A− iI)f . Then

(A− iI)f = (A∗ − iI)g,

or

`(f − g) = i(f − g),

which implies that f − g = cyi, and

D2
Tx = (A+ iI)f − (A∗ + iI)g = (`+ iI)(f − g) = 2icyi.

Thus, we have checked that the defect subspace DT of the Cayley transform

T = C(`h) is the one-dimensional subspace

DT = span{yi}

generated by the solutions yζ for ζ = i. In a similar way, the defect subspace of

the adjoint operator T ∗ is also one-dimensional:

DT∗ = span{y−i}.

Next, we note that Tyi = 0 and T ∗y−i = 0, whence DT yi = yi and DT∗y−i =

y−i. Now, instead of (2.4.1), we use expression (1.14.2), namely,

DT∗ΘT (z) = (zI − T )(I − zT ∗)−1DT ,

which can be rewritten in terms of A = `h as follows:

DT∗ΘT (z) = −(A− ζI)(A+ iI)−1(A∗ − iI)(A∗ − ζI)−1DT ,
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where, as before, ζ = i(1 + z)/(1 − z). We apply this operator to the vector yi

and employ the formula

(`h − λI)−1yµ =
yµ + cyλ

µ− λ
,

(it will be used twice); here c is chosen so as to ensure that the vector above

belongs to Dom(`h), namely,

c = c(λ, µ, h) = −m(µ) + h

m(λ) + h
.

As a result, we obtain

DT∗ΘT (z)yi = −(`h − ζI)(`h + iI)−1(`h̄ − iI)(`h̄ − ζI)−1yi

= −(`h − ζI)(`h + iI)−1(`h̄ − iI)
yi + c(ζ, i, h̄)yζ

i− ζ

= (`h − ζI)(`h + iI)−1c(ζ, i, h̄)yζ

= (`h − ζI)c(ζ, i, h̄)
yζ + c(−i, ζ, h)y−i

ζ + i

= −c(ζ, i, h̄)c(−i, ζ, h)y−i = c0
m(ζ) + h

m(ζ) + h̄
,

where c0 = −
(
m(i) + h̄

)
/
(
m(−i) + h

)
is a unimodular constant. Since y−i = ȳi

and, therefore, ‖yi‖ = ‖y−i‖, we see that the characteristic function is equivalent

to the simple expression

S`h
(ζ) =

m(ζ) + h

m(ζ) + h̄
.

Thus, we have proved the following theorem.

2.13. Theorem. The characteristic function ΘC(`h) of the Cayley transform of

a dissipative Sturm–Liouville operator (2.12.1) is

ΘC(`h)(z) = S`h
(ζ) =

m(ζ) + h

m(ζ) + h̄
,

where ζ = i
1 + z

1 − z
.

Chapter 3. Transcriptions of the Model

A coordinate transcription of the function model arises whenever we choose

a spectral representation of the minimal unitary dilation U and a solution Π of

the equation

Π∗Π = WΘ
def
=

(
I Θ

Θ∗ I

)
. (3.0)
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3.1. Multiplicity of the minimal dilation. To begin with, we mention that

for a given completely nonunitary contraction T the spectral measure EU of

the minimal unitary dilation U and Lebesgue measure on the unit circle are

mutually absolutely continuous. Moreover, the local spectral multiplicity of EU

is at least max(∂, ∂∗) and at most ∂+ ∂∗, where ∂ = dim DT and ∂∗ = dim DT∗ .

This is an immediate consequence of the existence of the embeddings π and π∗

intertwining U and z on L2(E) and L2(E∗), respectively, and the completeness

property H = clos RangeΠ.

3.2. Choosing a space of the minimal dilation. Thus, the minimal unitary

dilation U is unitarily equivalent to the operator of multiplication by z on any

weighted space

L2(E∗ ⊕ E,W )
def
=
{
f :
∫

T

(
W (ζ)f(ζ), f(ζ)

)
dm(ζ) <∞

}

whenever the operator-valued weight W (ζ) : E∗ ⊕ E → E∗ ⊕ E satisfies the

spectral multiplicity condition rankW (ζ) = rankEU(ζ) for a.e. ζ ∈ T.

We could choose another coefficient space instead of E∗ ⊕ E; however, the

latter space is natural and minimal among those ensuring that dim(E∗ ⊕ E) =

∂∗ + ∂ ≥ rankEU.

3.3. Intermediate space. In order to separate the role of the weight and to

facilitate computation we assume that the embeddings π and π∗ are continuous

as mappings into the nonweighted spaces L2(E) → L2(E∗ ⊕ E) and L2(E∗) →
L2(E∗ ⊕ E), respectively. The corresponding adjoint mappings will be denoted

by the symbols π+ and π+
∗ . To start with, we also assume that the weight

W is bounded. The operator adjoint to the natural embedding L2(E∗ ⊕ E) →
L2(E∗⊕E,W ) is the operator of multiplication by W . Thus, we have π∗ = π+W

and π∗
∗ = π+

∗ W , that is, Π∗ = Π+W .

3.4. Choosing functional embeddings. So, we must choose an operator Π

satisfying (3.0). To solve this equation we rewrite it in terms of Π+:

Π∗Π = WΘ ⇐⇒





π+Wπ = I,

π+
∗ Wπ∗ = I,

π+
∗ Wπ = Θ.

(3.4.1)

Here we shall not dwell on the description of all solutions of this system, nor do

we discuss in detail the possible preferences in choosing a specific transcription;

this can be found in [Nikolski and Vasyunin 1989]. We only present some ideas

concerning what could be required from a transcription and describe three most

popular transcriptions that are used in numerous papers of many authors.

3.5. The Szőkefalvi-Nagy–Foiaş transcription. First of all, we can prefer

to work in a nonweighted L2-space. Though it is not always possible to put

W = I, in any case as H we can choose a subspace of L2(E∗ ⊕ E). This means



SPECTRAL THEORY IN TERMS OF THE FREE FUNCTION MODEL, I 249

the chosen W is a projection: W (ζ) = PRange Π(ζ), where ζ ∈ T. Moreover, we

can try to take π∗ (or π) to be the natural embedding.

Solving (3.4.1) under the assumptions

π∗ =

(
I

0

)
, π =

(
X

Y

)
, W = W 2 =

(
A B

B∗ C

)
,

we obtain
π+
∗ Wπ∗ = I =⇒ A = I,

W 2 = W =⇒ B = 0 and C2 = C,

π+
∗ Wπ = Θ =⇒ X = Θ,

π+Wπ = I =⇒ Y ∗CY = ∆2 def
= I − Θ∗Θ.

The usual choice is

Y = ∆, C(ζ) = PRange ∆(ζ).

In this way we arrive at the Szőkefalvi-Nagy–Foiaş incoming transcription of

the model:

π =

(
Θ

∆

)
, π∗ =

(
I

0

)
, W =

(
I 0

0 PRange ∆

)
, H =

(
L2(E∗)

L2(∆E)

)
, (3.5.1)

where L2(∆E)
def
= clos ∆L2(E);

G =

(
Θ

∆

)
H2(E), G∗ =

(
H2

−(E∗)

0

)
, KΘ =

(
H2(E∗)

L2(∆E)

)
	
(

Θ

∆

)
H2(E),

MΘ

(
f

g

)
=

(
zf − Θ[z(Θ∗f + ∆g)]̂(0)

zg − ∆[z(Θ∗f + ∆g)]̂(0)

)
, M∗

Θ

(
f

g

)
=

( f − f(0)

z
z̄g

)
.

Choosing π (rather than π∗) to be the natural embedding, we obtain the

Szőkefalvi-Nagy–Foiaş outgoing transcription of the model:

π =

(
0

I

)
, π∗ =

(
∆∗

Θ∗

)
, W =

(
PRange ∆∗

0

0 I

)
, H =

(
L2(∆∗E∗)

L2(E)

)
,

G =

(
0

H2(E)

)
, G∗ =

(
∆∗

Θ∗

)
H2

−(E∗), KΘ =

(
L2(∆∗E∗)

H2
−(E)

)
	
(

∆∗

Θ∗

)
H2

−(E∗),

MΘ

(
f

g

)
=

(
zf

zg − [zg]̂(0)

)
, M∗

Θ

(
f

g

)
=

(
z̄f − z̄∆∗[∆∗f + Θg]̂(0)

z̄g − z̄Θ∗[∆∗f + Θg]̂(0)

)
.

In the case of an inner characteristic function Θ (that is, ∆ = 0) the first

transcription becomes especially simple:

KΘ = H2(E∗) 	 ΘH2(E),

and the operator adjoint to the model operator is the restriction on KΘ of the

backward shift

M∗
Θf =

f − f(0)

z
.



250 NIKOLAI NIKOLSKI AND VASILY VASYUNIN

If the characteristic function is ∗-inner (that is, ∆∗ = 0), then for the second

transcription we have

KΘ = H2
−(E) 	 Θ∗H2

−(E∗), MΘg = zg − [zg]̂(0);

that is, now the model operator MΘ itself is a restriction of the backward shift.

However, if we wish to work in the more usual space consisting of analytic func-

tions rather than of anti-analytic functions, we can apply the transformation J :

(Jh)(z) = z̄h(z̄), obtaining

KΘ = H2(E) 	 Θ̃H2(E∗), where Θ̃ = JΘJ, that is, Θ̃(z) = Θ∗(z̄),

and

MΘf =
f − f(0)

z
.

In this representation, the minimal unitary dilation of MΘ is the operator of

multiplication by z̄ on H = L2(E).

3.6. The Pavlov transcription. It seems that the most natural way of choos-

ing our embeddings π and π∗ is to decide that both of them are the identity

embeddings π : L2(E) → L2(E∗ ⊕E) and π∗ : L2(E∗) → L2(E∗ ⊕E). However,

in this case we cannot avoid some complications related to the weight W . Indeed,

if we put Π = id, then Π∗ = Π+W = W , and (3.0) implies that W = WΘ,

H = L2

(
E∗ ⊕ E,

(
I Θ

Θ∗ I

))
, G =

(
0

H2(E)

)
, G∗ =

(
H2

−(E∗)

0

)
,

MΘ

(
f

g

)
=

(
zf

zg − [z(Θ∗f + g)]̂(0)

)
, M∗

Θ

(
f

g

)
=

(
z̄f − z̄[f + Θg]̂(0)

z̄g

)
.

This version of the model was proposed by B. Pavlov [1975] for the investigation

of the problems of scattering theory, where the incoming and outgoing subspaces

play an essential role. In this representation, these subspaces have the simplest

possible form. However, this must be paid for with the complexity of computa-

tions in KΘ. The vectors in H are no longer pairs of L2-functions (this is due to

possible degeneracy of the weight and the necessity of completion); moreover, it

may happen that the model space contains no vector representable as a pair of

L2-functions, except, of course, the zero vector.

3.7. The de Branges–Rovnyak transcription. If we prefer the model sub-

space to consist of analytic functions only, we can choose Π∗ = id. Then (3.0)

implies Π = WΘ, which yields W = W
[−1]
Θ (for a selfadjoint operator A, we

denote by A[−1] the operator equal to zero on KerA and to the left inverse of A

on RangeA). Thus,

H = L2
(
E∗ ⊕ E, W

[−1]
Θ

)
, G =

(
Θ

I

)
H2(E), G∗ =

(
I

Θ∗

)
H2

−(E∗).
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Now the model space consists of pairs of analytic and anti-analytic functions:

KΘ =

{(
f

g

)
: f ∈ H2(E), g ∈ H2

−(E∗), g − Θ∗f ∈ ∆L2(E)

}
.

The action of the model operator is not more involved than in other transcrip-

tions; we have

MΘ

(
f

g

)
=

(
zf − Θ[zg]̂(0)

zg − [zg]̂(0)

)
, M∗

Θ

(
f

g

)
=

( f−f(0)
z

z̄g − Θ∗z̄f(0)

)
.

However, the verification that a given pair of functions belongs to KΘ and the

computation of the norm become rather difficult in this representation.

To identify this transcription with the original de Branges–Rovnyak form

of the model we need the following description of the model space given in

[de Branges and Rovnyak 1966]:

H(Θ)
def
= (I − ΘP+Θ∗)1/2H2(E∗)

(this space endowed with the range norm),

D(Θ)
def
=

{(
f

g

)
: f ∈ H(Θ), g ∈H2(E), and znf−ΘP+z

nJg ∈H(Θ) for n≥ 0

}
,

where (Jh)(z̄)
def
= z̄h(z̄), as in Section 3.5. The norm on D(Θ) is defined by

∥∥∥∥
(
f

g

)∥∥∥∥
2

def
= lim

(
‖znf − ΘP+z

nJg‖2
H(Θ) + ‖P+z

nJg‖2
H2(E)

)
.

The original de Branges–Rovnyak model operator is

BR

(
f

g

)
def
=

( f−f(0)
z

zg − Θ(z̄)∗f(0)

)
, with

(
f

g

)
∈ D(Θ).

3.8. Proposition.

KΘ = JD(Θ) and JM∗
ΘJ = BR,

where

J =

(
I 0

0 J

)
: H(Θ) ⊕ L2(E) → H(Θ) ⊕ L2(E).

The proof can be found in [Nikolski and Vasyunin 1989].
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Chapter 4. The Commutant Lifting Theorem and Calculi

Our first goal in this chapter is to give a simple proof of the Sz.-Nagy–Foiaş

commutant lifting theorem (CLT) and to describe the parametrizations of the

lifting operators in terms of the coordinate-free functional model. The second

theme is the classical H∞-function calculus for a completely nonunitary contrac-

tion, along with refinements pertaining to locally defined versions of the calculus.

We derive the CLT from the following theorem of T. Ando.

4.1. Theorem. Any two commuting contractions have commuting unitary di-

lations.

The idea for proving the commutant lifting theorem via the Ando theorem goes

back to S. Parrott [1970]. Here we present it with all details, including a new

simple proof of the Ando theorem. This simplicity makes the approach quite

attractive.

We start by introducing the necessary terminology and proving an “abstract”

version of the lifting theorem.

4.2. Definition. Let T be a contraction on H; suppose that X : H → H

belongs to the commutant of T :

X ∈ {T}′ def
= {A : AT = TA}.

Next, let H = G∗ ⊕ H ⊕ G be the space of the minimal unitary dilation U of

T . An operator Y acting on H is called a lifting of X if Y commutes with U,

Y G ⊂ G, Y ∗G∗ ⊂ G∗, and X = PHY |H.

In other words, that Y is a lifting ofX means that Y ∈ {U}′ and Y is a dilation

of X, that is, that the operator Y has the following matrix representation with

respect to the decomposition H = G∗ ⊕H ⊕G:

Y =




∗ 0 0

∗ X 0

∗ ∗ ∗






G∗

H

G


 −→



G∗

H

G


 . (4.2.1)

4.3. Commutant Lifting Theorem. Let T be a contraction on H. Then an

operator X on H is a contraction commuting with T if and only if there exists

a contractive lifting Y of X.

4.4. Parametrization Theorem. Let T be a contraction on a Hilbert space

H. Then Y is a lifting of an operator commuting with T if and only if there

exist two bounded analytic functions A ∈ H∞(E→E), A∗ ∈ H∞(E∗→E∗) that

are intertwined by the characteristic function of T ,

ΘA = A∗Θ, (4.4.1)

and a bounded function B ∈ L∞(∆∗E∗→∆E) such that

Y = π∗A∗π
∗
∗ + τ∆Aπ∗ + τBτ∗∗ . (4.4.2)
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Here π, π∗ and τ, τ∗ are the functional embeddings defined in 1.6 and 1.19, re-

spectively , and ∆ = (I − Θ∗Θ)1/2. Furthermore, if X = PHY |H, then

{Y + πΓπ∗
∗ : Γ ∈ H∞(E∗→E)}

is the set of all liftings of X, and

‖X‖H = inf{‖Y + πΓπ∗
∗‖H : Γ ∈ H∞(E∗→E)}

= distH

(
Y, πH∞(E∗→E)π∗

∗

)
. (4.4.3)

The infimum is attained at an H∞-function Γ.

This parametrization differs from the original one given by B. Sz.-Nagy and

C. Foiaş [1973] in one point: here we have one free parameter B instead of two

matrix entries subject to a certain relation in the Sz.-Nagy–Foiaş parametriza-

tion.

We would like to underline here that (4.4.2) describes liftings of operators

commuting with T , rather than all operators commuting with U whose compres-

sions to H commute with T . It is very essential that liftings are not arbitrary

operators commuting with U, but those respecting the triangular structure of U

given by (1.2.1), that is, the operators described in (4.4.2) leave invariant the

subspaces G and H ⊕G.

Now we begin to realize the program outlined above by proving the Ando the-

orem. As already mentioned, the theorem on the existence of a unitary dilation

can be proved in two steps: first, we construct a co-isometric extension of a given

contraction, and second, we apply the same step to the adjoint of this extension

(we recall that an operator A : H → H is called an extension of B : H → H if

H ⊂ H is invariant subspace of A and B = A|H).

We use this approach to prove the Ando theorem (Section 4.6) and the com-

mutant lifting theorem (Section 4.8). The first step is as follows.

4.5. Lemma. Any two commuting contractions have commuting co-isometric

extensions.

