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An Excursion into the Theory
of Hankel Operators

VLADIMIR V. PELLER

ABSTRACT. This survey is an introduction to the theory of Hankel opera-
tors, a beautiful area of mathematical analysis that is also very important in
applications. We start with classical results: Kronecker’s theorem, Nehari’s
theorem, Hartman’s theorem, Adamyan—Arov—Krein theorems. Then we
describe the Hankel operators in the Schatten—von Neumann class S, and
consider numerous applications: Sarason’s commutant lifting theorem, ra-
tional approximation, stationary processes, best approximation by analytic
functions. We also present recent results on spectral properties of Hankel
operators with lacunary symbols. Finally, we discuss briefly the most re-
cent results involving Hankel operators: Pisier’s solution of the problem
of similarity to a contraction, self-adjoint operators unitarily equivalent to
Hankel operators, and approximation by analytic matrix-valued functions.
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1. Introduction

I would like to invite the reader on an excursion into the theory of Hankel op-
erators, a beautiful and rapidly developing domain of analysis that is important
in numerous applications.

It was Hankel [1861] who began the study of finite matrices whose entries
depend only on the sum of the coordinates, and therefore such objects are called
Hankel matrices. One of the first theorems about infinite Hankel matrices was
obtained by Kronecker [1881]; it characterizes Hankel matrices of finite rank.
Hankel matrices played an important role in many classical problems of analysis,
and in particular in the so-called moment problems; for example, Hamburger’s
moment problem is solvable if and only if the corresponding infinite Hankel
matrix is positive semi-definite [Hamburger 1920; 1921].

Since the work of Nehari [1957] and Hartman [1958] it has become clear that
Hankel operators are an important tool in function theory on the unit circle.
Together with Toeplitz operators they form two of the most important classes
of operators on Hardy spaces.

For the last three decades the theory of Hankel operators has been developing
rapidly. A lot of applications in different domains of mathematics have been
found: interpolation problems [Adamyan et al. 1968b; 1968a; 1971]; rational
approximation [Peller 1980; 1983]; stationary processes [Peller and Khrushchév
1982]; perturbation theory [Peller 1985]; Sz.-Nagy-Foiag function model [Nikol’-
skil 1986]. In the 1980s the theory of Hankel operators was fueled by the rapid
development of H* control theory and systems theory (see [Fuhrmann 1981,
Glover 1984; Francis 1987]). It has become clear that it is especially important to
develop the theory of Hankel operators with matrix-valued (and even operator-
valued) symbols. I certainly cannot mention here all applications of Hankel
operators. The latest application I would like to touch on here is Pisier’s solution
of the famous problem of similarity to a contraction; see Section 12 for more
detail.

The development of the theory of Hankel operators led to different general-
izations of the original concept. A lot of progress has taken place in the study of
Hankel operators on Bergman spaces on the disk, Dirichlet type spaces, Bergman
and Hardy spaces on the unit ball in C", on symmetric domains; commutators,
paracommutators, etc. This survey will not discuss such generalizations, but
will concentrate on the classical Hankel operators on the Hardy class H2—or,
in other words, operators having Hankel matrices. Even under this constraint
it is impossible in a survey to cover all important results and describe all appli-
cations. I have chosen several aspects of the theory and several applications to
demonstrate the beauty of the theory and importance in applications.

So, if you accept my invitation, fasten seat belts and we shall be off!

In Section 2 we obtain the boundedness criterion and discuss symbols of Han-
kel operators of minimal L° norm. As an application, we give in Section 3 a
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proof of Sarason’s commutant lifting theorem, based on Nehari’s theorem. Sec-
tion 4 is devoted to the proof of Kronecker’s theorem characterizing the Hankel
operators of finite rank. In Section 5 we describe the compact Hankel operators.
In Section 6 we prove the profound Adamyan—Arov—Krein theorem on finite-
rank approximation of Hankel operators. Section 7 is devoted to membership of
Hankel operators in Schatten—von Neumann classes S,,. In Section 8 we consider
applications of Hankel operators in the theory of rational approximation. Section
9 concerns hereditary properties of the operator of best uniform approximation
by functions analytic in the unit disk. Section 10 deals with applications of Han-
kel operators in prediction theory. In Section 11 we study spectral properties of
Hankel operators with lacunary symbols. We conclude the survey with Section
12 which briefly reviews some recent developments of Hankel operators and their
applications; namely, we touch on the problem of unitary equivalent description
of the self-adjoint Hankel operators, we discuss the problem of approximating a
matrix function on the unit circle by bounded analytic functions, and conclude
the section with Pisier’s solution of the problem of similarity to a contraction.

Preliminaries. An infinite matrix A is called a Hankel matrix if it has the form

ap «1 G2 Q3
a1 Qg9 QO3 04
A=]|x a3 a4 o5
a3 Qg a5 Qg

where o = {o; } ;>0 is a sequence of complex numbers. In other words, a Hankel
matrix is one whose entries depend only on the sum of the coordinates.

If o € £2, we can consider the Hankel operator T, : £2 — ¢? with matrix A in
the standard basis of £2 that is defined on the dense subset of finitely supported
sequences.

Hankel operators admit the following important realizations as operators from
the Hardy class H? of functions on the unit circle T to the space

H2 ¥ 1?0 H2.
Let ¢ € L2 We define the Hankel operator H,, on the dense subset of polyno-
mials by

def

HﬂPf =P Qofa
where P_ is the orthogonal projection onto H?. The function ¢ is called a
symbol of the Hankel operator H,; there are infinitely many different symbols
that produce the same Hankel operator. It is easy to see that H, has Hankel
matrix {B(—j — k)};>1,k>0 in the bases {z*};>0 of H? and {27} ;51 of H?; here
$(m) is the m-th Fourier coefficient of ¢.
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We also need the notion of a Toeplitz operator on H?. For ¢ € L™ we define
the Toeplitz operator T, : H? — H? by

Tof =Prof for fe H?,

where P, is the orthogonal projection of L? onto H?. It is easy to see that

IToll < |lellnes. Infact, [|Ty|| = ||¢||oe; see, for example, [Douglas 1972; Sarason
1978].

Notation. The following notation is used throughout the survey:

e 2 stands for the identity function on a subset of C.

e m is normalized Lebesgue measure on the unit circle T.

e M is planar Lebesgue measure.

e S: H? — H? is the shift operator; that is, Sf def zf for f € H2.

e S: L2 — L2 is the bilateral shift operator; that is, Sf % zf for f € L2.
e For a function f in L*(T) we denote by f the harmonic conjugate of f.
e BMO is the space of functions ¢ on T of bounded mean oscillation:

1
sup — [ |¢ — @1/ dm < oo,
) 1y

where the supremum is taken over all intervals I of T and |I| def m(I).

e VMO is the closed subspace of BMO consisting of functions ¢ satisfying
1
lim —/ w— 7| dm =0.
111—o |I| J; | |

2. Boundedness

The following theorem of Nehari [1957] characterizes the bounded Hankel
operators I'y, on £2.

THEOREM 2.1. The Hankel operator Ty, is bounded on ¢% if and only if there
ezists a function ¥ € L™ on the unit circle T such that
Q= P(m)  for m > 0. (2-1)

In this case

ITall = mnf{[l¢]lo : $(n) = an for n > 0}.

PrROOF. Let ¢ € L™ and set a,, = ¢¥(m) for m > 0. Given two finitely
supported sequences a = {a, >0 and b = {by }x>0 in £2, we have

(Taa,b) = > ajika;bi. (2-2)

J:,k=20

f:Zajzj, g:Zl;kzk.

§>0 k>0

Let
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Then f and ¢ are polynomials in the Hardy class H2. Put ¢ = fg. It follows
from (2-2) that

(Taab) = 3 DG+ Ragbe = 3 dm) S abn

3,k>0 m>0 i=0

> dmyitm) = [ 6(0a(6) dm(c).

m>0

Therefore

[(Caa, b) <[Pl llgllar < 9lloo [1f 1|22 gz = 9]~ llalle (D]l

Conversely, suppose that I is bounded on £2. Let L, be the linear functional
defined on the set of polynomials in H' by

Lag = ani(n). (23)

n>0

We show that L, extends by continuity to a continuous functional on H! and
its norm || L | on H! satisfies

I Lall < Tl (2-4)
By the Hahn-Banach theorem this will imply the existence of some v in L>° that
satisfies (2-1) and
[Plloe < ITa]l-
Assume first that o € ¢1. In this case the functional L, defined by (2-3) is
obviously continuous on H'. We prove (2-4). Let ¢ € H! and ||¢||; < 1. Then

q admits a representation ¢ = fg, where f, g € H? and ||f]l2 < 1, [lg]l2 < 1. We
have

Lag = Z O‘qu(m) = Z ame(])g(m—]) = Z aj+kf(j)g(k) = (Faa,b),

m>0 m>0 =0 §,k>0

where a = {a;} ;>0 with a; = f(j) and b = {bx }x>0 with by = §(k). Therefore
ILagl < ITalllIfll2llgll2 < [Tall,

which proves (2-4) for a € £1.
Now assume that « is an arbitrary sequence for which I', is bounded. Let
0 < 7 < 1. Consider the sequence a(") defined by

ay) = rjaj for j > 0.
It is easy to see that I,y = D,I'sD,, where D, is multiplication by {r’};>¢ on
2. Since obviously ||D,|| < 1, it follows that the operators ', are bounded
and

IT oo

<|Tw]] for 0 <r < 1.
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Clearly ™) € ¢!, so we have already proved that
[Lat 1 —c < ITam |l < [[Tall-

It is easy to see now that the functionals L - being uniformly bounded converge
strongly to Lg; that is, Lt — Lat for any ¢ € H*. This proves that L, is
continuous and satisfies (2-4). O

Theorem 2.1 reduces the problem of whether a sequence a determines a bounded
operator on £2 to the question of the existence of an extension of « to the sequence
of Fourier coefficients of a bounded function. However, after the work of C.
Fefferman on the space BMO of functions of bounded mean oscillation it has
become possible to determine whether I', is bounded in terms of the sequence
« itself.

By C. Fefferman’s theorem (see [Garnett 1981], for example), a function ¢ on
the unit circle belongs to the space BMO if and only if it admits a representation

o=¢+Prn with &y e L.

The space BMOA is by definition the space of BMO functions analytic in the
unit disc D:

BMOA = BMO N H'.

It is easy to see that Nehari’s and Fefferman’s theorems imply the following
result.

THEOREM 2.2. The operator I'y, is bounded on £2 if and only if the function
Y = Z 2™ (2—5)
m>0

belongs to BMOA.

Clearly T',, is a bounded operator if the function ¢ defined by (2-5) is bounded.
However, the operator I',, can be bounded even with an unbounded . We
consider an important example of such a Hankel matrix:

EXAMPLE (THE HILBERT MATRIX). Let aw, = 1/(n + 1) for n > 0. The corre-
sponding Hankel matrix Iy, is called the Hilbert matriz. Clearly the function

1 n
Zn—l—lz

n>0

is unbounded in D. However, I', is bounded. Indeed, consider the function
on T defined by

P(e™) =ie (r —t) forte[0,2m).

It is easy to see that

Y(n) = T for m > 0,
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and that |||~ = . It follows from Theorem 2.1 that T, is bounded and
ITo|l < m. In fact, ||To|] = m; see [Nikol’skil 1986, Appendix 4, 165.21], for
example.

Clearly, Theorem 2.1 admits the following reformulation.
THEOREM 2.3. Let ¢ € L. The following statements are equivalent:

(a) H, is bounded on H?.
(b) There exists a function ¥ in L™ such that

P(m) = @(m)  form < 0. (2-6)
(c) P_p € BMO.

If one of the conditions (a)—(c) is satisfied, then

1H, || = inf{[|[¢]l 2 : ¥(m) = ¢(m) for m < 0}. (2-7)
Equality (2-6) is equivalent to the fact that H, = Hy. Thus (b) means that H,
is bounded if and only if it has a bounded symbol. So the operators H, with
© € L exhaust the class of bounded Hankel operators. If ¢ € L (2-7) can
be rewritten in the following way:

[H|l = inf{llp = flloo : f € H?}. (2-8)

Let ¢ € L°°. It follows easily from a compactness argument that the infimum
on the right-hand side of (2-8) is attained for any ¢ € L°. A function f that
realizes the minimum on the right-hand side of (2-8) is called a best approxi-
mation of ¢ by analytic functions in the L°°-norm. The problem of finding, for
a given ¢ € L, a best approximation by analytic functions is called Nehari’s
problem. Tt plays a significant role in applications, particularly in control theory.
If f realizes the minimum on the right-hand side of (2-8), then clearly, ¢ — f is
a symbol of H,, of minimal L°°-norm. A natural question arises of whether such
a symbol of minimal norm is unique.

