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An Excursion into the Theory

of Hankel Operators

VLADIMIR V. PELLER

Abstract. This survey is an introduction to the theory of Hankel opera-

tors, a beautiful area of mathematical analysis that is also very important in

applications. We start with classical results: Kronecker’s theorem, Nehari’s

theorem, Hartman’s theorem, Adamyan–Arov–Krein theorems. Then we

describe the Hankel operators in the Schatten–von Neumann class Sp and

consider numerous applications: Sarason’s commutant lifting theorem, ra-

tional approximation, stationary processes, best approximation by analytic

functions. We also present recent results on spectral properties of Hankel

operators with lacunary symbols. Finally, we discuss briefly the most re-

cent results involving Hankel operators: Pisier’s solution of the problem

of similarity to a contraction, self-adjoint operators unitarily equivalent to

Hankel operators, and approximation by analytic matrix-valued functions.
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1. Introduction

I would like to invite the reader on an excursion into the theory of Hankel op-

erators, a beautiful and rapidly developing domain of analysis that is important

in numerous applications.

It was Hankel [1861] who began the study of finite matrices whose entries

depend only on the sum of the coordinates, and therefore such objects are called

Hankel matrices. One of the first theorems about infinite Hankel matrices was

obtained by Kronecker [1881]; it characterizes Hankel matrices of finite rank.

Hankel matrices played an important role in many classical problems of analysis,

and in particular in the so-called moment problems; for example, Hamburger’s

moment problem is solvable if and only if the corresponding infinite Hankel

matrix is positive semi-definite [Hamburger 1920; 1921].

Since the work of Nehari [1957] and Hartman [1958] it has become clear that

Hankel operators are an important tool in function theory on the unit circle.

Together with Toeplitz operators they form two of the most important classes

of operators on Hardy spaces.

For the last three decades the theory of Hankel operators has been developing

rapidly. A lot of applications in different domains of mathematics have been

found: interpolation problems [Adamyan et al. 1968b; 1968a; 1971]; rational

approximation [Peller 1980; 1983]; stationary processes [Peller and Khrushchëv

1982]; perturbation theory [Peller 1985]; Sz.-Nagy–Foiaş function model [Nikol’-

skĭı 1986]. In the 1980s the theory of Hankel operators was fueled by the rapid

development of H∞ control theory and systems theory (see [Fuhrmann 1981;

Glover 1984; Francis 1987]). It has become clear that it is especially important to

develop the theory of Hankel operators with matrix-valued (and even operator-

valued) symbols. I certainly cannot mention here all applications of Hankel

operators. The latest application I would like to touch on here is Pisier’s solution

of the famous problem of similarity to a contraction; see Section 12 for more

detail.

The development of the theory of Hankel operators led to different general-

izations of the original concept. A lot of progress has taken place in the study of

Hankel operators on Bergman spaces on the disk, Dirichlet type spaces, Bergman

and Hardy spaces on the unit ball in Cn, on symmetric domains; commutators,

paracommutators, etc. This survey will not discuss such generalizations, but

will concentrate on the classical Hankel operators on the Hardy class H 2—or,

in other words, operators having Hankel matrices. Even under this constraint

it is impossible in a survey to cover all important results and describe all appli-

cations. I have chosen several aspects of the theory and several applications to

demonstrate the beauty of the theory and importance in applications.

So, if you accept my invitation, fasten seat belts and we shall be off!

In Section 2 we obtain the boundedness criterion and discuss symbols of Han-

kel operators of minimal L∞ norm. As an application, we give in Section 3 a
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proof of Sarason’s commutant lifting theorem, based on Nehari’s theorem. Sec-

tion 4 is devoted to the proof of Kronecker’s theorem characterizing the Hankel

operators of finite rank. In Section 5 we describe the compact Hankel operators.

In Section 6 we prove the profound Adamyan–Arov–Krein theorem on finite-

rank approximation of Hankel operators. Section 7 is devoted to membership of

Hankel operators in Schatten–von Neumann classes Sp. In Section 8 we consider

applications of Hankel operators in the theory of rational approximation. Section

9 concerns hereditary properties of the operator of best uniform approximation

by functions analytic in the unit disk. Section 10 deals with applications of Han-

kel operators in prediction theory. In Section 11 we study spectral properties of

Hankel operators with lacunary symbols. We conclude the survey with Section

12 which briefly reviews some recent developments of Hankel operators and their

applications; namely, we touch on the problem of unitary equivalent description

of the self-adjoint Hankel operators, we discuss the problem of approximating a

matrix function on the unit circle by bounded analytic functions, and conclude

the section with Pisier’s solution of the problem of similarity to a contraction.

Preliminaries. An infinite matrix A is called a Hankel matrix if it has the form

A =




α0 α1 α2 α3 · · ·

α1 α2 α3 α4 · · ·

α2 α3 α4 α5 · · ·

α3 α4 α5 α6 · · ·
...

...
...

...
. . .



,

where α = {αj}j≥0 is a sequence of complex numbers. In other words, a Hankel

matrix is one whose entries depend only on the sum of the coordinates.

If α ∈ `2, we can consider the Hankel operator Γα : `2 → `2 with matrix A in

the standard basis of `2 that is defined on the dense subset of finitely supported

sequences.

Hankel operators admit the following important realizations as operators from

the Hardy class H2 of functions on the unit circle T to the space

H2
−

def
= L2 	H2.

Let ϕ ∈ L2. We define the Hankel operator Hϕ on the dense subset of polyno-

mials by

Hϕf
def
= P−ϕf,

where P− is the orthogonal projection onto H2
−. The function ϕ is called a

symbol of the Hankel operator Hϕ; there are infinitely many different symbols

that produce the same Hankel operator. It is easy to see that Hϕ has Hankel

matrix {ϕ̂(−j− k)}j≥1,k≥0 in the bases {zk}k≥0 of H2 and {z̄j}j≥1 of H2
−; here

ϕ̂(m) is the m-th Fourier coefficient of ϕ.
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We also need the notion of a Toeplitz operator on H2. For ϕ ∈ L∞ we define

the Toeplitz operator Tϕ : H2 → H2 by

Tϕf = P+ϕf for f ∈ H2,

where P+ is the orthogonal projection of L2 onto H2. It is easy to see that

‖Tϕ‖ ≤ ‖ϕ‖L∞ . In fact, ‖Tϕ‖ = ‖ϕ‖L∞ ; see, for example, [Douglas 1972; Sarason

1978].

Notation. The following notation is used throughout the survey:

• z stands for the identity function on a subset of C.

• m is normalized Lebesgue measure on the unit circle T.

• m2 is planar Lebesgue measure.

• S : H2 → H2 is the shift operator; that is, Sf
def
= zf for f ∈ H2.

• S : L2 → L2 is the bilateral shift operator; that is, Sf
def
= zf for f ∈ L2.

• For a function f in L1(T) we denote by f̃ the harmonic conjugate of f .

• BMO is the space of functions ϕ on T of bounded mean oscillation:

sup
|I|

1

|I|

∫

I

|ϕ− ϕI | dm <∞,

where the supremum is taken over all intervals I of T and |I|
def
= m(I).

• VMO is the closed subspace of BMO consisting of functions ϕ satisfying

lim
|I|→0

1

|I|

∫

I

|ϕ− ϕI | dm = 0.

2. Boundedness

The following theorem of Nehari [1957] characterizes the bounded Hankel

operators Γα on `2.

Theorem 2.1. The Hankel operator Γα is bounded on `2 if and only if there

exists a function ψ ∈ L∞ on the unit circle T such that

αm = ψ̂(m) for m ≥ 0. (2–1)

In this case

‖Γα‖ = inf{‖ψ‖∞ : ψ̂(n) = αn for n ≥ 0}.

Proof. Let ψ ∈ L∞ and set αm = ψ̂(m) for m ≥ 0. Given two finitely

supported sequences a = {an}n≥0 and b = {bk}k≥0 in `2, we have

(Γαa, b) =
∑

j,k≥0

αj+kaj b̄k. (2–2)

Let

f =
∑

j≥0

ajz
j , g =

∑

k≥0

b̄kz
k.
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Then f and g are polynomials in the Hardy class H2. Put q = fg. It follows

from (2–2) that

(Γαa, b) =
∑

j,k≥0

ψ̂(j + k)aj b̄k =
∑

m≥0

ψ̂(m)
m∑

j=0

aj b̄m−j

=
∑

m≥0

ψ̂(m)q̂(m) =

∫

T

ψ(ζ)q(ζ̄) dm(ζ).

Therefore

|(Γαa, b)| ≤ ‖ψ‖∞ ‖q‖H1 ≤ ‖ψ‖∞ ‖f‖H2 ‖g‖H2 = ‖ψ‖L∞ ‖a‖`2 ‖b‖`2 .

Conversely, suppose that Γ is bounded on `2. Let Lα be the linear functional

defined on the set of polynomials in H1 by

Lαq =
∑

n≥0

αnq̂(n). (2–3)

We show that Lα extends by continuity to a continuous functional on H1 and

its norm ‖Lα‖ on H1 satisfies

‖Lα‖ ≤ ‖Γα‖. (2–4)

By the Hahn-Banach theorem this will imply the existence of some ψ in L∞ that

satisfies (2–1) and

‖ψ‖∞ ≤ ‖Γα‖.

Assume first that α ∈ `1. In this case the functional Lα defined by (2–3) is

obviously continuous on H1. We prove (2–4). Let q ∈ H1 and ‖q‖1 ≤ 1. Then

q admits a representation q = fg, where f, g ∈ H2 and ‖f‖2 ≤ 1, ‖g‖2 ≤ 1. We

have

Lαq =
∑

m≥0

αmq̂(m) =
∑

m≥0

αm

m∑

j=0

f̂(j)ĝ(m− j) =
∑

j,k≥0

αj+kf̂(j)ĝ(k) = (Γαa, b),

where a = {aj}j≥0 with aj = f̂(j) and b = {bk}k≥0 with bk = ĝ(k). Therefore

|Lαq| ≤ ‖Γα‖ ‖f‖2‖g‖2 ≤ ‖Γα‖,

which proves (2–4) for α ∈ `1.

Now assume that α is an arbitrary sequence for which Γα is bounded. Let

0 < r < 1. Consider the sequence α(r) defined by

α
(r)
j = rjαj for j ≥ 0.

It is easy to see that Γα(r) = DrΓαDr, where Dr is multiplication by {rj}j≥0 on

`2. Since obviously ‖Dr‖ ≤ 1, it follows that the operators Γα(r) are bounded

and

‖Γα(r)‖ ≤ ‖Γα‖ for 0 < r < 1.
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Clearly α(r) ∈ `1, so we have already proved that

‖Lα(r)‖H1→C ≤ ‖Γα(r)‖ ≤ ‖Γα‖.

It is easy to see now that the functionals Lα(r) being uniformly bounded converge

strongly to Lα; that is, Lα(r)ψ → Lαψ for any ψ ∈ H1. This proves that Lα is

continuous and satisfies (2–4). ˜

Theorem 2.1 reduces the problem of whether a sequence α determines a bounded

operator on `2 to the question of the existence of an extension of α to the sequence

of Fourier coefficients of a bounded function. However, after the work of C.

Fefferman on the space BMO of functions of bounded mean oscillation it has

become possible to determine whether Γα is bounded in terms of the sequence

α itself.

By C. Fefferman’s theorem (see [Garnett 1981], for example), a function ϕ on

the unit circle belongs to the space BMO if and only if it admits a representation

ϕ = ξ + P+η with ξ, η ∈ L∞.

The space BMOA is by definition the space of BMO functions analytic in the

unit disc D:

BMOA = BMO ∩H1.

It is easy to see that Nehari’s and Fefferman’s theorems imply the following

result.

Theorem 2.2. The operator Γα is bounded on `2 if and only if the function

ϕ =
∑

m≥0

αmz
m (2–5)

belongs to BMOA.

Clearly Γα is a bounded operator if the function ϕ defined by (2–5) is bounded.

However, the operator Γα can be bounded even with an unbounded ϕ. We

consider an important example of such a Hankel matrix:

Example (the Hilbert matrix). Let αn = 1/(n + 1) for n ≥ 0. The corre-

sponding Hankel matrix Γα is called the Hilbert matrix. Clearly the function

∑

n≥0

1

n+ 1
zn

is unbounded in D. However, Γα is bounded. Indeed, consider the function ψ

on T defined by

ψ(eit) = ie−it(π − t) for t ∈ [0, 2π).

It is easy to see that

ψ̂(n) =
1

n+ 1
for m ≥ 0,
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and that ‖ψ‖L∞ = π. It follows from Theorem 2.1 that Γα is bounded and

‖Γα‖ ≤ π. In fact, ‖Γα‖ = π; see [Nikol’skĭı 1986, Appendix 4, 165.21], for

example.

Clearly, Theorem 2.1 admits the following reformulation.

Theorem 2.3. Let ϕ ∈ L2. The following statements are equivalent :

(a) Hϕ is bounded on H2.

(b) There exists a function ψ in L∞ such that

ψ̂(m) = ϕ̂(m) for m < 0. (2–6)

(c) P−ϕ ∈ BMO.

If one of the conditions (a)–(c) is satisfied , then

‖Hϕ‖ = inf{‖ψ‖L∞ : ψ̂(m) = ϕ̂(m) for m < 0}. (2–7)

Equality (2–6) is equivalent to the fact that Hϕ = Hψ. Thus (b) means that Hϕ

is bounded if and only if it has a bounded symbol. So the operators Hϕ with

ϕ ∈ L∞ exhaust the class of bounded Hankel operators. If ϕ ∈ L∞, (2–7) can

be rewritten in the following way:

‖Hϕ‖ = inf{‖ϕ− f‖∞ : f ∈ H∞}. (2–8)

Let ϕ ∈ L∞. It follows easily from a compactness argument that the infimum

on the right-hand side of (2–8) is attained for any ϕ ∈ L∞. A function f that

realizes the minimum on the right-hand side of (2–8) is called a best approxi-

mation of ϕ by analytic functions in the L∞-norm. The problem of finding, for

a given ϕ ∈ L∞, a best approximation by analytic functions is called Nehari’s

problem. It plays a significant role in applications, particularly in control theory.

If f realizes the minimum on the right-hand side of (2–8), then clearly, ϕ− f is

a symbol of Hϕ of minimal L∞-norm. A natural question arises of whether such

a symbol of minimal norm is unique.

The first results in this direction were apparently obtained by Khavinson

[1951] (see also [Rogosinski and Shapiro 1953]), where it was shown that for a

continuous function ϕ on T there exists a unique best uniform approximation by

analytic functions and that uniqueness fails in general; see also [Garnett 1981,

Section IV.1]. However, in the case when the Hankel operator attains its norm

on the unit ball of H2, that is, when ‖Hϕg‖2 = ‖Hϕ‖ ‖g‖2 for some nonzero

g ∈ H2, we do have uniqueness, as the following result shows [Adamyan et al.

1968b].