Proof. Let T1, T2 be two commuting contractions on a Hilbert space H. It

is always possible to find co-isometric extensions V1, V2 of T1, T2, respectively,

acting on one and the same space H. Indeed, if V1 acts on a space H ⊕H1 and

V2 on H ⊕H2, we can take H = H ⊕H1 ⊕H2, defining V1|H2 and V2|H1 as the

identity operators.

Furthermore, we may assume that the operators V1V2 and V2V1 are unitarily

equivalent. Indeed, V1V2 and V2V1 are two co-isometric extensions of the operator

T1T2 = T2T1. Let V0 be a minimal co-isometric extension of T1T2 (minimality

means that the space where V0 acts is the smallest subspace reducing V0 and

containing H). Then the operators V1V2 and V2V1 are unitarily equivalent to

certain orthogonal sums:

V1V2 w V0 ⊕ V12, V2V1 w V0 ⊕ V21,
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where V12, V21 are co-isometries acting on the corresponding spacesH12 andH21.

Now, we extend the operators V1 and V2 from H to H⊕
∑∞

1 ⊕(H12⊕H21), one of

them by the identity operator on
∑∞

1 ⊕(H12 ⊕H21), and another by the infinite

orthogonal sum of the operators V12 ⊕ V21. The operators obtained are also co-

isometric extensions of Ti, but their products are unitarily equivalent, namely,

they are equivalent to V0 plus the infinite orthogonal sum of the operators V12 ⊕
V21.

Thus, we assume that V1V2 and V2V1 are unitarily equivalent, that is, there

exists a unitary operator U such that

V1V2U = UV2V1.

Put W1 = V1U
∗, W2 = UV2. Then W1 and W2 commute. Observing that U

intertwines the minimal parts of V1V2 and V2V1 and that a unitary operator

intertwining any two minimal co-isometric extensions of a contraction on H can

be chosen as the identity on H, we conclude that the restriction U |H is the

identity operator, whence Wi|H = Vi|H = Ti, that is, the Wi are the required

co-isometric extensions of Ti, for i = 1, 2. ˜

Now the Ando theorem follows easily.

4.6. Proof of Theorem 4.1. If the operators Ti of Lemma 4.5 are isometries,

then the extensions Vi can be taken unitary. (It is easily seen that the minimal

co-isometric extension of an isometry is unitary.) Then the final commuting

isometries Wi will also be unitary. So the theorem is proved for co-isometries.

As for arbitrary contractions, we can apply the result obtained above to the

commuting isometries W ∗
1 , W ∗

2 . Their commuting unitary extensions are the

desired dilations of T ∗
1 , T ∗

2 . ˜

We start proving Theorem 4.3 with the following lemma.

4.7. Lemma. Let T and X be commuting contractions on H, and let V be

the minimal co-isometric extension of T acting on H+. Then there exists a

contraction Y+ on H+ commuting with V and extending the operator X.

Proof. Let VT and VX be arbitrary commuting co-isometric extensions of T

and X, respectively. (Such extensions exist by Lemma 4.5). Putting H+ =

span{V ∗n
T H : n ≥ 0}, we see that VT H+ ⊂ H+ and V = VT |H+ is a minimal

co-isometric extension of T . Let Y+ = PH+
VX |H+. Since H+ is a reducing

subspace for VT , we have

V Y+ = VTPH+
VX |H+ = PH+

VTVX |H+ = PH+
VXVT |H+ = Y+V

and, moreover,

Y+|H = PH+
VX |H = PH+

X = X. ˜
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4.8. Proof of Theorem 4.3. By Lemma 4.7, given X ∈ {T}′, we can find

a contractive extension Y+ of X∗, commuting with the minimal co-isometric

extension V of T ∗. We recall that V = PH⊕GU∗|H ⊕ G (see Remark 1.5).

Applying Lemma 4.7 once again, now to Y ∗
+ and V ∗, we get the required dilation

Y . Indeed, since the minimal unitary dilation U of T is the minimal co-isometric

extension of V ∗, we have Y U = UY . Furthermore, being an extension of X∗,

the operator Y+ has the matrix structure

Y+ =

( ∗ 0

∗ X∗

)
:

(
G

H

)
−→

(
G

H

)
,

or

Y ∗
+ =

(
X 0

∗ ∗

)
:

(
H

G

)
−→

(
H

G

)
.

The operator Y , being an extension of Y ∗
+, is of the form

Y =




∗ 0 0

∗ X 0

∗ ∗ ∗


 :



G∗

H

G


 −→



G∗

H

G


 ,

which means, in accordance with Definition 4.2, that Y is a lifting of X.

The converse is obvious: if Y is a contractive lifting of X = PHY |H, then X

is a contraction and

XT = PHY T = PHY PHU|H
= PHY (I − PG − PG∗

)U|H (since UH ⊂ H ⊕G and Y G ⊂ G)

= PHY U|H = PHUY |H
= PHU(PH + PG + PG∗

)Y |H (since Y H ⊂ H ⊕G and UG ⊂ G)

= PHUPHY |H = TX. ˜

Now we employ the function model to give a functional parametrization of

the commutant.

4.9. Proof of Theorem 4.4. Since the functional embeddings π, π∗, τ ,

and τ∗ all intertwine the dilation U and the operator of multiplication by z,

expression (4.4.2) provides an operator commuting with U for every triple of

operator-valued functions (A,A∗, B). Furthermore, (4.4.2) implies that π∗
∗Y =

A∗π
∗
∗ ; that is, Y ∗G∗ = Y ∗π∗H

2
−(E∗) = π∗A

∗
∗H

2
−(E∗) ⊂ π∗H

2
−(E∗) = G∗,

and Y π = π∗A∗Θ + τ∆A. By (4.4.1), the latter relation can be rewritten as

Y π = (π∗Θ + τ∆)A = πA. Then, obviously, Y G = Y πH2(E) = πAH2(E) ⊂
πH2(E) = G.

So, we have proved that any operator Y of the form (4.4.2) is a lifting of an

operator belonging to the commutant of T . Now we prove the converse.

Let Y be a lifting of an operator belonging to the commutant of T ; this

means that Y U = UY , Y G ⊂ G, and Y ∗G∗ ⊂ G∗. First, we use the in-

clusion Y G ⊂ G, which we rewrite in the form Y πH2(E) ⊂ πH2(E). The
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relations π∗π = I, ππ∗
∗ + τ∗τ

∗
∗ = I, and τ∗∗π = 0 show that the latter inclusion

is equivalent to the inclusion π∗Y πH2(E) ⊂ H2(E) together with the identity

τ∗∗Y π|H2(E) = 0. Since Y commutes with U, the operators π∗Y π and τ∗∗Y π

commute with multiplication by z; that is, they are operators of multiplication by

certain operator-valued functions, which we denote by the same symbols. More-

over, the inclusion π∗Y πH2(E) ⊂ H2(E) means that A
def
= π∗Y π ∈ H∞(E→E),

and the identity τ ∗∗Y π|H2(E) = 0 shows that τ ∗∗Y π = 0 everywhere. This yields

Y π = (ππ∗ +τ∗τ
∗
∗ )Y π = ππ∗Y π = πA; that is, we have the intertwining relation

πA = Y π. (4.9.1)

Similarly, introducing A∗
def
= π∗

∗Y π∗, we deduce from the inclusion Y ∗G∗ ⊂ G∗

that A∗ ∈ H∞(E∗→E∗) and that

π∗
∗Y = A∗π

∗
∗ . (4.9.2)

Multiplying (4.9.1) by π∗
∗ from the left and (4.9.2) by π from the right, we arrive

at (4.4.1). Furthermore,

Y = (π∗π
∗
∗ + ττ∗)Y = π∗A∗π

∗
∗ + ττ∗Y (ππ∗ + τ∗τ

∗
∗ )

= π∗A∗π
∗
∗ + ττ∗πAπ∗ + τ(τ∗Y τ∗)τ

∗
∗ = π∗A∗π

∗
∗ + τ∆Aπ∗ + τBτ∗∗ , (4.9.3)

where we have put B
def
= τ∗Y τ∗. Since B intertwines the operators of mul-

tiplication by z on the spaces L2(∆∗E∗) and L2(∆E), B is the operator of

multiplication by a function belonging to L∞(∆∗E∗→∆E). For convenience, B

may be regarded as a function in L∞(E∗→E) equal to zero on Ker∆∗.

To complete the proof we must describe all liftings of a given operator and

check the formula for the norm. First, we note that if Y is a lifting of X, then,

clearly, ‖X‖ ≤ ‖Y ‖. By Theorem 4.3, there exists a contractive lifting of the

operator X‖X‖−1. Multiplying it by ‖X‖, we get a lifting Y of X with norm at

most ‖X‖. Therefore,

‖X‖ = inf{‖Y ‖ : Y is a lifting of X}

and to prove formula (4.4.3) it suffices to check that the set of all liftings of X

is of the form

{Y + πΓπ∗
∗ : Γ ∈ H∞(E∗→E)},

where Y is an arbitrary lifting. In other words, we need to check that the set

{πΓπ∗
∗ : Γ ∈ H∞(E∗→E)}

is merely the set of liftings of the zero operator. The latter assertion is proved

in Lemma 4.10 below.

4.10. Lemma. The following assertions are equivalent .

(1) Y is a lifting of the zero operator .

(2) Y = πΓπ∗
∗ for some Γ, Γ ∈ H∞(E∗→E).
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(3) For some function Γ ∈ H∞(E∗ → E), the operator Y is representable as

in (4.4.2), with

A = ΓΘ, A∗ = ΘΓ, B = ∆Γ∆∗. (4.10.1)

Here π and π∗ are the functional embeddings defined in Section 1.6, ∆ = (I −
Θ∗Θ)1/2, and ∆∗ = (I − ΘΘ∗)1/2.

Proof. (1) =⇒ (2). If PHY |H = 0, then Y (G ⊕H) ⊂ G. Since G = πH2(E)

and G⊕H = H	G∗ = π∗H
2(E∗)⊕τL2(∆E), we can rewrite the latter inclusion

in the form

Y (π∗H
2(E∗) ⊕ τL2(∆E)) ⊂ πH2(E). (4.10.2)

In particular,

Y π∗H
2(E∗) ⊂ πH2(E),

which implies that Γ
def
= π∗Y π∗ ∈ H∞(E∗ → E). Furthermore, applying the

operators U∗n to the both sides of (4.10.2) and then letting n tend to infinity,

we get

YH ⊂ πL2(E);

that is, τ∗∗Y = 0. Similarly, applying the operators Un to the same inclusion and

then letting n tend to infinity, we get

Y τL2(∆E) = {0};

that is, Y τ = 0. Therefore,

Y = (ππ∗ + τ∗τ
∗
∗ )Y (π∗π

∗
∗ + ττ∗) = π(π∗Y π∗)π

∗
∗ = πΓπ∗

∗ .

(2) ⇐⇒ (3). Since π = π∗Θ + τ∆ and π∗ = πΘ∗ + τ∗∆∗, we have

πΓπ∗
∗ = (π∗Θ + τ∆)Γπ∗

∗ = π∗ΘΓπ∗ + τ∆Γ(Θπ∗ + ∆∗τ
∗
∗ )

= π∗(ΘΓ)π∗
∗ + τ∆(ΓΘ)π∗ + τ(∆Γ∆∗)τ

∗
∗ ;

that is, the identity Y = πΓπ∗
∗ is equivalent to (4.4.2) with A = ΓΘ, A∗ = ΘΓ,

B = ∆Γ∆∗.

(2) + (3) =⇒ (1). By the already proved part of Theorem 4.4 the operator Y

defined by formula (4.4.2) is a lifting of the operator X = PHY |H. To compute

X, take a vector h ∈ H. Then π∗
∗h ∈ H2(E∗), whence

Xh = PHY h = PHπΓπ∗
∗h ∈ PHπH

2(E) = {0},

so that X = 0. ˜
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4.11. Another expression for a lifting. The representation (4.4.2) can be

rewritten in the form

Y = πAπ∗ + π∗A∗∆∗τ
∗
∗ + τBτ∗∗ . (4.11.1)

The existence of the two representations (4.4.2) and (4.11.1) of the same operator

is founded on the duality between the operators and their adjoints. We can prove

this formula in the same way as (4.9.3):

Y = Y (ππ∗ + τ∗τ
∗
∗ ) = πAπ∗ + (π∗π

∗
∗ + ττ∗)Y τ∗τ

∗
∗

= πAπ∗ + π∗A∗π
∗
∗τ∗τ

∗
∗ + τ(τ∗Y τ∗)τ

∗
∗ = πAπ∗ + π∗A∗∆∗τ

∗
∗ + τBτ∗∗ .

Moreover, we note that formulas (4.4.2) and (4.11.1) represent one and the same

operator if and only if relation (4.4.1) is fulfilled. Indeed, the difference of (4.4.2)

and (4.11.1) is equal to

(π∗A∗π
∗
∗ + τ∆Aπ∗)− (πAπ∗ +π∗A∗∆∗τ

∗
∗ ) = π∗A∗(π

∗
∗ −∆∗τ

∗
∗ )− (π− τ∆)Aπ∗

= π∗(A∗Θ−ΘA)π∗.

4.12. More function parameters. We introduce two more functions related

to a lifting operator:

C
def
= τ∗Y τ ∈ L∞(∆E→∆E)

C∗
def
= τ∗∗Y τ∗ ∈ L∞(∆∗E→∆∗E).

These functions satisfy the relations

C = ∆A∆ −BΘ, (4.12.1)

C∗ = ∆∗A∗∆∗ − ΘB, (4.12.2)

Y τ = τC, (4.12.3)

τ∗∗Y = C∗τ
∗
∗ . (4.12.4)

Indeed, multiplying (4.4.2) by τ from the right, we obtain

Y τ = (π∗A∗π
∗
∗ + τ∆Aπ∗ + τBτ∗∗ )τ = τ(∆A∆ −BΘ),

which yields (4.12.1) and (4.12.3). Similarly, multiplying (4.11.1) by τ ∗∗ from the

left, we get (4.12.2) and (4.12.4). ˜

It should be noted that the parameters C and C∗ of a lifting Y of an operator

X are uniquely determined by X. Indeed, if X = 0, then Y = πΓπ∗
∗ , whence

C = τ∗Y τ = 0, C∗ = τ∗∗Y τ∗ = 0.

4.13. Multiplication Theorem. Let X1 and X2 be operators commuting with

T . For i = 1, 2, let Yi be the lifting of Xi with parameters Ai, A∗i, Bi, Ci, C∗i.
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Then the operator Y
def
= Y2Y1 is a lifting of the product X2X1, and the parameters

of Y are

A = A2A1, A∗ = A∗2A∗1, (4.13.1)

B = ∆A2Θ
∗A∗1∆∗ +B2∆∗A∗1∆∗ + ∆A2∆B1 −B2ΘB1, (4.13.2)

C = C2C1, C∗ = C∗2C∗1. (4.13.3)

Proof. Relation (4.9.1) yields

Y π = Y2Y1π = Y2πA1 = πA2A1,

so that A = A2A1. Similarly, A∗ = A∗2A∗1 is a consequence of (4.9.2). In

the same way, (4.12.3) and (4.12.4) imply (4.13.3). To check (4.13.2) we com-

bine (4.9.1) and (4.9.2) with (4.12.1) and (4.12.3):

B = τ∗Y τ∗ = τ∗Y2(π∗π
∗
∗ + ττ∗)Y1τ∗ = τ∗Y2(π∗A∗1π

∗
∗τ∗ + τB1)

= τ∗Y2(πΘ∗ + τ∗∆∗)A∗1∆∗ + τ∗τC2B1

= (∆A2Θ
∗ +B2∆∗)A∗1∆∗ + (∆A2∆ −B2Θ)B1. ˜

4.14. Intertwining two contractions. From the very beginning we could

have considered the liftings of the operators intertwining two arbitrary contrac-

tions T1 : H1 → H1 and T2 : H2 → H2 instead of those of the operators

intertwining a contraction with itself. More precisely, we mean the operators

X21 : H1 → H2 satisfying

T2X21 = X21T1. (4.14.1)

An operator Y21 : H1 → H2 is said to be a lifting of X21 if X21 = PH2
Y21|H1,

Y21G1 ⊂ G2, and Y ∗
21G∗2 ⊂ G∗1. For such a lifting problem all results would

be the same. The only difference is that in this more general situation we have

different spaces and different function models from the right and from the left.

For example, instead of (4.4.2), for a lifting Y21 of the intertwining operator X21

we have the following formula

Y21 = π2∗A21∗π
∗
1∗ + τ2∆2A21π

∗
1 + τ2B21τ

∗
1∗ (4.14.2)

acting between the corresponding spaces H1 and H2 of the minimal unitary

dilations of T1 and T2.

Moreover, such a generalization is an immediate consequence of the lifting

theorem for the commutant. Indeed, having the intertwining relation (4.14.1),

we can introduce on the space H = H1 ⊕H2 the commuting operators

T =

(
T1 0

0 T2

)
:

(
H1

H2

)
→
(
H1

H2

)
,

X =

(
0 0

X21 0

)
:

(
H1

H2

)
→
(
H1

H2

)
.
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Let Y be a lifting of X. Then the operator Y21
def
= PH2

Y |H1 is a lifting of X21.