The first results in this direction were apparently obtained by Khavinson
[1951] (see also [Rogosinski and Shapiro 1953]), where it was shown that for a
continuous function ¢ on T there exists a unique best uniform approximation by
analytic functions and that uniqueness fails in general; see also [Garnett 1981,
Section IV.1]. However, in the case when the Hankel operator attains its norm
on the unit ball of H?, that is, when |[Hygll2 = ||H,|| [|g||2 for some nonzero

g € H?, we do have uniqueness, as the following result shows [Adamyan et al.
1968b].

THEOREM 2.4. Let ¢ be a function in L* such that H, attains its norm on the
unit ball of H2. Then there exists a unique function f in H> such that

[ = flloo = dist e (¢, H>).
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Moreover, ¢ — f has constant modulus almost everywhere on T and admits a
representation

__h
o1 =Hl| 207, (2-9)
where h is an outer function in H? and ¥ is an inner function.
ProoOF. Without loss of generality we can assume that |[H,|| = 1. Let g

be a function in H? such that 1 = ||gll2 = ||Hygl|l2. Let f € H> be a best
approximation of ¢, so that ||¢ — f|lcc = 1. We have

1= |Hygll2 = [IP-(¢ — flgll2 < (e = Hgll2 < llgll2 = 1.

Therefore the inequalities in this chain are in fact equalities. The fact that

IP—(p = fgllz = Il = f)ll2

means that (¢ — f)g € H?, so

Hog=H,-59=(v—f)g. (2-10)
The function ¢, being in H?, is nonzero almost everywhere on T, so
Heg
f=0—".
g

Hence f is determined uniquely by H,: the ratio (H,g)/g does not depend on
the choice of g.
Since ||¢ — flloo = 1, the equality

1o = fgllz = llgll2

means that () — f(¢)] = 1 a.e. on the set {¢ : g(¢) # 0}, which is of full
measure since g € H?. Thus ¢ — f has modulus one almost everywhere on T.

Consider the functions g and zH,g in H2. It follows from (2-10) that they
have the same moduli. Therefore they admit factorizations

g= ﬂlha ZI{Lpg = 192}713

where h is an outer function in H?, and ¥; and 95 are inner functions. Conse-
quently,

H,g z0h - _ h
= — = 50 0q9—
e—f 9 Iih ZU1 27,
which proves (2-9) with ¥ = 9195. O

COROLLARY 2.5. If H, is a compact Hankel operator, the conclusion of Theorem
2.4 holds.

PROOF. Any compact operator attains its norm. ([l
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We shall see in Section 5 that Hankel operators with continuous symbols are
compact, so Corollary 2.5 implies Khavinson’s theorem [1951] mentioned above.

Adamyan, Arov, and Krein proved in [Adamyan et al. 1968a] that, if there are
at least two best approximations to ¢, there exists a best approximation g such
that ¢ — g has constant modulus on T. They found a formula that parametrizes
all best approximations.

We now show that Hankel operators can be characterized as the operators
that satisfy a certain commutation relation. Recall the S and 8 are the shift and
bilateral shift operators, respectively.

THEOREM 2.6. Let R be a bounded operator from H? to H?>. Then R is a
Hankel operator if and only if it satisfies the commutation relation

P_SR = RS. (2-11)
Proor. Let R = H,, with ¢ € L*. Then
P S8Rf=P_zH,f =P_2Ppf =P_zpf = Hyzf.
Conversely, suppose that R satisfies (2-11). Let n > 1, k > 1. We have
(Rz", z%) = (RSz"1,2%) = (P_SR2""1, 2¥) = (SRz" 71, %) = (R 1, 2FH1).

Therefore R has Hankel matrix in the bases {2"},,>0 of H2 and {z*};>1 of H2.
It follows from Theorems 2.1 and 2.3 that R = H, for some ¢ in L. O

3. Sarason’s Theorem

In this section we study the commutant of compressions of the shift operator
on H? to its coinvariant subspaces, and we prove Sarason’s commutant lifting
theorem. We use an approach given in [Nikol’skii 1986, Section VIII.1], based
on Hankel operators and Nehari’s theorem. Then we establish an important
formula that relates functions of such a compression with Hankel operators.

Let 9 be an inner function. Put

Ky = H?> o 9H?.

By Beurling’s theorem (see [Hoffman 1962, Chapter 7] or [Nikol’skii 1986, Sec-
tion I.1], for example), any nontrivial invariant subspace of the backward shift
operator S* on H? coincides with Ky for some inner function 9. Denote by Sy
the compression of the shift operator S to Ky, defined by

Sof = Pyzf for fe Ky, (3-1)

where Py is the orthogonal projection from H? onto Ky. Clearly, Sh = S*|Ky.
It can easily be shown that

Pyf = f — 9P Of =9P_9Of for f € H?. (3-2)
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Sy is the model operator in the Sz.-Nagy—Foiag function model. Any contrac-
tion T (that is, a linear operator such that || T|| < 1) for which lim,, .o T*" =0
in the strong operator topology and rank(l — T*T) = rank(I — TT*) = 1 is
unitarily equivalent to Sy for some inner function ¥; see [Sz.-Nagy and Foiag
1967, Chapter 6; Nikol’skii 1986, Lecture IJ.

The operator Sy admits an H functional calculus. Indeed, given ¢ € H*,
we define the operator ¢(Sy) by

@(Sy)f =Pypf for f € Ky. (3-3)

Clearly, this functional calculus is linear. It is also easy to verify that it is
multiplicative. Hence, for any ¢ € H, the operator ¢(Sy) commutes with Sy,
and it follows from (3-3) that

le(So)ll < llpll e

This is known as von Neumann’s inequality.
The following theorem of Sarason [1967] describes the commutant of Sy. It is
a partial case of the commutant lifting theorem of Sz.-Nagy and Foiag [1967].

THEOREM 3.1. Let T be an operator that commutes with Sy. Then there exists
a function ¢ in H*® such that T = ¢(Sy) and ||T|| = ||¢|| ge<-

LEMMA 3.2. Let T be an operator on Ky. Consider the operator T:H?— H?
defined by

Tf=490TPyf. (3-4)
Then T commutes with Sy if and only z'fT is a Hankel operator.

PrROOF. T is a Hankel operator if and only if
P_2Tf=Tzf forfe H? (3-5)

(see (2-11)), which means that

P_29TPyf = 9TPyzf for f € H?,
which in turn is equivalent to

IP_92TPyf =TPyzf for fec H?. (3-6)
We have by (3-2)

IP_92TPyf = PyzTPyf = SyTPyf.

Since obviously the left-hand side and the right-hand side of (3-6) are zero
for f € 9H?, it follows from (3-1) that (3-5) is equivalent to the equality

SﬁTf = TSﬁf for f € Ky. O
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PROOF OF THEOREM 3.1. By Lemma 3.2 the operator T' defined by (3-4) is a
Hankel operator. By Nehari’s theorem there exists a function 1 in L° such that
l¥)lco = ||T|| and Hy = T that is,

P_of =90TPyf for f e H>.

It follows that P_tf = 0 for any f € YH?. That means that Hyy = 0. Put
@ = ¢, Clearly ¢ € H* and ¢ = Jp. We have

ITf=P_Jpf for fe Ky,

SO
Tf =9P_Jof = Pyof = o(So)f for f € Ky. (3-7)
Obviously
ITI =171 = 1]l = ll@lloos
which completes the proof. 0

REMARK. Formula (3-7) implies a remarkable relation, due to Nikol’skii [1986],
between Hankel operators and functions of model operators: Let 9 be an inner
function, and let ¢ € H*>. Then

90(519) = ®H1§¢|K197 (378)

where © is multiplication by ). This formula shows that ¢(Sy) has the same
metric properties as Hy,; compactness, nuclearity, etc.

Formula (3-8) relates the Hankel operators of the form Hg, with functions of
model operators. It can easily be shown that such Hankel operators are exactly
the Hankel operators from H? to H2 that have a nontrivial kernel. It is worth
mentioning that the set of functions of the form ¢, where ¥ is inner and p € H*>,
forms a dense subset of L>° [Douglas 1972, 6.32].

4. Finite Rank

One of the first results about Hankel matrices was a theorem of Kronecker
[1881] that describes the Hankel matrices of finite rank.

Let r = p/q be a rational function where p and ¢ are polynomials. If p/q is
in its lowest terms, the degree of r is, by definition,

degr = max(deg p, degq),

where degp and degq are the degrees of the polynomials p and ¢. It is easy
to see that degr is the sum of the multiplicities of the poles of r (including a
possible pole at infinity).

We are going to describe the Hankel matrices of finite rank without any
assumption on the boundedness of the matrix.
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We identify sequences of complex numbers with the corresponding formal
power series. If @ = {a;};>0 is a sequence of complex numbers, we associate
with it the formal power series

a(z) = Z a2

j=0
The space of formal power series forms an algebra with respect to the multipli-
cation

(ab)(z) = Z <Zajbm_j>zm, with a = Zajzj and b= ijzj.
m20 * j=0 j=0 Jj=0

Consider the shift operator S and the backward shift operator S* defined on
the space of formal power series in the following way:

(Sa)(z) = za(z), S* Zajzj = Zaj+1zj.
Jj=0 Jj=0

Let o = {a;};>0 be a sequence of complex numbers, which we identify with the
corresponding formal power series

az) = Z ;2. (4-1)

>0
Denote by I', the Hankel matrix {oj44} k>0

THEOREM 4.1. T, has finite rank if and only if the power series (4-1) determines
a rational function. In this case

rank T, = deg za(z).

PROOF. Suppose that rankI',, = n. Then the first n + 1 rows are linearly de-
pendent. That means that there exists a nontrivial family {c¢; }o<;<» of complex
numbers (nontrivial means that not all the ¢; are equal to zero) such that

coa+c1STa+ -+ ¢, Sa=0. (4-2)
It is easy to see that
k—1
SnS*ka = §nkq — gnk Zajzj for k <n. (4-3)
§=0

It follows easily from (4-2) and (4-3) that

n n n

0=9" chS*ka = chS"S*ka = Z S Fa —p, (4-4)
k=0 k=0 k=0

where p has the form
n—1

pz) =Y p?.
=0
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Put

n

a(2) =D cnj?’. (4-5)

=0

Then p and ¢ are polynomials and it follows from (4-4) that qa = p, so a(z) =
(p/q)(z) is a rational function. Clearly,

deg za(z) < max (deg zp(z), degq(z)) = n.

Conversely, suppose that a(z) = (p/q)(z) where p and ¢ are polynomials such
that degp < n — 1 and deggq < n. Consider the complex numbers c; defined by
(4-5). We have

n
Z ¢;S" la = p.
=0

Therefore

n n
§7 oSt Ta=) ¢STa=0,
§=0 §=0
which means that the first n + 1 rows of I'y, are linearly dependent. Let m < n
be the largest number for which ¢,,, # 0. Then S*™« is a linear combination of
the S*a with j <m — 1:
m—1
SMa =Y d;SYa withd; € C.
§=0
We will show by induction that any row of ', is a linear combination of the

first m rows. Let k > m. We have
m—1 ]
o = (S S =Y " d; (ST (4-6)
j=0
Since k —m + j < k for 0 < j < m — 1, by the induction hypothesis each of the
terms of the right-hand side of (4-6) is a linear combination of the first m rows.
Therefore rank I', < m, which completes the proof. O

It is easy to see that Kronecker’s theorem for Hankel operators H, on H? admits
the following reformulation.

COROLLARY 4.2. Let ¢ € L*>. The Hankel operator H, has finite rank if and
only if P_p is a rational function. In this case

rank H, = degPP_ .

COROLLARY 4.3. H, has finite rank if and only if there exists a finite Blaschke
product B such that By € H*.
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5. Compactness

In this section we establish Hartman’s compactness criterion for Hankel oper-
ators. We also compute the essential norm of a Hankel operator and study the
problem of approximation of a Hankel operator by compact Hankel operators.

Recall that the essential norm |||, of an operator T' from a Hilbert space 3y
to a Hilbert space Hs is, by definition,

IT|le = inf{||T — K|| : K is compact}. (5-1)

To compute the essential norm of a Hankel operator, we have to introduce
the space H*® + C.

DEFINITION. The space H*® + C is the set of functions ¢ in L*> such that ¢
admits a representation ¢ = f + g, where f € H> and g € C(T).

THEOREM 5.1 [Sarason 1978]. The set H® + C' is a closed subalgebra of L.