Theorem 2.4. Let ϕ be a function in L∞ such that Hϕ attains its norm on the

unit ball of H2. Then there exists a unique function f in H∞ such that

‖ϕ− f‖∞ = distL∞(ϕ,H∞).
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Moreover , ϕ − f has constant modulus almost everywhere on T and admits a

representation

ϕ− f = ‖Hϕ‖ z̄ ϑ̄
h̄

h
, (2–9)

where h is an outer function in H2 and ϑ is an inner function.

Proof. Without loss of generality we can assume that ‖Hϕ‖ = 1. Let g

be a function in H2 such that 1 = ‖g‖2 = ‖Hϕg‖2. Let f ∈ H∞ be a best

approximation of ϕ, so that ‖ϕ− f‖∞ = 1. We have

1 = ‖Hϕg‖2 = ‖P−(ϕ− f)g‖2 ≤ ‖(ϕ− f)g‖2 ≤ ‖g‖2 = 1.

Therefore the inequalities in this chain are in fact equalities. The fact that

‖P−(ϕ− f)g‖2 = ‖(ϕ− f)‖2

means that (ϕ− f)g ∈ H2
−, so

Hϕg = Hϕ−fg = (ϕ− f)g. (2–10)

The function g, being in H2, is nonzero almost everywhere on T, so

f = ϕ−
Hϕg

g
.

Hence f is determined uniquely by Hϕ: the ratio (Hϕg)/g does not depend on

the choice of g.

Since ‖ϕ− f‖∞ = 1, the equality

‖(ϕ− f)g‖2 = ‖g‖2

means that |ϕ(ζ) − f(ζ)| = 1 a.e. on the set {ζ : g(ζ) 6= 0}, which is of full

measure since g ∈ H2. Thus ϕ− f has modulus one almost everywhere on T.

Consider the functions g and z̄Hϕg in H2. It follows from (2–10) that they

have the same moduli. Therefore they admit factorizations

g = ϑ1h, z̄Hϕg = ϑ2h,

where h is an outer function in H2, and ϑ1 and ϑ2 are inner functions. Conse-

quently,

ϕ− f =
Hϕg

g
=
z̄ϑ̄2h̄

ϑ1h
= z̄ϑ̄1ϑ̄2

h̄

h
,

which proves (2–9) with ϑ = ϑ1ϑ2. ˜

Corollary 2.5. If Hϕ is a compact Hankel operator , the conclusion of Theorem

2.4 holds.

Proof. Any compact operator attains its norm. ˜
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We shall see in Section 5 that Hankel operators with continuous symbols are

compact, so Corollary 2.5 implies Khavinson’s theorem [1951] mentioned above.

Adamyan, Arov, and Krein proved in [Adamyan et al. 1968a] that, if there are

at least two best approximations to ϕ, there exists a best approximation g such

that ϕ− g has constant modulus on T. They found a formula that parametrizes

all best approximations.

We now show that Hankel operators can be characterized as the operators

that satisfy a certain commutation relation. Recall the S and S are the shift and

bilateral shift operators, respectively.

Theorem 2.6. Let R be a bounded operator from H2 to H2
−. Then R is a

Hankel operator if and only if it satisfies the commutation relation

P−SR = RS. (2–11)

Proof. Let R = Hϕ, with ϕ ∈ L∞. Then

P−SRf = P−zHϕf = P−zPϕf = P−zϕf = Hϕzf.

Conversely, suppose that R satisfies (2–11). Let n ≥ 1, k ≥ 1. We have

(Rzn, z̄k) = (RSzn−1, z̄k) = (P−SRzn−1, z̄k) = (SRzn−1, z̄k) = (Rzn−1, z̄k+1).

Therefore R has Hankel matrix in the bases {zn}n≥0 of H2 and {z̄k}k≥1 of H2
−.

It follows from Theorems 2.1 and 2.3 that R = Hϕ for some ϕ in L∞. ˜

3. Sarason’s Theorem

In this section we study the commutant of compressions of the shift operator

on H2 to its coinvariant subspaces, and we prove Sarason’s commutant lifting

theorem. We use an approach given in [Nikol’skĭı 1986, Section VIII.1], based

on Hankel operators and Nehari’s theorem. Then we establish an important

formula that relates functions of such a compression with Hankel operators.

Let ϑ be an inner function. Put

Kϑ = H2 	 ϑH2.

By Beurling’s theorem (see [Hoffman 1962, Chapter 7] or [Nikol’skĭı 1986, Sec-

tion I.1], for example), any nontrivial invariant subspace of the backward shift

operator S∗ on H2 coincides with Kϑ for some inner function ϑ. Denote by Sϑ
the compression of the shift operator S to Kϑ, defined by

Sϑf = Pϑzf for f ∈ Kϑ, (3–1)

where Pϑ is the orthogonal projection from H2 onto Kϑ. Clearly, S∗
ϑ = S∗|Kϑ.

It can easily be shown that

Pϑf = f − ϑP+ϑ̄f = ϑP−ϑ̄f for f ∈ H2. (3–2)
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Sϑ is the model operator in the Sz.-Nagy–Foiaş function model. Any contrac-

tion T (that is, a linear operator such that ‖T‖ ≤ 1) for which limn→∞ T ∗n = 0

in the strong operator topology and rank(I − T ∗T ) = rank(I − T T ∗) = 1 is

unitarily equivalent to Sϑ for some inner function ϑ; see [Sz.-Nagy and Foiaş

1967, Chapter 6; Nikol’skĭı 1986, Lecture I].

The operator Sϑ admits an H∞ functional calculus. Indeed, given ϕ ∈ H∞,

we define the operator ϕ(Sϑ) by

ϕ(Sϑ)f = Pϑϕf for f ∈ Kϑ. (3–3)

Clearly, this functional calculus is linear. It is also easy to verify that it is

multiplicative. Hence, for any ϕ ∈ H∞, the operator ϕ(Sϑ) commutes with Sϑ,

and it follows from (3–3) that

‖ϕ(Sϑ)‖ ≤ ‖ϕ‖H∞ .

This is known as von Neumann’s inequality.

The following theorem of Sarason [1967] describes the commutant of Sϑ. It is

a partial case of the commutant lifting theorem of Sz.-Nagy and Foiaş [1967].

Theorem 3.1. Let T be an operator that commutes with Sϑ. Then there exists

a function ϕ in H∞ such that T = ϕ(Sϑ) and ‖T‖ = ‖ϕ‖H∞ .

Lemma 3.2. Let T be an operator on Kϑ. Consider the operator T̃ : H2 → H2
−

defined by

T̃ f = ϑ̄ TPϑ f. (3–4)

Then T commutes with Sϑ if and only if T̃ is a Hankel operator .

Proof. T̃ is a Hankel operator if and only if

P−zT̃ f = T̃ zf for f ∈ H2 (3–5)

(see (2–11)), which means that

P−zϑ̄TPϑf = ϑ̄TPϑzf for f ∈ H2,

which in turn is equivalent to

ϑP−ϑ̄zTPϑf = TPϑzf for f ∈ H2. (3–6)

We have by (3–2)

ϑP−ϑ̄zTPϑf = PϑzTPϑf = SϑTPϑf.

Since obviously the left-hand side and the right-hand side of (3–6) are zero

for f ∈ ϑH2, it follows from (3–1) that (3–5) is equivalent to the equality

SϑTf = TSϑf for f ∈ Kϑ. ˜
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Proof of Theorem 3.1. By Lemma 3.2 the operator T̃ defined by (3–4) is a

Hankel operator. By Nehari’s theorem there exists a function ψ in L∞ such that

‖ψ‖∞ = ‖T̃‖ and Hψ = T̃ ; that is,

P−ψf = ϑ̄ TPϑf for f ∈ H2.

It follows that P−ψf = 0 for any f ∈ ϑH2. That means that Hψϑ = 0. Put

ϕ = ψϑ. Clearly ϕ ∈ H∞ and ψ = ϑ̄ϕ. We have

ϑ̄ Tf = P−ϑ̄ϕf for f ∈ Kϑ,

so

Tf = ϑP−ϑ̄ϕf = Pϑ ϕf = ϕ(Sϑ)f for f ∈ Kϑ. (3–7)

Obviously

‖T‖ = ‖T̃‖ = ‖ψ‖∞ = ‖ϕ‖∞,

which completes the proof. ˜

Remark. Formula (3–7) implies a remarkable relation, due to Nikol’skĭı [1986],

between Hankel operators and functions of model operators: Let ϑ be an inner

function, and let ϕ ∈ H∞. Then

ϕ(Sϑ) = ΘHϑ̄ϕ|Kϑ, (3–8)

where Θ is multiplication by ϑ. This formula shows that ϕ(Sϑ) has the same

metric properties as Hϑ̄ϕ; compactness, nuclearity, etc.

Formula (3–8) relates the Hankel operators of the form Hϑ̄ϕ with functions of

model operators. It can easily be shown that such Hankel operators are exactly

the Hankel operators from H2 to H2
− that have a nontrivial kernel. It is worth

mentioning that the set of functions of the form ϑ̄ϕ, where ϑ is inner and ϕ ∈ H∞,

forms a dense subset of L∞ [Douglas 1972, 6.32].

4. Finite Rank

One of the first results about Hankel matrices was a theorem of Kronecker

[1881] that describes the Hankel matrices of finite rank.

Let r = p/q be a rational function where p and q are polynomials. If p/q is

in its lowest terms, the degree of r is, by definition,

deg r = max(deg p, deg q),

where deg p and deg q are the degrees of the polynomials p and q. It is easy

to see that deg r is the sum of the multiplicities of the poles of r (including a

possible pole at infinity).

We are going to describe the Hankel matrices of finite rank without any

assumption on the boundedness of the matrix.



76 VLADIMIR V. PELLER

We identify sequences of complex numbers with the corresponding formal

power series. If a = {aj}j≥0 is a sequence of complex numbers, we associate

with it the formal power series

a(z) =
∑

j≥0

ajz
j .

The space of formal power series forms an algebra with respect to the multipli-

cation

(ab)(z) =
∑

m≥0

( m∑

j=0

ajbm−j

)
zm, with a =

∑

j≥0

ajz
j and b =

∑

j≥0

bjz
j .

Consider the shift operator S and the backward shift operator S∗ defined on

the space of formal power series in the following way:

(Sa)(z) = za(z), S∗
∑

j≥0

ajz
j =

∑

j≥0

aj+1z
j .

Let α = {αj}j≥0 be a sequence of complex numbers, which we identify with the

corresponding formal power series

α(z) =
∑

j≥0

αjz
j . (4–1)

Denote by Γα the Hankel matrix {αj+k}j,k≥0.

Theorem 4.1. Γα has finite rank if and only if the power series (4–1) determines

a rational function. In this case

rankΓα = deg zα(z).

Proof. Suppose that rankΓα = n. Then the first n + 1 rows are linearly de-

pendent. That means that there exists a nontrivial family {cj}0≤j≤n of complex

numbers (nontrivial means that not all the cj are equal to zero) such that

c0α+ c1S
∗α+ · · · + cnS

∗nα = 0. (4–2)

It is easy to see that

SnS∗kα = Sn−kα− Sn−k
k−1∑

j=0

αjz
j for k ≤ n. (4–3)

It follows easily from (4–2) and (4–3) that

0 = Sn
n∑

k=0

ckS
∗kα =

n∑

k=0

ckS
nS∗kα =

n∑

k=0

ckS
n−kα− p, (4–4)

where p has the form

p(z) =

n−1∑

j=0

pjz
j .
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Put

q(z) =
n∑

j=0

cn−jz
j . (4–5)

Then p and q are polynomials and it follows from (4–4) that qα = p, so α(z) =

(p/q)(z) is a rational function. Clearly,

deg zα(z) ≤ max (deg zp(z), deg q(z)) = n.

Conversely, suppose that α(z) = (p/q)(z) where p and q are polynomials such

that deg p ≤ n− 1 and deg q ≤ n. Consider the complex numbers cj defined by

(4–5). We have
n∑

j=0

cjS
n−jα = p.

Therefore

S∗n
n∑

j=0

cjS
n−jα =

n∑

j=0

cjS
∗jα = 0,

which means that the first n+ 1 rows of Γα are linearly dependent. Let m ≤ n

be the largest number for which cm 6= 0. Then S∗mα is a linear combination of

the S∗jα with j ≤ m− 1:

S∗mα =

m−1∑

j=0

djS
∗jα with dj ∈ C.

We will show by induction that any row of Γα is a linear combination of the

first m rows. Let k > m. We have

S∗kα = (S∗)k−mS∗mα =
m−1∑

j=0

dj(S
∗)k−m+jα. (4–6)

Since k −m+ j < k for 0 ≤ j ≤ m− 1, by the induction hypothesis each of the

terms of the right-hand side of (4–6) is a linear combination of the first m rows.

Therefore rankΓα ≤ m, which completes the proof. ˜

It is easy to see that Kronecker’s theorem for Hankel operators Hϕ on H2 admits

the following reformulation.

Corollary 4.2. Let ϕ ∈ L∞. The Hankel operator Hϕ has finite rank if and

only if P−ϕ is a rational function. In this case

rankHϕ = deg P−ϕ.

Corollary 4.3. Hϕ has finite rank if and only if there exists a finite Blaschke

product B such that Bϕ ∈ H∞.
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5. Compactness

In this section we establish Hartman’s compactness criterion for Hankel oper-

ators. We also compute the essential norm of a Hankel operator and study the

problem of approximation of a Hankel operator by compact Hankel operators.

Recall that the essential norm ‖T‖e of an operator T from a Hilbert space H1

to a Hilbert space H2 is, by definition,

‖T‖e = inf{‖T −K‖ : K is compact}. (5–1)

To compute the essential norm of a Hankel operator, we have to introduce

the space H∞ + C.

Definition. The space H∞ + C is the set of functions ϕ in L∞ such that ϕ

admits a representation ϕ = f + g, where f ∈ H∞ and g ∈ C(T).

Theorem 5.1 [Sarason 1978]. The set H∞ + C is a closed subalgebra of L∞.

To prove the theorem, we need the following elementary lemma, where

CA
def
= H∞ ∩ C(T).

Lemma 5.2. Let ϕ ∈ C(T). Then

distL∞(ϕ,H∞) = distL∞(ϕ,CA). (5–2)

Proof. The inequality dist(ϕ,H∞) ≤ distL∞(ϕ,CA) is trivial; we prove the

opposite one. For f ∈ L∞ we consider its harmonic extension to the unit disc

and keep the same notation for it. Put fr(ζ) = f(rζ) for ζ ∈ D. Let ϕ ∈ C(T),

h ∈ H∞. We have

‖ϕ− h‖∞ ≥ lim
r→1

‖(ϕ− h)r‖∞ ≥ lim
r→1

(‖ϕ− hr‖∞ − ‖ϕ− ϕr‖∞)

= lim
r→1

‖ϕ− hr‖∞ ≥ distL∞(ϕ,CA),

since ‖ϕ− ϕr‖∞ → 0 for continuous ϕ. ˜

Proof of Theorem 5.1. Equality (5–2) means exactly that the natural imbed-

ding of C(T)/CA in L∞/H∞ is isometric, so C(T)/CA can be considered as a

closed subspace of L∞/H∞. Let ρ : L∞ → L∞/H∞ be the natural quotient

map. It follows that H∞ + C = ρ−1(C(T)/CA) is closed in L∞.