Indeed,

Y21G1 = PH2
Y G1 ⊂ PH2

Y (G1 ⊕G2) ⊂ PH2
(G1 ⊕G2) = G2,

and, similarly,

Y ∗
21G∗2 = PH1

Y ∗G∗2 ⊂ PH1
Y ∗(G∗1 ⊕G∗2) ⊂ PH1

(G∗1 ⊕G∗2) = G∗1.

The relations X21 = PH2
X|H1 = PH2

Y |H1 = PH2
Y21|H1 are clear.

4.15. The special case of an inner characteristic function. All formu-

las become simpler under the assumption that Θ = ΘT is an inner or ∗-inner

function. We recall that this is equivalent to saying that the imbedding π∗ (or,

respectively, π) is onto. Indeed, Θ is inner means ∆ = 0, which is equivalent to

saying that τ = 0, and the latter is possible (see Section 1.19) if and only if π∗

is a co-isometry, that is, unitary. Similarly,

Θ is ∗-inner ⇐⇒ ∆∗ = 0 ⇐⇒ τ∗ = 0 ⇐⇒ ππ∗ = I ⇐⇒ π is unitary.

In this section we assume that π∗ is unitary, that is, that Θ is an inner function.

In this case, formula (4.4.2) for a lifting becomes

Y = π∗A∗π
∗
∗ ,

where the sole free parameter A∗ runs over all functions in H∞(E∗→E∗) satis-

fying A
def
= Θ∗A∗Θ ∈ H∞(E→E).

The distance formula (4.4.3) becomes

‖X‖ = inf{‖Y + πΓπ∗
∗‖ : Γ ∈ H∞(E∗→E)}

= inf{‖A∗ + ΘΓ‖ : Γ ∈ H∞(E∗→E)}
= dist

(
A∗,ΘH

∞(E∗→E)
)
.

4.16. Lifting for the Sz.-Nagy–Foiaş model. Let

H = KΘ =

(
H2(E∗)

L2(∆E)

)
	
(

Θ

∆

)
H2(E)

be the Sz.-Nagy–Foiaş transcription of the model, with

T = MΘ = PΘz|KΘ.

In this model, the liftings take the form of the operator of multiplication by the

matrix function

Y =

(
A∗ 0

∆AΘ∗ +B∆∗ C

)
,

where C is defined by (4.12.1). Indeed, in the Sz.-Nagy–Foiaş transcription the

functional embeddings are

π∗ =

(
I

0

)
, π =

(
Θ

∆

)
, τ =

(
0

I

)
, τ∗ =

(
∆∗

−Θ∗

)
.
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Therefore, (4.4.2) turns into

Y =

(
I

0

)
A∗(I, 0) +

(
0

I

)
∆A(Θ∗,∆) +

(
0

I

)
B(∆∗,−Θ)

=

(
A∗ 0

∆AΘ∗ +B∆∗ ∆A∆ −BΘ

)
,

as claimed (see (4.12.1)).

In the case of an inner characteristic function we have H = L2(E∗), π∗ = I,

and

H = KΘ = H2(E∗) 	 ΘH2(E).

Then, the lifting Y is simply the operator of multiplication by A∗, and we get

X = PΘY |KΘ = (I − ΘP+Θ∗)A∗|KΘ.

4.17. The special case of a scalar characteristic function. Now we

consider a scalar characteristic function Θ; that is, we assume that dimE =

dimE∗ = 1; we identify E = E∗ = C. We put a = A = A∗. In this case, as a

second parameter it is convenient to take the right bottom entry c = ∆2a−ΘB

satisfying the condition a − c ∈ ΘL∞(∆), where under the symbol L∞(∆) we

mean the space of all essentially bounded functions with respect to the measure

∆ dm. Then

Y =

(
a 0

∆(a− c)Θ−1 c

)
, (4.17.1)

where a ∈ H∞ and c ∈ a + ΘL∞(∆). Now the formula for the norm can be

rewritten as

‖X‖ = ‖PΘY |KΘ‖ = inf

{∥∥∥∥
(

a+ ΘΓ 0

∆(a− c)Θ−1 + ∆Γ c

)∥∥∥∥
∞

: Γ ∈ H∞

}
.

This expression can be estimated as follows:

max
{

dist
(
a−∆2c

Θ
,H∞

)
, ‖c‖L∞(∆)

}
≤‖X‖≤dist

(
a−∆2c

Θ
,H∞

)
+2‖c‖L∞(∆).

For functions of the model operator, that is, in the case where c = a, the estimate

above takes the form

max{dist(aΘ,H∞), ‖a‖L∞(∆)} ≤ ‖a(MΘ)‖ ≤ dist(aΘ,H∞) + 2‖a‖L∞(∆).

For details, refer to [Nikolski and Khrushchev 1987].
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4.18. The special case of a scalar inner characteristic function. For

a scalar inner function ΘT we have |ΘT | = 1 and ∆ = 0 a.e. on T, and the

Sz.-Nagy–Foiaş model reduces to

KΘ = H2 	 ΘH2,

MΘf = PΘzf for f ∈ KΘ.

The commutant lifting theorem for this case was discovered by D. Sarason

[1967] and served as a model for proving the general result [Sz.-Nagy and Foiaş

1968] presented in this chapter. The Sarason theorem says that whatever is

X ∈ {MΘ}′ there exists a function Y = a ∈ H∞ such that

X = PΘa|KΘ = a(MΘ), ‖X‖ = ‖a‖∞.

In general, for ϕ ∈ H∞ we have

‖ϕ(MΘ)‖ = distL∞(ϕΘ̄,H∞) ≤ ‖ϕ‖∞.

One can observe that this scalar version of the CLT says nothing but that the

commutant {MΘ}′ is reduced to functions of the model operator defined by the

H∞-calculus.

Now, we enter in some more details of the H∞-calculus.

4.19. H∞-calculus for completely nonunitary contractions. Roughly

speaking, a calculus for an operator T : H → H is an algebra homomorphism

extending the standard polynomial calculus p 7→ p(T ). More precisely, let A be a

topological function algebra containing the complex polynomials; an A-calculus

for a Hilbert space operator T : H → H is a continuous algebra homomorphism

f 7→ f(T ) ∈ L(H→H), where f ∈ A, such that zn(T ) = Tn for n ≥ 0.

The existence of unitary dilations for completely nonunitary contractions gives

an easy possibility to define a rich functional calculus. Indeed, let U be the

minimal unitary dilation of a completely nonunitary contraction T : H → H.

For any f ∈ L∞, we put

f(T ) = PHf(U)|H, (4.19.1)

where f(U) is well-defined because of absolute continuity of U. Observe that

zn(T ) = Tn for n ≥ 0, and that

‖f(T )‖ ≤ ‖f‖∞ (4.19.2)

for every f . We note that the mapping f 7→ f(U) is a calculus, but f 7→ f(T )

is not. However, the restriction of this mapping to H∞ is a calculus, called the

H∞- or Sz.-Nagy–Foiaş calculus for the completely nonunitary contraction T .

One of the easiest ways to check the multiplicativity in (4.19.1) for H∞-

functions is to observe that, due to the von Neumann spectral theorem for U

(see Section 0.7), we have

(f(T )x, y) = (f(U)x, y) =

∫

T

f(ζ)
(
x(ζ), y(ζ)

)
dm(ζ)
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for all x, y ∈ H and f ∈ L∞, where (x( · ), y( · )) ∈ L1. Therefore, the mapping

f 7→ f(T ) is continuous with respect to the w∗-topology of L∞ and the weak

operator topology of L(H→H). Clearly, having (pq)(T ) = p(T )q(T ) for all com-

plex polynomials p, q, we get first (pf)(T ) = p(T )f(T ) for f ∈ H∞ (for example,

using the Fejér sums approximations for f), whence (gf)(T ) = g(T )f(T ) for all

pairs f, g ∈ H∞.

It can be proved that for a function f different from the zero function the

equality f(MΘ) = 0 occurs if and only if Θ is two-sided inner and f ·I ∈ ΘH∞(E).

Further, from the asserted property of w∗-continuity, it is clear that the H∞

calculus is compatible with any other calculus, continuous in a stronger sense

(for instance, with the classical Riesz–Dunford holomorphic calculus). However,

for many purposes (e. g., for applications to free interpolation, or for similarity

problems; see Part II) we need calculi for functions defined locally, on a kind

of neighborhood of the spectrum (ideally, on the spectrum itself, as for normal

operators) and not on the entire unit disc D. Clearly, such a local calculus

requires a stronger upper estimate for the norms ‖f(T )‖ than is given by (4.19.2).

We give an example of such an estimate in the next section.

4.20. Level curves estimate. In this section, following [Nikolski and Khru-

shchev 1987], we obtain an estimate of ‖f(T )‖ for the case of a scalar inner

characteristic function Θ = ΘT . This estimate depends on the values of f on

the level sets L(Θ, ε) of Θ. The latter are defined as follows:

L(Θ, ε)
def
= {z ∈ D : |Θ(z)| < ε} for 0 < ε < 1.

It is well known (and will be proved in Chapter 5) that the spectrum of the

operator under consideration, T ' MΘ, coincides with “zeros of Θ” in the sense

that

σ(MΘ) = {ζ ∈ D̄ : lim
z→ζ
z∈D

|Θ(z)| = 0}.

Therefore, it is natural to consider the level sets L(Θ, ε) as “fine neighborhoods”

of σ(MΘ) (it is clear that whatever is a neighborhood V of the spectrum, one

has L(Θ, ε) ⊂ V for ε small enough). The following theorem [Nikolski and Khru-

shchev 1987] gives us an estimate of distL∞(fΘ̄,H∞) in terms of the smallness

of f on the level curves ∂L(Θ, ε).

4.21. Theorem. Let Θ be a scalar inner function and 0 < ε < 1. There exists

a constant A = A(ε) such that

‖f(MΘ)‖ ≤ A · sup{|f(z)| : z ∈ L(Θ, ε)}, f ∈ H∞.

Proof. The proof is based on the existence of so-called Carleson contours

[Carleson 1962; Garnett 1981, Chapter 8, section 5]. There exists a constant

p ≥ 1 such that for every ε ∈ (0, 1) and for every H∞-function Θ, one can find

a contour γε splitting the disc D into two parts: one, call it Ω, is contained in

D \ L(Θ, εp), and the other (the complement of closΩ) is contained in L(Θ, ε),
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and such that the arclength on γε is a Carleson measure with embedding norm

C, H1|γε ⊂ L1(γε, |dz|), depending only on ε. (Recall, that a measure µ on D is

called a Carleson measure if the restriction on suppµ is a continuous embedding

of H1 in L2(µ).)

Let Ωr = Ω ∩ {|z| < ε}; the boundary ∂Ωr consists of a part γε,r of γε and a

part Γr = Ωr ∩ Tr of the circle Tr = rT.

Let g be a polynomial. Then
∫

γε,r

fg

Θ
dz = −

∫

Γr

fg

Θ
dz,

and hence
∣∣∣ 1

2πi

∫

Γr

fg

Θ
dz

∣∣∣ ≤ ε−p sup
γε,r

|f | · 1

2π

∫

γε,r

|g| |dz| ≤ ε−pC‖g‖1 · sup
L(Θ,ε)

|f |.

Let Er be the radial projection of the set Γr on the circle T. Then

1

2πi

∫

Γr

fg

Θ
dz =

r

2πi

∫

T

f(rζ)g(rζ)

Θ
(rζ)χEr

(ζ) dζ.

It is clear that this integral tends to
∫

T

f

Θ
gz dm

as r → 1. (Indeed, |Θ(rζ)| ≥ εp for ζ ∈ Er and χEr
→ 1 a.e. on T, because

limr→1 |Θ(rζ)| = 1 for almost all ζ ∈ T.) But, it is clear from duality arguments

that

distL∞(fΘ̄,H∞) = sup
{∣∣∣
∫

T

fΘ̄gz dm

∣∣∣ : ‖g‖1 ≤ 1
}
,

and we get the required inequality with A = ε−pC. ˜

4.22. Local functional calculi. The estimates we have obtained actually

allow us to extend considerably the functional calculus (4.19.1) from the algebra

H∞ to the algebra H∞
(
L(Θ, ε)

)
of bounded holomorphic functions on a level set

L(Θ, ε), ε > 0. This is done in the following theorem [Nikolski and Khrushchev

1987].

4.23. Theorem. Let Θ be a scalar inner function and 0 < ε < 1. For every f ∈
H∞

(
L(Θ, ε)

)
there exists a function ϕ ∈ H∞ such that f − ϕ ∈ ΘH∞

(
L(Θ, ε)

)

and ‖ϕ‖∞ ≤ A‖f‖H∞(L(Θ,ε)) (with the same constant A as in Theorem 4.21).

The mappping

f 7→ ϕ(MΘ)
def
= [f ](MΘ) for f ∈ H∞

(
L(Θ, ε)

)
,

is a well-defined calculus. Its kernel consists (precisely) of the functions of

the form Θh, h ∈ H∞
(
L(Θ, ε)

)
. For the functions in H∞ this calculus co-

incides with the Sz .-Nagy–Foiaş one, [f ](MΘ) = f(MΘ), and , considered on⋃
ε>0H

∞
(
L(Θ, ε)

)
, it contains also the Riesz–Dunford calculus.
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For the proof, we need the following remarkable lemma by L. Carleson [1962].

4.24. Lemma. Let B be a finite Blaschke product with simple zeros λ1, . . . , λn,

and let f be a function from H∞
(
L(B, ε)

)
, where ε > 0. Then there exists a

function ϕ ∈ H∞ such that ϕ(λi) = f(λi) for 1 ≤ i ≤ n and such that ‖ϕ‖∞ ≤
Cε−p‖f‖H∞(L(B,ε)), where C is an absolute constant and p is the exponent in

the definition of Carleson contours.

Sketch of proof. (See [Carleson 1962] for the full version.) The general form

of H∞-functions ϕ interpolating f(λi) is given by ϕ = ϕ0 + Bh, with h ∈ H∞,

so that

inf{‖ϕ‖∞ : ϕ(λi) = f(λi) for 1 ≤ i ≤ n}

= sup
{∣∣∣ 1

2πi

∫

T

B̄ϕ0g dz

∣∣∣ : g ∈ H1 with ‖g‖1 ≤ 1
}

= sup
{∣∣∣ 1

2πi

∫

γε

ϕ0g

B
dz

∣∣∣ : g ∈ H1 with ‖g‖1 ≤ 1
}

= sup
{∣∣∣ 1

2πi

∫

γε

fg

B
dz

∣∣∣ : g ∈ H1 with ‖g‖1 ≤ 1
}

≤ Cε−p‖f‖H∞(L(B,ε)). ˜

4.25. Proof of Theorem 4.23. The existence of the requsted function ϕ can be

derived from Lemma 4.24 in a standard way by using the fact that the constants

C and p are independent of the function B. First, Θ is assumed to be a Blaschke

product B with simple zeros. We approximate B by its partial products Bn (so

that, |B| ≤ |Bn| in D). Then we pass to the limit in the equalities f−ϕn = Bnhn

(which follow from Lemma 4.24) using the compactness principle.

Next, an arbitrary inner function Θ can be uniformly approximated by Blasch-

ke products with simple zeros—for instance, by its “Frostman shifts” B =

(Θ−λn)(1−λ̄nΘ)−1, where the λn converge to zero and {z : Θ(z) = λn, Θ′(z) =

0} = ? for each n; see, for example, [Nikolski 1986, Chapter 2, Section 5].

Repeated application of the compactness principle proves the existence of the

requested ϕ.

Moreover, if ψ ∈ H∞ is another function corresponding to the same f , then

(ϕ − ψ)/Θ is analytic and bounded on L(Θ, ε) by the definition of ϕ and ψ,

and on D \ L(Θ, ε) by the definition of L(Θ, ε). Hence, (ϕ − ψ)/Θ ∈ H∞ and

ϕ(MΘ) = ψ(MΘ). Thus, the mapping f 7→ ϕ(MΘ) = [f ](MΘ) is well-defined

and bounded.

The multiplicativity of f 7→ [f ](MΘ) and other properties are obvious.

4.26. Explicit formula. In fact, one can prove [Nikolski and Khrushchev 1987]

the following explicit formula for the local calculus of Theorem 4.23:

[f ](MΘ)x =
Θ

2πi

∫

γε

f(ζ)x(ζ)

Θ(ζ)(ζ − z)
dζ for x ∈ KΘ,
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where γε is the same contour as in the proof of Theorem 4.21.

The spectral mapping theorem for the H∞-calculus and for our local calculi

will be proved in Chapter 5.

Chapter 5. Spectrum and Resolvent

Now we use the description of the commutant to obtain a formula for the

resolvent of a given contraction in its model representation. The regular points

of a contraction T will be characterized by the existence and some analytic

continuation properties of the inverse Θ(z)−1 of the characteristic function Θ =

ΘT .

The notation is the same as in the previous chapters, namely, T : H → H is

a completely nonunitary contraction, U : H → H its minimal unitary dilation,

π and π∗ the corresponding functional embeddings, Θ = ΘT the characteristic

function of T , etc.