To prove the theorem, we need the following elementary lemma, where
Ca ¥ B> nOo(T).
LEMMA 5.2. Let ¢ € C(T). Then
distre (¢, H®) = dist = (i, C'a). (5-2)

PROOF. The inequality dist(p, H*®) < distre (@, C4) is trivial; we prove the
opposite one. For f € L*> we consider its harmonic extension to the unit disc
and keep the same notation for it. Put f,.(¢) = f(r¢) for ¢ € D. Let p € C(T),
h € H*. We have

I — Alloe > Tim (o — Bl > lim (o — bl — 1o — orlloc)

= lin% llo — hrlloo > distre (¢, Ca),
r—

since ||¢ — pr|leo — 0 for continuous . O

PROOF OF THEOREM 5.1. Equality (5-2) means exactly that the natural imbed-
ding of C(T)/C4 in L>®/H® is isometric, so C(T)/C4 can be considered as a
closed subspace of L>*/H®>. Let p : L* — L*°/H®> be the natural quotient
map. It follows that H>® + C = p~}(C(T)/C4) is closed in L.

This implies that

H*>® + C = closy,= (UnZQZnHOC). (5*3)

It is easy to see that if f and g belong to the right-hand side of (5-3), then so
does fg. Hence H* + C is an algebra. O

Now we are going to compute the essential norm of a Hankel operator. The fol-
lowing result was apparently discovered by Adamyan, Arov, and Krein [Adamyan
et al. 1968b].
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THEOREM 5.3. Let ¢ € L*>. Then
[Hylle = distre (o, H*+O).
LEMMA 5.4. Let K be a compact operator from H? to H%. Then
nlgl;O [|[EKCS™|| = 0.

PROOF. Since any compact operator can be approximated by finite-rank op-
erators, it is sufficient to prove the assertion for rank-one operators K. Let
Kf=(f&n, &€ H? ne H2. We have KS"f = (f,5"&)n, so

IES™ | = 15" ¢]l2] nll2 — O O

Proor oF THEOREM 5.3. By Corollary 4.2, H is compact for any trigonometric
polynomial f. Therefore Hy is compact for any f in C(T). Consequently,

distjee (0, H® +C) = inf |H, — Hy|| > ||Hyl..
it (¢, H* + C) felg(m\l o — Hyll > [[Hylle

On the other hand, for any compact operator K from H? to H2,
[1Hy — K| = |(Hp = K)S™[| = [HpS™ || = [KS™|| = [[Heng || — | K™ ]
= distre (@, 2" H®) — || KS"|| > distp< (@, H*+C) — ||KS™|.
Therefore, in view of Lemma 5.4,

[ Hlle > distpe (¢, H®+C). O

REMARK. In Section 2 we studied the question of existence and uniqueness
of a best H*® approximant in the L°°-norm. The same question can be asked
about approximation by H 4 C' functions; it was explicitly posed by Adamyan,
Arov, and Krein in [Adamyan et al. 1984]. However, the situation here is quite
different. It was shown in [Axler et al. 1979] that, for any ¢ € L=\ H* + C,
there are infinitely many best approximants in H> +C'. See also [Luecking 1980]
for another proof.

We now obtain Hartman’s compactness criterion.
THEOREM 5.5. Let ¢ € L. The following statements are equivalent.

(a) Hy, is compact.
(b) ¢ € H® + C.
(c) There exists a function ¢ in C(T) such that H, = Hy.

PROOF. Obviously (b) and (c) are equivalent.

Suppose that ¢ € H* 4 C. Then ||Hyl|le = 0 by Theorem 5.3, which means
that H, is compact. Thus (b) implies (a).

To show that (a) implies (b), assume H, is compact. Then Theorem 5.3
gives distp (¢, H* 4+ C) = 0, which, in combination with Theorem 5.5, yields
pe H® +C. O
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COROLLARY 5.6. Let ¢ € L*°. Then
|Hylle = inf{||[H, — Hy|| : Hy is compact}. (5-4)

In other words, to compute the essential norm of a Hankel operator we can
consider on the right-hand side of (5-1) only compact Hankel operators.

COROLLARY 5.7. Let p € H*® + C. Then for any € > 0 there exists a function
¢ in C(T) such that Hy = Hy, and |||/ < ||Hyl| + €.

Proor. Without loss of generality we can assume that ¢ € C(T). By Theorem
5.3, ||H,| = distr (¢, H>). On the other hand, by Lemma 5.2,

diStLoo ((p, HOO) = diStLoo ((‘0, CA)

This means that for any € > 0 there exists a function h € C'4 such that ||p—h| <
|Hy|| + . Thus ¢ = ¢ — h does the job. O

ExXaMPLE. For a compact Hankel operator, it is not always possible to find a
continuous symbol whose L*-norm is equal to the norm of the operator. Indeed,
let a be a real-valued function in C(T) such that @ ¢ C(T), where & is the
harmonic conjugate of a. Put ¢ = Ze'®. Then ¢ = ze®T %=, Clearly e®+® ¢
H* and e™* € C(T). It follows from Theorem 5.1 that ¢ € H* 4 C and so H,
is compact. Let us show that |H,| = 1. Put

h =exp 1(a —ia).

Clearly, h is an outer function. To prove that h € H? we need the following the-
orem of Zygmund [Zygmund 1968, Chapter 7, Theorem 2.11]: If £ is a bounded
real function such that ||£|[z~ < 7/(2p), then exp€ € LP. Indeed, approxi-
mating « by trigonometric polynomials, we can easily deduce from Zygmund’s
theorem that h € HP for any p < oo. Clearly ||H,h|2 = ||Zh||2 = ||h|l2. Hence
|lHsll = ll¢lloo = 1. By Corollary 2.4, ||¢ + f|lec > 1 for any nonzero f in H.
It is also clear that ¢ ¢ C(T). This proves the result.

In Section 2 we gave a boundedness criterion for a Hankel operator H, in terms
of P_¢p. That criterion involves the condition P_¢ € BMO. We can give a
similar compactness criterion if we replace BMO by the space VMO of functions
of vanishing mean oscillation.

THEOREM 5.8. Let ¢ € L% Then H, is compact if and only if P_p € VMO.

This can be derived from Theorem 5.5 in the same way as it has been done in
Section 2 if we use the following description of VMO due to Sarason:

VMO = {{+Pyn:§neC(T)}

See [Garnett 1981], for example.
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6. Approximation by Finite-Rank Operators

DEFINITION. For a bounded linear operator T' from a Hilbert space H; to a
Hilbert space Hs, the singular values s,,,(T), for m € Z, are defined by

$m(T) = inf{||T — R|| : rank R < m}. (6-1)

Clearly, so(T) = ||| and $pm+1(T) < s (T).

Adamyan, Arov, and Krein [Adamyan et al. 1971] proved that in order to find
$m(T') for a Hankel operator T we can consider the infimum in (6-1) over only
the Hankel operators of rank at most m. This is a deep and important result.

THEOREM 6.1. Let I' be a Hankel operator from H? to H?, and let m > 0.
Then there exists a Hankel operator Ty, of rank at most m such that

I = T[] = sm (T). (6-2)

By Kronecker’s theorem, rankI',, is at most m if and only if I';,, has a rational
symbol of degree at most m, so Theorem 6.1 admits the following reformulation.
Let R,, be the set of functions f in L* such that P_ f is a rational function of
degree at most m. Clearly, R,, can be identified with the set of meromorphic
functions in D bounded near T and having at most m poles in D counted with

multiplicities.

THEOREM 6.2. Let ¢ € L>®, m € Zy. There exists a function ¢ in Ry such
that

o = Ylloo = sm(Hy). (6-3)

We will prove Theorems 6.1 and 6.2 only for compact Hankel operators. For the
general case see [Adamyan et al. 1971] or [Treil’ 1985a], where an alternative
proof is given. Another fact that we state without proof is that for a compact
Hankel operator there exists a unique Hankel operator I';,,, of rank at most m
that satisfies (6-2); see [Adamyan et al. 1971].

DEFINITION. Let T be a compact linear operator from a Hilbert space H; to a
Hilbert space H,. If s is a singular value of T, consider the subspaces

EN) ={z e : T"Te =%z}, E) ={yecHy:TTy = s%y}.

Vectors in E§+) are called Schmidt vectors of T (or, more precisely, s-Schmidt
vectors of T'). Vectors in E$) are called Schmidt vectors of T* (or s-Schmidt
vectors of T*). Clearly, x € E§+) if and only if Tx € E(g*). A pair {z,y}, with
x € H; and y € Hs, is called a Schmidt pair of T (or s-Schmidt pair) if Tz = sy

and Ty = sx.
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PROOF OF THEOREM 6.1 IN THE COMPACT CASE. Put s = s, (I"). If s = ||T]|,
the result is trivial. Assume that s < ||'||. Then there exist positive integers k
and p such that k <m <k+p—1and

Sk_l(F) > Sk(F) == Sk—‘,—p.—l(r) > Sk_hu(rl). (6*4)
Clearly, it suffices to consider the case m = k.
LEMMA 6.3. Let {&1,m} and {&2,m2} be s-Schmidt pairs of T. Then &1&o = m17a.

To prove the lemma we need the following identity, which is a consequence of
(2-11):
P_("Tf)=Tz"f forneZ,. (6-5)

ProOOF OF LEMMA 6.3. Let n € Z,. We have

51/22(_”> - (anlaéé) = S_l(znglaF*UQ) = S_l(rznglarm)
= s (P_2"T¢1,m) = (z"n1,m2) = mip(—n),

by (6-5). Similarly, gl/é(n) =mima(n), n € Z,, which implies & & = m7. O
COROLLARY 6.4. Let {£,n} be an s-Schmidt pair of T'. Then the function
Ys = = 6-6
¢ (6-6)
is unimodular and does not depend on the choice of {£,n}.

PrOOF. Let & = & = £ and 51 = 2 = n in Lemma 6.3. It follows that
|€|> = |n]? and so n/¢ is unimodular for any Schmidt pair {&,n}.

Let {&1,m} and {&2,m2} be s-Schmidt pairs of T'. By Lemma 6.3, 11/& =
&2 /M. Since 12/&5 is unimodular, 11 /&1 = 12/&s. O

We resume the proof of Theorem 6.1. Put
I's=H

SPs
where ¢ is defined by (6-6). Clearly ||I's|| < s. The result will be established if
we show that rank(I" — T'y) < k.

Let {£,n} be an s-Schmidt pair of T. We show that it is also an s-Schmidt
pair of I'y. Indeed,

FsézsP—gﬁzsn, FIn:5P+§n:5§-
n

Set
E, ={¢ € H*:T"T¢ = 5%} for E_ ={nec H*> :TT"n = s’n}
be the spaces of Schmidt vectors of I and I'*. Clearly, dim £, = dim E_ = p.
It follows easily from (6-5) that if T¢ = '€, then I'2"¢ = T';2"¢€ for any n €
Z.. Since T's|E; = T'|E,, it follows that T and I'; coincide on the S-invariant
subspace spanned by E., where S is multiplication by z on H?. By Beurling’s
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theorem this subspace has the form ¥H?, where 9 is an inner function (see
[Nikol’skii 1986, Lecture I, 1], for example). Denote by © multiplication by J. We
have I'© = I';0. The proof will be complete if we show that dim(H2o9H?) < k.
Put d = dim(H? © 9H?).

LEMMA 6.5. The singular value s of the operator I'© has multiplicity at least
d+ .

Note that I'© is compact, so it will follow from Lemma 6.5 that d < co.

PrOOF OoF LEMMA 6.5. Let 7 be an inner divisor of 1}, which means that
9771 € H>®. We show that, for any £ € E,

(T,0)*(I'y0)7¢ = s°7¢ € . (6-7)

Indeed it is easy to see that T'*zf = 2zI'f for any f € H?. Let J be the
transformation on L? defined by Jf = Zf. It follows that J maps E onto E_.
Since B, C YH?, we have E_ C 9H?.

Let £ € E, and set n = s7'T'¢ € E_. We can represent 1 as 7 = 91, where
N« € H2. We have

([,0)*(I,0)7¢ = (I,0)"sP_ gﬁfg = $(I,0)*P_1,7
=s([s0)* .7 = 82P+§1§77*7_' = %7€,
n

which proves (6-7).

Since d = dim(H?&YH?), we can find for any n < d inner divisors {J, }1<j<n+1
of ¥ such that ¥,,41 = ¢, 19j+119;1 € H*, and 9, and the 19j+119;1 are not
constants; see [Nikol’skil 1986, Lecture II, 2], for example. Then it follows from
(6-7) that the subspace

Ej=span{Ey, W E;, ..., 0;E:}, for1<j<n+1,

consists of eigenvectors of (['©)* (') corresponding to the eigenvalue s2. Clearly,
Ei\ E; # @ and Ej;1 \ Ej # @ for 1 < j < n. Therefore

dim Ker((I'©)*T'© — s*I) > dim E, 11 > p+n+ 1.
The left-hand side is equal to oo if d = co and is at least p + d if d < co. O

We can complete now the proof of Theorem 6.1. We have already observed that
5;(I'©) < 5;(I'), so by Lemma 6.5 we have

Sktp(l) < Spyp—1(L) = = s(L) = sa4,-1(I'O) < sgpp—1(T).