This implies that

H∞ + C = closL∞(∪n≥0z̄
nH∞). (5–3)

It is easy to see that if f and g belong to the right-hand side of (5–3), then so

does fg. Hence H∞ + C is an algebra. ˜

Now we are going to compute the essential norm of a Hankel operator. The fol-

lowing result was apparently discovered by Adamyan, Arov, and Krein [Adamyan

et al. 1968b].
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Theorem 5.3. Let ϕ ∈ L∞. Then

‖Hϕ‖e = distL∞(ϕ, H∞+C).

Lemma 5.4. Let K be a compact operator from H2 to H2
−. Then

lim
n→∞

‖KSn‖ = 0.

Proof. Since any compact operator can be approximated by finite-rank op-

erators, it is sufficient to prove the assertion for rank-one operators K. Let

Kf = (f, ξ)η, ξ ∈ H2, η ∈ H2
−. We have KSnf = (f, S∗nξ)η, so

‖KSn‖ = ‖S∗nξ‖2‖η‖2 → 0. ˜

Proof of Theorem 5.3. By Corollary 4.2, Hf is compact for any trigonometric

polynomial f . Therefore Hf is compact for any f in C(T). Consequently,

distL∞(ϕ,H∞ + C) = inf
f∈C(T)

‖Hϕ −Hf‖ ≥ ‖Hϕ‖e.

On the other hand, for any compact operator K from H2 to H2
−,

‖Hϕ −K‖ ≥ ‖(Hϕ −K)Sn‖ ≥ ‖HϕS
n‖ − ‖KSn‖ = ‖Hznϕ‖ − ‖KSn‖

= distL∞(ϕ, z̄nH∞) − ‖KSn‖ ≥ distL∞(ϕ, H∞+C) − ‖KSn‖.

Therefore, in view of Lemma 5.4,

‖Hϕ‖e ≥ distL∞(ϕ, H∞+C). ˜

Remark. In Section 2 we studied the question of existence and uniqueness

of a best H∞ approximant in the L∞-norm. The same question can be asked

about approximation by H∞ +C functions; it was explicitly posed by Adamyan,

Arov, and Krein in [Adamyan et al. 1984]. However, the situation here is quite

different. It was shown in [Axler et al. 1979] that, for any ϕ ∈ L∞ \ H∞ + C,

there are infinitely many best approximants in H∞+C. See also [Luecking 1980]

for another proof.

We now obtain Hartman’s compactness criterion.

Theorem 5.5. Let ϕ ∈ L∞. The following statements are equivalent .

(a) Hϕ is compact .

(b) ϕ ∈ H∞ + C.

(c) There exists a function ψ in C(T) such that Hϕ = Hψ.

Proof. Obviously (b) and (c) are equivalent.

Suppose that ϕ ∈ H∞ + C. Then ‖Hϕ‖e = 0 by Theorem 5.3, which means

that Hϕ is compact. Thus (b) implies (a).

To show that (a) implies (b), assume Hϕ is compact. Then Theorem 5.3

gives distL∞(ϕ, H∞ + C) = 0, which, in combination with Theorem 5.5, yields

ϕ ∈ H∞ + C. ˜
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Corollary 5.6. Let ϕ ∈ L∞. Then

‖Hϕ‖e = inf{‖Hϕ −Hψ‖ : Hψ is compact}. (5–4)

In other words, to compute the essential norm of a Hankel operator we can

consider on the right-hand side of (5–1) only compact Hankel operators.

Corollary 5.7. Let ϕ ∈ H∞ + C. Then for any ε > 0 there exists a function

ψ in C(T) such that Hψ = Hϕ and ‖ψ‖∞ ≤ ‖Hϕ‖ + ε.

Proof. Without loss of generality we can assume that ϕ ∈ C(T). By Theorem

5.3, ‖Hϕ‖ = distL∞(ϕ,H∞). On the other hand, by Lemma 5.2,

distL∞(ϕ,H∞) = distL∞(ϕ,CA).

This means that for any ε > 0 there exists a function h ∈ CA such that ‖ϕ−h‖ ≤

‖Hϕ‖ + ε. Thus ψ = ϕ− h does the job. ˜

Example. For a compact Hankel operator, it is not always possible to find a

continuous symbol whose L∞-norm is equal to the norm of the operator. Indeed,

let α be a real-valued function in C(T) such that ã /∈ C(T), where α̃ is the

harmonic conjugate of α. Put ϕ = z̄eiα̃. Then ϕ = z̄eα+iα̃e−α. Clearly eα+iα̃ ∈

H∞ and e−α ∈ C(T). It follows from Theorem 5.1 that ϕ ∈ H∞ +C and so Hϕ

is compact. Let us show that ‖Hϕ‖ = 1. Put

h = exp 1
2 (α̃− iα).

Clearly, h is an outer function. To prove that h ∈ H2 we need the following the-

orem of Zygmund [Zygmund 1968, Chapter 7, Theorem 2.11]: If ξ is a bounded

real function such that ‖ξ‖L∞ < π/(2p), then exp ξ̃ ∈ Lp. Indeed, approxi-

mating α by trigonometric polynomials, we can easily deduce from Zygmund’s

theorem that h ∈ Hp for any p < ∞. Clearly ‖Hϕh‖2 = ‖z̄h̄‖2 = ‖h‖2. Hence

‖Hϕ‖ = ‖ϕ‖∞ = 1. By Corollary 2.4, ‖ϕ+ f‖∞ > 1 for any nonzero f in H∞.

It is also clear that ϕ /∈ C(T). This proves the result.

In Section 2 we gave a boundedness criterion for a Hankel operator Hϕ in terms

of P−ϕ. That criterion involves the condition P−ϕ ∈ BMO. We can give a

similar compactness criterion if we replace BMO by the space VMO of functions

of vanishing mean oscillation.

Theorem 5.8. Let ϕ ∈ L2. Then Hϕ is compact if and only if P−ϕ ∈ VMO.

This can be derived from Theorem 5.5 in the same way as it has been done in

Section 2 if we use the following description of VMO due to Sarason:

VMO = {ξ + P+η : ξ, η ∈ C(T)}.

See [Garnett 1981], for example.
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6. Approximation by Finite-Rank Operators

Definition. For a bounded linear operator T from a Hilbert space H1 to a

Hilbert space H2, the singular values sm(T ), for m ∈ Z+, are defined by

sm(T ) = inf{‖T −R‖ : rankR ≤ m}. (6–1)

Clearly, s0(T ) = ‖T‖ and sm+1(T ) ≤ sm(T ).

Adamyan, Arov, and Krein [Adamyan et al. 1971] proved that in order to find

sm(T ) for a Hankel operator T we can consider the infimum in (6–1) over only

the Hankel operators of rank at most m. This is a deep and important result.

Theorem 6.1. Let Γ be a Hankel operator from H2 to H2
−, and let m ≥ 0.

Then there exists a Hankel operator Γm of rank at most m such that

‖Γ − Γm‖ = sm(Γ). (6–2)

By Kronecker’s theorem, rankΓm is at most m if and only if Γm has a rational

symbol of degree at most m, so Theorem 6.1 admits the following reformulation.

Let R̃m be the set of functions f in L∞ such that P−f is a rational function of

degree at most m. Clearly, R̃m can be identified with the set of meromorphic

functions in D bounded near T and having at most m poles in D counted with

multiplicities.

Theorem 6.2. Let ϕ ∈ L∞, m ∈ Z+. There exists a function ψ in R̃m such

that

‖ϕ− ψ‖∞ = sm(Hϕ). (6–3)

We will prove Theorems 6.1 and 6.2 only for compact Hankel operators. For the

general case see [Adamyan et al. 1971] or [Treil’ 1985a], where an alternative

proof is given. Another fact that we state without proof is that for a compact

Hankel operator there exists a unique Hankel operator Γm of rank at most m

that satisfies (6–2); see [Adamyan et al. 1971].

Definition. Let T be a compact linear operator from a Hilbert space H1 to a

Hilbert space H2. If s is a singular value of T , consider the subspaces

E(+)
s = {x ∈ H1 : T ∗Tx = s2x}, E(−)

s = {y ∈ H2 : TT ∗y = s2y}.

Vectors in E
(+)
s are called Schmidt vectors of T (or, more precisely, s-Schmidt

vectors of T ). Vectors in E
(−)
s are called Schmidt vectors of T ∗ (or s-Schmidt

vectors of T ∗). Clearly, x ∈ E
(+)
s if and only if Tx ∈ E

(−)
s . A pair {x, y}, with

x ∈ H1 and y ∈ H2, is called a Schmidt pair of T (or s-Schmidt pair) if Tx = sy

and T ∗y = sx.
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Proof of Theorem 6.1 in the compact case. Put s = sm(Γ). If s = ‖Γ‖,

the result is trivial. Assume that s < ‖Γ‖. Then there exist positive integers k

and µ such that k ≤ m ≤ k + µ− 1 and

sk−1(Γ) > sk(Γ) = · · · = sk+µ−1(Γ) > sk+µ(Γ). (6–4)

Clearly, it suffices to consider the case m = k.

Lemma 6.3. Let {ξ1, η1} and {ξ2, η2} be s-Schmidt pairs of Γ. Then ξ1ξ̄2 = η1η̄2.

To prove the lemma we need the following identity, which is a consequence of

(2–11):

P− (znΓf) = Γznf for n ∈ Z+. (6–5)

Proof of Lemma 6.3. Let n ∈ Z+. We have

ξ̂1ξ̄2(−n) = (znξ1, ξ2) = s−1(znξ1,Γ
∗η2) = s−1(Γznξ1, η2)

= s−1(P− z
nΓξ1, η2) = (znη1, η2) = η̂1η̄2(−n),

by (6–5). Similarly, ξ̂1ξ̄2(n) = η̂1η̄2(n), n ∈ Z+, which implies ξ1ξ̄2 = η1η̄2. ˜

Corollary 6.4. Let {ξ, η} be an s-Schmidt pair of Γ. Then the function

ϕs =
η

ξ
(6–6)

is unimodular and does not depend on the choice of {ξ, η}.

Proof. Let ξ1 = ξ2 = ξ and η1 = η2 = η in Lemma 6.3. It follows that

|ξ|2 = |η|2 and so η/ξ is unimodular for any Schmidt pair {ξ, η}.

Let {ξ1, η1} and {ξ2, η2} be s-Schmidt pairs of Γ. By Lemma 6.3, η1/ξ1 =

ξ̄2/η̄2. Since η2/ξ2 is unimodular, η1/ξ1 = η2/ξ2. ˜

We resume the proof of Theorem 6.1. Put

Γs = Hsϕs ,

where ϕs is defined by (6–6). Clearly ‖Γs‖ ≤ s. The result will be established if

we show that rank(Γ − Γs) ≤ k.

Let {ξ, η} be an s-Schmidt pair of Γ. We show that it is also an s-Schmidt

pair of Γs. Indeed,

Γsξ = sP−
η

ξ
ξ = sη, Γ∗

sη = sP+
ξ

η
η = sξ.

Set

E+ = {ξ ∈ H2 : Γ∗Γξ = s2ξ} for E− = {η ∈ H2
− : ΓΓ∗η = s2η}

be the spaces of Schmidt vectors of Γ and Γ∗. Clearly, dimE+ = dimE− = µ.

It follows easily from (6–5) that if Γξ = Γsξ, then Γznξ = Γsz
nξ for any n ∈

Z+. Since Γs|E+ = Γ|E+, it follows that Γ and Γs coincide on the S-invariant

subspace spanned by E+, where S is multiplication by z on H2. By Beurling’s
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theorem this subspace has the form ϑH2, where ϑ is an inner function (see

[Nikol’skĭı 1986, Lecture I, 1], for example). Denote by Θ multiplication by ϑ. We

have ΓΘ = ΓsΘ. The proof will be complete if we show that dim(H2	ϑH2) ≤ k.

Put d = dim(H2 	 ϑH2).

Lemma 6.5. The singular value s of the operator ΓΘ has multiplicity at least

d+ µ.

Note that ΓΘ is compact, so it will follow from Lemma 6.5 that d <∞.

Proof of Lemma 6.5. Let τ be an inner divisor of ϑ, which means that

ϑτ−1 ∈ H∞. We show that, for any ξ ∈ E+,

(ΓsΘ)∗(ΓsΘ)τ̄ ξ = s2τ̄ ξ ∈ E+. (6–7)

Indeed it is easy to see that Γ∗z̄f̄ = z̄Γf for any f ∈ H2. Let J be the

transformation on L2 defined by Jf = z̄f̄ . It follows that J maps E+ onto E−.

Since E+ ⊂ ϑH2, we have E− ⊂ ϑ̄H2
−.

Let ξ ∈ E+ and set η = s−1Γξ ∈ E−. We can represent η as η = ϑ̄η∗, where

η∗ ∈ H2
−. We have

(ΓsΘ)∗(ΓsΘ)τ̄ ξ = (ΓsΘ)∗sP−
η

ξ
ϑτ̄ξ = s(ΓsΘ)∗P−η∗τ̄

= s(ΓsΘ)∗η∗τ̄ = s2P+
ξ

η
ϑ̄η∗τ̄ = s2τ̄ ξ,

which proves (6–7).

Since d= dim(H2	ϑH2), we can find for any n < d inner divisors {ϑj}1≤j≤n+1

of ϑ such that ϑn+1 = ϑ, ϑj+1ϑ
−1
j ∈ H∞, and ϑ1 and the ϑj+1ϑ

−1
j are not

constants; see [Nikol’skĭı 1986, Lecture II, 2], for example. Then it follows from

(6–7) that the subspace

Ej = span{E+, ϑ̄1E+, . . . , ϑ̄jE+}, for 1 ≤ j ≤ n+ 1,

consists of eigenvectors of (ΓΘ)∗(ΓΘ) corresponding to the eigenvalue s2. Clearly,

E1 \ E+ 6= ? and Ej+1 \ Ej 6= ? for 1 ≤ j ≤ n. Therefore

dim Ker
(
(ΓΘ)∗ΓΘ − s2I

)
≥ dimEn+1 ≥ µ+ n+ 1.

The left-hand side is equal to ∞ if d = ∞ and is at least µ+ d if d <∞. ˜

We can complete now the proof of Theorem 6.1. We have already observed that

sj(ΓΘ) ≤ sj(Γ), so by Lemma 6.5 we have

sk+µ(Γ) < sk+µ−1(Γ) = · · · = sk(Γ) = sd+µ−1(ΓΘ) ≤ sd+µ−1(Γ).

Therefore d+µ−1 < k+µ and so d ≤ k, which completes the proof of Theorem 6.1

in the compact case. ˜
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7. Schatten–von Neumann Classes Sp

In this section we study Hankel operators of Schatten–von Neumann class Sp.

We state the main result, which describes the Hankel operators of class Sp, for

0 < p < ∞, as those whose symbols belong to the Besov class B
1/p
p . However,

we give the proof here only in the case p = 1.

