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Higher-Order Hankel Forms and Commutators

RICHARD ROCHBERG

Abstract. We discuss the algebraic structure of the spaces of higher-order

Hankel forms and of the spaces of higher-order commutators. In both

cases we find a close relationship between the space of order n + 1 and the

derivations of the underlying algebra of functions into the space of order n.

1. Introduction and Summary

Let H2 be the Hardy space of the unit circle, Γ; that is, H2 is the space of

functions, f =
∑

anzn, holomorphic on the unit disk for which

‖f‖ =

(

∑

|an|
2

)1/2

< ∞.

Such an f will be identified with its boundary values on Γ. A Hankel form on

H2 is a bilinear map B = Bb : H2 × H2 → C that has the characteristic form

B(f, g) =

∫

Γ

fgb̄. (1–1)

Here b is the (boundary value) of a holomorphic function, the symbol function

of B. In terms of Taylor coefficients,

B(f, g) =
∑

n,k≥0

f̂(n)ĝ(k)b̂(n + k).

When B is viewed as acting on functions, its characteristic property is that its

value only depends on the product fg. When viewed as acting on the coefficients,

the characteristic property of B is that its matrix,

{

βn,k

}

=
{

b̂(n + k)
}

,

is a Hankel matrix; that is, a matrix on Z
+×Z

+ whose entries only depend on the

sum of the indices. The associated Hankel operator is the linear map, B, from H2

to its linear dual space which takes f to the linear functional B(f)( · ) = B(f, ·).

The analytic properties of these forms and the associated operators have been
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studied extensively, with much attention given to the relationship between the

properties of B and B, and those of b.

The idea of bilinear forms given by a representation such as (1–1), and thus

only depending on the product of the arguments, can certainly be extended

to other function spaces. One investigation of those more general forms is in

[Janson et al. 1987]. In the more general contexts operators based on expressions

such as (1–1) are sometimes called small Hankel operators. There is another

generalization, the large Hankel operators; the two types agree for the Hardy

space.

Recently there has also been consideration of more general classes, the Hankel

forms of higher type or order. For each nonnegative integer n there is a class,

Hn, of Hankel forms of type n. The elements of H1 are the traditional Hankel

forms, and Hn ⊂ Hn+1 for each n.

An example of a Hankel form of type 2 on the Hardy space is

E(f, g) =

∫

Γ

f ′gb̄. (1–2)

The characteristic property of such a form is that for any polynomial, p, the new

bilinear form Cp(f, g) = E(pf, g)−E(f, pg) is a Hankel form. On the coefficient

side the matrix is of the form

{

en,k

}

=
{

nb̂(n + k)
}

.

Thus such forms are obtained by perturbing Hankel forms in a controlled way.

Higher-order forms were introduced in [Janson and Peetre 1987]. The point

of view there was that certain Lie groups have irreducible representations on

the Hardy and Bergman spaces. The representations on the function spaces

induce representations on the associated spaces of bilinear forms. However those

representations are not irreducible. An analysis shows that the Hankel forms are

the simplest irreducible component of the induced representation. The higher-

order Hankel forms are, by definition, the other irreducible components. Thus

the space of Hilbert–Schmidt bilinear forms on, say, H2 can be decomposed as
⊕

n(Hn 	 Hn−1). In [Janson and Peetre 1987] the basic analytic properties of

these forms (boundedness, Schatten ideal membership, and so on) are worked

out using a mixture of harmonic analysis and representation theory. That point

of view has been taken to other contexts; see [Rosengren 1996] and the references

there.

It is also possible to develop a theory of higher-order Hankel forms in the ab-

sence of a group action. That is done for general spaces of holomorphic functions

in [Peetre and Rochberg 1995], but those analytical results are in a much more

primitive state than the results for forms on the Hardy and Bergman spaces.