5.1. Theorem. A point λ with |λ| < 1 belongs to the spectrum of T if and

only if Θ(λ) is not invertible. Moreover , if Θ(λ) is invertible, the resolvent

Rλ
def
= (T − λI)−1 of T at the point λ commutes with T and has a lifting Y with

the following parameters:

A =
I − Θ(λ)−1Θ

z − λ
, (5.1.1)

A∗ =
I − ΘΘ(λ)−1

z − λ
, (5.1.2)

B = −Θ∗ + ∆Θ(λ)−1∆∗

z − λ
. (5.1.3)

The resolvent can be written in the form

Rλ = PH(U − λI)−1(I − πΘ(λ)−1π∗
∗)|H. (5.1.4)

Proof. Assume that λ is a regular point of the contraction T , so there exists

an operator Rλ such that

Rλ(T − λI) = (T − λI)Rλ = I.

Since Rλ ∈ {T}′, Theorems 4.3 and 4.4 imply that Rλ = PHY |H, where Y is

a lifting of Rλ determined by certain parameters A,A∗, B (see formula (4.4.2)).

The operator T − λI also belongs to the commutant of T and has a lifting with

the parameters A = (z−λ)IE , A∗ = (z−λ)IE∗
, and B = −(z−λ)Θ∗. Therefore,

by the multiplication theorem (Theorem 4.13), the formulas

A0 = I −A(z − λ), A∗0 = I −A∗(z − λ),

B0 = −Θ∗−(∆AΘ∗(z−λ)∆∗+B∆∗(z−λ)∆∗−∆A∆Θ∗(z−λ)+BΘΘ∗(z−λ))

= −Θ∗ −B(z − λ)
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provide us with the parameters of a lifting of the zero operator I − Rλ(T − λ).

Hence, by Lemma 4.11, there exists a function Γ ∈ H∞(E∗→E) such that

I −A(z − λ) = ΓΘ, (5.1.5)

I −A∗(z − λ) = ΘΓ, (5.1.6)

−Θ∗ −B(z − λ) = ∆Γ∆∗. (5.1.7)

Evaluating (5.1.5) and (5.1.6) at the point λ, we conclude that the operator Θ(λ)

is invertible and Γ(λ) = Θ(λ)−1.

Conversely, assuming that Θ(λ) is invertible, we prove the existence of the

resolvent at the point λ. To this end we need to choose an analytic function Γ

such that equations (5.1.5)–(5.1.7) are solvable with respect to A,A∗, B. The

simplest choice is the constant function Γ: Γ(z) = Θ(λ)−1, |z| < 1. In fact,

clearly, any function Γ ∈ H∞(E∗→E) satisfying Γ(λ) = Θ(λ)−1 gives a desired

solution

A =
I − ΓΘ

z − λ
∈ H∞(E→E),

A∗ =
I − ΘΓ

z − λ
∈ H∞(E∗→E∗),

B = −Θ∗ + ∆Γ∆∗

z − λ
∈ L∞(∆∗E∗→∆E).

To obtain formula (5.1.4) we plug the parameters (5.1.1)–(5.1.3) into for-

mula (4.4.2), that is, we consider the following lifting of Rλ:

Y = π∗
I − ΘΘ(λ)−1

z − λ
π∗
∗ + τ∆

I − Θ(λ)−1Θ

z − λ
π∗ − τ

Θ∗ + ∆Θ(λ)−1∆∗

z − λ
τ∗∗

= (U−λI)−1(π∗π
∗
∗+τ(∆π∗−Θ∗τ∗∗ )−π∗ΘΘ(λ)−1π∗

∗−τ∆Θ(λ)−1(Θπ∗+∆∗τ
∗
∗ ))

= (U − λI)−1(π∗π
∗
∗ + ττ∗ − (π∗Θ + τ∆)Θ(λ)−1π∗

∗)

= (U − λI)−1(I − πΘ(λ)−1π∗
∗).

This yields

Rλ = PH(U − λI)−1(I − πΘ(λ)−1π∗
∗)|H,

as claimed. ˜

5.2. One-sided spectrum. Actually, formula (5.1.4) contains more informa-

tion than is asserted in Theorem 5.1. Indeed, if Θ(λ)−1 means only a left or a

right inverse to Θ(λ), denoted in what follows by [Θ(λ)]−1
l and [Θ(λ)]−1

r , respec-

tively, then (5.1.4) yields a left or a right inverse to T − λI, respectively. More

precisely:

5.3. Theorem. For |λ| < 1, the operator T −λI has a left inverse if and only if

Θ(λ) is left invertible, and T −λI has a right inverse if and only if Θ(λ) is right
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invertible. In both cases the corresponding one-sided inverses can be expressed

by the same formulas:

[Θ(λ)]−1
l,r =

(
−T ∗ −DT [T − λI]−1

l,rDT∗

)
|DT∗ , (5.3.1)

[T − λI]−1
l,r = PH(U − λI)−1(I − π[Θ(λ)]−1

l,r π
∗
∗)|H. (5.3.2)

Proof. For example, assume that Θ(λ) is left invertible. Then, denoting by

Rl,r the right-hand side of (5.3.2), we have

Rl(T − λI) = PH(U − λI)−1(I − π[Θ(λ)]−1
l π∗

∗)PH(U − λI)|H
= PH(I − π[Θ(λ)]−1

l π∗
∗)|H

− PH(U − λI)−1(I − π[Θ(λ)]−1
l π∗

∗)PG(U − λI)|H
− PH(U − λI)−1(I − π[Θ(λ)]−1

l π∗
∗)PG∗

(U − λI)|H.

We compute the three terms of the above sum separately. The first one is the

identity operator. Indeed,

π[Θ(λ)]−1
l π∗

∗H ⊂ π[Θ(λ)]−1
l H2(E∗) ⊂ πH2(E) = G ⊥ H. (5.3.3)

The two other summands are zero operators, because

(U − λI)−1(I − π[Θ(λ)]−1
l π∗

∗)G = (U − λI)−1π(I − [Θ(λ)]−1
l Θ)H2(E)

= π
I − [Θ(λ)]−1

l Θ

z − λ
H2(E) ⊂ πH2(E) = G ⊥ H

and

(U − λI)H ⊂ G⊕H ⊥ G∗.

So Rl(T − λI) = I, as desired.

Conversely, let T − λI be left invertible, and let [T − λI]−1
l be a left inverse

to T − λI (this inverse is not necessarily equal to (5.3.2)). We check that the

operator

Λ =
(
−T ∗ −DT [T − λI]−1

l DT∗

)
|DT∗ , (5.3.4)

is a left inverse to Θ(λ).

Since the operator (5.3.4) acts from DT∗ to DT , we can use formula (1.13.1)

for the characteristic function ΘT . This yields

ΛΘT (λ) =
(
−T ∗ −DT [T − λI]−1

l DT∗

)(
−T + λDT∗(I − λT ∗)−1DT

)

= I −D2
T − λT ∗DT∗(I − λT ∗)−1DT +DT [T − λI]−1

l DT∗T

− λDT [T − λI]−1
l D2

T∗(I − λT ∗)−1DT

= I −DT [T − λI]−1
l

{
(T − λI)(I − λT ∗) + (T − λI)λT ∗

− T (I − λT ∗) + λ(I − T ∗T )
}
(I − λT ∗)−1DT

= I,

whence Λ is a left inverse to ΘT (λ). ˜
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5.4. Resolvent and characteristic function off the unit disc. First, we

observe that formula (1.13.1) allows us to define Θ(z) when |z| > 1 and 1/z /∈
σ(T ∗), by the same expression:

ΘT (z)
def
=
(
−T + zDT∗(I − zT ∗)−1DT

)
|DT for |z| > 1. (5.4.1)

Also, it is clear that

ΘT (z)∗ = ΘT∗(z̄), (5.4.2)

for |z| < 1 as well as for |z| > 1. Comparing these formulas with (5.3.1) for

|λ| < 1, λ /∈ σ(T ), we get

ΘT (λ)−1 = ΘT (λ∗)∗ = ΘT∗(1/λ), (5.4.3)

where λ∗ = 1/λ̄.

As for the resolvent, if |λ| > 1, then, clearly,

(T−λI)−1 = − 1

λ

∑

n≥0

(
T

λ

)n

= − 1

λ
PH

∑

n≥0

(
U

λ

)n

|H = PH(U−λI)−1|H, (5.4.4)

which formally coincides with (5.1.4). Indeed, taking (5.4.3) into account, as

in (5.3.3) we have

πΘ(λ∗)∗π∗
∗H ⊂ πΘ(λ∗)∗H2(E∗) ⊂ πH2(E) = G,

and (U − λI)−1G ⊂ G, whence PH(U − λI)−1πΘ(λ∗)∗π∗
∗)|H = 0 and

PH(U − λI)−1(I − πΘ(λ∗)∗π∗
∗)|H = PH(U − λI)−1|H.

It is worth mentioning that (5.4.1) and (1.13.1), formally coinciding, can give

two different analytic functions. For example, let Θ = 1
2 (1 − z). According

to (5.4.2) this is the characteristic function of a contraction unitarily equivalent

to its adjoint; that is, the adjoint operator has the same characteristic function.

However, if we substitute this expression in (5.4.3), we obtain

Θ(λ)−1 =
2

1 − λ
6= λ− 1

2λ
= Θ

(
1

λ

)
.

But for |z| > 1 formula (5.4.1) gives us another expression, namely, ΘT (z) =

2z/(z − 1). Inversion of this expression as the left-hand term in (5.4.3) gives a

correct equality.

In what follows we shall see that (1.13.1) and (5.4.1) define the same analytic

function if there exists a regular point of T on the unit circle.



270 NIKOLAI NIKOLSKI AND VASILY VASYUNIN

5.5. Boundary spectrum. Now we consider the spectrum on the unit circle

T. Formulas (5.3.2) and (5.4.4) cannot be directly extended to |λ| = 1, because

the entire unit circle is the spectrum of U. However, rewriting these formulas in

an appropriate form, we can describe the boundary spectrum σ(T )∩ T in terms

of analytic continuation of ΘT across the boundary.

A new local form of the resolvent is as follows.

5.6. Lemma. Let x ∈ H. Then

(T − λI)−1x =

{
(U − λI)−1

(
x− πΘ(λ)−1(π∗

∗x)(λ)
)

if |λ| < 1, λ /∈ σ(T ),

(U − λI)−1
(
x− π(π∗x)(λ)

)
if |λ| > 1.

(5.6.1)

Proof. For |λ| < 1, the inclusion

(U − λI)−1(I − πΘ(λ)−1π∗
∗)H ⊂ H ⊕G

can be verified by straightforward computation; also, it follows from the defi-

nition of lifting (Definition 4.2), because the operator on the left in the above

inclusion is a lifting of (T − λI)−1. Therefore, for |λ| < 1 we have

Rλx = (I − PG)(U − λI)−1
(
x− πΘ(λ)−1π∗

∗x
)

= (U − λI)−1
(
x− πΘ(λ)−1π∗

∗x
)
− πP+

π∗x− Θ(λ)−1π∗
∗x

z − λ

= (U − λI)−1
(
x− πΘ(λ)−1π∗

∗x
)

+ πΘ(λ)−1 π
∗
∗x− (π∗

∗x)(λ)

z − λ

= (U − λI)−1
(
x− πΘ(λ)−1(π∗

∗x)(λ)
)
.

Similarly, for |λ| > 1,

Rλx = (I − PG)(U − λI)−1x = (U − λI)−1x− πP+
π∗x

z − λ

= (U − λI)−1x+ π
(π∗x)(λ)

z − λ
= (U − λI)−1

(
x− π(π∗x)(λ)

)
. ˜

To show that formulas (5.6.1) can be extended to regular points of the operator

T on the unit circle we need the following property.

5.7. Lemma. Assume that there exists a neighbourhood Oλ of a point λ ∈ Θ

such that Θ admits analytic continuation to Oλ and that there exists a left (right)

inverse [Θ]−1
l (respectively , [Θ]−1

r ), coinciding with Θ∗ on Oλ∩T. Then for every

vector x ∈ H the function π∗x (respectively , π∗
∗x) admits analytic continuation

to Oλ.

Proof. The hypotheses of the lemma imply ∆(ζ) = 0 on Oλ ∩ T. Therefore,

since π = π∗Θ + τ∆, on Oλ we have

(π∗x)(ζ) = Θ(ζ)∗(π∗
∗x)(ζ) + ∆(ζ)(τ∗x)(ζ) = Θ(ζ)∗(π∗

∗x)(ζ)

= [Θ(ζ)]−1
l (π∗

∗x)(ζ), (5.7.1)
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and the right-hand side in (5.7.1) gives an analytic continuation of π∗x to Oλ.

If [Θ(λ)]−1
r is a right inverse to Θ(λ), then ∆2

∗(ζ) = I − Θ(ζ)Θ(ζ)∗ = I −
Θ(ζ)[Θ(ζ)]−1

r = 0 on Oλ ∩ T, that is,

(π∗
∗x)(ζ) = Θ(ζ)(π∗x)(ζ) + ∆∗(ζ)(τ

∗
∗x)(ζ) = Θ(ζ)(π∗x)(ζ), (5.7.2)

and again the right-hand side gives an analytic continuation of π∗
∗x to Oλ. ˜

5.8. Theorem. A point λ, |λ| = 1, belongs to the resolvent set of the operator

T if and only if the characteristic function Θ = ΘT admits analytic continuation

to a neighbourhood Oλ of the point λ, and Θ(ζ)−1 = Θ(ζ)∗ for ζ ∈ Oλ ∩ T.

Proof. If λ with |λ| = 1 is a regular point for T , then λ̄ is a regular point for T ∗,

and formula (1.13.1) determines an analytic continuation to a neighbourhood of

λ; moreover, identity (5.4.3) turns into Θ(ζ)−1 = Θ(ζ)∗ for ζ ∈ Oλ ∩ T.

Conversely, suppose that Θ is analytic in a neighbourhood of a point λ and

that Θ(ζ)−1 = Θ(ζ)∗ for ζ ∈ Oλ∩T. Then, as before, each expression on the right

in (5.6.1) is the resolvent at the point λ. Indeed, for every x ∈ H evaluation

at the point λ is well defined by Lemma 5.7, and by (5.7.1)–(5.7.2) we have

Θ(λ)(π∗x)(λ) = (π∗
∗x)(λ), that is, the two expressions on the right in (5.6.1)

coincide. We shall check that y
def
= x − π(π∗x)(λ) ∈ (U − λI)H; this will imply

that (5.6.1) is well-defined at such a point λ and, after analytic continuation,

gives us a formula for the resolvent at that point.

We have

π∗y = π∗x− (π∗x)(λ) ∈ (z − λ)H2
−(E).

Since ∆∗(ζ) = 0 for ζ ∈ Oλ ∩ T, the operator of multiplication by 1/(z − λ) is

bounded on L2(∆∗E∗), whence

y = (U − λI)y′, where y′ = π
π∗x− (π∗x)(λ)

z − λ
+ τ∗

τ∗∗ y

z − λ
,

and

π∗y′ =
π∗x− (π∗x)(λ)

z − λ
∈ H2

−(E),

π∗
∗y

′ = Θ
π∗y

z − λ
+ ∆∗

τ∗∗ y

z − λ
=

π∗
∗y

z − λ
=
π∗
∗x− ΘΘ(λ)−1(π∗

∗x)(λ)

z − λ
∈ H2(E∗).

Consequently, y′ ∈ H and y ∈ (U − λI)H. ˜

Now we consider the discrete spectrum of T and the corresponding eigen- and

root-subspaces.

5.9. Theorem. A point λ is an eigenvalue of T if and only if |λ| < 1 and

KerΘ(λ) 6= {0}. Moreover ,

Ker(T − λI) = π
Ker Θ(λ)

z − λ
.
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Proof. Let x ∈ H. Then x ∈ Ker(T − λI) if and only if (U − λI)x ∈ G, that

is, there exists a function e ∈ H2(E) such that (U − λI)x = πe, whence

(z − λ)π∗x = e,

(z − λ)π∗
∗x = Θe.

Since π∗x ∈ H2
−(E), the function e is a constant vector in E. And since π∗

∗x ∈
H2(E), putting z = λ in the second of the above relations, we get e ∈ KerΘ(λ).

All arguments can be reversed; that is, if e ∈ KerΘ(λ), then the vector x =

πe/(z − λ) is in H and, moreover, x ∈ Ker(T − λI). ˜

As for the root subspaces of T , they will be described in the next chapter, after

we introduce the notion of regular factorization.

5.10. The spectral mapping theorem. Now, we prove a spectral mapping

theorem for the H∞ functional calculus in the case of a scalar characteristic

function. Moreover, we compute the spectrum of an arbitrary operator in the

commutant (in terms of the corresponding functional parameters of its lifting,

see Section 4.17 above). To this end, given a function Θ ∈ H∞, let us define the

Θ-range of a function f ∈ H∞ by the formula

RangeΘ f =
{
λ ∈ C : inf

z∈D

(|f(z) − λ| + |Θ(z)|) = 0
}
.