Definition. Let H1 and H2 be Hilbert spaces and let T : H1 → H2 be a

bounded linear operator. Given p with 0 < p <∞, we say that T ∈ Sp(H1,H2)

(or simply T ∈ Sp), if the sequence {sj}j≥0 of the singular values of T belongs

to `p. We put

‖T‖Sp

def
=

(∑

j≥0

spj

)1/p

. (7–1)

For 1 ≤ p <∞ the class Sp(H1,H2) forms a Banach space with norm given by

(7–1). If H is a Hilbert space and T is an operator on H of class S1, one can

define the trace of T by

traceT
def
=

∑

j≥0

(Tej , ej), (7–2)

where {ej}j≥0 is an orthonormal basis of H. The right-hand side of (7–2) does

not depend on the choice of the orthonormal basis. The trace is a linear func-

tional on H, and |traceT | ≤ ‖T‖S1
. The dual space of S1(H1,H2) can be

identified with the space B(H2,H1) of bounded linear operators from H2 to H1

with respect to the pairing

〈T,R〉
def
= traceTR for T ∈ S1(H1,H2) and R ∈ B(H2,H1).

We refer the reader to [Gohberg and Krĕın 1965] for more detailed information

about the classes Sp.

We now define the Besov classes Bs
p of functions on T. They admit many dif-

ferent equivalent definitions; see [Peetre 1976], for example. We need regularized

de la Vallée Poussin type kernels Vn, which can be defined as follows. Let v be

an infinitely differentiable function on R such that supp v = [ 1
2 , 2], v ≥ 0, and

∑

j≥0

v
( x

2j

)
= 1 for x ≥ 1.

It is very easy to construct such a function v. We can now define Vn by

Vn =

{∑
k∈Z

v
(
k

2n

)
zk for n ≥ 1,

V−n for n < 0,

V0(z) = z̄ + 1 + z.



AN EXCURSION INTO THE THEORY OF HANKEL OPERATORS 85

Definition. Let 0 < p < ∞. The Besov space Bs
p consists of the distributions

f on T satisfying ∑

n∈Z

(
2s|n|‖f ∗ Vn‖Lp

)p
<∞.

If p ≥ 1, the function v does not have to be infinitely smooth. In particular, in

this case we can replace v by the piecewise linear function w satisfying w(1) = 1

and suppw = [ 12 , 2], and replace the Vn by the trigonometric polynomials

Wn =

{∑
k∈Z

w
(
k

2n

)
zk for n ≥ 1,

W−n for n < 0,

W0(z) = z̄ + 1 + z.

It is clear from this definition that P+B
s
p ⊂ Bsp. We can identify in a natural way

a function f in P+B
s
p with the function

∑
j≥0 f̂(j)zj , analytic in D. A function

f analytic in D belongs to P+B
s
p if and only if

∫

D

|f (n)(ζ)|p (1 − |ζ|)(n−s)p−1 dm2(ζ) <∞,

where n ∈ Z+ and n > s.

For s > max{1/p − 1, 0}, the class Bs
p consists of the functions f on T for

which ∫

T

‖Dn
τ f‖

p
Lp

|τ − 1|1+sp
dm(τ) <∞,

where n > s is a positive integer and (Dτf)(ζ)
def
= f(τζ) − f(ζ).

Theorem 7.1. Let ϕ be a function on T of class BMO and let 0 < p < ∞.

Then Hϕ ∈ Sp if and only if P−ϕ ∈ B
1/p
p .

For technical reasons it is more convenient to work with Hankel matrices Γϕ =

{ϕ̂(j + k)}j,k≥0, where ϕ =
∑

j≥0 ϕ̂(j)zj is a function analytic in the unit disk.

We shall identify Hankel matrices Γϕ with operators on the space `2.

Clearly, the following statement is equivalent to Theorem 7.1.

Theorem 7.2. Let ϕ be a function analytic in the unit disk and let 0 < p <∞.

Then the Hankel operator Γϕ belongs to the class Sp if and only if ϕ ∈ B
1/p
p .

Theorem 7.1 was proved in [Peller 1980] for p ≥ 1, and in [Semmes 1984] and

[Peller 1983] for p < 1 (the proofs are quite different). Pekarskii’s theorem [1985]

on rational approximation also gives another proof of Theorem 7.2. Later other

proofs were found; see, for example, [Coifman and Rochberg 1980] for p = 1, and

[Rochberg 1982; Peetre and Svensson 1984] for 1 < p <∞.

We prove Theorem 7.2 only for p = 1. We present the original proof from

[Peller 1980], which gives rather sharp estimates from above and from below for

the norms ‖Γϕ‖S1
.
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Proof of Theorem 7.2 for p = 1.. We first prove that Γϕ ∈ S1 if ϕ ∈ B1
1 .

It is easy to see that

ϕ =
∑

n≥0

ϕ ∗Wn.

We have ∑

n≥0

2n‖ϕ ∗Wn‖L1 <∞.

Clearly, ϕ∗Wn is a polynomial of degree at most 2n+1−1. The following lemma

gives sharp estimates of the trace norm of a Hankel operator with polynomial

symbol.

Lemma 7.3. Let f be an analytic polynomial of degree m. Then

‖Γf‖S1
≤ (m+ 1)‖f‖1.

Proof. Given ζ ∈ T, we define elements xζ and yζ of `2 by

xζ(j) =

{
ζj if 0 ≤ j ≤ m,

0 if j > m;

yζ(k) =

{
f(ζ)ζ̄k if 0 ≤ k ≤ m,

0 if k > m.

Define the rank-one operator Aζ on `2 by setting Aζx = (x, xζ)yζ for x ∈ `2.

Then Aζ ∈ S1 and

‖Aζ‖S1
= ‖xζ‖`2 ‖yζ‖`2 = (m+ 1)|f(ζ)|.

We prove that

Γf =

∫

T

Aζ dm(ζ) (7–3)

(the function ζ 7→ Aζ being continuous, the integral can be understood as the

limit of integral sums). We have

(Γfej , ek) = f̂(j + k) =

∫

T

f(ζ)ζ̄j+k dm(ζ),

(Aζ , ej , ek) = f(ζ)ζ̄j ζ̄k.

Therefore (7–3) holds and

‖Γf‖S1 ≤

∫

T

‖Aζ‖S1 dm(ζ) ≤ (m+ 1)

∫

T

|f(ζ)| dm(ζ). ˜

We now complete the proof of the sufficiency of the condition ϕ ∈ B1
1 . It follows

from Lemma 7.3 that

‖Γϕ‖S1
≤

∑

n≥0

‖Γϕ∗Wn
‖S1

≤
∑

n≥0

2n+1‖ϕ ∗Wn‖L1 .
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Now suppose that Γϕ ∈ S1. Define polynomials Qn and Rn, for n ≥ 1, by

Q̂n(k) =





0 if k ≤ 2n−1,

1 − |k − 2n|/2n−1 if 2n−1 ≤ k ≤ 2n + 2n−1,

0 if k ≥ 2n + 2n−1;

R̂n(k) =





0 if k ≤ 2n,

1 − |k − 2n − 2n−1|/2n−1 if 2n ≤ k ≤ 2n+1,

0 if k ≥ 2n+1.

Clearly, Wn = Qn + 1
2Rn for n ≥ 1.

We now show that
∑

n≥0

22n+1‖ϕ ∗Q2n+1‖L1 <∞. (7–4)

One proves in exactly the same way that
∑

n≥1

22n‖ϕ ∗Q2n‖L1 <∞,

∑

n≥0

22n+1‖ϕ ∗R2n+1‖L1 <∞,

∑

n≥1

22n‖ϕ ∗R2n‖ <∞.

To prove (7–4), we construct an operator B on `2 such that ‖B‖ ≤ 1 and

〈Γϕ, B〉 =
∑

n≥0 22n‖f ∗Q2n+1‖L1 .

Consider the squares Sn = [22n−1, 22n−1 + 22n− 1]× [22n−1 + 1, 22n−1 + 22n],

for n ≥ 1, on the plane.

Let {ψn}n≥1 be a sequence of functions in L∞ such that ‖ψn‖L∞ ≤ 1. We

define the matrix {bjk}j,k≥0 of B by

bjk =

{
ψ̂n(j + k) if (j, k) ∈ Sn for n ≥ 1,

0 if (j, k) /∈
⋃
n≥1 Sn.

We show that ‖B‖ ≤ 1. Consider the subspaces

Hn = span{ej : 22n−1 ≤ j ≤ 22n−1+22n−1},

H
′
n = span{ej : 22n−1+1 ≤ j ≤ 22n−1+22n}.

It is easy to see that

B =
∑

n≥1

P ′
nΓψnPn,

where Pn and P ′
n are the orthogonal projection onto Hn and H′

n. Since the

spaces {Hn}n≥1 are pairwise orthogonal as well as the spaces {H′
n}n≥1, we have

‖B‖ = sup
n

‖P ′
nΓψnPn‖ ≤ sup

n
‖Γψn‖ ≤ sup

n
‖ψn‖L∞ ≤ 1.
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We show that

〈Γϕ, B〉 =
∑

n≥0

22n〈Q2n+1 ∗ ϕ, ψn〉,

where 〈g, h〉
def
=

∫
T
f(ζ)h(ζ̄) dm(ζ), for g ∈ L1 and h ∈ L∞. We have

〈Γϕ, B〉 =
∑

n≥1

〈Γϕ, P
′
nΓψnPn〉

=
∑

n≥1

22n+22n+1∑

j=22n

(
22n − |j − 22n+1|

)
ϕ̂(j)ψ̂n(j)

=
∑

n≥1

22n〈Q2n+1 ∗ ϕ, ψn〉.

We can now pick a sequence {ψn}n≥1 such that 〈Q2n+1∗ϕ, ψn〉 = ‖Q2n+1∗ϕ‖L1 .

Then

〈Γϕ, B〉 =
∑

n≥1

22n‖Q2n+1 ∗ ϕ‖L1 .

Hence ∑

n≥1

22n+1‖Q2n+1 ∗ ϕ‖L1 = 2〈Γϕ, B〉 ≤ 2‖Γϕ‖S1
<∞. ˜

Remark. This proof easily leads to the estimates

1

6

∑

n≥1

2n‖ϕ ∗Wn‖L1 ≤ ‖Γϕ‖S1
≤ 2

∑

n≥0

2n‖ϕ ∗Wn‖L1 .

8. Rational Approximation

Classical theorems on polynomial approximation, as found in [Akhiezer 1965],

for example, describe classes of smooth functions in terms of the rate of poly-

nomial approximation in one norm or another. The smoother the function, the

more rapidly its deviations relative to the set of polynomials of degree n decay.

However, it turns out that in the case of rational approximation the correspond-

ing problems are considerably more complicated. The first sharp result was

obtained in [Peller 1980]; it concerned rational approximation in the BMO norm

and was deduced from the Sp criterion for Hankel operators given in Theorem

7.1. There were also earlier results [Gonchar 1968; Dolženko 1977; Brudny̆ı 1979],

but there were gaps between the “direct” and “inverse” theorems.

In this section we describe the Besov spaces B
1/p
p in terms of the rate of

rational approximation in the norm of BMO. Then we obtain an improvement

of Grigoryan’s theorem which estimates the L∞ norm of P−f in terms of ‖f‖L∞

for functions f such that P−f is a rational function of degree n. As a consequence

we obtain a sharp result about rational approximation in the L∞ norm.

There are many different natural norms on BMO. We can use, for example,

‖f‖BMO
def
= inf{‖ξ‖L∞ + ‖η‖L∞ : f = ξ+P+η for ξ, η ∈ L∞}.
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Denote by Rn, for n ≥ 0, the set of rational functions of degree at most n

with poles outside T. For f ∈ BMO put

rn(f)
def
= distBMO{f,Rn}.

The following theorem was proved in [Peller 1980] for p ≥ 1 and in [Peller 1983;

Semmes 1984; Pekarskĭı 1985] for p < 1. Pekarskii [1985; 1987] also obtained

similar results for rational approximation in the Lp norms. See also [Parfenov

1986] for other applications of Hankel operators in rational approximation.

Theorem 8.1. Let ϕ ∈ BMO and 0 < p < ∞. Then {rn(ϕ)}n≥0 ∈ `p if and

only if ϕ ∈ B
1/p
p .

Proof. We have P+BMO ⊂ BMO (see the introduction), P+B
1/p
p ⊂ B

1/p
p

(Section 7), and P+ Rn ⊂ Rn. Therefore it is sufficient to prove the theorem for

P−ϕ and P+ϕ. We do it for P−ϕ; the corresponding result for P+ϕ follows by

passing to complex conjugate.

It follows from Theorem 6.1 that

sn(Hϕ) = inf{‖Hϕ −Hr‖ : rankHr ≤ n}.

Without loss of generality we may assume that r = P− r. By Corollary 4.2,

rankHr ≤ n if and only if r ∈ Rn. Together with Theorem 2.3 this yields

c1sn(Hϕ) ≤ inf{‖ϕ− r‖BMO : r ∈ Rn} ≤ c2sn(Hϕ)

for some positive constants c1 and c2.

The result follows now from Theorem 7.1. ˜

Denote by R+
n the set of rational functions of degree at most n with poles outside

the closed unit disk, and put

r+n (f)
def
= distBMOA{f,R

+
n }.

Corollary 8.2. Let ϕ ∈ BMOA and 0 < p < ∞. Then
{
r+n (ϕ)

}
n≥0

∈ `p if

and only if ϕ ∈ P+B
1/p
p .

We now prove an improvement of a theorem of Grigoryan [1976], which estimates

the ‖P−ϕ‖L∞ in terms of ‖ϕ‖L∞ in the case P−ϕ ∈ Rn. Clearly, the last

condition is equivalent to the fact that ϕ is a boundary value function of a

meromorphic function in D bounded near T and having at most n poles, counted

with multiplicities. It is not obvious that such an estimate exists. If we consider

the same question in the case where P−ϕ is a polynomial of degree n, it is

well known that ‖P−ϕ‖L∞ ≤ const log(1 + n) (see [Zygmund 1968]; this follows

immediately from the fact that ‖
∑n

j=0 z
j‖L1 ≤ const log(1 + n)). Grigoryan’s

theorem claims that, if P−ϕ ∈ Rn, then

‖P−ϕ‖L∞ ≤ const ·n‖ϕ‖L∞ . (8–1)
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The following result, obtained in [Peller 1983], improves this estimate. The proof

is based on the S1 criterion for Hankel operators given in Theorem 7.1.

Theorem 8.3. Let n be a positive integer and let ϕ be a function in L∞ such

that P−ϕ ∈ Rn. Then

‖P−ϕ‖B1
1
≤ const ·n‖ϕ‖L∞ . (8–2)

Observe first that (8–2) implies (8–1). Indeed, if f ∈ B1
1 , then

∑
n≥0 2n‖f ∗

Wn‖L1 ≤ const ‖f‖B1
1

(see Section 7). It is easy to show that

‖ϕ‖L∞ ≤
∑

j≥0

|f̂(j)| ≤ const
∑

n≥0

2n‖f ∗Wn‖L1 ,

which proves the claim.