Therefore d+pu—1 < k4p and so d < k, which completes the proof of Theorem 6.1
in the compact case. U
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7. Schatten—von Neumann Classes S,

In this section we study Hankel operators of Schatten—von Neumann class S,,.
We state the main result, which describes the Hankel operators of class S, for
0 < p < 00, as those whose symbols belong to the Besov class le,/ P However,
we give the proof here only in the case p = 1.

DEFINITION. Let H; and Hy be Hilbert spaces and let T : Hy; — JHs be a
bounded linear operator. Given p with 0 < p < oo, we say that T' € S, (H;, Hs)
(or simply T' € S,,), if the sequence {s;};>0 of the singular values of T' belongs
to ¢P. We put

1/p
IT)s, < (Zs?) - (7-1)

Jj=0

For 1 < p < oo the class Sp,(H;, Hsz) forms a Banach space with norm given by
(7-1). If H is a Hilbert space and T is an operator on H of class S1, one can
define the trace of T' by

trace T %' Z(Tej, e;), (7-2)
j=0

where {e;};>0 is an orthonormal basis of 3. The right-hand side of (7-2) does
not depend on the choice of the orthonormal basis. The trace is a linear func-
tional on K, and |traceT| < ||T||s,. The dual space of S1(Hi,Hz) can be
identified with the space B(Hz, H;) of bounded linear operators from Hy to H;
with respect to the pairing

(T,R) ¥ trace TR for T € S1(Hy, %) and R € B(Ho, Hy).
We refer the reader to [Gohberg and Krein 1965] for more detailed information
about the classes .

We now define the Besov classes By of functions on T. They admit many dif-
ferent equivalent definitions; see [Peetre 1976], for example. We need regularized
de la Vallée Poussin type kernels V,,, which can be defined as follows. Let v be
an infinitely differentiable function on R such that suppv = [%,2], v > 0, and

29
x
ZU(—) =1 forz>1.
27
7>0
It is very easy to construct such a function v. We can now define V,, by

LW
Vn—{&GZU(Q_n)Z forn > 1,
V.

_n for n <0,
Volz)=zZ+1+ 2.
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DEFINITION. Let 0 < p < oco. The Besov space B, consists of the distributions
f on T satisfying

Z (28|n\ ||f % VnHLI’)p < .

nez

If p > 1, the function v does not have to be infinitely smooth. In particular, in
this case we can replace v by the piecewise linear function w satisfying w(1) =1
and suppw = [%, 2], and replace the V,, by the trigonometric polynomials

kN k
W, — {Zkezw(Q_n)Z forn>1,
W_n for n <0,
Wo(z) =z+1+2.

It is clear from this definition that P, B; C B,. We can identify in a natural way
a function f in P4 By with the function >, f(j)#%, analytic in D. A function
[ analytic in D belongs to Py B if and only if

/D PP (1~ 1<) P dms(C) < oo,

where n € Z4 and n > s.
For s > max{1/p — 1, 0}, the class B, consists of the functions f on T for
which
APz A Nz
T [T — 1[THeP
def

where n > s is a positive integer and (D, f)(¢) = f(7¢) — f(C).

dm(T) < o0,

THEOREM 7.1. Let ¢ be a function on T of class BMO and let 0 < p < oo.
Then H, € Sy if and only if P_p € B,l,/p.

For technical reasons it is more convenient to work with Hankel matrices I', =
{¢(4 + k)}j k>0, where ¢ = 37, @(j)27 is a function analytic in the unit disk.
We shall identify Hankel matrices I', with operators on the space 2.

Clearly, the following statement is equivalent to Theorem 7.1.

THEOREM 7.2. Let ¢ be a function analytic in the unit disk and let 0 < p < oo.
Then the Hankel operator I', belongs to the class S, if and only if ¢ € le)/p.

Theorem 7.1 was proved in [Peller 1980] for p > 1, and in [Semmes 1984] and
[Peller 1983] for p < 1 (the proofs are quite different). Pekarskii’s theorem [1985]
on rational approximation also gives another proof of Theorem 7.2. Later other
proofs were found; see, for example, [Coifman and Rochberg 1980] for p = 1, and
[Rochberg 1982; Peetre and Svensson 1984] for 1 < p < co.

We prove Theorem 7.2 only for p = 1. We present the original proof from
[Peller 1980], which gives rather sharp estimates from above and from below for
the norms ||T'y|s,
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PROOF OF THEOREM 7.2 FOR p = 1.. We first prove that I, € Sy if ¢ € Bj.

It is easy to see that
= Z 0 x W,.
n>0

‘We have
D 2ok Wl < oo

n>0

Clearly, ¢ * W, is a polynomial of degree at most 2”1 — 1. The following lemma
gives sharp estimates of the trace norm of a Hankel operator with polynomial
symbol.

LEMMA 7.3. Let f be an analytic polynomial of degree m. Then
ITslls, < (m+ 1) f]1-

PROOF. Given ¢ € T, we define elements z; and y¢ of £2 by

N ¢ i< <m,
xf(j)_{o if > m:

L
iy = {JO HOk<m.

Define the rank-one operator A; on ¢? by setting Acx = (z,z¢)yc for x € (2.
Then A € S; and

[Aclls, = llzclle llyellee = (m+ )] F(O)]-
We prove that
= [ Acdm(¢) (7-3)
T

(the function ¢ — A being continuous, the integral can be understood as the
limit of integral sums). We have

(Tyejren) = (G + k) = /T F(OE* dm(0),
(Ac,ej,er) = f(C)CICF.
Therefore (7-3) holds and

ITslls, < / lAclls, dm(C) < (m +1) / F(O)] dm(©). 0

We now complete the proof of the sufficiency of the condition ¢ € B{. It follows
from Lemma 7.3 that

ITellsy < D 1T llsy < D 2" o Wall .

n>0 n>0
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Now suppose that I', € S§1. Define polynomials @, and R, for n > 1, by

0 if k< 2n1,
Qu(k) ={ 1—|k—2n|/2n=t if2n—l <k <2n42n1
0 if k> 2n 421
0 if k<27,
Ro(k)={ 1—|k—2m —2n-1|/on=1 jfon < | < 2ntl,
0 if k> 2ntl,

Clearly, W,, = Q, + %Rn for n > 1.
‘We now show that

D2 o % Qanga |l < oo (7-4)

n>0

One proves in exactly the same way that
S22 4 Qan 11 < o0,
n>1
Z 22" | * Ropya |1 < 00,
n>0
> 22| Ry < oo

n>1

To prove (7-4), we construct an operator B on ¢? such that ||B|| < 1 and

(o, B) = 3050 22" [1f * Qanall 1

Consider the squares S,, = [22"71 22771 4 227 1] x [22n—1 41 22n—1 4 92n]
for n > 1, on the plane.

Let {¢n}n>1 be a sequence of functions in L such that ||¢), ||~ < 1. We

define the matrix {b;;}; x>0 of B by

o _ [Uali+k) i (G.k) €S, forn>1,
=190 if (. k) ¢ Upsy Sne

We show that ||B]| < 1. Consider the subspaces
H,, =span{e; : 22" < j <2291}
H], = spanfe; : 22" 7141 < j < 22n7 1y 9%y

It is easy to see that
B=)Y Py, P,

n>1

where P, and P/ are the orthogonal projection onto H, and H/,. Since the
spaces {H,, }n>1 are pairwise orthogonal as well as the spaces {H], },,>1, we have

IBIl = sup | P,Ty, Poll < sup [Ty, || < sup [tz < 1.
n n n
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We show that
<FLP7 B> = Z 22n<Q2n+1 * @, ’(/}n>a

n>0
where (g, h) % Jr F(QOR(C) dm((), for g € L' and h € L>. We have

(Dy, B) =Y (T, PiTy, Pr)

n>1
22n+22n+1
=y (22" — 5 — 22" F1)) @(5) P (4)
n>1 j=22n
= 2°™(Qant1 %@, V)
n>1

We can now pick a sequence {1, }n>1 such that (Qaont1%@, ¥n) = ||Q2nt+1 %] L1.
Then

Ty, B) = 22" Qang1 * @l 1.
n>1
Hence

Z 22 | Qappt % |11 = 2(Ty,, B) <2|Tylls, < 0. O
n>1

REMARK. This proof easily leads to the estimates

1 n n
522 lo* Wallr < [ITlls, <2 2"l * Wall 1.

n>1 n>0

8. Rational Approximation

Classical theorems on polynomial approximation, as found in [Akhiezer 1965],
for example, describe classes of smooth functions in terms of the rate of poly-
nomial approximation in one norm or another. The smoother the function, the
more rapidly its deviations relative to the set of polynomials of degree n decay.
However, it turns out that in the case of rational approximation the correspond-
ing problems are considerably more complicated. The first sharp result was
obtained in [Peller 1980]; it concerned rational approximation in the BMO norm
and was deduced from the S, criterion for Hankel operators given in Theorem
7.1. There were also earlier results [Gonchar 1968; Dolzenko 1977; Brudnyt 1979),
but there were gaps between the “direct” and “inverse” theorems.

In this section we describe the Besov spaces B;/ P in terms of the rate of
rational approximation in the norm of BMO. Then we obtain an improvement
of Grigoryan’s theorem which estimates the L> norm of P_ f in terms of || | L
for functions f such that P_ f is a rational function of degree n. As a consequence
we obtain a sharp result about rational approximation in the L°° norm.

There are many different natural norms on BMO. We can use, for example,

def .
[fllemo = mf{[¢llzoe + lInllLe~ : f = E+Pyn for & n € L}



AN EXCURSION INTO THE THEORY OF HANKEL OPERATORS 89

Denote by R, for n > 0, the set of rational functions of degree at most n
with poles outside T. For f € BMO put

ro(f) < distpmo{f, R -

The following theorem was proved in [Peller 1980] for p > 1 and in [Peller 1983;
Semmes 1984; Pekarskil 1985] for p < 1. Pekarskii [1985; 1987] also obtained
similar results for rational approximation in the L? norms. See also [Parfenov
1986] for other applications of Hankel operators in rational approximation.

THEOREM 8.1. Let ¢ € BMO and 0 < p < co. Then {r,(¢)}n>0 € & if and
: 1/p
only if p € Bp'".

PrOOF. We have Py BMO C BMO (see the introduction), P, B;/p C le,/p
(Section 7), and P, R,, C R,,. Therefore it is sufficient to prove the theorem for
P_p and Py . We do it for P_¢; the corresponding result for P ¢ follows by
passing to complex conjugate.

It follows from Theorem 6.1 that

sp(Hy,) = inf{||H, — H,| : rank H, < n}.

Without loss of generality we may assume that » = P_r. By Corollary 4.2
rank H, < n if and only if r € R,,. Together with Theorem 2.3 this yields

c15n(Hy) < inf{|lo —rllBmo : 7 € Ry} < casn(Hy)

for some positive constants ¢; and cs.
The result follows now from Theorem 7.1. O

Denote by R the set of rational functions of degree at most n with poles outside
the closed unit disk, and put

it (f)  distpmoa{f, R; -

COROLLARY 8.2. Let ¢ € BMOA and 0 < p < oo. Then {r} ()}

and only if p € Py B;/p.

e if

n>0

We now prove an improvement of a theorem of Grigoryan [1976], which estimates
the ||P— |z~ in terms of |||~ in the case P_yp € R,. Clearly, the last
condition is equivalent to the fact that ¢ is a boundary value function of a
meromorphic function in D bounded near T and having at most n poles, counted
with multiplicities. It is not obvious that such an estimate exists. If we consider
the same question in the case where P_¢ is a polynomial of degree n, it is
well known that |P_ o[/~ < constlog(l + n) (see [Zygmund 1968]; this follows
immediately from the fact that || 327, 27|11 < constlog(1 + n)). Grigoryan’s
theorem claims that, if P_ ¢ € R,,, then

IP—¢llree < const-nf|g| o (8-1)
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The following result, obtained in [Peller 1983], improves this estimate. The proof
is based on the S; criterion for Hankel operators given in Theorem 7.1.

THEOREM 8.3. Let n be a positive integer and let ¢ be a function in L such
that P_y € R,,. Then

IP—¢llp; < const-nfj¢] re~. (8-2)
Observe first that (8-2) implies (8-1). Indeed, if f € B, then Dm0 21 f %

WLt < const || f| g1 (see Section 7). It is easy to show that

lpllzoe <D 1F(G)] < const Y 27| % Wil s,
§>0 n>0

which proves the claim.