Also, we recall the notion of the essential range of a measurable function g on a

measure space:

Range(g) = {λ ∈ C : essinf |g − λ| = 0}.

5.11. Theorem. Let Θ 6≡ 0 be a scalar characteristic function. Take X ∈
{MΘ}′ and let Y be the lifting of X written in the form (4.17.1):

Y =

(
a 0

∆(a− c)Θ−1 c

)
, (5.11.1)

where a ∈ H∞ and the entries on the bottom row lie in L∞(∆), with ∆2 = 1−|Θ|2
and L∞(∆) the space of all essentially bounded functions with respect to the

measure ∆ dm (m being Lebesgue measure on T). Then

σ(X) = (RangeΘ a) ∪
(
Range(c)

)
,

where Range(c) is taken with respect to the measure ∆ dm.

Proof. Essentially, we repeat the scheme of the proof of Theorem 5.1. If

X is invertible, then X−1 ∈ {MΘ}′, and, by the commutant lifting theorem,

X−1 = PΘY
′, where PΘ = PKΘ

and the matrix Y ′ is of the form (5.11.1) with

a′ ∈ H∞ and c′ ∈ L∞(∆). By direct computation (or by using the Multiplication

Theorem 4.13) we see that the matrix I − Y Y ′ is of the form (5.11.1) with the
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parameters aa′ and cc′ instead of a and c, respectively. Since I−Y Y ′ is a lifting

of the zero operator, by Theorem 4.10 we have

I − Y Y ′ =

(
ΘΓ 0

∆Γ 0

)
, (5.11.2)

for some Γ ∈ H∞. Thus, we have 1 − aa′ = ΘΓ and cc′ = 1 a.e. with respect to

∆ dm. Hence, 0 6∈ RangeΘ ∪Range(c).

Conversely, if the equations aa′ + ΘΓ = 1 and cc′ = 1 are solvable with a′,

Γ ∈ H∞, and c′ ∈ L∞(∆), the matrix

Y ′ =

(
a′ 0

∆(a′ − c′)/Θ c′

)
(5.11.3)

determines a lifting of the operator inverse to X. First we have to check that

Y ′ is a lifting of an operator in {MΘ}′. To this end, we need to verify that

a′ − c′ ∈ ΘL∞(∆) (see Section 4.17). Since

ac(a′ − c′) = (1 − ΘΓ)c− a = (c− a) − ΘΓ ∈ ΘL∞(∆),

we need to check that the functions a and c are bounded away from zero on a

subset of Θ where T is small, say, |Θ(ζ)| < 1
2‖Γ‖∞. For such a ζ we have

|a| ≥ |aa′|
‖a′‖∞

=
|1 − ΘΓ|
‖a′‖∞

≥ 1 − |Θ| · ‖Γ‖
‖a′‖∞

≥ 1

2‖a′‖∞
,

|c| ≥ 1

‖c′‖L∞(∆)
,

whence a′ − c′ ∈ ΘL∞(∆) and (5.11.3) defines a lifting of an operator. To check

that this operator is inverse of X, we multiply the matrices (5.11.1) and (5.11.3),

obtaining (5.11.2).

To conclude we recall that, by the Carleson corona theorem (see [Garnett

1981] or [Nikolski 1986], for example), the existence of the needed solutions a′

and Γ is equivalent to infD(|a| + |Θ|) > 0. ˜

5.12. The spectrum of MΘ. Clearly, Theorem 5.11 contains also the well-

known formula for the spectrum of the model operator itself:

σ(MΘ) = {λ ∈ D : lim
z∈D

z→λ

|Θ(z)| = 0} ∪ supp(∆) = supp(µΘ),

µΘ being the representing measure of Θ in the Nevanlinna–Riesz–Smirnov sense

(for the definition see Section 0.7).

This should be compared with the general case described in Theorems 5.1

and 5.8.

5.13. Corollary. For X = PΘY |KΘ ∈ {MΘ}′, we have

‖X‖ ≥ sup
{
|λ| : λ ∈ σ(X)

}
= max

(
‖c‖L∞(∆),max{|λ| : λ ∈ RangeΘ a}

)
.
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An upper estimate of the same type as Corollary 5.13 (that is, in terms of the

values of the functions a and c on the spectrum σ(MΘ)) does not seem possible.

Recall, that in Section 4.21, in the case a = c = f , we already presented an

upper estimate depending on the values a(ζ) in some narrow “neighborhood”

L(Θ, ε) of the spectrum σ(MΘ).

Chapter 6. Invariant Subspaces

In this chapter we describe the lattice of invariant subspaces of a completely

nonunitary contraction in terms of certain functional embeddings and the char-

acteristic function. In fact, the description that we are going to discuss is a

direct consequence of the classical Wold–Kolmogorov formula, as is the case for

the invariant subspaces of unitary operators. We recall the following well-known

description of the lattice Lat U of a unitary operator.

6.1. Lemma. Let U be a unitary operator on a Hilbert space H, and let L ∈
Lat U. Then

L = R⊕ ηH2(F ),

where F = L 	 UL, R =
⋂

n≥0 UnL, and η : L2(F ) → H is a “functional

embedding” intertwining z and U; that is, ηz = Uη. Moreover , R is a reducing

subspace of U.

Proof. The Wold–Kolmogorov lemma implies that L = R⊕
(∑

n ≥ 0⊕UnF
)
;

of course, this is equivalent to the assertion claimed, with the natural definition

of η, namely,

η

(∑

k∈Z

ake
ikt

)
=
∑

k∈Z

Ukak, with ak ∈ F. ˜

Also, it is worth recalling that reducing subspaces are well-behaved with respect

to the spectral decomposition of U. In particular, the description of such sub-

spaces becomes explicit when one uses the von Neumann spectral theorem: L is

a reducing subspace of a unitary operator U if and only if L = {f ∈ L2(H, µU) :

f(ζ) ∈ PL(ζ)H µU-a.e.}, where PL stands for a projection-valued function on T

subordinate to EU, that is, PL(ζ) ≤ EU(ζ) µU-a.e.

Now, turning to the invariant subspaces of completely nonunitary contrac-

tions, we can benefit from the coordinate-free function model approach, because

using the language of this approach we need only follow precisely the same lines

as in Lemma 6.1. In order to make this point even more transparent, we start

with an outline of the description of LatT , paralleling the steps of this descrip-

tion with the proof of the leading partial case, Beurling’s theorem [1949].

6.2 The description of the invariant subspaces: the first draft. The

steps of the proof, which will be formalized later, will be listed in a table. On

the left-hand side, we deal with a completely nonunitary contraction T and its

function model {H,T,H,U, π, π∗, . . .}, and on the right-hand side we have the
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standard shift operator S on the (scalar) Hardy space H2, given by Sf = zf for

f ∈ H2.

1. 1.

T :H→H a completely nonunitary S :H2→H2, Sf=fz for f ∈H2;

contraction; U :H→H the minimal H=L2(T), Uf=zf for f ∈L2;

unitary dilation; E={0}, π=0;

π, π∗ the functional embeddings; E∗=C, G∗=L2, π∗=I;

ΘT =π∗
∗π ΘT =01×0 :C→{0}

2. 2.

Let L∈LatT . Let L∈LatS.

Then L⊕G∈Lat U (Lemma 6.3).

Take F : dimF =dim
(
(L⊕G)	U(L⊕G)

)
; Let F =L	SL, dimF =1;

η :L2(F )→H, ηF =
(
(L⊕G)	U(L⊕G)

)
, η :L2→L2 as in Lemma 6.1,

ηz=Uη ηz=Uη

3. 3.

Apply the Wold–Kolmogorov lemma: L=R⊕ηH2,

L⊕G=R⊕ηH2(F ) R⊂H2 =⇒ R={0}

4. 4.

The mapping η∗π :L2(E)→L2(F ) π=0, hence η∗π=0

commutes with z and is analytic, because

η∗πH2(E)⊂H2(F ) (Section 6.5)

5. 5.

The same for π∗
∗η :L2(F )→L2(E∗) π∗

∗η=η :L2→L2

6. 6.

Put Θ1 =η∗π∈H∞(E→F ), Θ1 =01×0 :C→{0},
Θ2 =π∗

∗η∈H∞(F→E∗), Θ2 =η∈H∞,

ΘT =π∗
∗π=π∗

∗(ηη
∗)π=Θ2Θ1 (cf. (6.5.3)), ΘT =Θ2Θ1 =01×0 :C→{0},

L=span
(
πL2(E), ηL2(F )

)
	 L=Θ2H

2
(
πH2(E)⊕ηH2

−(F )
)

(cf. (6.7.1))

Now we check the proposed program step by step and describe the factoriza-

tions ΘT = Θ2Θ1 of the characteristic function appearing in this way.

6.3. Lemma. L ∈ LatT if and only if L⊕G ∈ Lat U.

Proof. Let L ∈ LatT . Since G ∈ Lat U, it suffices to check that UL ⊂ L⊕G.

The inclusions UL ⊂ U(H ⊕G) ⊂ H ⊕G imply that

UL ⊂ PHUL⊕ PGUL ⊂ TL⊕G ⊂ L⊕G.

The converse is also obvious: TL = PHUL ⊂ PH(L⊕G) = L. ˜
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6.4. An additional functional embedding arises if the completely nonuni-

tary (pure) part of the isometry U|L ⊕ G is realized as the multiplication by z

in a suitable H2-space. More precisely, we can take an auxiliary Hilbert space

F such that

dimF = dim
(
(L⊕G) 	 U(L⊕G)

)

and an isometry ηL : L2(F ) → H with the following properties:

ηL intertwines U and z, that is, ηLz = UηL;

ηLH
2(F ) is the subspace of L⊕G where the pure part of U|(L⊕G) acts.

Therefore, the reducing part of U|(L⊕G) acts on the subspace

RL
def
= (L⊕G) 	 ηLH

2(F ); (6.4.1)

in other words, the formula

L⊕G = RL ⊕ ηLH
2(F ) (6.4.2)

provides the Wold–Kolmogorov decomposition for the isometry U|(L⊕G). Since

RL is reducing, it is orthogonal not only to ηLH
2(F ), but to the whole of

ηLL
2(F ), that is, η∗LRL = {0}.

In what follows we omit the index L and write simply η if we have no need to

emphasize the fact that this embedding is generated by an invariant subspace L.

6.5. Properties of the additional embedding. It is clear that the operator

Θ1
def
= η∗π (6.5.1)

intertwines the multiplications by z in L2(E) and L2(F ), that is, Θ1 ∈ L∞(E→
F ) (as usual, we identify an operator of multiplication with the corresponding

function). Moreover, the function Θ1 is analytic, that is, Θ1 ∈ H∞(E → F ),

because

Θ1H
2(E) = η∗πH2(E) = η∗G ⊂ η∗(ηH2(F ) ⊕ RL) = H2(F ).

Similarly, the operator

Θ2
def
= π∗

∗η (6.5.2)

is also (an operator of multiplication by) a bounded analytic function:

Θ∗
2H

2
−(E∗) = η∗π∗H

2
−(E∗) = η∗G∗ ⊂ H2

−(F ),

because G∗ ⊥ H ⊕G ⊃ L⊕G ⊃ ηH2(F ).

As the third property of η we mention the identity

π∗
∗(I − ηη∗)π = 0. (6.5.3)

For the proof, note that πL2(E) ⊂ ηL2(F )⊕RL, that is, (I−ηη∗)πL2(E) ⊂ RL.

It suffices to show that π∗
∗RL = {0}. Since RL reduces U, the relation RL ⊥ G∗

implies that RL ⊥ π∗L
2(E∗), that is, π∗

∗RL = {0}.
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6.6. Definition. An isometry η from L2(F ) to H = span{πL2(E), π∗L
2(E∗)}

is said to be compatible with π and π∗ if the following four conditions are fulfilled:

(a) ηz = Uη (that is, η is a U-functional embedding);

(b) πH2(E) ⊥ ηH2
−(F );

(c) ηH2(F ) ⊥ π∗H
2
−(E∗);

(d) π∗
∗(I − ηη∗)π = 0.

In these terms, in Section 6.5 we proved that any T -invariant subspace L gener-

ates an embedding η = ηL compatible with π and π∗.

6.7. Theorem. Let T be a completely nonunitary contraction, π and π∗ its

functional embeddings. The mapping L 7→ ηL is a bijection of LatT onto the set

of isometries compatible with π and π∗. Moreover , the inverse mapping η 7→ Lη

can be defined by the formula

Lη = span{πL2(E), ηL2(F )} 	
(
πH2(E) ⊕ ηH2

−(F )
)
. (6.7.1)

Proof. First, we check that Lη ∈ LatT for any isometry η compatible with π

and π∗. To this end, we rewrite (6.7.1) in the form

Lη =
(
ηH2(F ) ⊕ clos(I − ηη∗)πL2(E)

)
	 πH2(E). (6.7.2)

Clearly, this representation implies that Lη is T -invariant. Indeed, since

ULη ⊂ ηH2(F ) ⊕ clos(I − ηη∗)πL2(E),

after projecting onto H we find ourselves in the orthogonal complement of G =

πH2(E), that is, in Lη.

Now we check that L = LηL
for every invariant subspace L. Comparing (6.7.2)

with the definition of the subspace RL in (6.4.1), we see that we must verify the

formula

RL = clos(I − ηη∗)πL2(E),

where η = ηL. The inclusion clos(I − ηη∗)πL2(E) ⊂ RL was already proved in

Section 6.5. Now we consider the U-reducing subspace RL	clos(I−ηη∗)πL2(E)

and verify that it is contained in L. If this is done, the complete nonunitarity of

T will imply that the above subspace is, in fact, the zero subspace.

Let x ∈ RL 	 clos(I − ηη∗)πL2(E). Since x ∈ RL, we have η∗x = 0. The

property x ⊥ (I − ηη∗)πL2(E) means π∗(I − ηη∗)x = 0, so π∗x = π∗ηη∗x = 0.

Therefore, x ⊥ G; since x ∈ L⊕G, this is equivalent to x ∈ L.

If we start with a compatible embedding η and construct the corresponding

invariant subspace Lη as in (6.7.2), then, as is easily seen, the additional em-

bedding constructed by Lη coincides with (is equivalent to) the initial η; that is,

ηLη
= η. Indeed, by (6.7.2),

Lη ⊕G = ηH2(F ) ⊕ clos(I − ηη∗)πL2(E).

This representation is the Wold–Kolmogorov decomposition (6.4.2) with ηL = η.

˜
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6.8. Regular factorizations. Using definitions (6.5.1) and (6.5.2) we can

rewrite identity (6.5.3) in the form

Θ = Θ2Θ1. (6.8.1)

This means that any compatible embedding η induces a factorization of the

characteristic function into two contractive H∞-factors. Among all possible

contractive H∞-factorizations of Θ, the factorizations induced by compatible

embeddings are distinguished by the particular property of being regular factor-

izations. We can define regular factorization as a factorization (6.8.1) generated

by a compatible embedding η by formulas (6.5.1) and (6.5.2). However, it is

important that there exists another description of such factorizations that does

not use the notion of functional embedding and, moreover, can be applied to a

factorization of an arbitrary contraction.

We start by restating the invariant subspace theorem (Theorem 6.7) in terms

dating back to Sz.-Nagy and Foiaş [1967]; then we present the above-mentioned

characterization of regular factorizations (Section 6.10). To distinguish the def-

inition of regularity via an additional embedding and the definition given in

Section 6.10 we shall call the latter one sometimes a locally regular factoriza-

tion. After some preparation (Lemmas 6.11–6.14) we shall be able to prove

(Theorem 6.15) that these two definitions of regularity coincide.

6.9. Theorem. Let T be a completely nonunitary contraction, and let π, π∗,

Θ = ΘT , etc., have the usual meanings. There exists a bijection between the

lattice LatT and the set of all regular factorizations

Θ = Θ2Θ1

of the characteristic function Θ. This bijection is given by the formula

LΘ2,Θ1
=
(
ηH2(F ) ⊕ clos(I − ηη∗)πL2(E)

)
	 πH2(E), (6.9.1)

where η is the compatible embedding producing the functions Θi via (6.5.1) and

(6.5.2). In the original Sz .-Nagy–Foiaş transcription the representation given

by (6.9.1) takes the form

LΘ2,Θ1
=

(
Θ2

Z∗
2∆2

)
H2(F ) ⊕

(
0

Z∗
1

)
L2(∆1E) 	

(
Θ

∆

)
H2(E),

where the Zi and ∆i are certain operator-valued functions to be defined in the

next section.

Proof. The bijection is the same as in Theorem 6.7, namely, η ↔ Lη. The

formula in the Sz.-Nagy–Foiaş transcription follows from expression (6.13.1) for

η combined with the definition of τ (1.19.1) and formulas (3.5.1) for the embed-

dings π and π∗ in the Sz.-Nagy–Foiaş representation. ˜

Now we introduce the language for the local description of the regular factoriza-

tions.
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6.10. Definition. Let A and B be two Hilbert space contractions such that A

acts into the space where B is defined, that is, the product BA is well defined.

Let DA, DB , and DBA be the defect spaces of these operators. We define an

operator

Z : DBA →
(

DA

DB

)

by the identity

ZDBA
def
=

(
Z1

Z2

)
DBA =

(
DA

DBA

)
. (6.10.1)

The factorization BA is called regular if Z is unitary.