Proof of Theorem 8.3. Consider the Hankel operator Hϕ. By Nehari’s

theorem, ‖Hϕ‖ ≤ ‖ϕ‖L∞ . By Kronecker’s theorem, rankHϕ ≤ n. Therefore

‖Hϕ‖S1
≤ n‖Hϕ‖. The result now follows from Theorem 7.1, which guarantees

that ‖P−ϕ‖B1
1
≤ const ‖Hϕ‖S1

. ˜

To conclude this section we obtain a result on rational approximation in the L∞

norm [Peller 1983]. For ϕ ∈ L∞ we put

ρn(ϕ)
def
= distL∞{ϕ,Rn} for n ∈ Z+.

Theorem 8.4. Let ϕ ∈ L∞. Then the ρn(ϕ) decay more rapidly than any power

of n if and only if ϕ ∈
⋂
p>0B

1/p
p .

Pekarskii [1987] obtained a result similar to Theorem 8.1 for rational approxi-

mation in L∞ in the case 0 < p < 1.

Lemma 8.5. Let r ∈ Rn. Then

‖r‖L∞ ≤ const ·n ‖r‖BMO.

Proof. It suffices to prove the inequality for P− r and P+ r; we do it for P− r.

Let f be the symbol of Hr-minimal norm, that is, such that P− r = P−f and

‖f‖L∞ = ‖Hr‖ (see Corollary 2.5). We have

‖P− r‖L∞ = ‖P−f‖L∞ ≤ const ·n‖f‖L∞ = const ·n‖Hr‖ ≤ const ·n‖P− r‖BMO,

by Theorems 8.3 and 2.3. ˜

Theorem 5.8 is an easy consequence of the following lemma.

Lemma 8.6. Let λ > 1 and let ϕ be a function in L∞ such that rn(ϕ) ≤

const ·n−λ for n ≥ 0. Then

ρn(ϕ) ≤ const ·n−λ+1 for n ≥ 0.
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Proof. Suppose that rn ∈ R2n and ‖ϕ− rn‖BM0 ≤ const 2−nλ. We have

ϕ− rn =
∑

j≥0

(
(ϕ− rn+j) − (ϕ− rn+j+1)

)
=

∑

j≥0

(rn+j+1 − rn+j).

Under the hypotheses of the lemma ,

‖rn+j+1 − rn+j‖BMO ≤ const 2−(n+j)λ,

and, since rn+j+1 − rn+j ∈ R2n+j+2 , Lemma 8.5 gives

‖rn+j+1 − rn+j‖L∞ ≤ const 2−(n+j)(λ−1).

Therefore

ρ2n(ϕ) ≤ ‖ϕ− rn‖L∞ const 2−n(λ−1),

which implies the conclusion of the lemma. ˜

9. The Operator of Best Approximation by Analytic Functions

Let ϕ be a function in VMO. By Corollary 2.5, there exists a unique function

f in BMOA such that ϕ− f is bounded on T and

‖ϕ− f‖L∞ = inf{‖ϕ− g‖L∞ : g ∈ BMOA with ϕ− g ∈ L∞(T)} = ‖Hϕ‖.

We define the nonlinear operator of best approximation by analytic functions

on the space VMO by setting Aϕ
def
= f . This operator is very important in

applications such as control theory and prediction theory.

We are going to study hereditary properties of A. This means the following:

Suppose that X ⊂ VMO is a space of functions on T. For which X does the

operator A maps X into itself? Certainly not for arbitrary X: for example,

AC(T) 6⊂ C(T), as follows from the remark after Corollary 5.7.

Shapiro [1952] showed that AX ⊂ X if X is the space of functions analytic

in a neighbourhood of T. Carleson and Jacobs [1972] proved that AΛα ⊂ Λα if

α > 0 and α /∈ Z, where the Λα
def
= Bα∞ are the Hölder–Zygmund classes (see

Section 7).

In [Peller and Khrushchëv 1982] three big classes of function spaces X were

found for which AX ⊂ X. The first consists of the so-called R-spaces, which

are, roughly speaking, function spaces that can be described in terms of rational

approximation in the BMO norm. The Besov spaces B
1/p
p , for 0 < p < ∞, and

the space VMO are examples of R-spaces. I will not give a precise definition

here.

The second class consists of function spaces X that satisfy the following ax-

ioms:

(A1) If f ∈ X, then f̄ ∈ X and P+f ∈ X.

(A2) X is a Banach algebra with respect to pointwise multiplication.

(A3) The trigonometric polynomials are dense in X.

(A4) The maximal ideal space of X can be identified naturally with T.
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Many classical spaces of functions on the unit circle satisfy these axioms: the

space of functions with absolutely convergent Fourier series, the Besov spaces Bs
p

for 1 ≤ p < ∞, and many others (see [Peller and Khrushchëv 1982]). However,

the Hölder–Zygmund classes Λα do not satisfy axiom (A3).

The third class of function spaces described in [Peller and Khrushchëv 1982]

contains many nonseparable Banach spaces. In particular, it contains the classes

Λα, for α > 0. I will not define the third class here; see [Peller and Khrushchëv

1982] for the definition and other examples.

Other function spaces satisfying the property AX ⊂ X are described in

[Vol’berg and Tolokonnikov 1985; Tolokonnikov 1991].

Another related question, also important in applications, is the continuity

problem. Merino [1989] and Papadimitrakis [1993] showed that the operator A

is discontinuous at any function ϕ ∈ C(T) \H∞ in the L∞ norm. For function

spaces satisfying Axioms (A1)–(A4), continuity points of A in the norm of X

were described in [Peller 1990b]: if ϕ ∈ X \ H∞, then A is continuous at ϕ if

and only if the singular value s0(Hϕ) of the Hankel operator Hϕ : H2 → H2
− has

multiplicity one.

In this section we prove that A preserves the spaces B
1/p
p , for 0 < p <∞, and

the space VMO. Moreover, it turns out that the operator A is bounded on such

spaces; that is,

‖Aϕ‖X ≤ const ‖ϕ‖X , (9–1)

for X = B
1/p
p or X = VMO. Note, however, that this is a rather exceptional

property. It was proved in [Peller 1992] that A is unbounded on X if X = Bs
p,

with s > 1/p, and on Λa, with α > 0. Then it was shown in [Papadimitrakis

1996] that A is unbounded on the space of functions with absolutely convergent

Fourier series.

Theorem 9.1. Let X = B
1/p
p , with 0 < p < ∞, or X = VMO. Then AX ⊂ X

and (9–1) holds.

To prove Theorem 9.1 we need a formula that relates the moduli of the Toeplitz

operators Tu and Tū for a unimodular function u (one satisfying |u(ζ)| = 1 a.e.

on T). This formula was found in [Peller and Khrushchëv 1982]:

H∗
ūHūTu = TuH

∗
uHu. (9–2)

It is an immediate consequence of the definitions of the Toeplitz and Hankel

operators. Nonetheless, it has many important applications.

Recall that each bounded linear operator T on a Hilbert space H admits a

polar decomposition T = U (T ∗T )1/2, where U is an operator such that KerU =

KerT and U |H 	 KerU is an isometry onto the closure of the range of T . The

operator U is called the partially isometric factor of T .

We need the following well-known fact [Halmos 1967, Problem 152]. Let A

and B be selfadjoint operators on Hilbert space and let T be an operator such

that AT = TB. Then AU = UB, where U is the partially isometric factor of T .
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We apply this to formula (9–2). Let u be a unimodular function on T. Denote

by U the partially isometric factor of Tu. Then

H∗
ūHūU = UH∗

uHu. (9–3)

The following theorem was proved in [Peller and Khrushchëv 1982].

Theorem 9.2. Let u be a unimodular function on T such that Tu has dense

range in H2. Then H∗
ūHū is unitarily equivalent to H∗

uHu|H
2 	 E, where

E = KerTu = {f ∈ H2 : H∗
uHuf = f}.

Proof. Since U maps H2 	E isometrically onto H2, it follows from (9–3) that

H∗
ūHū = UH∗

uHuU
∗ = U(H∗

uHu|H
2 	 E)U∗,

which proves the result. ˜

To prove Theorem 9.1 we need one more elementary fact [Peller and Khrushchëv

1982].

Lemma 9.3. Let h be an outer function in H2, τ an inner function, and let

u = τ̄ h̄/h. Then Tu has dense range in H2.

Proof. Assume that f ⊥ TuH
2 is nonzero. Then (f, ug) = 0 for any g ∈ H2.

We have f = f(o)f(i), where f(o) is outer and f(i) is inner. Put g = τf(i)h. Then

(f, ug) = (f(i)f(o), τ̄ τf(i)h̄) = (f(o), h̄) = f(o)(0)h(0) = 0,

which is impossible since both h and f(o) are outer. ˜

Proof of Theorem 9.1. We prove the theorem for X = B
1/p
p . The proof for

X = VMO is exactly the same.

Without loss of generality we may assume that P−ϕ 6= 0. Multiplying ϕ,

if necessary, by a suitable constant, we may also assume that ‖Hϕ‖ = 1. Let

f = Aϕ. Put u = ϕ − f . By Corollary 2.5, u is unimodular and has the form

u = z̄ϑ̄h̄/h, where ϑ is an inner function and h is an outer function in H2. It

follows from Lemma 9.3 that Tu has dense range in H2.

Since P−u = P−ϕ, Theorem 7.1 implies that Hu ∈ Sp and ‖Hu‖Sp is equiva-

lent to ‖P−ϕ‖B1/p
p

. We can now apply Theorem 9.2, which implies that

‖Hū‖Sp ≤ ‖Hu‖Sp ,

and so

‖P+u‖B1/p
p

≤ const ‖P−u‖B1/p
p
.

The result follows now from the obvious observation f = P+f = P+ϕ−P+u. ˜
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10. Hankel Operators and Prediction Theory

In this section we demonstrate how Hankel operators can be applied in predic-

tion theory. By a discrete time stationary Gaussian process we mean a two-sided

sequence {Xn}n∈Z of random variables which belong to a Gaussian space (i.e.,

space of functions normally distributed) such that

EXn = 0

and

EXnXk = cn−k

for some sequence {cn}n∈Z of real numbers, where E is mathematical expecta-

tion.

It is easy to see that the sequence {cn}n∈Z is positive semi-definite, so by the

Riesz–Herglotz theorem [Riesz and Sz.-Nagy 1965] there exists a finite positive

measure µ on T such that µ̂(n) = cn. The measure µ is called the spectral

measure of the process.

We can now identify the closed linear span of {Xn}n∈Z with the space L2(µ)

using the unitary map defined by

Xn 7→ zn for n ∈ Z.

This allows one to reduce problems of prediction theory to the corresponding

problems in the space L2(µ), and instead of the sequence {Xn}n∈Z we can study

the sequence {zn}n∈Z . Note that if µ is the spectral measure of a stationary

Gaussian process, its Fourier coefficients are real, so µ satisfies the condition

µ(E) = µ{ζ : ζ̄ ∈ E} for E ∈ T. (10–1)

It can be shown that any finite positive measure satisfying (10–1) is the spec-

tral measure of a stationary Gaussian process. However, to study regularity

conditions in the space L2(µ) we do not need (10–1). So from now on µ is an

arbitrary positive finite Borel measure on T, though if it does not satisfy (10–1),

the results described below have no probabilistic interpretation.

With the process {zn}n∈Z we associate the following subspaces of L2(µ):

G
n def

= span
L2(µ)

{zm : m ≥ n} = znH2(µ)

(“future starting at the moment n”) and

Gn
def
= span

L2(µ)

{zm : m < n} = znH2
−(µ)

(“past till the moment n”). Here

H2(µ)
def
= span

L2(µ)

{zm : m ≥ 0}, H2
−(µ)

def
= span

L2(µ)

{zm : m < 0},

and span means the closed linear span.



AN EXCURSION INTO THE THEORY OF HANKEL OPERATORS 95

The process {zn}n∈Z is called regular if
⋂

n≥0

G
n = {0}.

We denote by Pn and Pn the orthogonal projections onto G
n and Gn respec-

tively. It is easy to see that the process is regular if and only if limn→∞ P0Pn = 0

in the strong operator topology.

By Szegö’s theorem [Ibragimov and Rozanov 1970] the process is regular if

an only if µ is absolutely continuous with respect to Lebesgue measure and its

density w (called the spectral density of the process) satisfies logw ∈ L1.

In prediction theory it is important to study other regularity conditions (i.e.,

conditions expressing that the operators P0Pn are small in a certain sense) and

characterize the processes satisfying such conditions in terms of the spectral

densities.

A process {zn}n∈Z in L2(µ) is called completely regular if

ρn
def
= lim

n→∞
‖P0P

n‖ = 0;

this means that the spaces G
n and G0 become asymptotically orthogonal as n→

∞, or the corresponding Gaussian subspaces become asymptotically indepen-

dent.

The following results describe processes satisfying certain regularity condi-

tions. See [Peller and Khrushchëv 1982] for other regularity conditions.

Theorem 10.1. The process {zn}n∈Z in L2(w) is completely regular if and only

if w admits a representation

w = |P |2eϕ, (10–2)

where ϕ is a real function in VMO and P is a polynomial with zeros on T.

Theorem 10.1 was proved in [Helson and Sarason 1967] and [Sarason 1972] (with-

out mention of the space VMO, which was introduced later).

Theorem 10.2. The process {zn}n∈Z in L2(w) satisfies the condition

ρn ≤ const(1 + n)−α, for α > 0,

if and only if w admits a representation of the form (10–2), where ϕ is a real

function in Λα and P is a polynomial with zeros on T.

Theorem 10.2 was obtained by Ibragimov; see [Ibragimov and Rozanov 1970].

Theorem 10.3. The process {zn}n∈Z in L2(w) satisfies the condition

P0P
0 ∈ Sp, for 0 < p <∞,

if and only if w admits a representation of the form (10–2), where ϕ is a real

function in B
1/p
p and P is a polynomial with zeros on T.
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For p = 2 Theorem 10.3 was proved by Ibragimov and Solev; see [Ibragimov and

Rozanov 1970]. It was generalized for 1 ≤ p < ∞ in [Peller 1980; Peller and

Khrushchëv 1982] and for p < 1 in [Peller 1983]. The Ibragimov–Solev proof

works only for p = 2.

Original proofs were different for different regularity conditions; some of them

(in particular, the original proof of Theorem 10.2) were technically very compli-

cated. In [Peller and Khrushchëv 1982] a unified method was found that allowed

one to prove all such results by the same method. The method involves Hankel

and Toeplitz operators and it simplifies considerably many original proofs. In

[Peller 1990a] the method was simplified further.

In this section we prove Theorem 10.1. The proofs of Theorems 10.2 and 10.3

are similar.

To prove Theorem 10.1 we need several well-known results from the theory

of Toeplitz operators. We mention some elementary properties, which follow

immediately from the definition:

T ∗
ϕ = Tϕ̄ for ϕ ∈ L∞,

Tϕ̄fψ = Tϕ̄TfTψ for f ∈ L∞ and ϕ,ψ ∈ H∞.