Here we continue to study higher-order forms, concentrating now on the alge-

braic structure of the spaces Hn. Even in the simplest case of the Hardy space
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the analytical theory of the higher-order Hankel forms is a bit recalcitrant. How-

ever there are algebraic relations between the higher-order forms and the classical

forms. It may be that the algebraic structure can be used to carry the analytical

results from the classical forms to the higher-order forms. The only instance of

this so far is a Kronecker theorem (Theorem 2.12 below), which perhaps doesn’t

really qualify as an analytical result. A more intriguing possibility of doing this

is discussed in Remark 4.4 (page 176). Also, there appears to be a rich, but not

well understood, relation between algebraic aspects of the theory of higher-order

Hankel forms and algebraic aspects of the theory of higher-order commutators.

This is particularly intriguing because the commutators considered need not be

linear. Here we present analogous algebraic results for the two topics side by

side (in Sections 2 and 3) as a step in developing this relation.

The results for Hankel forms are in Section 2. We will look at bilinear forms

on a space, K, of holomorphic functions. We show that, roughly, for each n

there is a natural identification of the quotient space Hn+1/Hn with the space

of derivations mapping K into Hn/Hn−1. By iterating this result we find that,

roughly, all elements Hn are built from elements of H1 and differential opera-

tors of order at most n − 1. This gives a new proof of the Kronecker theorem

characterizing higher-order Hankel forms of finite rank which was first proved in

[Rochberg 1995]. We will also be able to extend that theorem to new contexts.

In Section 3 we discuss commutators. A basic example involves the nonlinear

operator Λ defined densely on L2(R) by Λf = f ln |f |. Let P be the Cauchy–

Szegő projection, the orthogonal projection of L2(R) to H2(R), and for any

b ∈ L∞(R) denote by Mb the operator of pointwise multiplication by b. It is easy

to see that the nonlinear operator [Mb,Λ] = MbΛ − ΛMb is bounded on L2(R).

Less obvious, but also true, is that the operator [P,Λ] is bounded on L2(R). This

commutator is, in a sense discussed a bit more fully in Section 3, a nonlinear

analog of a Hankel operator acting on H2(R). In this analogy the boundedness

of [P,Λ] is analogous to the basic boundedness result for Hankel operators on

H2(R). Recently there has also been consideration of higher-order commutators

such as [Mb, [Mb,Λ]], [Mb, [Mb, [Mb,Λ]]], etc., which we also consider here. These

operators arise in the study of the internal structure of interpolation theory

but they also have applications to classical analysis; see for instance [Cwikel

et al. 1989; Iwaniec 1995; Pérez 1996]. In Section 3 we show that many of the

algebraic results of Section 2 for higher-order Hankel forms have analogs for

higher-order commutators. In my opinion the main conclusion of that section

is not those relatively straightforward algebraic observations, rather it is the

evidence of a possible systematic relation between higher-order Hankel forms and

higher-order commutators. Another reason for interest in the algebraic structure

of commutators is in the hope of extracting analytical information. The theory

in [Milman and Rochberg 1995] proves, for instance, the boundedness on L2(R)
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of an operator whose main term is

R = [P,Λ2] − Λ[P,Λ]. (1–3)

This is a higher-order extension of the boundedness of [P,Λ]. Estimates on

operators such as R have been less useful in analysis than the more elementary

boundedness result for [P,Λ]. The interaction of nonlinearities makes it quite

difficult to extract analytical information from estimates on R. It may be that

the algebraic viewpoint can help.

The last section contains some brief further comments.

For a broader view of the topics of higher-order Hankel forms and higher-order

commutators as well as for further references we refer to [Peetre and Rochberg

1995; Milman and Rochberg 1995]. For more recent work see [Rosengren 1996;

Cwikel et al. ≥ 1997; Carro et al. 1995a; 1995b] and the references listed there.

2. Higher-Order Hankel Forms

Background and Notation. Let K be a Hilbert space of holomorphic func-

tions defined on some domain D in C
N . We assume that K contains a dense

subalgebra, A, of bounded functions, and that for all a in A and k in K we have

the norm estimate

‖ak‖K ≤ ‖a‖∞‖k‖K . (2–1)

The choice of the Bergman space of the open unit disk as K and of H∞, the

algebra of bounded holomorphic functions on the disk, as A is a basic example.