For a factorization Θ = Θ2Θ1, the definition of Z becomes

Z∆ =

(
Z1

Z2

)
∆ =

(
∆1

∆2Θ1

)
(6.10.2)

where ∆i = (I − Θ∗
i Θi)

1/2, and all functions are regarded as multiplication

operators on the corresponding spaces. It should be mentioned at once that a

function Z ∈ L∞(E1 →E2) is unitary as an operator from L2(E1) to L2(E2) if

and only if the operators Z(ζ) : E1 → E2 are unitary for almost all ζ ∈ T. This

implies that a factorization Θ = Θ2Θ1 is regular if and only if the factorizations

Θ(ζ) = Θ2(ζ)Θ1(ζ) are regular for almost all ζ ∈ T.

The above observation motivates the use of the adverb locally when talking

about regular function factorizations Θ = Θ2Θ1. In what follows, we shall

often use the term locally regular factorization instead of “regular factorization”,

emphasizing the fact that we deal with functions; also, this will allow us to

distinguish (temporarily) between this new wording and the previous one defined

in terms of compatible embeddings.

Our next observation is that Z in (6.10.1) is always an isometry.

6.11. Lemma. The operator Z defined by (6.10.1) (and , therefore, by (6.10.2))

is an isometry .

Proof. It suffices to check that Z is norm-preserving on a dense set of vectors.

By the definition of DBA, the set of vectors {DBAx : x ∈ H} is dense there. On

this dense set we have

‖ZDBAx‖2 = ‖DAx‖2 + ‖DBAx‖2

= ‖x‖2 − ‖Ax‖2 + ‖Ax‖2 − ‖BAx‖2 = ‖DBAx‖2. ˜

Thus, to prove that Z is unitary it suffices to check that this operator is a co-

isometry, that is, that Z1 and Z2 are co-isometries. Moreover, the following

assertion is true.

6.12. Lemma. Z is a co-isometry if and only if Z2 is.
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Proof. If Z2 is a co-isometry, then

0 <

∥∥∥
(
x1

x2

)∥∥∥
2

−
∥∥∥Z∗

(
x1

x2

)∥∥∥
2

= ‖x1‖2 + ‖x2‖2 − ‖Z∗
1x1‖2 − 2Re(Z∗

1x1, Z
∗
2x2) − ‖Z∗

2x2‖2

= ‖x1‖2 − ‖Z∗
1x1‖2 − 2Re(Z∗

1x1, Z
∗
2x2),

which is possible if and only if Z1Z
∗
2 = 0. Hence,

(
0

DB

)
=

(
0

RangeZ2

)
= RangeZZ∗

2Z2 ⊂ RangeZ,

whence

RangeZ =

(
closRangeZ1

DB

)
=

(
DA

DB

)
.

Thus, Z is unitary. ˜

6.13. Lemma. Let η be an embedding compatible with π and π∗, and let Θ =

Θ2Θ1 be the corresponding factorization of the characteristic function (that is,

Θ1 is defined by (6.5.1) and Θ2 by (6.5.2)). Then

η = π∗Θ2 + τZ∗
2∆2, (6.13.1)

where Z2 is defined by (6.10.2) and ∆2
def
= (I − Θ∗

2Θ2)
1/2, or symmetrically ,

η = πΘ∗
1 + τ∗Z

∗
∗1∆∗1, (6.13.2)

where ∆∗1
def
= (I − Θ1Θ

∗
1)

1/2, and Z∗1 is the component of the operator Z∗

corresponding to the factorization Θ∗ = Θ∗
1Θ

∗
2 in accordance with (6.10.1):

Z∗∆∗
def
=

(
Z∗2

Z∗1

)
∆∗ =

(
∆∗2

∆∗1Θ
∗
2

)
. (6.13.3)

Proof. Since

η = (π∗π
∗
∗ + ττ∗)η = π∗Θ2 + τ(τ∗η),

relation (6.13.1) will be proved if we check that τ ∗η = Z∗
2∆2, or η∗τ = ∆2Z2.

We have

η∗τ∆ = η∗(π − π∗Θ) = Θ1 − Θ∗
2Θ = ∆2

2Θ1 = ∆2Z2∆.

Applying I = ππ∗ + τ∗τ
∗
∗ to η, we obtain the symmetric formula (6.13.2). ˜

Now we prove that, conversely, a contractive H∞-factorization Θ = Θ2Θ1 (not

necessarily locally regular) gives rise to a functional embedding η (which is not

necessarily isometric).

6.14. Lemma. Let Θ = Θ2Θ1 be a contractive H∞-factorization. Then the

operators defined by (6.13.1) and (6.13.2) coincide and possess properties a)–d)

of Definition 6.6.
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Proof. First, let us check that formulas (6.13.1) and (6.13.2) are equivalent.

Assuming, for example, that (6.13.2) defines an operator η, we check that (6.13.1)

is also true, with the same η. We have

π∗
∗η = π∗

∗(πΘ∗
1 + τ∗Z

∗
∗1∆∗1) = ΘΘ∗

1 + ∆∗Z
∗
∗1∆∗1

= ΘΘ∗
1 + Θ2∆∗1∆∗1 = Θ2(Θ1Θ

∗
1 + ∆2

∗1) = Θ2.

Here we have used definition (6.13.3). Now, using the formula (to be proved

below)

Z∗1Θ = Θ1Z1 − ∆∗1∆2Z2, (6.14.1)

we get

τ∗η = τ∗(πΘ∗
1 + τ∗Z

∗
∗1∆∗1) = ∆Θ∗

1 − Θ∗Z∗
∗1∆∗1

= ∆Θ∗
1 − (Z∗

1Θ∗
1 − Z∗

2∆2∆∗1)∆∗1 = (I − Z∗
1Z1)∆Θ∗

1 + Z∗
2∆2∆

2
∗1

= Z∗
2Z2∆Θ∗

1 + Z∗
2∆2∆

2
∗1 = Z∗

2∆2(Θ1Θ
∗
1 + ∆2

∗1) = Z∗
2∆2.

Therefore,

η = (π∗π
∗
∗ + ττ∗)η = π∗Θ2 + τZ∗

2∆2.

We complete the proof that (6.13.1) and (6.13.2) are equivalent by checking

formula (6.14.1):

(Θ1Z1 − ∆∗1∆2Z2)∆ = Θ1∆1 − ∆∗1∆
2
2Θ1 = ∆∗1(I − ∆2

2)Θ1

= ∆∗1Θ
∗
2Θ2Θ1 = Z∗1∆∗Θ = Z∗1Θ∆.

Now, if a contractive factorization Θ = Θ2Θ1 is given and if η is defined

by (6.13.1)–(6.13.2), then, clearly, π∗η = Θ∗
1 and π∗

∗η = Θ2; that is, formu-

las (6.13.1)–(6.13.2) determine the bijection inverse to that given by (6.5.1)–

(6.5.2). Property (a) is obvious; properties (b) and (c) of Definition 6.6 are

equivalent to the analyticity of Θ1 and Θ2, respectively. Property d) means

merely that Θ = Θ2Θ1. ˜

So, in talking about a contractive H∞-factorization of Θ, we deal with an em-

bedding η satisfying conditions a)–d) of Definition 6.6. Thus, to get a compatible

embedding we need only to check that η is an isometry. This property of η is

equivalent to the property that the factorization Θ = Θ2Θ1 is locally regular.

6.15. Theorem. If Θ = Θ2Θ1 is a locally regular factorization, formula (6.13.1)

(or (6.13.2)) defines an embedding η compatible with π and π∗. Conversely , if

η is a compatible embedding , then the factorization Θ = Θ1Θ2 with the factors

defined by (6.5.1), (6.5.2) is locally regular . Moreover , formulas (6.5.1), (6.5.2),

and (6.13.1) (or (6.13.2)) determine a one-to-one correspondence between the set

of all compatible embeddings and the set of all regular factorizations.
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Proof. As already mentioned, after establishing Lemmas 6.13 and 6.14, it

only remains to prove that η is an isometry if and only if the corresponding

factorization is locally regular.

We have

I − η∗η = I − (Θ∗
2π

∗
∗ + ∆2Z2τ

∗)(π∗Θ2 + τZ∗
2∆2)

= I − Θ∗
2Θ2 − ∆2Z2Z

∗
2∆2 = ∆2(I − Z2Z

∗
2 )∆2.

Hence, η is an isometry if and only if Z2 is a co-isometry; by Lemma 6.12, the

latter is equivalent to the fact that Z is a co-isometry. We conclude that η is an

isometry if and only if Θ = Θ2Θ1 is a locally regular factorization. ˜

The factors in a regular factorization of a characteristic function ΘT are very

deeply related with the parts of the operator T induced by the corresponding

invariant subspace L = LΘ2,Θ1
, namely, with the restriction T1 = T |L and the

compression to the orthogonal complement T2 = PL⊥T |L⊥.

6.16. Theorem. Let T be a contraction on a Hilbert space, Θ = ΘT the char-

acteristic function of T . If L is a T -invariant subspace and Θ = Θ2Θ1 is the

corresponding regular factorization of Θ, then the pure part of Θ1 is the char-

acteristic function of the operator T1 = T |L and the pure part of Θ2 is the

characteristic function of the operator T2 = PL⊥T |L⊥.

Outline of the proof. Let η be the additional functional embedding corre-

sponding to the invariant subspace L (see Section 6.4). Putting

E1
def
= E 	 π∗(πE ∩ ηF ),

E∗1
def
= F 	 η∗(πE ∩ ηF ),

we introduce two functional embeddings π1
def
= π|L2(E1) and π∗1

def
= η|L2(E∗1).

It is not very difficult to verify that π1 and π∗1 form the pair of “canonical”

functional embeddings related with the operator T1 and, therefore, the charac-

teristic function ΘT1
of T1 is equal to π∗

∗1π1, however the latter operator is the

pure part of Θ1.

In a similar way, for T2 we put

E2
def
= F 	 η∗(π∗E∗ ∩ ηF ),

E∗2
def
= E∗ 	 π∗

∗(π∗E∗ ∩ ηF ),

and the corresponding embeddings are π2
def
= η|L2(E2) and π∗2

def
= π∗|L2(E∗2).

˜

As an application of the above description of the invariant subspaces we find

the factorizations corresponding to the root subspaces, in particular, to the

eigenspaces, described in Theorem 5.10.
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6.17. Theorem. For every λ ∈ D we have

Ker(T − λI)n = π
n−1∑

k

= 0 ⊕ ϑ∗k KerΘk(λ)

z − λ
, (6.17.1)

where ΘT = Θkϑk is the (locally) regular factorization corresponding to the

invariant subspace Ker(T − λI)k, 0 ≤ k ≤ n − 1 (for k = 0 we take Θ0 = ΘT ,

ϑ0 = I).

Outline of the proof. We work by induction on n. The case n = 1 is

contained in Theorem 5.10 with Θ0
def
= Θ and ϑ0

def
= I. If H1

def
= Ker(T − λI)

and P1
def
= PKer Θ(λ), then

H1 ⊕G = π
Ker Θ(λ)

z − λ
⊕ πH2(E) = π

(
b̄λH

2(P1E) ⊕H2((I − P1)E)
)
.

Hence, operating as in steps 2 and 3 of Section 6.2, we can take F = E and

η = π
(
b̄λP1 + (I − P1)

)
. In accordance with (6.5.1) the factor ϑ1 occurring in

the corresponding regular factorization Θ = Θ1ϑ1 is as follows:

ϑ1 = η∗π = bλP1 + (I − P1).

In order to describe Ker(T−λI)2 we consider the triangulation (that is, the block

matrix form) of T with respect to the orthogonal decomposition H = H⊥
1 ⊕H1.

Putting T1
def
= (I − P1)T |H⊥

1 , we get Ker(T − λI)2 = Ker(T1 − λI) ⊕H1; now

we can apply the same Theorem 5.10 to the operator T1:

Ker(T1 − λI) = π1
KerΘ1(λ)

z − λ
.

The next observation is that, up to passage to the pure parts, the characteristic

function of T1 is the factor Θ1, and the role of the canonical embedding π1 is

played by the embedding η = πϑ∗
1. Therefore, we have

Ker(T1 − λI) = π
ϑ∗1 KerΘ1(λ)

z − λ
.

By induction, if the subspace Hk = Ker(T − λI)k and the corresponding

factorization Θ = Θkϑk has been described, then we can write

Hk+1
def
= Ker(T − λI)k+1 = Hk ⊕ π

ϑ∗k KerΘk(λ)

z − λ
,

and compute the next regular factor ϑk = (bλPk + (I − Pk)), where Pk
def
=

PKer Θk−1(λ). This gives us a recursive procedure for computing the regular

factors ϑk for 0 ≤ k ≤ n− 1, and, finally, to prove formula (6.17.1).

We omit some details of the proof, because they require more information on

regular factorizations than we have prepared in this chapter. ˜
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6.18. Example: Scalar characteristic function. We recall that this term

refers to the case where dimE = rank(I − T ∗T ) = 1 and dimE∗ = rank(I −
TT ∗) = 1; thus, we can make the identifications E = E∗ = C and H∞(C →
C) = H∞.

Let Θ1 ∈ H∞(C1→F ) and Θ2 ∈ H∞(F→C
1) be contractive functions. The

definition of regular factorizations (Section 6.10) and Lemma 6.11 imply that in

the finite-dimensional case a factorization Θ = Θ2Θ1 is regular if and only if

rank∆(ζ) = rank∆1(ζ) + rank∆2(ζ) for a.e. ζ ∈ T. (6.18.1)

In this and only in this case the final space of the isometry Z(ζ) has the same

dimension as its initial space, so that Z is unitary. Whence the condition 0 ≤
dimF ≤ 2 is necessary for the factorization Θ = Θ2Θ1 to be regular. We consider

these three possibilities separately.

dimF = 0.

This case can occur for the function Θ = 0 : C
1 → C

1 only. Indeed, if

dimF = 0, then Θ1 = 0 : C
1 → {0}, Θ2 = 0 : {0} → C

1 and Θ = Θ2Θ1 = 0.

The factorization

01×1 = 01×000×1.

is clearly regular, because here we have

rank∆(ζ) = rank∆1(ζ) = 1, rank∆2(ζ) = 0.

The operator corresponding to this characteristic function is

MΘ = S ⊕ S∗ def
= z|H2 ⊕ P−z|H2

−.

In this case, the underlying geometry is very transparent:

H =

(
L2

L2

)
, KΘ =

(
H2

H2
−

)
, π=

(
0

1

)
, G=

(
0

H2

)
, π∗ =

(
1

0

)
, G∗ =

(
H2

−

0

)
.

Since F = {0}, from (6.7.1) we have

L = πL2 	 πH2 = πH2
− =

(
0

H2
−

)
,

whence we see that L = {0} ⊕H2
− is the reducing subspace where the operator

S∗ = P−z|H2
− acts.

dimF = 1.

Now Θ1 and Θ2 are ordinary scalar functions belonging to the unit ball of

H∞. The factorization Θ = Θ2Θ1 is regular if and only if

max{|Θ1(ζ)|, |Θ2(ζ)|} = 1 for a.e. ζ ∈ T. (6.18.2)

Indeed, since rank∆(ζ) ≤ 1, (6.18.1) implies that min{∆1(ζ),∆2(ζ)} = 0,

which is equivalent to (6.18.2). Conversely, if, for example, |Θ1(ζ)| = 1, then
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|Θ(ζ)| = |Θ2(ζ)|, ∆(ζ) = ∆2(ζ), ∆1(ζ) = 0, and (6.18.1) follows. Similarly for

|Θ2(ζ)| = 1.

Condition (6.18.2) means that the inner part of Θ can be arbitrarily factored

in two inner factors, and the factorizations of the outer part are determined by

the Borel subsets σ ⊂ T in such a way that

|Θ1(ζ)| =

{
|Θ(ζ)| if ζ ∈ σ,

1 if ζ ∈ T \ σ,
|Θ2(ζ)| =

{
|Θ(ζ)| if ζ ∈ T \ σ,

1 if ζ ∈ σ.

Particular case: Θ = 0. If Θ = 0, then the only possibilities are 0 = 0 · ϑ or

0 = ϑ · 0, with an inner ϑ. The corresponding invariant subspaces are as follows

0 = 0 · ϑ⇐⇒ L =

(
0

H2
− 	 ϑ∗H2

−

)
, 0 = ϑ · 0 ⇐⇒ L =

(
ϑH2

H2
−

)
.

We recall that in this case

KΘ =

(
H2

H2
−

)
, MΘ = S ⊕ S∗ =

(
z

P−z

)
.

dimF = 2.

In this case the factorizations under study are of the form

Θ = Θ2Θ1 = (f1, f2)

(
g1

g2

)
= f1g1 + f2g2.