Proor or THEOREM 8.3. Consider the Hankel operator H,. By Nehari’s
theorem, ||Hy| < |l¢|lz~. By Kronecker’s theorem, rank H, < n. Therefore
|Hylls, <nl/Hy|. The result now follows from Theorem 7.1, which guarantees
that [|[P_ o[/ p1 < const [|Hy s, - O

To conclude this section we obtain a result on rational approximation in the L*>°
norm [Peller 1983]. For ¢ € L*> we put

pnlp) & distp{p,Rn} fornezZ,.

THEOREM 8.4. Let ¢ € L. Then the p,(¢) decay more rapidly than any power
of n if and only if ¢ € (0 B;/p.

Pekarskii [1987] obtained a result similar to Theorem 8.1 for rational approxi-
mation in L* in the case 0 < p < 1.

LEMMA 8.5. Letr € R,,. Then
Il < const -n ||7]|Bmo-

ProOF. It suffices to prove the inequality for P_r and P, r; we do it for P_r.
Let f be the symbol of H,-minimal norm, that is, such that P_r = P_ f and
I fllzee = || Hr|| (see Corollary 2.5). We have

IP_7||L= = ||P- ||z < const-n|f||L= = const -n|H,| < const -n|P_r|smo,
by Theorems 8.3 and 2.3. g

Theorem 5.8 is an easy consequence of the following lemma.

LEMMA 8.6. Let A > 1 and let ¢ be a function in L such that r,(¢) <
const -n~* forn > 0. Then

pn () < const MY forn > 0.
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PROOF. Suppose that 7, € Ron and ||¢ — || a0 < const 27"}, We have
=10 =3 ((p=Tnts) = (= Tnij41)) = D _(Pntjt1 — Tnis)-
j=0 j=0
Under the hypotheses of the lemma ,

7041 — TntillBMo < const 27 (MDA,

and, since rp4j41 — Tntj € Ron+i+2, Lemma 8.5 gives

||rn+j+1 — Tn4j ||Loo S const 27(n+j)(/\71).
Therefore
pan (©) < || — 7| L const 2 A1)
which implies the conclusion of the lemma. O

9. The Operator of Best Approximation by Analytic Functions

Let ¢ be a function in VMO. By Corollary 2.5, there exists a unique function
f in BMOA such that ¢ — f is bounded on T and

| = fllLe = inf{[jp — gllL= : g € BMOA with ¢ — g € L>=(T)} = || Hy|.

We define the nonlinear operator of best approzimation by analytic functions
on the space VMO by setting A def f. This operator is very important in
applications such as control theory and prediction theory.

We are going to study hereditary properties of A. This means the following:
Suppose that X C VMO is a space of functions on T. For which X does the
operator A maps X into itself? Certainly not for arbitrary X: for example,
AC(T) ¢ C(T), as follows from the remark after Corollary 5.7.

Shapiro [1952] showed that AX C X if X is the space of functions analytic
in a neighbourhood of T. Carleson and Jacobs [1972] proved that AA, C A, if
a > 0 and a ¢ Z, where the A, et B2 are the Holder—Zygmund classes (see
Section 7).

In [Peller and Khrushchév 1982] three big classes of function spaces X were
found for which AX C X. The first consists of the so-called R-spaces, which
are, roughly speaking, function spaces that can be described in terms of rational
approximation in the BMO norm. The Besov spaces B;/p, for 0 < p < oo, and
the space VMO are examples of R-spaces. I will not give a precise definition
here.

The second class consists of function spaces X that satisfy the following ax-
ioms:

(A1) If f € X, then f € X and P f € X.
A2

(A2)
(A3) The trigonometric polynomials are dense in X.
(A4) The maximal ideal space of X can be identified naturally with T.

X is a Banach algebra with respect to pointwise multiplication.
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Many classical spaces of functions on the unit circle satisfy these axioms: the
space of functions with absolutely convergent Fourier series, the Besov spaces B,
for 1 < p < 0o, and many others (see [Peller and Khrushchév 1982]). However,
the Holder—Zygmund classes A,, do not satisfy axiom (A3).

The third class of function spaces described in [Peller and Khrushchév 1982]
contains many nonseparable Banach spaces. In particular, it contains the classes
Aq, for @ > 0. I will not define the third class here; see [Peller and Khrushchév
1982] for the definition and other examples.

Other function spaces satisfying the property AX C X are described in
[Vol’berg and Tolokonnikov 1985; Tolokonnikov 1991].

Another related question, also important in applications, is the continuity
problem. Merino [1989] and Papadimitrakis [1993] showed that the operator A
is discontinuous at any function ¢ € C(T) \ H* in the L* norm. For function
spaces satisfying Axioms (A1)-(A4), continuity points of A in the norm of X
were described in [Peller 1990b]: if ¢ € X \ H°, then A is continuous at ¢ if
and only if the singular value so(H,) of the Hankel operator H,, : H> — H? has
multiplicity one.

In this section we prove that A preserves the spaces Bll,/ P for 0 < p < oo, and
the space VMO. Moreover, it turns out that the operator A is bounded on such
spaces; that is,

[Aellx < const [l¢] x, (9-1)

for X = B,l,/ P or X = VMO. Note, however, that this is a rather exceptional
property. It was proved in [Peller 1992] that A is unbounded on X if X = B,
with s > 1/p, and on A,, with a > 0. Then it was shown in [Papadimitrakis
1996] that A is unbounded on the space of functions with absolutely convergent
Fourier series.

THEOREM 9.1. Let X = le,/p, with 0 < p < oo, or X = VMO. Then AX C X
and (9-1) holds.

To prove Theorem 9.1 we need a formula that relates the moduli of the Toeplitz
operators T, and Ty for a unimodular function u (one satistying |u(¢)| =1 a.e.
on T). This formula was found in [Peller and Khrushchév 1982]:

H:H,T,=T,H H,. (9-2)

It is an immediate consequence of the definitions of the Toeplitz and Hankel
operators. Nonetheless, it has many important applications.

Recall that each bounded linear operator 7" on a Hilbert space J{ admits a
polar decomposition T' = U (T* T)1/27 where U is an operator such that Ker U =
KerT and U|H © Ker U is an isometry onto the closure of the range of T. The
operator U is called the partially isometric factor of T.

We need the following well-known fact [Halmos 1967, Problem 152]. Let A
and B be selfadjoint operators on Hilbert space and let 1" be an operator such
that AT = TB. Then AU = UB, where U is the partially isometric factor of T
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We apply this to formula (9-2). Let u be a unimodular function on T. Denote
by U the partially isometric factor of T},. Then

H:H,U=UH_H,. (9-3)
The following theorem was proved in [Peller and Khrushchév 1982].

THEOREM 9.2. Let u be a unimodular function on T such that T, has dense
range in H?. Then H:H is unitarily equivalent to H}H,|H? & E, where

E=KerT,={fc H*: H:H,f = f}.
PROOF. Since U maps H? © FE isometrically onto H?, it follows from (9-3) that
H:H,=UH:H,U* =U(H:H,|H*>c E)U",
which proves the result. O

To prove Theorem 9.1 we need one more elementary fact [Peller and Khrushchév
1982].

LEMMA 9.3. Let h be an outer function in H?, T an inner function, and let
u=Th/h. Then T, has dense range in H?.

PROOF. Assume that f | T, H? is nonzero. Then (f,ug) = 0 for any g € H?.
We have f = f,) fi), where f(,) is outer and f; is inner. Put g = 7f;)h. Then

(frug) = (feyfeo)» TTfiyh) = (fro)s 1) = 0y (0)R(0) = 0,
which is impossible since both h and f(,) are outer. ([l

PROOF OF THEOREM 9.1. We prove the theorem for X = Bp/?. The proof for

X = VMO is exactly the same.

Without loss of generality we may assume that P_p # 0. Multiplying ¢,
if necessary, by a suitable constant, we may also assume that |H,|| = 1. Let
f=Ap. Put u= ¢ — f. By Corollary 2.5, u is unimodular and has the form
u = zUh/h, where ¥ is an inner function and h is an outer function in H?2. It
follows from Lemma 9.3 that T, has dense range in H?2.

Since P_u = P_ ¢, Theorem 7.1 implies that H, € S, and ||H,||s, is equiva-
lent to ||P— <p||B}17/p. We can now apply Theorem 9.2, which implies that

1Halls, < [[Hulls,,

and so

1P u||B;/p < const ||P_u||B;/p.

The result follows now from the obvious observation f =P, f =P, o —P,u. O
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10. Hankel Operators and Prediction Theory

In this section we demonstrate how Hankel operators can be applied in predic-
tion theory. By a discrete time stationary Gaussian process we mean a two-sided
sequence {X,, }nez of random variables which belong to a Gaussian space (i.e.,
space of functions normally distributed) such that

EX, =0

and
EXnXk =Cpn—k

for some sequence {c¢, }nez of real numbers, where E is mathematical expecta-
tion.

It is easy to see that the sequence {c,, }nez is positive semi-definite, so by the
Riesz—Herglotz theorem [Riesz and Sz.-Nagy 1965] there exists a finite positive
measure g on T such that ji(n) = ¢,. The measure p is called the spectral
measure of the process.

We can now identify the closed linear span of {X,},ez with the space L?(u)
using the unitary map defined by

X, 2" fornelZ.

This allows one to reduce problems of prediction theory to the corresponding
problems in the space L?(y), and instead of the sequence {X,,}nez we can study
the sequence {2"},cz. Note that if p is the spectral measure of a stationary
Gaussian process, its Fourier coefficients are real, so p satisfies the condition

wE)=u{¢:C€E} for E€T. (10-1)

It can be shown that any finite positive measure satisfying (10-1) is the spec-
tral measure of a stationary Gaussian process. However, to study regularity
conditions in the space L?(u) we do not need (10-1). So from now on pu is an
arbitrary positive finite Borel measure on T, though if it does not satisfy (10-1),
the results described below have no probabilistic interpretation.

With the process {2"},ez we associate the following subspaces of L?(u):

el span{z™ :m > n} = 2"H?*(u)
L2(p)
(“future starting at the moment n”) and
G, span{z™ :m < n} = 2"H?* (1)
L2(p)
(“past till the moment n”). Here
H?(p) Lof span{z" : m > 0}, H? (1) o span{z™ : m < 0},
L2(p) L2(p)

and span means the closed linear span.
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The process {z"} ez is called regular if

() G" = {0}.

n>0

We denote by P" and P, the orthogonal projections onto G" and G,, respec-
tively. It is easy to see that the process is regular if and only if lim,, ., PoP"™ =0
in the strong operator topology.

By Szegd’s theorem [Ibragimov and Rozanov 1970] the process is regular if
an only if u is absolutely continuous with respect to Lebesgue measure and its
density w (called the spectral density of the process) satisfies logw € L*.

In prediction theory it is important to study other regularity conditions (i.e.,
conditions expressing that the operators PoP™ are small in a certain sense) and
characterize the processes satisfying such conditions in terms of the spectral
densities.

A process {z"} ez in L?(p) is called completely regular if

pn € lim (| PP = 0;

this means that the spaces G" and Gy become asymptotically orthogonal as n —
00, or the corresponding Gaussian subspaces become asymptotically indepen-
dent.

The following results describe processes satisfying certain regularity condi-
tions. See [Peller and Khrushchév 1982] for other regularity conditions.

THEOREM 10.1. The process {z" }nez in L*(w) is completely regular if and only
if w admits a representation

w = |P|%e?, (10-2)
where @ is a real function in VMO and P is a polynomial with zeros on T.

Theorem 10.1 was proved in [Helson and Sarason 1967] and [Sarason 1972] (with-
out mention of the space VMO, which was introduced later).

THEOREM 10.2. The process {z"}nez in L?(w) satisfies the condition
pn < const(l+n)~% fora >0,

if and only if w admits a representation of the form (10-2), where ¢ is a real
function in A% and P is a polynomial with zeros on T.

Theorem 10.2 was obtained by Ibragimov; see [Ibragimov and Rozanov 1970].
THEOREM 10.3. The process {z" }nez in L?(w) satisfies the condition
PoPY € Sp, for0<p<oo,

if and only if w admits a representation of the form (10-2), where ¢ is a real
function in Bll)/p and P is a polynomial with zeros on T.
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For p = 2 Theorem 10.3 was proved by Ibragimov and Solev; see [Ibragimov and
Rozanov 1970]. It was generalized for 1 < p < oo in [Peller 1980; Peller and
Khrushchév 1982] and for p < 1 in [Peller 1983]. The Ibragimov-Solev proof
works only for p = 2.

Original proofs were different for different regularity conditions; some of them
(in particular, the original proof of Theorem 10.2) were technically very compli-
cated. In [Peller and Khrushchév 1982] a unified method was found that allowed
one to prove all such results by the same method. The method involves Hankel
and Toeplitz operators and it simplifies considerably many original proofs. In
[Peller 1990a] the method was simplified further.

In this section we prove Theorem 10.1. The proofs of Theorems 10.2 and 10.3
are similar.