An operator T on Hilbert space is called Fredholm if there exists an operator

R such that TR−I and RT−I are compact. It is well-known that T is Fredholm

if and only if dimKerT < ∞, dimKerT ∗ < ∞, and the range of T is closed.

The index indT of a Fredholm operator T is defined by

indT = dimKerT − dim KerT ∗.

If T1 and T2 are Fredholm, then indT1T2 = indT1 + indT2. The proofs of these

facts can be found in [Douglas 1972].

Clearly, a Fredholm operator with zero index is not necessarily invertible.

However, the following result of Coburn (see [Sarason 1978; Nikol’skĭı 1986,

Appendix 4, 43], for example) shows that a Fredholm Toeplitz operator with

zero index must be invertible.

Lemma 10.4. Let ϕ ∈ L∞. Then KerTϕ = {0} or KerT ∗
ϕ = {0}.

Proof. Let f ∈ KerTϕ and g ∈ KerT ∗
ϕ. Then ϕf ∈ H2

− and ϕ̄g ∈ H2
−.

Consequently, ϕfḡ ∈ H1
−

def
= {ψ ∈ L1 : ψ̂(n) = 0, n ≤ 0} and ϕ̄f̄g ∈ H1

−. Thus

the Fourier coefficients of ϕfḡ are identically equal to zero, and so ϕfḡ = 0.

Therefore if ϕ is a nonzero function, then either f or g must vanish on a set of

positive measure which implies that f = 0 or g = 0. ˜

We need one more well-known lemma of Devinatz and Widom; see, for example,

[Douglas 1972; Nikol’skĭı 1986, Appendix 4, 36].

Lemma 10.5. Let u be a unimodular function such that Tu is invertible. Then

there exists an outer function η such that ‖u− η‖L∞ < 1.
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Proof. Clearly,

‖Huf‖
2
L2 + ‖Tuf‖

2
L2 = ‖f‖2

L2 for f ∈ H2.

Since Tu is invertible, it follows that

‖Hu‖ = distL∞{u,H∞} < 1.

Let η be a function in H∞ such that ‖u− η‖L∞ < 1. We show that η is outer.

We have

‖I − Tūη‖ = ‖1 − ūη‖L∞ = ‖u− η‖L∞ < 1

(here 1 is the function identically equal to 1). Thus Tūη = T ∗
uTη is invertible.

Hence Tη is invertible. Clearly Tη is multiplication by η on H2, and so η must

be invertible in H∞ which implies that η is outer. ˜

Finally, we prove the theorem of Sarason [1978] that describes the unimodular

functions in VMO. We give the proof from [Peller and Khrushchëv 1982], which

is based on Toeplitz operators.

Theorem 10.6. A unimodular function u belongs to VMO if an only if u admits

a representation

u = zn exp i(q̃ + r), (10–3)

where n ∈ Z and q and r are real functions in C(T).

In other words, u belongs to VMO if and only if u = zneiκ, where κ is a real

function in VMO.

Proof. Suppose that u is given by (10–3). Then

u = zn exp(q + iq̃) exp(−q + ir) ∈ H∞ + C,

since H∞ + C is an algebra (see Theorem 5.1). Hence Hu is compact, and

so P−u ∈ VMO (see Theorems 5.5 and 5.8). Similarly, P− ū ∈ VMO, and so

u ∈ VMO.

Now suppose that u ∈ VMO. It follows immediately from the definitions of

Hankel and Toeplitz operators, that

I − TuTū = H∗
ūHū for I − TūTu = H∗

uHu.

Since the Hankel operatorsHu andHū are compact, the operator Tu is Fredholm.

Put u = znv, where n = indTu. If n ≥ 0, then Tu = TvTzn , whereas if n ≤ 0,

then Tu = TznTv. Therefore indTu = indTv+indTzn = indTv−n = −n. Hence

indTv = 0, and Tv is invertible by Lemma 10.4.

By Lemma 10.5 there exists an outer function η such that

‖v − η‖L∞ = ‖1 − v̄η‖L∞ < 1.
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Hence v̄η has a logarithm in the Banach algebra H∞ +C. Let f ∈ C(T) and let

g ∈ H∞ satisfy (v̄η)−1 = v/η = exp(f + g). We have

v = exp(ic+ log |η| + i l̂og |η| + f + g),

where c ∈ R. Since v is unimodular, it follows that log |η| + Re(f + g) = 0.

Therefore, setting q
def
= log |η| + Re g, we have q ∈ C(T). Since g ∈ H∞, we get

l̂og |η| + Im g = q̃ + Im ĝ(0).

To complete the proof it remains to put r
def
= Im f + c+Im ĝ(0) and observe that

u satisfies (10–3). ˜

Proof of Theorem 10.1. We first write the operator P0Pn in terms of a

Hankel operator. Let h be an outer function in H2 such that |h|2 = w. Consider

the unitary operators U and V from L2 onto L2(w) defined by

Uf = f/h, Vf = f/h̄, f ∈ L2.

Since h is outer, it follows from Beurling’s theorem (see [Nikol’skĭı 1986], for

example) that UH2 = H2(w) and VH2
− = H2

−(w). Therefore

P0g = VP−V
−1g for g ∈ L2(w),

and

P
ng = UznP+ z̄

n
U

−1g for g ∈ L2(w).

Hence

P0P
ng = VP−V

−1
UznP+ z̄

n
U

−1g = VP− (h̄/h)znP+ z̄
n

U
−1g for g ∈ L2(w).

It follows that

ρn = ‖Hznh̄/h‖ for n ≥ 0. (10–4)

Lemma 10.7. The process {zn}n∈Z is completely regular if and only if h̄/h ∈

VMO.

Proof. It follows from (10–4) that complete regularity is equivalent to the fact

that ‖Hznh̄/h‖ → 0. We have

‖Hznh̄/h‖ = distL∞{znh̄/h,H∞}

= distL∞{h̄/h, z̄nH∞} → distL∞{h̄/h, H∞+C},

so limn→∞ ρn = 0 if and only if h̄/h ∈ H∞ + C. The last condition means

that Hh̄/h is compact, which is equivalent to the fact that P− h̄/h ∈ VMO

(see Theorem 5.8). It remains to show that this is equivalent to the inclusion

h̄/h ∈ VMO.

Put u = h̄/h. By Lemma 9.3 the Toeplitz operator Tu has dense range in H2,

so by Theorem 9.2 the Hankel operator Hū is compact. The result now follows

from Theorem 5.8. ˜
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We resume the proof of Theorem 10.1. It is easy to see that

z − γ

z − γ
= −γ̄z̄ for γ ∈ T.

Therefore for a polynomial P of degree m with zeros on T

P

P
= cz̄m

for c ∈ T.

Suppose first that w = |P |2eϕ, where ϕ ∈ VMO and P is a polynomial of

degree m. Consider the outer function h1 = exp 1
2 (ϕ + if̃). Since Ph1 is outer

and |Ph1| = |h|, we have h = ωPh1, where ω ∈ T. Hence

h̄

h
= ω̄2P

P

h̄1

h1
= λ exp(−iϕ̃), λ ∈ T.

By Theorem 10.6, h̄/h ∈ VMO, and so by Lemma 10.7 the process is completely

regular.

Conversely, suppose that the process is completely regular. By Lemma 10.7,

h̄/h ∈ VMO, so by Theorem 10.6

h̄

h
= z̄meiψ

for some m ∈ Z and ω ∈ VMO. By Lemma 9.3, Th̄/h has dense range, so

indTh̄/h ≥ 0. It follows from the proof of Theorem 10.6 that Teiψ is invertible,

which implies that m ≥ 0. Now consider the outer function

h1
def
= exp(−ψ̃/2 + iψ/2).

As in the remark after Corollary 5.7 we can conclude that h1 ∈ H2.

Consider the Toeplitz operator Tz̄h̄/h = Tz̄m+1h̄1/h1
. Its index equals m + 1,

so it has (m + 1)-dimensional kernel. Obviously, zjh1 ∈ KerTz̄m+1h̄1/h1
for

0 ≤ j ≤ m, and so the functions zjh1, for 0 ≤ j ≤ m, form a basis in KerTz̄h̄/h.

It is also obvious that h ∈ KerTz̄h̄/h. Hence h = Ph1 for some polynomial P of

degree at most m. Since h and h1 are outer, so is P , which implies that P has

no zeros outside the closed unit disk.

We show that P has degree m and has no zeros in D. Let P = P1P2, where

P1 has zeros on T and P2 has zeros outside the closed unit disk. Let k = degP1.

Then
h̄

h
=
P 1

P 1

P 2

P 2

h̄1

h1
= ωz̄kP 2

h̄1

h1
P−1

2 for ω ∈ T.

Consequently,

indTh̄/h = indTz̄kP 2(h̄1/h1)P
−1
2

= k + indTP 2
+ indTh̄1/h1

+ indTP−1
2

= k,

since the operators TP 2
, Th̄1/h1

, and TP−1
2

are clearly invertible. Hence k = m

which completes the proof. ˜
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11. Spectral Properties of Hankel Operators with Lacunary

Symbols

To speak about spectral properties we certainly have to realize Hankel oper-

ators as operators from a certain Hilbert space into itself. For ϕ ∈ L∞ we can

consider the operator Γϕ on `2 with Hankel matrix {ϕ̂(j + k)}j,k≥0 in the stan-

dard basis of `2. Not much is known about spectral properties of such operators

in terms of ϕ. Power [1982] described the essential spectrum of Γϕ for piecewise

continuous functions ϕ. See also [Howland 1986; 1992a; 1992b], where spectral

properties of self-adjoint operators Γϕ with piecewise continuous ϕ are studied.

For a long time it was unknown whether there exists a nonzero quasinilpotent

Hankel operator Γ, i.e., a Hankel operator Γ such that σ(Γ) = {0} [Power 1984].

This question was answered affirmatively by Megretskii [1990], who considered

Hankel operators with lacunary symbols and found an interesting approach to

the description (in a sense) of their spectra. In particular, his method allows one

to construct nonzero quasinilpotent Hankel operators.

In this section we describe the method of [Megretskii 1990]. In particular

we prove that the operator with the following Hankel matrix is compact and

quasinilpotent:

Γ# =




i 1
2 0 1

4 0 · · ·
1
2 0 1

4 0 0 · · ·

0 1
4 0 0 0 · · ·

1
4 0 0 0 1

8 · · ·

0 0 0 1
8 0 · · ·

...
...

...
...

...
. . .



. (11–1)

We consider a more general situation of Hankel operators of the form

Γ =




α0 α1 0 α2 0 · · ·

α1 0 α2 0 0 · · ·

0 α2 0 0 0 · · ·

α2 0 0 0 α3 · · ·

0 0 0 α3 0 · · ·
...

...
...

...
...

. . .



,

where {αk}k≥0 is a sequence of complex numbers. In other words, we set Γ =

{γj+k}j,k≥0, where

γj =

{
αk if j = 2k − 1 with k ∈ Z+,

0 otherwise.

We evaluate the norm of Γ and give a certain description of its spectrum.

Since BMOA = (H1)∗ by Fefferman’s theorem [Garnett 1981] with respect

to the natural duality, it follows from Paley’s theorem [Zygmund 1968] that∑
k≥0 αkz

2k−1 ∈ BMOA if and only if {αk}k≥0 ∈ `2. Therefore, by Nehari’s

theorem, Γ is a matrix of a bounded operator if and only if {αk}k≥0 ∈ `2;
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moreover ‖Γ‖ is equivalent to ‖{αk}k≥0‖`2 . It is also clear that for {αk}k≥0 ∈ `2

the function
∑

k≥0 αkz
2k−1 belongs to VMOA, so Γ is bounded if and only if it

is compact.

We associate with Γ the sequence {µk}k≥0 defined by

µ0 = 0,

µk+1 = 1
2

(
µk + 2|αk+1|

2 + (µ2
k + 4|αk+1|

2)1/2
)

for k ∈ Z+.
(11–2)

The following theorem evaluates the norm of Γ.

Theorem 11.1. If {αk}k≥0 ∈ `2, the sequence {µk}k≥0 converges and

‖Γ‖2 = lim
k→∞

µk.

To describe the spectrum of Γ consider the class Λ of sequences of complex

numbers {λj}j≥0 satisfying

λ0 = α0,

(λj − λj−1)λj = α2
j for j ≥ 1.

(11–3)

Theorem 11.2. Suppose that {αj}j≥0 ∈ `2. Any sequence {λj}j≥0 in Λ con-

verges. The spectrum σ(Γ) consists of 0 and the limits of such sequences.

To prove Theorems 11.1 and 11.2 we consider finite submatrices of Γ. Let Lk

be the linear span of the basis vectors ej , for j = 0, 1, . . . , 2k − 1, and let Pk be

the orthogonal projection from `2 onto Lk. Consider the operator Γk
def
= PkΓ|Lk

and identify it with its 2k × 2k matrix. Put

Γ̃k
def
= ΓkPk =

(
Γk 0

0 0

)
.

It is easy to see that ‖Γk‖ = ‖Γ̃k‖ and σ(Γ̃k) = σ(Γk) ∪ {0}. Clearly,

Γk+1 =

(
Γk αk+1Jk

αk+1Jk 0

)
,

where Jk is the 2k × 2k matrix given by

Jk =




0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0



.

We need a well-known fact from linear algebra: Let N be a block matrix of

the form

N =

(
A B

C D

)
,

where A and D are square matrices and D is invertible. Then

detN = detD det(A−BD−1C). (11–4)



102 VLADIMIR V. PELLER

See [Gantmakher 1988, Chapter 2, § 5.3], for example.

Proof of Theorem 11.1. Since J∗
k = Jk and J2

k is the identity matrix of size

2k × 2k (which we denote by Ik), we have

Γ∗
k+1Γk+1 =

(
Γ∗
kΓk + |αk+1|

2Ik αk+1Γ̃
∗
kJk

ᾱk+1JkΓ̃k |αk+1|
2Ik

)
. (11–5)

Applying formula (11–4) to the matrix Γ∗
k+1Γk+1 − λIk+1, where λ 6= |αk+1|

2,

we obtain

det(Γ∗
k+1Γk+1 − λIk+1) = ρ2k det

(
−
λ

ρ
Γ∗
kΓk + ρIk

)
, (11–6)

where ρ
def
= |αk+1|

2 − λ.

Since Γ is a bounded operator, we have ‖Γ‖ = limk→∞ ‖Γk‖. Therefore it is

sufficient to show that µk = ‖Γk‖
1/2 or, which is the same, that µk is the largest

eigenvalue of Γ∗
kΓk. We proceed by induction on k. For k = 0 the assertion is

obvious.

If Γk = 0, the assertion is obvious. Otherwise, it follows easily from (11–5)

that ‖Γ∗
k+1Γk+1‖ > |αk+1|

2.

It is easy to see from (11–6) that λ 6= |αk+1|
2 is an eigenvalue of Γ∗

k+1Γk+1 if

and only if ρ2/λ is an eigenvalue of Γ∗
kΓk. Put

µ = ρ2/λ = (|αk+1|
2 − λ)2/λ.