Such a factorization is regular if and only if |Θ(ζ)| < 1 for a.e. ζ ∈ T, Θ2 is co-

inner, and Θ1 is inner, that is, |f1(ζ)|2 + |f2(ζ)|2 = 1 and |g1(ζ)|2 + |g2(ζ)|2 = 1

for a.e. ζ ∈ T. Indeed, since rankΘ2(ζ) ≤ dimE∗ = 1, we have rank∆2(ζ) ≥
dimF − rankΘ2(ζ) ≥ 1. Hence, (6.18.1) implies that the case dimF = 2 is

possible only if rank∆(ζ) ≥ 1, that is, we neccessarily have |Θ(ζ)| < 1 and

rank∆(ζ) = 1 for a.e. ζ. Whence (6.18.1) is equivalent to the conditions

rank∆2(ζ) = 1 and rank∆1(ζ) = 0, which means that Θ2 is co-inner and Θ1 is

inner, correspondingly.

It should be noted that even the existence of factorizations of this sort are not

completely obvious. However, they do exist for any Θ satisfying |Θ(ζ)| < 1 a.e.;

moreover, there exist infinitely many such factorizations. To see that, we take

any function ϕ on T whose values are ±1 (that is, this is a function satisfying

the condition ϕ2(ζ) = 1 a.e.). Then, assuming that Θ 6≡ 0, we take two outer

functions f1, f2 such that

|f1|2 =
1 − ϕ∆

2
, |f2|2 =

1 + ϕ∆

2
.

This is indeed possible, because

log
1 ± ϕ∆

2
≥ log

1 − ∆

2
≥ log

1 − ∆2

4
= log

|Θ|2
4

∈ L1.

Since

|f1|2|f2|2 =
1 − ϕ2∆2

4
=

1 − ∆2

4
=

|Θ|2
4
,
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for the outer part of Θ we have Θout = 2f1f2. Hence, taking g1 = f2Θinn,

g2 = f1Θinn, we get a solution; here Θinn stands for the inner part of Θ.

The case Θ = 0 is treated later on.

6.19. Problem. How can one describe all factorizations of the latter type, that

is, the (1×2)–(2×1) factorizations of a scalar function Θ satisfying |Θ| < 1 a.e.?

We make some comments on this problem.

(a) Let a function Θ with |Θ(ζ)| < 1 a.e. be given. The problem consists

in describing all regular factorizations of Θ with dimF = 2 (that is, in com-

pleting the description of the invariant subspaces of a given operator with the

characteristic function ΘT = Θ). In detail, the problem is as follows:

Find all pairs of H∞-functions f1, f2 and g1, g2 such that f1g1 + f2g2 = Θ and

|f1(ζ)|2 + |f2(ζ)|2 = |g1(ζ)|2 + |g2(ζ)|2 = 1 for a.e. ζ ∈ T.

(b) Let a (2 × 1)-inner function Θ1 be given. The problem consists in the

description of all Θ such that Θ1 =
(

g1

g2

)
is a right regular factor of Θ (that is, in

obtaining a description of the operators having a scalar characteristic function

and an invariant subspace restriction that is unitarily equivalent to the given

operator MΘ1
). In detail:

Find all H∞-functions Θ, |Θ(ζ)| < 1 a.e., for which there exists a pair of H∞-

functions f1, f2 such that f1g1 + f2g2 = Θ and |f1(ζ)|2 + |f2(ζ)|2 = 1 a.e.

A particular case: Θ = 0. Again, let Θ = 0. Then it can be shown that all

regular factorizations of dimF = 2 type admit the following parametrization: if

ϑ =
(

α
β

)
is an arbitrary (2× 1)-function which is inner and co-outer (that is, the

inner parts of α and β are coprime), and ϑ1, ϑ2 are two arbitrary scalar inner

functions, then the representation

0 = (ϑ2β,−ϑ2α)

(
ϑ1α

ϑ1β

)

is a required factorization. All (1×2)–(2×1) regular factorizations of Θ = 0 are

of this type.

Moreover, for Θ = 0 we can answer question (b) as well: every operator with

a (2 × 1)-inner characteristic function can be realized as the restriction of the

operator S ⊕ S∗ to an invariant subspace.

The latter statement is not true for general functions Θ. For example, an

operator with a nonzero scalar characteristic function possesses an invariant

subspace where it acts as the unilateral shift S if and only if log ∆ ∈ L1. Indeed,

to get such an invariant subspace we need a regular factorization of the form

Θ = (f1, f2)

(
1

0

)
,



SPECTRAL THEORY IN TERMS OF THE FREE FUNCTION MODEL, I 287

that is, we need f1 = Θ and |f2| = (1 − |f1|2)1/2 = ∆, f2 ∈ H∞, and this is

possible if and only if log ∆ ∈ L1.

6.20. Example: Indefinite integration operator. We now return to the

operator

A : f 7→ i

∫

[0,x}

f(t) dµ(t);

the corresponding characteristic function SA, computed in Theorem 2.6 is a

scalar inner function. A description of the lattice of the invariant subspaces of

the operator A was given by Leggett [1973]. We derive a description of this

lattice as an immediate consequence of the description of invariant subspaces

obtained in this chapter.

As is clear from Section 6.18, all regular factorizations of a scalar inner func-

tion are factorizations in two scalar inner factors. Assume that the continuous

part µc of µ is nonzero. Then there exists a continuous nest of invariant subspaces

corresponding to the factors

Sα = exp
(
− iα
ζ

)
for 0 ≤ α ≤ µc([0, 1]).

They are the only invariant subspaces of A if and only if µ is a continuous

measure (µ = µc). Clearly, in this case the lattice LatA is completely ordered

by inclusion, or, in other words, A is a unicellular operator.

If µ has a nontrivial discrete part, then A has isolated eigenvalues on the

imaginary axis: λ = i
2µ({t}). For every such λ there exists a unique eigenvector,

and the corresponding Jordan block has dimension card{t : i
2µ({t}) = λ}.

If µ is a purely discrete measure (µc = 0), then SA is a Blaschke product,

and hence every inner factorization of SA, SA = S2S1, is a factorization in two

Blaschke products. Therefore, the characteristic function of the restriction A|L
to an invariant subspace L is always a Blaschke product. We recall that an

operator with a scalar characteristic function Θ has a complete family of eigen-

and root-vectors if and only if Θ is a Blaschke product (see [Nikolski 1986]).

Thus, for the operator A we have the following spectral synthesis theorem: if

µ is a discrete measure, then every invariant subspace of A is generated by the

eigen- and root-vectors it contains.

If the measure µ has infinitely many point masses together with a nonzero

continuous part µc, then the angle between any “continuous” invariant subspace

and any infinite dimensional “discrete” subspace is equal to zero, because

inf
Im ζ>0

(|Sα(ζ)| + |Bσ(ζ)|) = 0,

where

Bσ
def
=
∏

t∈σ

ζ − i
2µ({t})

ζ + i
2µ({t}) .
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Why this infimum determines the angle between the invariant subspaces will

be explained in Chapter 7, in Part II of this article.

Afterword: Outline of Part II

The second part of this paper, “The Function Model in Action”, will be

published elsewhere. For the reader who expected to find applications of the

function model here, now we describe briefly how the model works in spectral

theory.

A.1. Angles between invariant subspaces, and operator Bezout equa-

tions. As is well known, angles between invariant subspaces are the key tool

for studying all kinds of spectral decompositions. Recall that the angle α =

α(K,K ′) between two subspaces K,K ′ ⊂ H of a Hilbert space H is, by defini-

tion, the number α ∈ [0, π/2] satisfying

cosα = sup{|(x, y)| : x ∈ K, y ∈ K ′, ‖x‖ = ‖y‖ = 1}.

For instance, eigenvectors (xn)n≥1, or any other vectors of a Hilbert space,

form a basis if and only if the angles between the subspaces Kn = span(xk : 1 ≤
k ≤ n) and K ′

n = span(xk : k > n) are uniformly bounded away from zero. This

is equivalent to saying that the projections Pn on Kn parallel to K ′
n, defined by

Pn(x+ x′) = x for x ∈ Kn, x
′ ∈ K ′

n,

are uniformly bounded: supn ‖Pn‖ < ∞. The same equivalence exists for un-

conditional bases, if we replace Kn by Kσ = span(xk : k ∈ σ) and K ′
n by

K ′
σ = span(xk : k 6∈ σ), and finally Pn by Pσ; the basis condition is

sup{‖Pσ‖ : σ ⊂ N} <∞.

The same is valid for bases of subspaces, standard or unconditional. Taking

spectral subspaces of a given operator (see below), we obtain a kind of spec-

tral decomposition, and considering all families of spectral subspaces we arrive

at Dunford spectral operators; see [Dunford and Schwartz 1971; Dowson 1978;

Nikolski 1986] for details. This scheme explains why angles are important.

As was mentioned above, invariant subspaces of a contraction T correspond to

regular factorizations of its characteristic function ΘT , see Chapter 6 for details.

Hence, to work with spectral decompositions in terms of the function model, we

need to know which factorizations ΘT = Θ2Θ1 and ΘT = Θ′
2Θ

′
1 correspond to

invariant subspaces TK ⊂ K and TK ′ ⊂ K ′ having a positive angle between

them. In some partial cases—for inner factorizations, for instance—this problem

was solved by P. Fuhrmann [1981] and Teodorescu [1975]. A criterion that holds

in full generality was proved in [Vasyunin 1994], using the CLT: the projection

P is bounded if and only if two Bezout equations have bounded solutions: the

“standard” one

WΘ1 +W ′Θ′
1 = I,
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where W, W ′ are H∞ operator-valued functions; and another “complementary”

Bezout equation to be solved in L∞ operator-valued functions. In Chapter 7

we will discuss this in detail; here we only mention that the obvious necessary

condition, namely, the uniform local left invertibility condition

‖Θ1(z)x‖ + ‖Θ′
1(z)x‖ ≥ ε‖x‖ for all z ∈ D and all x,

is, in general, not sufficient [Treil 1989].

A.2. Spectral subspaces and generalized free interpolation. The free

interpolation problem of complex analysis, stated for a class X of functions holo-

morphic on a domain Ω, consists of a description of those subsets Λ ⊂ Ω for

which the restriction space X|Λ is free of traces of holomorphy, that is, is an

ideal space of functions on Λ, in the sense that a ∈ X|Λ and |b(z)| ≤ |a(z)|, for

z ∈ Λ, imply b ∈ X|Λ.

The interplay between this problem and operator theory goes back to the late

sixties, when it was understood that the freedom property of a restriction space

is adequate for the unconditional convergence of a spectral decomposition, or to

the existence of a spectral measure [Nikolski and Pavlov 1968; 1970]. In fact,

both of these properties are equivalent to the boundedness of the corresponding

L∞-calculus; for instance, it is clear that the space X|Λ is an ideal if and only

if every `∞(Λ)-function is a multiplier of X|Λ: a ∈ X|Λ and m ∈ `∞(Λ) imply

ma ∈ X|Λ. The joint studies in interpolation theory and the function model

have led to solutions of several concrete problems in both subjects, and to a

considerable evolution of the very notion of interpolation, transforming it to

what we call now generalized free interpolation. We present these results in

Chapter 8, and now, to summarize them briefly, we start with the operator

theory part of the problem, namely spectral subspaces.

Originally, spectral subspaces were introduced as a substitute for the spectral

measure of a normal operator to serve more general classes of operators appearing

in perturbation theory. Given a closed set σ ⊂ C and an operator T , the spectral

subspace K(σ) over σ can be defined as the set of x such that the local resolvent

λ 7→ (λI − T )−1x admits an analytic extension to C \ σ.

Another way to define such a subspace is to postulate its invariance and max-

imality properties: a subspace satisfying TK(σ) ⊂ K(σ) and the corresponding

spectrum inclusion σ(T |K(σ)) ⊂ σ, and such that TE ⊂ E and σ(T |E) ⊂ σ

imply E ⊂ K(σ).

Obviously, for normal operators, the subspaces K(σ) coincide with the ranges

of the spectral measure, K(σ) = RangeE(σ), and therefore they exist for σ taken

from the whole Borel σ-algebra B. However, for general operators, it is not clear

how to define subspaces K(σ) for σ from some more or less rich σ-algebra of

subsets of the complex plane C (any complete substitute of the spectral measure

would be defined, of course, on the entire algebra B). This obstruction limits
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the use and the significance of this notion to general operators, endowed with no

additional structure.

At this stage, the function model shows some of its advantages: using the

multiplicative structure of H∞- and H2-functions, we can explicitly define an

analogue of spectral subspaces for every Borel set σ and for every contraction

whose characteristic function allows a “scalar multiple”. For example, for the

simplest case of a scalar characteristic function ΘT 6≡ 0, when I − T ∗T and

I − TT ∗ both have rank 1, one can show, first, that the spectral subspaces

K(σ) over closed subsets σ coincide with invariant subspaces corresponding to

factorizations

Θ = Θσ′Θσ,

where Θσ and Θσ′ stand for the parts of ΘT over σ and σ′ def
= C \σ, respectively.

To define Θσ, we use the canonical Nevanlinna–Riesz–Smirnov representation,

ΘT (z) =

(∏

λ∈D

b
k(λ)
λ (z)

)
exp
(
−
∫

T

ζ + z

ζ − z
dµ(ζ)

)
,

putting

Θσ(z) =

(∏

λ∈σ

b
k(λ)
λ (z)

)
exp
(
−
∫

σ∩T

ζ + z

ζ − z
dµ(ζ)

)
,with |z| < 1.

And then, we can define an analogue of spectral subspaces, called prespectral,

as invariant subspaces corresponding to factorizations Θ = Θσ′Θσ with an ar-

bitrary Borel set σ. This is a simple but principal step, because it supplies us

with a “space-valued analogue” of spectral measure. Now, to develop a kind of

spectral decomposition, nothing remains but to check the angles between K(σ)

and K(σ′) for σ from a given σ-algebra.

One can join spectral decompositions and complex interpolation in at least

two ways. The first way uses the commutant lifting theorem and H∞-calculus

mentioned above. The key observation is the following: if an operator A, in-

duced on an algebraic sum K(σ) + K(σ′) by two restrictions fσ(T )|K(σ) and

fσ′(T )|K(σ′), where fσ, fσ′ ∈ H∞, is well-defined and bounded, then, due to

the CLT, there exists a function f ∈ H∞ “interpolating” the operator A in the

sense A = f(T ). This equality is equivalent to saying that

f − fσ ∈ Θσ′H∞ and f − fσ′ ∈ ΘσH
∞.

For the case when ΘT is a Blaschke product with simple zeros, these in-

clusions can be interpreted in terms of classical interpolation theory. In more

general situations they lead to what we call generalized interpolation, namely,

to interpolation by germs of H∞- and H2-functions, for an arbitrary Blaschke

product ΘT ; to a kind of asymptotic interpolation, for a point mass singular

inner function Θσ; and to tangential interpolation on the boundary of the unit

disc, for outer Θσ.
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Continuing in this way and using the Carleson corona theorem [Garnett 1981;

Nikolski 1986], we prove in Chapter 8 the following generalized free interpola-

tion theorem, which is essentially contained in [Vasyunin 1978; Nikolski 1978b].

Given a bounded sequence (Θk)k≥1 of H∞-functions, the following conditions

are equivalent:

(1) For every 0 − 1 sequence (εk)k≥1 there exists an H∞-function f such that

f − εk ∈ ΘkH
∞ for k ≥ 1.

(2) For every sequence of functions fk ∈ H∞, where k ≥ 1, satisfying

sup
k

distL∞(fkΘk,H
∞) <∞,

there exists an H∞-function f such that f − fk ∈ ΘkH
∞ for k ≥ 1 and

sup
k

∥∥∥f − fk

Θk

∥∥∥
∞
<∞.

(3) There exists a uniformly equivalent sequence (θk)k≥1 (that is, one satisfying

0 < ε < |Θk(z)

θk(z)
| < ε−1

for all k ≥ 1, z ∈ D, and a fixed ε > 0), making the product θ =
∏

k≥1 θk

convergent and satisfying the generalized Carleson condition

|θ(z)| ≥ ε · inf
k
|θk(z)| for z ∈ D.

As an operator-theoretic consequence of this theory we can mention a crite-

rion for the Dunford spectrality (see [Dunford and Schwartz 1971] for defini-

tions) of a contraction with defect numbers (1, 1): it is necessary and sufficient

that infT |ΘT | be positive, that the singular measure µs be purely atomic, that

µs =
∑

n≥1 anδζn
for ζn ∈ T, and that the sequence (θk)k≥1 consisting of the

corresponding point mass singular inner functions exp
(
−an(ζn + z)(ζn − z)

)
and

all Blaschke factors b
k(λ)
λ satisfy the generalized Carleson condition.

Another way to join spectral decompositions and interpolation is to go down

from the calculus level to the individual vector level and to use N. Bari’s charac-

terization of unconditional bases of Hilbert space. Namely, a sum of subspaces

K(σ1) +K(σ2) + · · · is an unconditionally convergent decomposition of the sub-

space span(K(σi) : i ≥ 1) if and only if an approximate Parseval identity holds:

there exists a constant c > 0 such that

c
∑

i

‖xi‖2 ≤
∥∥∥
∑

i

xi

∥∥∥
2

≤ c−1
∑

i

‖xi‖2

for all sequences xi ∈ K(σi), i ≥ 1. Now, at least for the case of inner char-

acteristic functions ΘT , one can use the interpolation meaning of the spectral

projections fi, where f =
∑

i fi, corresponding to the dual biorthogonal decom-

position K(σ1)
′ + K(σ2)

′ + . . ., and add the following assertion, equivalent to

(1)–(3) listed above:
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(4) The functions fi ∈ H2 satisfy
∑

i ‖fi‖2
H2/ΘiH2 <∞ if and only if there exists

a function f ∈ H2 interpolating the fi, in the sense that f − fi ∈ ΘiH
2 for

i ≥ 1.