To prove Theorem 10.1 we need several well-known results from the theory
of Toeplitz operators. We mention some elementary properties, which follow
immediately from the definition:

T, =T; for ¢ € L*°,

Tory =1TpTfTy for f e L™ and p,¢ € H™.

An operator T on Hilbert space is called Fredholm if there exists an operator
R such that TR—1I and RT — I are compact. It is well-known that T is Fredholm
if and only if dimKerT < oo, dimKerT* < oo, and the range of T is closed.
The indez ind T of a Fredholm operator T is defined by

indT = dim KerT — dim Ker T*.

If 71 and T3 are Fredholm, then ind 7775 = ind T} + ind 7. The proofs of these
facts can be found in [Douglas 1972].

Clearly, a Fredholm operator with zero index is not necessarily invertible.
However, the following result of Coburn (see [Sarason 1978; Nikol’skii 1986,
Appendix 4, 43], for example) shows that a Fredholm Toeplitz operator with
zero index must be invertible.

LEMMA 10.4. Let ¢ € L>. Then KerT, = {0} or KerT;; = {0}.

Proor. Let f € KerT, and g € KerT;. Then ¢f € H? and gg € H?.
Consequently, pfg € H! Lef {p e L' : 9(n) =0, n <0} and ¢fg € H'. Thus
the Fourier coefficients of ¢ fg are identically equal to zero, and so ¢pfg = 0.
Therefore if ¢ is a nonzero function, then either f or g must vanish on a set of
positive measure which implies that f =0 or g = 0. ([

We need one more well-known lemma of Devinatz and Widom; see, for example,
[Douglas 1972; Nikol’skii 1986, Appendix 4, 36].

LEMMA 10.5. Let u be a unimodular function such that T, is invertible. Then
there exists an outer function n such that ||u — 1| L= < 1.
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Proor. Clearly,

I SN2 + I Tuf 2 = I fIZ2 for f € H.
Since T, is invertible, it follows that

|Hy|| = distpoe {u, H*} < 1.

Let n be a function in H* such that |[u — n||z~ < 1. We show that n is outer.
We have

1 = Tanll = 11 = anljze~ = flu=nllze <1
(here 1 is the function identically equal to 1). Thus Ty, = T,;T, is invertible.

Hence T;, is invertible. Clearly T}, is multiplication by n on H 2 and so 1 must
be invertible in H*° which implies that n is outer. O

Finally, we prove the theorem of Sarason [1978] that describes the unimodular
functions in VMO. We give the proof from [Peller and Khrushchév 1982], which
is based on Toeplitz operators.

THEOREM 10.6. A unimodular function u belongs to VMO if an only if u admits
a representation

u=z"expi(q+r), (10-3)
where n € Z and q and r are real functions in C(T).

In other words, u belongs to VMO if and only if u = 2™e, where & is a real
function in VMO.

PROOF. Suppose that u is given by (10-3). Then
u=z"exp(q+iq)exp(—q +ir) € H* + C,

since H* + C is an algebra (see Theorem 5.1). Hence H, is compact, and
so P_u € VMO (see Theorems 5.5 and 5.8). Similarly, P_u € VMO, and so
u € VMO.

Now suppose that u € VMO. It follows immediately from the definitions of
Hankel and Toeplitz operators, that

I—-T, Ty, =H:H, forI—T,T,=H:H,.

Since the Hankel operators H,, and Hy are compact, the operator Ty, is Fredholm.
Put u = z"v, where n = indT,,. If n > 0, then T}, = T, T,~», whereas if n < 0,
then T,, = T,~»T,. Therefore indT,, = ind T, +ind T,» = indT,, —n = —n. Hence
indT, = 0, and T, is invertible by Lemma 10.4.

By Lemma 10.5 there exists an outer function 7 such that

[ =nllze =1 —onl[pe < 1.
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Hence o7 has a logarithm in the Banach algebra H* + C. Let f € C(T) and let
g € H* satisfy (vm)~! = v/n = exp(f + g). We have

v = exp(ic + log |n| +ilog|n| + f + g),

where ¢ € R. Since v is unimodular, it follows that log|n| + Re(f + g) = 0.
Therefore, setting ¢ def log |n| + Re g, we have ¢ € C(T). Since g € H>, we get

log |n] +Im g = g + Im §(0).
To complete the proof it remains to put r 4l I f+c¢+1Img(0) and observe that
u satisfies (10-3). O

ProOOF OF THEOREM 10.1. We first write the operator PyP™ in terms of a
Hankel operator. Let h be an outer function in H? such that |h|?> = w. Consider
the unitary operators U and V from L? onto L?(w) defined by

Uf = f/h, Vf=f/h, felr?
Since h is outer, it follows from Beurling’s theorem (see [Nikol’skii 1986], for
example) that UH? = H?(w) and VH? = H? (w). Therefore

Pog =VP_V~lg for g € L*(w),

and

Prg =U"Py 2" U g for g € LP(w).
Hence

PoPmg = VP_VU"P, 2"U " g = VP_ (h/h)z"P, 2" U g for g € L*(w).
It follows that
pn = Hopll for n > 0. (10-4)

LEMMA 10.7. The process {z"}nez is completely regular if and only if h/h €
VMO.

PROOF. It follows from (10-4) that complete regularity is equivalent to the fact
that ||H,np /[l — 0. We have

||HZ”?L/h|| = diStLoo {Zn]_'L/h, HOO}
— distp {h/h, 2" H®} — distz~{h/h, H*+C},

so lim,, o pn, = 0 if and only if ﬁ/h € H*> 4+ C. The last condition means
that Hp, ), is compact, which is equivalent to the fact that P_ h/h € VMO
(see Theorem 5.8). It remains to show that this is equivalent to the inclusion
h/h € VMO.

Put u = h/h. By Lemma 9.3 the Toeplitz operator T, has dense range in H?,
so by Theorem 9.2 the Hankel operator Hy is compact. The result now follows
from Theorem 5.8. O
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We resume the proof of Theorem 10.1. It is easy to see that
zZ—7
=7

Therefore for a polynomial P of degree m with zeros on T

=—%z foryeT.

=cz™

goliav]

for c € T.

Suppose first that w = |P|?e?, where ¢ € VMO and P is a polynomial of
degree m. Consider the outer function h; = exp (p + if). Since Phy is outer
and |Phy| = |h|, we have h = wPh;, where w € T. Hence

By Theorem 10.6, h/h € VMO, and so by Lemma 10.7 the process is completely
regular.

Conversely, suppose that the process is completely regular. By Lemma 10.7,
h/h € VMO, so by Theorem 10.6

_ Z'mezw

> =

for some m € Z and w € VMO. By Lemma 9.3, T/, has dense range, so
ind T}, /,, > 0. It follows from the proof of Theorem 10.6 that T is invertible,
which implies that m > 0. Now consider the outer function

hy Y exp(—/2 + iv/2).

As in the remark after Corollary 5.7 we can conclude that h, € H2.

Consider the Toeplitz operator T%j, /;, = Tzmi1, jp, - 1ts index equals m + 1,
so it has (m + 1)-dimensional kernel. Obviously, z/h1 € KerTims1p, /p, for
0 < j <'m, and so the functions z7hq, for 0 < j < m, form a basis in Ker Tzh/h.
It is also obvious that h € Ker Ty ;. Hence h = Phy for some polynomial P of
degree at most m. Since h and h; are outer, so is P, which implies that P has
no zeros outside the closed unit disk.

We show that P has degree m and has no zeros in D. Let P = P; P,, where
P; has zeros on T and P» has zeros outside the closed unit disk. Let k = deg P;.
Then

7 _
TSP P =wZ Pgh—ngl forw e T.
Consequently,
ind Ty, ), = indekFQ(Bl/hl)Pgl =k+indTp, +ind Ty, ), + indTP; =k,

since the operators T'5_, Tj, Jhy and TP; are clearly invertible. Hence k = m
which completes the proof. O
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11. Spectral Properties of Hankel Operators with Lacunary
Symbols

To speak about spectral properties we certainly have to realize Hankel oper-
ators as operators from a certain Hilbert space into itself. For ¢ € L°° we can
consider the operator I'y, on ¢? with Hankel matrix {¢(j + k)}; r>0 in the stan-
dard basis of £2. Not much is known about spectral properties of such operators
in terms of . Power [1982] described the essential spectrum of I',, for piecewise
continuous functions . See also [Howland 1986; 1992a; 1992b], where spectral
properties of self-adjoint operators I', with piecewise continuous ¢ are studied.

For a long time it was unknown whether there exists a nonzero quasinilpotent
Hankel operator T', i.e., a Hankel operator I" such that o(T") = {0} [Power 1984].
This question was answered affirmatively by Megretskii [1990], who considered
Hankel operators with lacunary symbols and found an interesting approach to
the description (in a sense) of their spectra. In particular, his method allows one
to construct nonzero quasinilpotent Hankel operators.

In this section we describe the method of [Megretskii 1990]. In particular
we prove that the operator with the following Hankel matrix is compact and
quasinilpotent:

(11-1)

O = Ol .
O O wim O N
O O Oni=O
o= O O ORI
Sw= O O O

We consider a more general situation of Hankel operators of the form

ag Q7 0 a9 0

0 as 0 0 0
=14, 0 0 0 as ;
0

where {ar}r>0 is a sequence of complex numbers. In other words, we set I' =
{7j+k}j,k207 where

‘_{ak if j=2F -1 withkeZ,,
’ 0 otherwise.

We evaluate the norm of I and give a certain description of its spectrum.

Since BMOA = (H')* by Fefferman’s theorem [Garnett 1981] with respect
to the natural duality, it follows from Paley’s theorem [Zygmund 1968] that
> k>0 akz2k_1 € BMOA if and only if {ay}r>0 € £2. Therefore, by Nehari’s
theo_rem, [ is a matrix of a bounded operator if and only if {ak}tr>0 € %
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moreover ||| is equivalent to |[{c }x>o0llez. It is also clear that for {ay }x>o € £2
the function ), . aszk_l belongs to VMOA, so T is bounded if and only if it
is compact. -
We associate with I' the sequence {py, }r>o defined by
=0,
" _1 2 2 2\1/2 (11-2)
tir = 5 (e + 2|1 )® + (ui + 4o ]?)?) for ke Zy.

The following theorem evaluates the norm of I'.
THEOREM 11.1. If {ay }x>0 € €2, the sequence {ug}k>0 converges and
IT)2 = tim .
k—oo
To describe the spectrum of I' consider the class A of sequences of complex
numbers {\;};>0 satisfying
Ao = ag,

(Aj — >‘j—1)>‘j = Oéj2- fOI‘j 2 1.

(11-3)

THEOREM 11.2. Suppose that {a;};>0 € (*. Any sequence {)\;};>0 in A con-
verges. The spectrum o(T') consists of 0 and the limits of such sequences.

To prove Theorems 11.1 and 11.2 we consider finite submatrices of I". Let Ly
be the linear span of the basis vectors e;, for j =0,1,... ,2F — 1, and let P; be
the orthogonal projection from £2 onto L. Consider the operator I', def P.T|Lg
and identify it with its 2% x 2¥ matrix. Put

~ def I 0
T :FkPk:<Ok 0).

It is easy to see that |[T'g|| = ||Tx|| and o(Tx) = o(I'x) U {0}. Clearly,

Tpsy = ( 'y ak+1Jk>
* apt1Jk 0 ’

where Jj, is the 2% x 2F matrix given by

00 -+ 01
0 0 10
Je=|: oo
01 - 00
10 -+ 00

We need a well-known fact from linear algebra: Let N be a block matrix of

A B
N =
(¢ p)
where A and D are square matrices and D is invertible. Then

det N = det Ddet(A — BD™'C). (11-4)

the form
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See [Gantmakher 1988, Chapter 2, §5.3], for example.

PROOF OF THEOREM 11.1. Since J; = Ji, and J? is the identity matrix of size
2F x 2% (which we denote by I},), we have

il + |k 21k ak+1fZJk>

r : (11-5)
a1kl |12 I,

FZ+1F1<+1 = (
Applying formula (11-4) to the matrix Iy T} | — Myq1, where X # |ogqq 2,
we obtain

. A
det(Th 1 Tpiy — Ajgr) = p? det(_;r;;rk + p[k>, (11-6)

where p Lof logs1]? — A

Since I is a bounded operator, we have ||I'|| = limy_.o |[|[T'k||. Therefore it is
sufficient to show that py = ||T'x||*/? or, which is the same, that py, is the largest
eigenvalue of I';I',. We proceed by induction on k. For k = 0 the assertion is
obvious.

If T, = 0, the assertion is obvious. Otherwise, it follows easily from (11-5)
that [T} Tl > |aws .