If µ is an eigenvalue of Γ∗
kΓk, it generates two eigenvalues of Γ∗

k+1Γk+1:

1
2

(
µ+2 |αk+1|

2 +(µ2 +4 |αk+1|
2)1/2

)
and 1

2

(
µ+2 |αk+1|

2−(µ2 +4 |αk+1|
2)1/2

)
.

Clearly, to get the largest eigenvalue of Γ∗
k+1Γk+1 we have to put µ = µk and

choose the first of the eigenvalues above. This proves that µk+1 defined by (11–2)

is the largest eigenvalue of Γ∗
k+1Γk+1. ˜

To prove Theorem 11.2 we need two lemmas.

Lemma 11.3. Let Λk be the set of k-th terms of sequences in Λ; that is,

Λk = {λk : {λj}j≥0 ∈ Λ}.

If {ζj}j≥0 is an arbitrary sequence satisfying ζj ∈ Λj , then it converges if and

only if limj→∞ ζj = 0 or there exists a sequence {λj}j≥0 ∈ Λ such that ζj = λj
for sufficiently large j.

Lemma 11.4. Let A be a compact operator on Hilbert space and let {Aj}j≥0 be

a sequence of bounded linear operators such that limj→∞ ‖A − Aj‖ = 0. Then

the spectrum σ(A) consists of the limits of all convergent sequences {νj}j≥0 such

that νj ∈ σ(Aj).

Lemma 11.4 is well known [Newburgh 1951] and we don’t prove it here. Note

that we need Lemma 11.4 for compact operators Aj , in which case it is proved

in [Gohberg and Krĕın 1965, Theorem 4.2].
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Proof of Theorem 11.2 assuming Lemmas 11.3 and 11.4. Since Γ is com-

pact, 0 ∈ σ(Γ).

For λ ∈ C \ {0} we apply formula (11–4) to the matrix Γk+1 − λIk+1 and

obtain

det(Γk+1 − λIk+1) = (−λ)2
k

det
(
Γk −

(
λ−

α2
k+1

λ

)
Ik

)
. (11–7)

Obviously,

0 ∈ σ(Γk) if and only if αk = 0.

Together with (11–7) this implies that λ ∈ σ(Γk) if and only if there exists

λ′ ∈ σ(Γk−1) such that (λ− λ′)λ = α2
k.

Let λ be a nonzero point in the spectrum of Γ. By Lemma 11.4, there exists

a sequence {νj}j≥0 such that νj → λ as j → ∞ and νj ∈ σ(Γ̃j). Since λ 6= 0

we may assume without loss of generality that νj ∈ σ(Γj). It follows now from

Lemma 11.3 that there exists a sequence {λj}j≥0 in Λ such that λj = νj for

sufficiently large j, so λ = limj→∞ λj .

Conversely, let {λj}j≥0 ∈ Λ. By Lemma 11.3, {λj}j≥0 converges to a point

λ ∈ C. As we have already observed, λj ∈ σ(Γj), so Lemma 11.4 gives λ ∈ σ(Γ).

˜

Proof of Lemma 11.3. Let {λj}j≥0 ∈ Λ. Then |λj | ≤ |λj−1| + |αj |
2/|λj | for

j ≥ 1. It follows that

|λj | ≤ max{ε, |λj−1| + |αj |
2/ε} (11–8)

for any ε > 0. We show that either λj → 0 as j → ∞ or |λj | ≥ δ for some δ > 0

for sufficiently large j.

To do this, we show first that, if ε > 0 and lim inf j→∞ |λj | < ε, then

lim supj→∞ |λj | ≤ 2ε. Assume to the contrary that lim inf j→∞ |λj | < ε and

lim supj→∞ |λj | > 2ε for some ε > 0. It follows that for any N ∈ Z+ there

exist positive integers m and n such that N ≤ m < n, |λm−1| < ε, |λj | ≥ ε for

m ≤ j ≤ n, and |λn| ≥ 2ε. It follows from (11–8) that |λj | ≤ |λj−1|+ |αj |
2/ε for

m ≤ j ≤ n. Therefore

|λn| ≤ |λm−1| +

∑n
j=m |αj |

2

ε
.

Since {αk}k≥0 ∈ `2, we can choose N so large that (
∑∞

j=m |αj |
2)/ε < ε, which

contradicts the inequality |λn| ≥ 2ε.

If |λj | ≥ δ > 0 for large values of j, then by (11–3)

|λj − λj−1| ≤
|αj |

2

δ
.

Therefore {λj}j≥0 converges.
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Now suppose that {λj}j≥0 and {νj}j≥0 are sequences in Λ which have nonzero

limits. Then, for sufficiently large j,

|λj−1 − νj−1| =

∣∣∣∣(λj − νj)
(
1 +

α2
j

λjνj

)∣∣∣∣ ≤ |λj − νj |(1 + d|αj |
2)

for some d > 0. Iterating this inequality, we obtain

|λj−1 − νj−1| ≤
∣∣ lim
j→∞

λj − lim
j→∞

νj
∣∣

∞∏

m=j

(1 + d|αm|2)

(the infinite product on the right-hand side converges since {αj}j≥0 ∈ `2). There-

fore if limj→∞ λj = limj→∞ νj , then λj = νj for sufficiently large j.

For ε > 0 we consider the set of sequences {λj}j≥0 in Λ such that lim sup{|λj | :

j ≥ k} ≥ ε for any positive integer k. We show that the number of such sequences

is finite. Suppose that {λj}j≥0 ∈ Λ is such a sequence. As we observed at the

beginning of the proof, there exists δ > 0 and j0 ∈ Z+ such that |λj | ≥ δ for

sufficiently large j. Clearly, |αj | < δ for sufficiently large j. It follows that if j

is sufficiently large, then λj is uniquely determined by λj−1 and the conditions

(λj − λj−1)λj = α2
j , |λj | ≥ δ.

Hence there are only finitely many possibilities for such sequences.

Now let {ζj}j≥0 be a converging sequence such that ζj ∈ Λj for j ≥ 0 and

such that limj→∞ ζj 6= 0. As already proved, there are sequences {λ
(s)
j }j≥0 ∈ Λ,

for s = 1, . . . ,m, such that ζj ∈ {λ
(1)
j , . . . , λ

(m)
j } for sufficiently large j and the

sequences {λ
(s)
j }j≥0 have distinct limits. It follows that there exists an s in the

range 1 ≤ s ≤ m such that ζj = λ
(s)
j for sufficiently large j. ˜

We now proceed to the operator Γ# defined by (11–1). In other words, we

consider the operator Γ with

α0 = i,

αj = 2−j for j ≥ 1.

Theorem 11.5. Γ# is a compact quasinilpotent operator .

Proof. It is easy to see by induction that if {λj}j≥0 satisfies (11–3), then

λj = 2−ji, so Theorem 11.2 gives σ(Γ#) = {0}. We have already seen that

bounded Hankel operators of this form are always compact. ˜

Remark. We can consider a more general situation where Γ = {γj+k}j,k≥0,

with

γj =

{
αk for j = nk − 1 with k ∈ Z+,

0 otherwise,

where {nk}k≥0 is a sequence of natural numbers such that nk+1 ≥ 2nk for k ≥ 0

and {αk}k≥0 ∈ `2. It is easy to see that the same results hold and the same proofs
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also work in this situation, which allows one to construct other quasinilpotent

Hankel operators. In particular, the Hankel operator




0 i 0 1
2 0 · · ·

i 0 1
2 0 0 · · ·

0 1
2 0 0 0 · · ·

1
2 0 0 0 1

4 · · ·

0 0 0 1
4 0 · · ·

...
...

...
...

...
. . .



.

is quasinilpotent.

It is still unknown whether there exist noncompact quasinilpotent Hankel oper-

ators.

12. Recent Developments

In this section we discuss briefly three recent developments in Hankel operators

and their applications. We describe the results without proofs but give references.

Self-adjoint operators unitarily equivalent to Hankel operators. In Sec-

tion 11 we discussed some spectral properties of Hankel operators. Here we con-

sider the problem of describing all possible spectral types of self-adjoint Hankel

operators.

The problem can also be described as follows. Let R be a (bounded) self-

adjoint operator on a Hilbert space H. When is R unitarily equivalent to a

Hankel operator? In other words, is there an orthonormal basis {ej}j≥0 in H in

which R is represented by a Hankel matrix?

Let me first say a few words about another related problem, posed in [Khru-

shchëv and Peller 1984], which appeared while we were studying geometric fea-

tures of prediction theory. Let K and L be subspaces of a Hilbert space H. The

problem is to find out under which conditions there exists a stationary process

{xj}j∈Z in H (i.e., the inner products (xj , xk)H depend only on j−k) such that

span{xj : j < 0} = K and span{xj : j ≥ 0} = L.

It was shown in [Khrushchëv and Peller 1984] that this problem is equivalent

to the following one. Let K be a nonnegative self-adjoint operator on Hilbert

space. Under which conditions does there exist a Hankel operator Γ whose

modulus |Γ|
def
= (Γ∗Γ)1/2 is unitarily equivalent to K? In the same paper the

following two simple necessary conditions were found:

(i) KerK is either trivial or infinite-dimensional;

(ii) K is noninvertible.

We asked whether these conditions together are also sufficient.
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Partial results in this direction were obtained in [Treil’ 1985b; Vasyunin and

Treil’ 1989; Ober 1987; 1990], where the case of operators K with discrete spec-

trum was considered. The last two of these papers suggested a very interesting

approach to the problem, based on linear systems with continuous time. Using

Ober’s approach, Treil [1990] gave in a complete solution by proving that con-

ditions (i) and (ii) are sufficient. In the same article he showed that under these

conditions there exists a self-adjoint Hankel operator whose modulus is unitarily

equivalent to K.

Let me explain why the problem of describing the self-adjoint operators that

are unitarily equivalent to Hankel operators is considerably more delicate. Recall

that by von Neumann’s spectral theory each self-adjoint operator R on Hilbert

space is unitarily equivalent to multiplication by the independent variable on

a direct integral of Hilbert spaces
∫
⊕K(t) dµ(t) that consists of measurable

functions f such that f(t) ∈ K(t) and
∫

‖f(t)‖2
K(t)dµ(t) <∞

(µ is a positive Borel measure on R, called a scalar spectral measure of R).

The spectral multiplicity function νR is defined µ-a.e. by νR(t)
def
= dim K(t).

Two self-adjoint operators are unitary equivalent if and only if their scalar spec-

tral measures are mutually absolutely continuous and their spectral multiplicity

functions coincide almost everywhere. See [Birman and Solomyak 1980] for the

theory of spectral multiplicity.

Conditions (i) and (ii) describe the spectral multiplicity function ν|Γ| of the

moduli of self-adjoint Hankel operators. Namely, (i) means that ν(0) = 0 or

ν(0) = ∞, while (ii) means that 0 ∈ supp ν. Clearly, ν|Γ|(t) = νΓ(t)+νΓ(−t), for

t > 0. So the problem of describing the self-adjoint operators that are unitarily

equivalent to Hankel operators is equivalent to the problem of investigating how

ν|Γ|(t) can be distributed between νΓ(t) and νΓ(−t).

The problem was solved recently in [Megretskii et al. 1995]. The main result

of that paper is the following theorem. As usual, µa and µs are the absolutely

continuous and the singular parts of a measure µ.

Theorem 12.1. Let R be a selfadjoint operator on Hilbert space, µ a scalar

spectral measure of R, and ν its spectral multiplicity function. Then R is unitarily

equivalent to a Hankel operator if and only if the following conditions hold :

(i) Either KerR = {0} or dim KerR = ∞.

(ii) R is noninvertible.

(iii) |ν(t) − ν(−t)| ≤ 1, µa-a.e., and |ν(t) − ν(−t)| ≤ 2, µs-a.e.

The necessity of (i) and (ii) is almost obvious. The necessity of (iii) is more

complicated. To prove that (iii) is necessary certain commutation relations be-

tween Hankel operators, the shift operator, and the backward shift were used in

[Megretskii et al. 1995].
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However, the most difficult problem is to prove sufficiency. It would be natural

to try the method of linear systems with continuous time. Unfortunately (or

perhaps fortunately), it does not work. To be more precise, it works if we

replace (iii) by the stronger condition: |ν(t) − ν(−t)| ≤ 1, µ-a.e.

To prove sufficiency we used in [Megretskii et al. 1995] linear systems with

discrete time (with scalar input and scalar output). Let A be a bounded linear

operator on a Hilbert space H, and let b, c ∈ H. Consider the linear system

{
xn+1 = Axn + unb,

yn = (xn, c),
(12–1)

for n ∈ Z. Here un ∈ C is the input, xn ∈ H, and yn ∈ C is the output. We

assume that supn≥0 ‖A
n‖ <∞.

We can associate with (12–1) the Hankel matrix Γα = {αj+k}j,k≥0, where

αj
def
= (Ajb, c).

The Hankel operator Γα is related to the system (12–1) in the following way.

We can associate with a sequence v = {vn}n≥0 ∈ `2 the input sequence u =

{un}n∈Z defined by

un =

{
v−1−n if n < 0,

0 if n ≥ 0.

It is easy to see that under the initial condition limn→−∞ xn = 0 the output

y = {yn}n≥0 of the system (12–1) with input u satisfies y = Γαv.

It was shown in [Megretskii et al. 1995] that under conditions (i)–(iii) of

Theorem 12.1 there exists a triple {A, b, c} such that the Hankel operator Γα is

unitarily equivalent to R. The proof is very complicated. The triple {A, b, c} is

found as a solution of certain Lyapunov–type equations. In addition to that, A

must satisfy the asymptotic stability condition

‖Anx‖ → 0 for x ∈ H.

The most complicated part of the proof is to construct a solution satisfying the

asymptotic stability condition above.

Approximation by analytic matrix functions. As mentioned in the intro-

duction, Hankel operators play an important role in control theory, and it is

especially important in control theory to consider Hankel operators whose sym-

bols are matrix functions or even operator functions. Let H and K be Hilbert

spaces and let Φ ∈ L∞(B(H,K)), i.e., Φ is a bounded weakly measurable func-

tion taking values in the space B(H,K) of bounded linear operators from H to

K. We can define the Hankel operator HΦ : H2(H) → H2
−(K) by

HΦf
def
= P−Φf for f ∈ H2(H),

where the spaces of vector functions H2(H) and H2
−(K) are defined as in the

scalar case and P− is the orthogonal projection onto H2
−(K). The analog of
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Nehari’s theorem says that

‖HΦ‖ = inf{‖Φ − F‖L∞(B(H,K)) : F ∈ H∞(B(H,K))}. (12–2)

The operator HΦ is compact if and only if Φ ∈ H∞(B(H,K)) + C(K(H,K)),

where C(K(H,K)) is the space of continuous functions that take values in the

space K(H,K) of compact operators from H to K. The proofs of these facts

can be found in [Page 1970]. As in the scalar case, Nehari’s problem is to find,

for a given Φ ∈ L∞(Mm,n), a function F ∈ H∞(B(H,K)) that minimizes the

right-hand side of (12–2).