In particular, we get a generalized embedding theorem: the generalized Carleson

condition implies the convergence
∑

i

‖f‖2
H2/ΘiH2 <∞

for every f ∈ H2.

These results, in which we follow [Nikolski 1978a; 1987; Nikolski and Khru-

shchev 1987], were generalized in [Hartmann 1996] for all Hp with 1 < p <∞.

The last subject of interpolation theory that we will treat in Chapter 8 is a

local estimate of interpolation data and locally defined data. Generally speaking,

the idea is that the distances distL∞(fiΘi,H
∞) from the theorem above, in fact,

coincide with operator norms of the restrictions ‖fi(T )|K(σi)‖ and hence should

be expressed in local terms related to the behavior of fi near the spectrum of

T |K(σi) (that is, clos(σ(T ) ∩ σi)). For the inner function case, an appropriate

technical tool is a local function calculus developed in Chapter 4 and especially

an estimate of the mentioned operator norm by the local norm sup{|fi(z)| : z ∈
Ω(Θi, ε)}, where Ω(Θi, ε) = {z ∈ D : |Θi(z)| < ε} stands for a level set of the

function Θi; the latter essentially coincides with the characteristic function of

the restriction T |K(σi). This leads directly to the following local interpolation

assertion which is stated to be equivalent to assertions (1)–(4) above:

(5) For all sequences of functions fi ∈ H∞(Ω(Θi, ε)), where i ≥ 1, such that

supi ‖fi‖H∞(Ω(Θi,ε)) < ∞, there exists an H∞(D)-function f interpolating

the fi in the sense that

f − fi ∈ ΘiH
∞(Ω(Θi, ε)) for i ≥ 1,

and

sup
i

∥∥∥f − fi

Θi

∥∥∥
H∞(Ω(Θi,ε))

<∞.

It is curious that, for the Blaschke product case, where ΘT =
∏
b
k(λ)
λ and

Θi = b
k(λ)
λ , λ = λi, the corresponding level sets Ω(Θi, ε) are noneuclidean discs

{z : |bλ(z)| < ε1/k(λ)}, and that for this case it is well known [Vinogradov and

Rukshin 1982] that the considered sets Ω(Θi, ε) cannot be replaced by smaller

ones. Namely, for discs {z : |bλi
(z)| < ri} with ri = o(ε1/k(λi)) for i → ∞, the

generalized Carleson condition does not imply the conclusion of assertion 5).

A.3. Similarity to a normal operator. It is clear from the previous discus-

sion that we believe that spectral decompositions are one of the most powerful

tools of spectral theory. Therefore, we rank operators admitting the same qual-

ity spectral decompositions as normal ones, as the best possible operators on
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Hilbert space. As to normals, they can be characterized by any of the following

properties, referring not only to decompositions but also to the calculus.

(1) An operator N on a Hilbert space H is normal if and only if there exists

a projection-valued contractive measure E( · ) such that Nx =
∫

σ
z dE(z)x

(Riemann convergent integral for every x ∈ H).

(2) An operator N on a Hilbert space H is normal if and only if there exists

an isometric functional calculus f 7→ f(N) defined on the algebra C(σ) of

all continuous complex functions on a suitable compact set σ ⊂ C, that is

‖f(T )‖ = ‖f‖C(σ)
def
= supσ |f | for all f ∈ C(σ).

John Wermer [1954] has discovered the remarkable fact that the passage to

operators similar to a normal one, N 7→ T = V −1NV , transforms the picture in

such a way that, to keep the criteria, we need simply to replace all equalities by

norm inequalities. Precisely, the following theorems hold true.

(1′) An operator T on a Hilbert space H is similar to a normal one if and only

if there exists a bounded projection-valued measure E( · ) such that Tx =∫
σ
z dE(z)x (the Riemann convergent integral for every x ∈ H).

(2′) An operator T on a Hilbert space H is similar to a normal one if and only

if there exists a bounded functional calculus f 7→ f(T ) defined on the algebra

C(σ) of a suitable compact set σ ⊂ C, that is

‖f(T )‖ ≤ C‖f‖C(σ) for f ∈ C(σ). (A.3.1)

Nevertheless, an inconvenience of (A.3.1) as a sufficient condition for similarity

to a normal operator is obvious. Indeed, what we have at hand when dealing

with an operator T , are rational expressions in T , that is the resolvent

R(λ, T ) = (λI − T )−1 for λ ∈ C \ σ(T ),

and hence f(T ) for f in the set Rat(C \ σ(T )) of rational functions having poles

on C\σ(T ). The knowledge of other continous functions of T , required by(A.3.1),

is still mostly implicit and the very definition of them is hiding in the existence

of the functional calculus. For all that, for operators with a “thin” spectrum,

rational functions are sufficient. For instance, if the set Rat(C \σ) is norm dense

in the space C(σ), then it suffices to require (A.3.1) for f ∈ Rat(C\σ) in order to

guarantee similarity to a normal operator and the inclusion σ(T ) ⊂ σ. However,

for most concrete situations, for example those coming from perturbation theory,

there are too many rational functions in Rat(C\σ) to consider even this restricted

version of (A.3.1) as a practical test for similarity.

The idea of rational tests for similarity, presented in Chapter 9 following [Be-

namara and Nikolski 1997], is to reduce the number of test functions Rat(C \ σ)

to a reasonable part of it. A natural choice for such a reduction is to consider

estimates (A.3.1) for f ∈ Ratn(C \ σ), the set of all rational functions of degree



294 NIKOLAI NIKOLSKI AND VASILY VASYUNIN

at most n = 1, 2, . . . and with poles in C \ σ. The case n = 1, also called the re-

solvent criterion, is the most popular and consists of testing for (A.3.1) rational

functions f of degree 1 only: thus f = 1/(λ− z), with

∥∥∥ 1

λ− z

∥∥∥
C(σ)

=
1

dist(λ, σ)
.

In this case, the problem can be stated as follows: for which classes of op-

erators is the linear growth of the resolvent (LGR), when approaching to the

spectrum,

‖R(λ, T )‖ ≤ const

dist(λ, σ(T ))
for λ ∈ C \ σ(T ), (A.3.2)

sufficient for T to be similar to a normal operator? It is well known (A. Markus)

that in general this is not the case even for operators with the real spectrum,

σ(T ) ⊂ R; in [Benamara and Nikolski 1997] it is shown that no spectral restric-

tions, excepting only a finite spectrum σ(T ), together with the LGR, implies

similarity to a normal operator. On the other hand, B. Sz.-Nagy and C. Foiaş

[1967] proved that for contractions T with a unitary spectrum, σ(T ) ⊂ T, the

LGR implies similarity to a normal, and hence to a unitary operator.

In Chapter 9, following [Benamara and Nikolski 1997], we explain why the

resolvent criterion is still true for contractions T with σ(T ) 6= D and rank(I −
T ∗T ) <∞, rank(I −TT ∗) <∞, and fails for T with σ(T ) 6= D and (I −T ∗T ) ∈⋂

p>1 Sp, (I−TT ∗) ∈
⋂

p>1 Sp, where Sp stands for the Schatten–von Neumann

ideals of compact operators. The case of p = 1, trace class perturbations of uni-

tary operators, is still open. Our technique is based on free interpolation results

(Chapter 8) and on estimates of angles between invariant subspaces (Chapter 7).

Some higher rational tests, that is, estimates (A.3.1) for f ∈ Ratn(C \ σ),

n > 1, are also considered (and also following [Nikolski ≥ 1998]). For this

case, a kind of Bernstein inequality is proved for operators with unitary or real

spectra: it turns out that (A.3.2) implies inequality (A.3.1) for all n = 2, 3, . . .

with constants const = cn depending on n. So, one can say that the Ratn(C \T)

and Ratn(C \ R) tests provide us with no new cases of similarity to a normal

operator with respect to the simplest resolvent test. Of course, if the constants

are uniformly bounded, supn cn < ∞, the operator is similar to a unitary (for

σ(T ) ⊂ T) or a selfadjoint operator (for σ(T ) ⊂ R) by Wermer’s theorem.

A.4. Stability of the continuous spectrum. The problem of stability of

the continuous spectrum goes back to H. Weyl (1909) and J. von Neumann

(1935) for the selfadjoint case, and to A. Weinstein (1937), N. Aronszajn and A.

Weinstein (the forties) and S. Kuroda (the fifties and sixties) for more general

settings; see [Akhiezer and Glazman 1966; Kato 1967] for references and initial

results. The continuous spectrum σc(T ) of an operator T is the spectrum with

isolated eigenvalues of finite algebraic multiplicity removed, that is, eigenvalues

whose Riesz projection is of finite rank. It is well known that if the resolvent set
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C \σ(T ) is connected, the continuous spectrum is stable with respect to compact

perturbations:

σc(T +K) = σc(T )

for all K ∈ S∞. If C \ σ(T ) contains nontrivial bounded components, it may

happen that σc(T +K) 6= σc(T ) even for finite rank operators K. In this case, at

least one bounded component of C \ σ(T ) is filled in by a layer of eigenvalues of

perturbed operator T +K (the so-called singular case of Fredholm perturbation

theory, see [Kato 1967]). The problem is to distinguish operators T allowing the

singular case from those whose continuous spectrum is stable with respect to

perturbations from a given class of operators.

One of the classic examples of instability [Kato 1967] is a rank-one perturba-

tion of the standard shift operator S : L2(T) → L2(T):

σc(S +K) = D,

where Kf = −(f, z̄)1 for f ∈ L2(T) (this contrasts with σc(S) = T). Clearly, the

same construction works for any unitary operator U (instead of S) whose spectral

measure EU dominates Lebesgue measure m of the unit circle T (EU � m). The

inverse is also true, but is not so obvious. More precisely, it is proved in [Nikolski

1969] that these statements are equivalent for a given unitary operator U :

(1) σc(U +K) = σc(U) for all rank-one operators K;

(2) σc(U +K) = σc(U) for all K ∈ S1;

(3) EU does not dominate m, that is there exists a spectral gap σ ⊂ T, σ ∈ B,

of positive Lebesgue measure (EU (σ) = 0 but mσ > 0);

(4) U belongs to the weak closed operator algebra generated by U−1;

(5) LatU−1 ⊂ LatU , where LatU stands for the lattice of invariant subspaces

of U .

The stability problem for bigger perturbations leads to a rougher picture:

σc(U +K) = σc(U) for all K ∈ Sp with p > 1

if and only if σ(U) 6= T.

In the framework of perturbation theory, a natural problem was to find a

stability criterion for trace class perturbations T of unitary operators, T = U+C,

C ∈ S1. The solution was found in [Makarov and Vasyunin 1981] by using the

function model. The first problem here was to insert a noncontraction T = U+C

into model theory. This is done by considering the function model for an auxiliary

“nearest to T” contraction T0 and realizing T on this model. Another problem

was to find a proper analogue of condition (3) above to express a spectral gap

of the operator under question. The language of the function model helps once

more, and the true expression for a completely nonunitary operator turns out to

be the following:
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(3′) the characteristic function ΘT is JT -unitary on a set σ ⊂ T of positive

Lebesgue measure, where

ΘT (z)
def
= (−TJT + zDT∗(I − zT ∗)−1DT )|RangeDT ,

and DA
def
= |I −A∗A|1/2, JA

def
= sign(I −A∗A) (the square root | · |1/2 and the

sign function sign(t) = t/|t| applied to the selfadjoint operator I −A∗A).

With these refinements, it will be proved in Chapter 10 that assertions (1)–(5)

are still equivalent for an invertible operator T = U +C, C ∈ S1 instead of U , if

we add to condition 3) for the unitary part of T condition (3′) for its completely

nonunitaty part.

A.5. Scattering and other subjects. The quick development and the very

rise of mathematical scattering theory in the late fifties was motivated by in-

fluences of both physical scattering theory and several mathematical theories.

Among the latter, a leading role is playing by both of the subjects considered

above, namely, by stability problems of the continuous spectrum and similarity

problems. Of course, as we are speaking here about predecessors of scattering

theory, we have in mind the classical framework of selfadjoint and unitary opera-

tors, in which domain the foundation of both theories was laid by H. Weyl (1909),

J. von Neumann and K. Friedrichs (in the thirties through the fifties). Without

entering into technical details, we trace here an approach to scattering problems

that is adjustable to the use of the function model.

The main goal of scattering theory is to compare the asymptotic behavior for

t → ±∞ of two continuous groups on a Hilbert space: the “perturbed” group

S(t) and the “nonperturbed” group S0(t) (“free evolution”). Both continuous,

t ∈ R, and discrete, t ∈ Z, times are considered. Being motivated by quantum

physics scattering phenomena, mathematical scattering theory was started with

the so-called nonstationary approach which consists of the following. Let S, S0

be unitary groups on a Hilbert space H whose selfadjoint generators, A and

A0 respectively, differ by a “small”, say of finite rank, operator, A = A0 + ∆

where the spectral measures of A, A0 are absolutely continuous with respect to

Lebesgue measure (EA, EA0
� m). It turns out that under these hypotheses

the asymptotic behavior of the groups are the same: for every x ∈ H there exist

unique vectors x±0 ∈ H such that limt→±∞ ‖S(t)x−S0(t)x
±
0 ‖ = 0. The operators

x = lim
t→±∞

S(t)−1S0(t)x
±
0

def
= W±(A,A0)x

±
0

are called the wave operators of the pair A, A0 and S = W ∗
+W− is called the

scattering operator . Under the above hypotheses, all three are unitary operators.

The operator S links the “free asymptotics” for t → −∞ and t → ∞, that is,

Sx−0 = x+
0 , and it commutes with A0, whereas W± establish the similarity—in

fact, the unitary equivalence—of A and A0,

AW± = W±A0,
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and the semigroups themselves (the so-called intertwining properties).

In general, for instance for trace class selfadjoint perturbations ∆, the wave

limits W± exist only on the absolutely continuous subspace of A0, H
ac
0 =

Eac
A0

(H), and map it onto Hac = Eac
A (H), establishing a unitary equivalence

between the absolutely continuous parts A|Hac, A0|Hac
0 and, a fortiori, the

stability of the absolutely continuous spectrum with respect to nuclear pertur-

bations. For the case of discrete time, all is similar, except we have no generators

and deal directly with the unitary operators Un = S(1)n and Un
0 = S0(1)n, for

n ∈ Z, and their absolutely continuous parts.

There exist several realizations of the second, stationary approach to scatter-

ing theory, that is, to find the wave operators W± avoiding the wave limits of

the initial definition. The idea, coming back to K. Friedrichs, is to define these

operators as solutions of some operator equations and then prove the above in-

tertwining properties and the existence of the wave limits. The initial Friedrichs

observation is that, for operators with absolutely continuous spectra,

W± = I + Γ±(∆W±)

where Γ±(X) =
∫ ±∞

0
S0(−t)XS0(t) dt. For methods of solving these Friedrichs

(Γ)-equations we refer to [Kato 1967; Dunford and Schwartz 1971]. For other

stationary approaches, making use of some resolvent equations (in a sense, the

Fourier–Laplace transform of the Friedrichs ones) instead of the (Γ)-equations,

see [Reed and Simon 1979; Yafaev 1992].

Function models are ideally adapted to stationary methods of scattering the-

ory, because, as before, using the local function structure, one can guess explicit

formulas conjecturally solving the needed operator equations, and then prove

that they really provide the solutions. Another advantage is that the model ap-

proach is also well-adapted for an important passage from scattering for unitary

(semi)groups to scattering for contractive semigroups. The pioneering role in

applying function models to scattering problems was played by L. de Branges

[de Branges 1962; de Branges and Rovnyak 1966; de Branges and Shulman 1968].

In Part II of this paper, we analize the de Branges and other model approaches

to scattering theory, deriving from them the main facts of the theory. Here we

simply mention some other sources: [Lax and Phillips 1967; Adamyan and Arov

1966; Naboko 1980; 1987].

Among other subjects that we plan to include in Part II of the paper, we can

mention some properties of the weak star closed algebra algMΘ generated by the

model operator MΘ. For instance, we consider the problem of weak generators

of this algebra, closely related to properties of the lattice LatMΘ of invariant

subspaces of MΘ; the problem, solved in [Kapustin 1992], of the reflexivity of

MΘ; and the problem of the “invisible spectrum” for algMΘ.
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théorie des systèmes”. To appear.
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la théorie des opérateurs et caractérisation des traces H

p|Λ”, J. Operator Theory

35:2 (1996), 281–316.

[Julia 1944a] G. Julia, “Sur les projections des systèmes orthonormaux de l’espace
hilbertien”, C. R. Acad. Sci. Paris 218 (1944), 892–895.

[Julia 1944b] G. Julia, “Les projections des systèmes orthonormaux de l’espace
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