It is easy to see from (11-6) that X # |oq1|? is an eigenvalue of T'y Ty if
and only if p?/) is an eigenvalue of T';I',. Put

1= p/x = (|l [* = N

If p is an eigenvalue of I';T';, it generates two eigenvalues of T'y | | Ty 41:
3 (p2lann P+ (1 + 4o )Y?) and g (nt2 ek = (1 +4 ok ?)V?).

Clearly, to get the largest eigenvalue of 'y I'y11 we have to put u = p and
choose the first of the eigenvalues above. This proves that py; defined by (11-2)
is the largest eigenvalue of I'; 1 T'x41. O

To prove Theorem 11.2 we need two lemmas.

LEMMA 11.3. Let Ay be the set of k-th terms of sequences in A; that is,
A = {/\k : {Aj}jZO € A}

If {¢;}j>0 is an arbitrary sequence satisfying (; € Aj, then it converges if and
only if im;_,o (; = 0 or there exists a sequence {\;};>0 € A such that (; = A,
for sufficiently large j.

LEMMA 11.4. Let A be a compact operator on Hilbert space and let {A;}j>0 be
a sequence of bounded linear operators such that lim;_o [|[A — Aj|| = 0. Then
the spectrum o(A) consists of the limits of all convergent sequences {v;}j>o such
that v; € o(4;).

Lemma 11.4 is well known [Newburgh 1951] and we don’t prove it here. Note
that we need Lemma 11.4 for compact operators A;, in which case it is proved
in [Gohberg and Krein 1965, Theorem 4.2].
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PRrROOF OF THEOREM 11.2 ASSUMING LEMMAS 11.3 AND 11.4. Since I' is com-
pact, 0 € o(I).

For A € C\ {0} we apply formula (11-4) to the matrix I'yy1; — AMj4+1 and
obtain

2
det(Tp1 — ATpr1) = (—0)2" det (rk - ()\ - O";“)Ik). (11-7)

Obviously,
0€o(l'y) if and only if «f =0.

Together with (11-7) this implies that A € o(T'x) if and only if there exists
N € o(Tk—1) such that (A — N)\ = a?.
Let A be a nonzero point in the spectrum of I'. By Lemma 11.4, there exists
a sequence {v;};>o such that v; — X as j — oo and v; € o(T;). Since A # 0
we may assume without loss of generality that v; € o(I';). It follows now from
Lemma 11.3 that there exists a sequence {A;};>0 in A such that \; = v; for
sufficiently large j, so A = lim; o A;.
Conversely, let {\;};>0 € A. By Lemma 11.3, {\;};>¢ converges to a point
A € C. As we have already observed, \; € o(T';), so Lemma 11.4 gives X € o(T").
O

PROOF OF LEMMA 11.3. Let {)\;};50 € A. Then |\;| < |\j_1] + |a;|¥/|\;] for
j > 1. It follows that

1A < max{e, [\j_1] + |a;[*/e} (11-8)

for any € > 0. We show that either A\; — 0 as j — oo or |A;| > ¢ for some 6 > 0
for sufficiently large j.

To do this, we show first that, if ¢ > 0 and liminf; . |\;| < €, then
limsup;_ ., [Aj| < 2e. Assume to the contrary that liminf; .. [\j| < e and
limsup;_, . [\j| > 2¢ for some e > 0. It follows that for any N € Z there
exist positive integers m and n such that N < m < n, |A\pm_1] < e, |Aj| > ¢ for
m < j <, and |\,| > 2e. It follows from (11-8) that |A\;| < |\j_1|+ |a;|*/e for
m < j <n. Therefore

n 2
An| < [Am—1] + M
€
Since {a x>0 € €2, we can choose N so large that (> im loj|?) /e < e, which
contradicts the inequality |\, | > 2e.
If [Aj| > 6 > 0 for large values of j, then by (11-3)
12
A = Aj—al = %

Therefore {\;},>0 converges.
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Now suppose that {\;};>0 and {v;};>¢ are sequences in A which have nonzero
limits. Then, for sufficiently large j,

2

A | ‘(A (1++2)
-1 —vi—1| = |(Aj — v
J J J J )\jyj

<A = y|(1+dlay ?)

for some d > 0. Iterating this inequality, we obtain

|)\j,1 — Vj,1| S | hm )\j — hm Vj‘ H (1 + d|am|2)
Jj—0o0 J—00 .

m=j

(the infinite product on the right-hand side converges since {a; };>0 € ¢?). There-
fore if lim;_,oc A\j = limj_.o v}, then A\; = v; for sufficiently large j.

For ¢ > 0 we consider the set of sequences {);};>0 in A such that limsup{|\;] :
j >k} > e for any positive integer k. We show that the number of such sequences
is finite. Suppose that {\;};>0 € A is such a sequence. As we observed at the
beginning of the proof, there exists § > 0 and jo € Z4 such that |[A;| > § for
sufficiently large j. Clearly, |o;| < § for sufficiently large j. It follows that if j
is sufficiently large, then A; is uniquely determined by A;_; and the conditions

(A= Ajm)A =aF,  |N] >4

Hence there are only finitely many possibilities for such sequences.

Now let {{;};>0 be a converging sequence such that ¢; € A; for j > 0 and
such that lim;_, (; # 0. As already proved, there are sequences {)\gs)}jzo €A,
for s = 1,...,m, such that ¢; € {)\51), el A§m)} for sufficiently large j and the
sequences {)\;S)}jzo have distinct limits. It follows that there exists an s in the
range 1 < s < m such that {; = )\gs) for sufficiently large j. O

We now proceed to the operator I'y defined by (11-1). In other words, we
consider the operator I' with

ag =1,
o = 277 for j > 1.
THEOREM 11.5. T'x is a compact quasinilpotent operator.
PRrROOF. It is easy to see by induction that if {A;},;>0 satisfies (11-3), then

A;j = 279, so Theorem 11.2 gives o(I'x) = {0}. We have already seen that
bounded Hankel operators of this form are always compact. O

REMARK. We can consider a more general situation where I' = {v,1%}; x>0,
with
ap for j=nip—1withkeZ,,
0= {0 otherwise,
where {ny}r>o0 is a sequence of natural numbers such that nyy1 > 2ny for k > 0
and {ay }r>0 € £2. Tt is easy to see that the same results hold and the same proofs
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also work in this situation, which allows one to construct other quasinilpotent
Hankel operators. In particular, the Hankel operator

0 ¢« 0 & 0
i 0 3 0 0
0 3 000
100 0 %
000 7 0

is quasinilpotent.

It is still unknown whether there exist noncompact quasinilpotent Hankel oper-
ators.

12. Recent Developments

In this section we discuss briefly three recent developments in Hankel operators
and their applications. We describe the results without proofs but give references.

Self-adjoint operators unitarily equivalent to Hankel operators. In Sec-
tion 11 we discussed some spectral properties of Hankel operators. Here we con-
sider the problem of describing all possible spectral types of self-adjoint Hankel
operators.

The problem can also be described as follows. Let R be a (bounded) self-
adjoint operator on a Hilbert space H{. When is R unitarily equivalent to a
Hankel operator? In other words, is there an orthonormal basis {€;} ;>0 in H in
which R is represented by a Hankel matrix?

Let me first say a few words about another related problem, posed in [Khru-
shchév and Peller 1984], which appeared while we were studying geometric fea-
tures of prediction theory. Let K and L be subspaces of a Hilbert space H. The
problem is to find out under which conditions there exists a stationary process
{z;}jez in H (i.e., the inner products (z;, )5 depend only on j — k) such that

span{z; : j <0} =X and span{z;:j>0}=L.

It was shown in [Khrushchév and Peller 1984] that this problem is equivalent
to the following one. Let K be a nonnegative self-adjoint operator on Hilbert
space. Under which conditions does there exist a Hankel operator I' whose
modulus |T| def (I*I')Y/2 is unitarily equivalent to K? In the same paper the
following two simple necessary conditions were found:

(i) Ker K is either trivial or infinite-dimensional;
(ii) K is noninvertible.

We asked whether these conditions together are also sufficient.
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Partial results in this direction were obtained in [Treil’ 1985b; Vasyunin and
Treil’ 1989; Ober 1987; 1990], where the case of operators K with discrete spec-
trum was considered. The last two of these papers suggested a very interesting
approach to the problem, based on linear systems with continuous time. Using
Ober’s approach, Treil [1990] gave in a complete solution by proving that con-
ditions (i) and (ii) are sufficient. In the same article he showed that under these
conditions there exists a self-adjoint Hankel operator whose modulus is unitarily
equivalent to K.

Let me explain why the problem of describing the self-adjoint operators that
are unitarily equivalent to Hankel operators is considerably more delicate. Recall
that by von Neumann’s spectral theory each self-adjoint operator R on Hilbert
space is unitarily equivalent to multiplication by the independent variable on
a direct integral of Hilbert spaces [ @X(t)du(t) that consists of measurable
functions f such that f(t) € K(t) and

/ £ ()2 dia(t) < o

(1 is a positive Borel measure on R, called a scalar spectral measure of R).
The spectral multiplicity function vy is defined p-a.e. by vg(t) def dim K (¢).
Two self-adjoint operators are unitary equivalent if and only if their scalar spec-
tral measures are mutually absolutely continuous and their spectral multiplicity
functions coincide almost everywhere. See [Birman and Solomyak 1980] for the
theory of spectral multiplicity.

Conditions (i) and (ii) describe the spectral multiplicity function v|p| of the
moduli of self-adjoint Hankel operators. Namely, (i) means that v(0) = 0 or
v(0) = oo, while (ii) means that 0 € suppv. Clearly, v|p (¢) = vp(t) +vp(—t), for
t > 0. So the problem of describing the self-adjoint operators that are unitarily
equivalent to Hankel operators is equivalent to the problem of investigating how
Vp|(t) can be distributed between vp(t) and vp(—t).

The problem was solved recently in [Megretskii et al. 1995]. The main result
of that paper is the following theorem. As usual, o, and ps are the absolutely
continuous and the singular parts of a measure pu.

THEOREM 12.1. Let R be a selfadjoint operator on Hilbert space, p a scalar
spectral measure of R, and v its spectral multiplicity function. Then R is unitarily
equivalent to a Hankel operator if and only if the following conditions hold:

(i) Either Ker R = {0} or dimKer R = oo.
(ii) R is noninvertible.
(iil) |v(t) — v(=t)| <1, pg-a.e., and |v(t) — v(—t)| <2, ps-a.e.

The necessity of (i) and (ii) is almost obvious. The necessity of (iii) is more
complicated. To prove that (iii) is necessary certain commutation relations be-
tween Hankel operators, the shift operator, and the backward shift were used in
[Megretskii et al. 1995].
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However, the most difficult problem is to prove sufficiency. It would be natural
to try the method of linear systems with continuous time. Unfortunately (or
perhaps fortunately), it does not work. To be more precise, it works if we
replace (iii) by the stronger condition: |v(t) — v(—t)| < 1, u-a.e.

To prove sufficiency we used in [Megretskii et al. 1995] linear systems with
discrete time (with scalar input and scalar output). Let A be a bounded linear
operator on a Hilbert space H, and let b, c € H. Consider the linear system

n =A n nb7
{:c +1 T +u (12-1)

Yn = (iCrHC),

for n € Z. Here u,, € C is the input, z,, € H, and y, € C is the output. We
assume that sup,,~q [|4"|| < oco.

We can associate with (12-1) the Hankel matrix T, = {14}, x>0, where
Q; Lef (A7b,c).

The Hankel operator T, is related to the system (12-1) in the following way.
We can associate with a sequence v = {v,}n,>0 € £ the input sequence u =
{tn }nez defined by

- {vln if n <0,
"0 if n > 0.

It is easy to see that under the initial condition lim, . - x, = 0 the output
Y = {Yn}n>0 of the system (12-1) with input u satisfies y = I'v.

It was shown in [Megretskii et al. 1995] that under conditions (i)—(iii) of
Theorem 12.1 there exists a triple {A, b, ¢} such that the Hankel operator T', is
unitarily equivalent to R. The proof is very complicated. The triple {4, b, c} is
found as a solution of certain Lyapunov-type equations. In addition to that, A
must satisfy the asymptotic stability condition

|A"z|| — 0 for z € H.

The most complicated part of the proof is to construct a solution satisfying the
asymptotic stability condition above.

Approximation by analytic matrix functions. As mentioned in the intro-
duction, Hankel operators play an important role in control theory, and it is
especially important in control theory to consider Hankel operators whose sym-
bols are matrix functions or even operator functions. Let H and X be Hilbert
spaces and let ® € L>®°(B(H, X)), i.e., ® is a bounded weakly measurable func-
tion taking values in the space B(H,X) of bounded linear operators from H to
K. We can define the Hankel operator He : H*(3H) — H2(X) by

Hof € P_of for f e HX(H),

where the spaces of vector functions H?(H) and H2(X) are defined as in the
scalar case and P_ is the orthogonal projection onto H2(X). The analog of
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Nehari’s theorem says that
[Ho | = inf{[|® — F|| o @®(3c,5)) : F € H>(B(3H, X))} (12-2)

The operator Hg is compact if and only if & € H®(B(H,X)) + C(R(H, X)),
where C(R(H, X)) is the space of continuous functions that take values in the
space R(H,XK) of compact operators from H to K. The proofs of these facts
can be found in [Page 1970]. As in the scalar case, Nehari’s problem is to find,
for a given ® € L>*(M,, ), a function F € H*(B(H,X)) that minimizes the
right-hand side of (12-2).