If dim H = n < ∞ and dim K = m < ∞, then H can be identified with Cn,

K with Cm, and B(H,K) with the space Mm,n of m× n matrices.

It is important in applications to be able to solve Nehari’s problem for matrix

functions (and for operator functions). However, unlike the scalar case, it is

only exceptionally that the problem has a unique solution. Consider the matrix

function

Φ =

(
z̄ 0

0 1
2 z̄

)
.

Since ‖Hz̄‖ = 1, it follows that distL∞{z̄, H∞} = 1, and since ‖Φ‖L∞(M2,2) = 1,

we have distL∞(M2,2){Φ,H
∞(M2,2)} = 1. On the other hand, if f is a scalar

function in H∞ and ‖f‖H∞ ≤ 1
2 , it is obvious that

∥∥∥∥Φ −

(
0 0

0 f

)∥∥∥∥
L∞(M2,2)

= 1,

so Φ has infinitely many best uniform approximants by bounded analytic func-

tions. Intuitively, however, it is clear that the “very best” approximation is the

zero function, since a nonzero f ∈ H∞ increases the L∞-norm of the lower right

entry.

This suggests the idea of imposing additional constraints on Φ − F . Given a

matrix function Φ, we put

Ω0 = {F ∈ H∞(Mm,n) : F minimizes t0 = sup
ζ∈T

‖Φ(ζ) − F (ζ)‖};

Ωj = {F ∈ Ωj−1 : F minimizes tj = sup
ζ∈T

sj(Φ(ζ) − F (ζ))}.

Here sj is the j-th singular value.

Functions in F ∈ Ωmin{m,n}−1 are called superoptimal approximations of Φ by

analytic functions, or superoptimal solutions of Nehari’s problem. The numbers

tj are called superoptimal singular values of Φ. The notion of superoptimal

approximation was introduced in [Young 1986]; it is important in H∞ control

theory.

The following uniqueness theorem was obtained in [Peller and Young 1994a].
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Theorem 12.2. Let Φ ∈ H∞ + C(Mm,n). Then there exists a unique super-

optimal approximation F ∈ H∞(Mm,n) by bounded analytic functions. It satis-

fies the equalities

sj(Φ(ζ) − F (ζ)) = tj a.e. on T for 0 ≤ j ≤ min{m,n} − 1.

Here is briefly the method of the proof. Let v ∈ H2(Cn) be a maximizing

vector of HΦ (which exists since HΦ is compact). Consider the vector function

w = HΦv ∈ H2(Cm). It can be shown that v and z̄w̄ admit the factorizations

v = ϑ1hv and z̄w̄ = ϑ2hw,

where h is a scalar outer function, ϑ1 and ϑ2 are scalar inner functions, and

v and w are column functions which are inner and co-outer (this means that

‖v(ζ)‖Cn = ‖w(ζ)‖Cm = 1 a.e. on T, and both v and w have coprime entries,

i.e., they do not have a common nonconstant inner divisor).

It is proved in [Peller and Young 1994a] that v and w admit thematic com-

pletions; that is, there exist matrix functions Vc ∈ H∞(Mn,n−1) and Wc ∈

H∞(Mm,m−1) such that the matrix functions V
def
= (v Vc) and W

def
= (w Wc)

have the following properties:

(i) V and W take unitary values.

(ii) all minors of V and W on the first column are in H∞.

Let Q be an arbitrary best approximant in H∞(Mm,n). It is shown in [Peller

and Young 1994a] that

W t(Φ −Q)V =

(
t0u0 0

0 Φ(1)

)
, (12–3)

where u0
def
= z̄ϑ̄1ϑ̄2h̄/h and Φ(1) ∈ H∞+C(Mm−1,n−1) (this inclusion is deduced

in [Peller and Young 1994a] from the analyticity property (ii) of the minors). It

is shown in the same article that the problem of finding a superoptimal approx-

imation of Φ reduces to the problem of finding one for Φ(1). Namely, if F (1) is a

superoptimal approximation of Φ(1), the formula

W t(Φ − F )V =

(
t0u0 0

0 Φ(1) − F (1)

)

determines a superoptimal approximation F to Φ. This allows us to reduce the

size of the matrix function. Uniqueness now follows from the uniqueness result

in the case n = 1, whose proof is the same as that of Theorem 2.4.

The proof of Theorem 12.2 given on [Peller and Young 1994a] is constructive.

Another (less constructive) method for proving the same result was given in

[Treil’ 1995].

The proof obtained in [Peller and Young 1994a] gives interesting factoriza-

tions (thematic factorizations) of the error functions Φ − F . To describe such

factorizations, assume for simplicity that m = n. We denote by I j the constant

j × j identity matrix function.
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Theorem 12.3. Let Φ be an n× n function satisfying the hypotheses of Theo-

rem 12.2 and let F be the unique superoptimal approximation of Φ by bounded

analytic functions. Then Φ − F admits a factorization

Φ − F = W 0W 1 · · ·Wn−2DV
∗
n−2 · · ·V

∗
1 V

∗
0 , (12–4)

where

D =




t0u0 0 · · · 0

0 t1u1 · · · 0
...

...
. . .

...

0 0 · · · tn−1un−1


 ,

u0, . . . , un−1 are unimodular functions in VMO such that distL∞{uj ,H
∞} = 1

for 0 ≤ j ≤ n− 1,

Wj =

(
Ij 0

0 W̌j

)
,

Vj =

(
Ij 0

0 V̌j

)
for 0 ≤ j ≤ n− 2,

and V̌j and W̌j , for 0 ≤ j ≤ n− 2, are thematic matrix functions.

We can associate with the factorization (12–4) the indices kj
def
= dimKerTuj , for

0 ≤ j ≤ n−1. Since ‖Huj‖ = 1 andHuj is compact, it follows that kj ≥ 1. It was

shown in [Peller and Young 1994a] that the indices are not determined uniquely

by the function Φ: they can depend on the choice of a thematic factorization.

However, combining our earlier methods with those of [Treil’ 1995], we showed in

[Peller and Young 1994b] that the sums of the indices that correspond to equal

superoptimal singular values are uniquely determined by Φ.

Another result obtained in [Peller and Young 1994b] is an inequality between

the singular values of the Hankel operator HΦ and the terms of the extended

t-sequence, which is defined as follows:

t̃0
def
= t0, . . . , t̃k0−1

def
= t0, t̃k0

def
= t1, . . . , t̃k0+k1−1

def
= t1, t̃k0+k1

def
= t2, . . .

(each term of the sequence {tj}0≤j≤n−1 is repeated kj times). The inequality is

t̃j ≤ sj(HΦ) for 0 ≤ j ≤ k0 + k1 + · · · + kn−1 − 1. (12–5)

A similar result holds for infinite matrix functions (or operator functions) Φ

under the condition that HΦ is compact [Treil’ 1995; Peller 1995; Peller and

Treil’ 1995].

In [Peller and Treil’ 1997] the preceding results were shown to be true in a

more general context, when the matrix function Φ does not necessarily belong

to H∞ + C. It is shown there also that these results generalize to the case

when the essential norm of HΦ is less than the smallest nonzero superoptimal

singular value. In fact, the paper deals with the so-called four-block problem,
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which is more general than Nehari’s problem. Another result obtained in it is

the following inequality, which is stronger than (12–5):

sj(HΦ(1)) ≤ sj+k0
(HΦ) for j ≥ 0,

where Φ(1) is defined in (12–3).

It is also shown in [Peller and Young 1994a] that the nonlinear operator of su-

peroptimal approximation has hereditary properties similar to those discussed in

Section 9. Continuity properties of the operator of superoptimal approximation

are studied in [Peller and Young 1997].

Similarity to a contraction. Here we consider one more application of Hankel

operators, which has led recently to a solution of the famous problem of similarity

to a contraction. Recall that operators T1 and T2 on Hilbert space are called

similar if there exists an invertible linear operator V such that T2 = V T1V
−1.

Clearly, similar operators have identical spectral properties. Sometimes one can

prove that if an operator has the same properties as operators from a certain

class, it is similar to an operator from that class. For example, it was proved in

[Sz.-Nagy 1947] that if T is invertible and supn∈Z ‖Tn‖ <∞, then T is similar to

a unitary operator. However, if we know only that T satisfies supn≥0 ‖T
n‖ <∞,

it is not true that T must be similar to a contraction. The first example of

such an operator was constructed in [Foguel 1964]; see [Davie 1974; Peller 1982;

Bożejko 1987] for other examples).

It follows from von Neumann’s inequality [von Neumann 1951] that any op-

erator similar to a contraction is polynomially bounded, i.e.,

‖ϕ(T )‖ ≤ const ·max
|ζ|≤1

|ϕ(ζ)|

for any analytic polynomial ϕ.

The question of whether the converse is true was posed by Halmos [1970] and

remained opened until recently.

Paulsen [1984] proved that T is similar to a contraction under the stronger

condition of complete polynomial boundedness, which means that
∥∥∥∥∥∥∥∥∥




ϕ11(T ) ϕ12(T ) · · · ϕ1n(T )

ϕ21(T ) ϕ22(T ) · · · ϕ2n(T )
...

...
. . .

...

ϕn1(T ) ϕn2(T ) · · · ϕnn(T )




∥∥∥∥∥∥∥∥∥
≤ c ·max

|ζ|≤1

∥∥∥∥∥∥∥∥∥




ϕ11(ζ) ϕ12(ζ) · · · ϕ1n(ζ)

ϕ21(ζ) ϕ22(ζ) · · · ϕ2n(ζ)
...

...
. . .

...

ϕn1(ζ) ϕn2(ζ) · · · ϕnn(ζ)




∥∥∥∥∥∥∥∥∥

for any positive integer n and any polynomial matrix {ϕjk}1≤j,k≤n; the constant

c in the inequality does not depend on n.

Now let f be a function analytic in the unit disk D. Consider the operator

Rf on `2 ⊕ `2 defined by

Rf =

(
S∗ Γf
0 S

)
, (12–6)
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where S is the shift operator on `2 and Γf is the Hankel operator on `2 with

matrix {f̂(j+k)}j,k≥0 in the standard basis of `2. Such operators were introduced

and used in [Peller 1982] to construct power bounded operators which are not

similar to contractions. The operators Rf were considered independently by

Foiaş and Williams; see [Carlson et al. 1994].

In [Peller 1984] the problem was posed of whether it is possible to find a

function f for which Rf is polynomially bounded but not similar to a contraction.

The reason why the operators Rf are convenient for this purpose is that functions

of Rf can be evaluated explicitly: if ϕ is an analytic polynomial, then

ϕ(Rf ) =

(
ϕ(S∗) Γϕ′(S∗)f

0 ϕ(S)

)
. (12–7)

It was shown in [Peller 1984] that, if f ′ ∈ BMOA (see the definition on

page 70), Rf is polynomially bounded. A stronger result was obtained later in by

Bourgain [1986]: if f ′ ∈ BMOA, then Rf is completely polynomially bounded,

and so it is similar to a contraction. Another proof of Bourgain’s result was

obtained later in [Stafney 1994].

Recently Paulsen has shown that Rf is similar to a contraction if and only if

the matrix {(j−k)f̂(j+k)}j,k≥0 determines a bounded operator on `2. It follows

from results of [Janson and Peetre 1988] that the last condition is equivalent to

the fact that f ′ ∈ BMOA. (In the latter paper instead of matrices the authors

study integral operators on L2(R), but their methods also work for matrices.)

This implies that Rf is similar to a contraction if and only if f ′ ∈ BMOA.

There was hope of finding a function f with f ′ /∈ BMOA such that Rf is

polynomially bounded, which would solve the problem negatively. However, this

was recently shown to be is impossible, in [Aleksandrov and Peller 1996], the

main result of the paper being the following:

Theorem 12.4. Let f be a function analytic in D. The following statements

are equivalent :

(i) Rf is polynomially bounded .

(ii) Rf is similar to a contraction.

(iii) f ′ ∈ BMOA.

To prove Theorem 12.4 the following factorization result is established in [Alek-

sandrov and Peller 1996]. We denote by CA the disk algebra of functions analytic

in D and continuous in clos D.

Theorem 12.5. Let f be a function analytic in D. Then f ∈ H1 if and only if

its derivative f ′ admits a representation

f ′ =
∑

j≥0

g′jhj ,
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where gj ∈ CA, hj ∈ H1, and

∑

j≥0

‖gj‖L∞‖hj‖H1 <∞.

However, this was not the end of the story. Pisier [1997] considered the operator

Rf on the space of vector functions H2(H)⊕H2(H), where H is a Hilbert space.

The definition of Rf is exactly the same as given in (12–6). In this case S is the

shift operator on H2(H), f is a function analytic in D and taking values in the

space B(H) of bounded linear operators on H, and Γf is the operator on H2(H)

given by the block Hankel matrix {f̂(j + k)}j,k≥0. It is easy to see that (12–7)

also holds in this setting for any scalar analytic polynomial ϕ. Pisier managed

to construct a function f for which Rf is polynomially bounded but not similar

to a contraction. To do that he used a sequence of operators {Cj}j≥0 on H with

the properties

∥∥∥∥
∑

j≥0

αjCj

∥∥∥∥ =

(∑

j≥0

|αj |
2

)1/2

with αj ∈ C

and

1

2

∑

j≥0

|αj | ≤

∥∥∥∥
∑

j≥0

αjCj ⊗ Cj

∥∥∥∥ ≤
∑

j≥0

|αj | for αj ∈ C.

Such a sequence {Cj}j≥0 always exists; see [Pisier 1996], for example.

The following result from [Pisier 1997] solves the problem of similarity to a

contraction.

Theorem 12.6. Let {αj}j≥0 be a sequence of complex numbers such that

sup
k≥0

k2
∑

j≥k

|αj |
2 <∞

and
∑

j≥1

j2|αj |
2 = ∞.

Then the operator Rf with f =
∑
j≥0 αjz

jCj is polynomially bounded but not

similar to a contraction.

It is very easy to construct such a sequence {αj}j≥0. For example, one can put

αj = (j + 1)−3/2.

Pisier’s proof is rather complicated and involves martingales. Kislyakov [1996],

Davidson and Paulsen [1997], and McCarthy [1996] have simplified the original

argument and got rid of martingales.
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Functional Anal. Appl. 2 (1968), 1-18.

[Adamyan et al. 1971] V. M. Adamyan, V. Z. Arov, and M. G. Krĕın, “Analitiqeskie
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of bounded functions by elements of H∞ + C ”, pp. 254–258 in Linear and

complex analysis problem book: 199 research problems, edited by V. P. Havin
et al., Lecture Notes in Mathematics 1043, Springer, Berlin, 1984. Russian
original in Issledovaniffl po lineinym operatoram i teori@i funkci@i: 99
nerexennyh zadaq line@inogo i kompleksnogo analiza, Zapiski nauqnyh
seminarov LOMI 81, edited by N. K. Nikol’skii, V. P. Khavin, and S. V.
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