If dimH = n < oo and dimX = m < oo, then H can be identified with C",
K with C™, and B(3, X) with the space M,, ,, of m x n matrices.

It is important in applications to be able to solve Nehari’s problem for matrix
functions (and for operator functions). However, unlike the scalar case, it is
only exceptionally that the problem has a unique solution. Consider the matrix

0
o= .
(0 %2)

Since ||Hz|| = 1, it follows that distze{Z, H*} =1, and since [|®|| o @, ,) = 1,
we have distzemy, ,){®, H(M22)} = 1. On the other hand, if f is a scalar

function in H> and | f||g= < 3, it is obvious that

-G

so @ has infinitely many best uniform approximants by bounded analytic func-

function

=1
L‘X’(MQQ)

7

tions. Intuitively, however, it is clear that the “very best” approximation is the
zero function, since a nonzero f € H* increases the L°°-norm of the lower right
entry.

This suggests the idea of imposing additional constraints on ® — F'. Given a
matrix function ®, we put

Qo ={F € H*(M,,,,) : F minimizes to = sup || ®(¢) — F(¢)||};
CeT

Q; ={F € Q;_1 : F minimizes t; = sup s;(®(¢) — F(¢))}.
CeT

Here s; is the j-th singular value.

Functions in F' € Qinfm,n)—1 are called superoptimal approzimations of ® by
analytic functions, or superoptimal solutions of Nehari’s problem. The numbers
t; are called superoptimal singular values of ®. The notion of superoptimal
approximation was introduced in [Young 1986]; it is important in H° control
theory.

The following uniqueness theorem was obtained in [Peller and Young 1994a].
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THEOREM 12.2. Let ® € H*® + C(M,,,). Then there exists a unique super-
optimal approzimation F' € H>®(M,, ) by bounded analytic functions. It satis-
fies the equalities

5;(®(C)—F())=t; a.e.onT for0<j<min{m,n}—1.

Here is briefly the method of the proof. Let v € H?(C") be a maximizing
vector of Hg (which exists since Hg is compact). Consider the vector function
w = Hgv € H?(C™). Tt can be shown that v and zw admit the factorizations

v=1Yhv and zZw = d2hw,

where h is a scalar outer function, 9; and 1J5 are scalar inner functions, and
v and w are column functions which are inner and co-outer (this means that
lv(Q)|lc» = [Jw(C)]lcm = 1 a.e. on T, and both v and w have coprime entries,
i.e., they do not have a common nonconstant inner divisor).

It is proved in [Peller and Young 1994a] that v and w admit thematic com-
pletions; that is, there exist matrix functions V, € H*(M,, ,—1) and W, €
H (M, m—1) such that the matrix functions V' & (v V.) and W & (w W)

have the following properties:

(i) V and W take unitary values.
(ii) all minors of V' and W on the first column are in H°.

Let @ be an arbitrary best approximant in H*(M,, ). It is shown in [Peller
and Young 1994a] that

WHe - Q)V = <t°8‘° <I>(()1)) : (12-3)

where ug & 201920 /h and @) € H*® 4 C(M,,,_1.,—1) (this inclusion is deduced
in [Peller and Young 1994a] from the analyticity property (ii) of the minors). It
is shown in the same article that the problem of finding a superoptimal approx-
imation of ® reduces to the problem of finding one for ®(). Namely, if F(V) is a
superoptimal approximation of ®(*), the formula
tou 0
WH® — F)V = ( 000 o) —F<1))

determines a superoptimal approximation F' to ®. This allows us to reduce the
size of the matrix function. Uniqueness now follows from the uniqueness result
in the case n = 1, whose proof is the same as that of Theorem 2.4.

The proof of Theorem 12.2 given on [Peller and Young 1994a] is constructive.
Another (less constructive) method for proving the same result was given in
[Treil’ 1995].

The proof obtained in [Peller and Young 1994a] gives interesting factoriza-
tions (thematic factorizations) of the error functions ® — F. To describe such
factorizations, assume for simplicity that m = n. We denote by I; the constant
J % j identity matrix function.
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THEOREM 12.3. Let ® be an n X n function satisfying the hypotheses of Theo-
rem 12.2 and let F be the unique superoptimal approximation of ® by bounded
analytic functions. Then ® — F admits a factorization

O —F=WoWy- W, oDV} o VIV, (12-4)
where
tOUO 0 s 0
0 t1u1 R 0
D = . . . . 9
0 0 e tn—lun—l
Ug, - - ., Un—1 are unimodular functions in VMO such that distpe{u;, H®} =1

for0<j<n-1,

L (I; 0
Wj_<0 Wj)’

I; 0 )
. = - < < —
Vi <O Vj) for0<j<n-—2

and VJ and Wj, for 0 < j <n—2, are thematic matrix functions.

We can associate with the factorization (12-4) the indices k; 4 Qim Ker Ty, for
0 <j <n-—1. Since |[Hy,|| = 1 and H,, is compact, it follows that k; > 1. It was
shown in [Peller and Young 1994a] that the indices are not determined uniquely
by the function ®: they can depend on the choice of a thematic factorization.
However, combining our earlier methods with those of [Treil’ 1995], we showed in
[Peller and Young 1994b] that the sums of the indices that correspond to equal
superoptimal singular values are uniquely determined by ®.

Another result obtained in [Peller and Young 1994b] is an inequality between
the singular values of the Hankel operator Hg and the terms of the extended
t-sequence, which is defined as follows:

+ def ; def ; def P def ; def
to = to, -y tio—1 = Lo, Thy = 1, -0y Thghy—1 = 1, Lrgthy = t2, <.
each term of the sequence {t,}o<;j<n_1 is repeated k; times). The inequality is
J50<5< 7]
fj <sj(Hp) for0<j<ko+ki+ - +kp1—1 (12-5)

A similar result holds for infinite matrix functions (or operator functions) ®
under the condition that Hg is compact [Treil’ 1995; Peller 1995; Peller and
Treil’ 1995].

In [Peller and Treil’ 1997] the preceding results were shown to be true in a
more general context, when the matrix function ® does not necessarily belong
to H* + C. Tt is shown there also that these results generalize to the case
when the essential norm of Hg is less than the smallest nonzero superoptimal
singular value. In fact, the paper deals with the so-called four-block problem,
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which is more general than Nehari’s problem. Another result obtained in it is
the following inequality, which is stronger than (12-5):

sj(Hp)) < Sjyn,(Ho) for j >0,

where &) is defined in (12-3).

It is also shown in [Peller and Young 1994a] that the nonlinear operator of su-
peroptimal approximation has hereditary properties similar to those discussed in
Section 9. Continuity properties of the operator of superoptimal approximation
are studied in [Peller and Young 1997].

Similarity to a contraction. Here we consider one more application of Hankel
operators, which has led recently to a solution of the famous problem of similarity
to a contraction. Recall that operators 77 and 75 on Hilbert space are called
similar if there exists an invertible linear operator V such that T, = VTV ~1.
Clearly, similar operators have identical spectral properties. Sometimes one can
prove that if an operator has the same properties as operators from a certain
class, it is similar to an operator from that class. For example, it was proved in
[Sz.-Nagy 1947] that if T is invertible and sup,,cy || 7" < oo, then T is similar to
a unitary operator. However, if we know only that 7" satisfies sup,,~q ||T"| < oo,
it is not true that 7 must be similar to a contraction. The first example of
such an operator was constructed in [Foguel 1964]; see [Davie 1974; Peller 1982;
Bozejko 1987] for other examples).

It follows from von Neumann’s inequality [von Neumann 1951] that any op-
erator similar to a contraction is polynomially bounded, i.e.,

T)|| < const - max
(T < const- max ()|

for any analytic polynomial ¢.

The question of whether the converse is true was posed by Halmos [1970] and
remained opened until recently.

Paulsen [1984] proved that T is similar to a contraction under the stronger
condition of complete polynomial boundedness, which means that

e11(T) p12(T) -+ p1a(T) 011(¢) ¢12(¢) -+ w1a(Q)
a1(T) p22(T) -+ p2an(T) P ©21(¢) ®22(¢) -+ w2n(Q)
: S e | P,

ot (T) ona(T) - un(T) ont(©) 9n2(O) - un(0)

for any positive integer n and any polynomial matrix {¢ i }1<j k<n; the constant
¢ in the inequality does not depend on n.
Now let f be a function analytic in the unit disk . Consider the operator

Ry on (2 @ (% defined by
S* T
re= (% ) (12-6)
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where S is the shift operator on ¢ and T'y is the Hankel operator on ¢? with
matrix {f(j—ﬁ—k)}j,kzo in the standard basis of ¢2. Such operators were introduced
and used in [Peller 1982] to construct power bounded operators which are not
similar to contractions. The operators R; were considered independently by
Foiag and Williams; see [Carlson et al. 1994].

In [Peller 1984] the problem was posed of whether it is possible to find a
function f for which Ry is polynomially bounded but not similar to a contraction.
The reason why the operators Ry are convenient for this purpose is that functions
of Ry can be evaluated explicitly: if ¢ is an analytic polynomial, then

o(Ry) = (@(5*) Fgésg))f) . (12.7)

It was shown in [Peller 1984] that, if f € BMOA (see the definition on
page 70), Ry is polynomially bounded. A stronger result was obtained later in by
Bourgain [1986]: if f’ € BMOA, then R; is completely polynomially bounded,
and so it is similar to a contraction. Another proof of Bourgain’s result was
obtained later in [Stafney 1994].

Recently Paulsen has shown that R is similar to a contraction if and only if
the matrix {(j — k)f(jJrk)}ijzo determines a bounded operator on £2. It follows
from results of [Janson and Peetre 1988] that the last condition is equivalent to
the fact that f’ € BMOA. (In the latter paper instead of matrices the authors
study integral operators on L?(R), but their methods also work for matrices.)
This implies that Ry is similar to a contraction if and only if f* € BMOA.

There was hope of finding a function f with f’ ¢ BMOA such that Ry is
polynomially bounded, which would solve the problem negatively. However, this
was recently shown to be is impossible, in [Aleksandrov and Peller 1996], the
main result of the paper being the following:

THEOREM 12.4. Let f be a function analytic in . The following statements
are equivalent:

(1) Ry is polynomially bounded.
(ii) Ry is similar to a contraction.
(ifi) f' € BMOA.

To prove Theorem 12.4 the following factorization result is established in [Alek-
sandrov and Peller 1996]. We denote by C'4 the disk algebra of functions analytic
in D and continuous in closD.

THEOREM 12.5. Let f be a function analytic in D. Then f € H' if and only if
its derivative [ admits a representation

fl = Zg;h]7

Jj=0
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where g; € Ca, hj € H', and

> Mgillze sl < oo

Jj=0

However, this was not the end of the story. Pisier [1997] considered the operator
Ry on the space of vector functions H?(H)® H?(H), where H is a Hilbert space.
The definition of Ry is exactly the same as given in (12-6). In this case S is the
shift operator on H?(H), f is a function analytic in D and taking values in the
space B(H) of bounded linear operators on 3, and I'f is the operator on H?(XH)
given by the block Hankel matrix {f(j + k)}jk>o0. It is easy to see that (12-7)
also holds in this setting for any scalar analytic polynomial . Pisier managed
to construct a function f for which R is polynomially bounded but not similar
to a contraction. To do that he used a sequence of operators {C}};>0 on I with
the properties

1/2
= <Z|Ozj2) with Q; eC

Jj=0

> a;C;

Jj=0

and

%ZWHS

J=0

< Z|aj| for a; € C.
320

Z a;C; ® C;
Jj=20
Such a sequence {C;};>0 always exists; see [Pisier 1996], for example.

The following result from [Pisier 1997] solves the problem of similarity to a
contraction.

THEOREM 12.6. Let {aj};>0 be a sequence of complex numbers such that

sup k? Z loj|? < o0
R0 >k

and

> iPas? = oo,

j=21

Then the operator Ry with f =3 ., ;2 C; is polynomially bounded but not
similar to a contraction.

It is very easy to construct such a sequence {a;};>¢. For example, one can put
a; = (j+1)72

Pisier’s proof is rather complicated and involves martingales. Kislyakov [1996],
Davidson and Paulsen [1997], and McCarthy [1996] have simplified the original
argument and got rid of martingales.
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