That is, K equals

A2(D, dx dy) =

{

f : f ∈ Hol(D) and ‖f‖2 =

∫

D

|f |2 dx dy < ∞

}

.

We emphasize that we do not assume that A, or even K, contains the polynomials

or even the constant function. In particular, we want to include the Bergman

space of the upper half-plane as an example, namely,

K = A2(R2
+, dx dy) =

{

f : f ∈ Hol(R2
+) and ‖f‖2 =

∫

R
2
+

|f |2dx dy < ∞

}

.

In this case a convenient choice for A would be the polynomials in (z + i)−1.

The Bergman spaces of the disk and the half-plane and their standard weighted

variants are the type of examples we have in mind. But many of the results have

analogs on, for instance, the Fock space, where there is no natural choice for A

that would have the norm estimates (2–1).

Let Bilin(K) be the space of continuous bilinear maps from K × K to C.

Definition 2.1. For a ∈ A and B ∈ Bilin(A), define the elements aB and Ba

of Bilin(A) by setting, for all f, g ∈ A,

(aB)(f, g) = B(af, g), (Ba)(f, g) = B(f, ag).
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Definition 2.2. For each a ∈ A, define δa to be the map of Bilin(A) to itself

given by δaB = aB − Ba. Thus

δaB(f, g) = B(af, g) − B(f, ag).

We now collect some computational properties of these maps, which follow di-

rectly from the definition.

Proposition 2.3. For all a, b ∈ A and all B ∈ Bilin(A) we have:

(1) δaδbB = δbδaB.

(2) δabB = a(δbB) + (δaB)b = b(δaB) + (δbB)a.

(3) δabB = a(δbB) + b(δaB) − δbδaB.

We now define Hankel forms and higher-order Hankel forms. In [Peetre and

Rochberg 1995] several different definitions were offered; although it was clear

that they agree on the standard examples, the general story is not clear. Here

we use the definitions in [Peetre and Rochberg 1995] that are based on pairs

(A,K).

Definition 2.4. (1) H0 = {0}.

(2) We say B ∈ Bilin(K) is a Hankel form if δaB = 0 for all a ∈ A. We denote

the collection of all such forms by H1.

(3) For n = 2, 3, . . . , we define Hn, the set of Hankel forms of type (or order) n,

to be the set of all B ∈ Bilin(K) such that δaB ∈ Hn−1 for all a ∈ A.

(4) For n = 1, 2, . . . , set Jn = Hn/Hn−1.

Using part (1) of Proposition 2.3 and induction it is easy to check that

B ∈ Hn if and only if (δa)nB = 0 for all a ∈ A.

Here are some examples. Let K be the Bergman space of the upper half plane,

U , and let A be the bounded analytic functions on U . Let µ be a finite measure

supported on V , a compact subset of U . Define the bilinear forms B and C on

K by B(f, g) =
∫

fg dµ and C(f, g) = B(f ′, g) =
∫

f ′g dµ. The fact that V is

a compact subset of U insures that both B and C are continuous. It is then

immediate that B ∈ H1, and it follows from the product rule for differentiation

that C ∈ H2. It is also clear how to continue and construct elements of all the

Hn, and that similar constructions will work as long as the functions in K and

their derivatives have good bounds on compact subsets of D. Part of the content

of Theorem 2.5 is that, in some sense, this method of constructing elements of

H2 from elements of H1 gives all of H2 and similarly for the higher-order forms.

Modules. Fix K and A. The elements of A multiply the elements of K on

the left and on the right; thus K is a bimodule over A. For a ∈ A we will

use La or juxtaposition to denote left multiplication by a acting on K. Thus,

for B ∈ Bilin(K) and f, g ∈ K, we have (LaB)(f, g) = (aB)(f, g) =B(af, g).

Similarly for right multiplication: (RaB)(f, g) = (Ba)(f, g) =B(f, ag).
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For any a, b, c ∈ A, the three operations δa, Lb, and Rc on Bilin(K) all

commute. Using this it is easy to check that, for each n, both left and right

multiplication map each element of Hn to another element of Hn, and thus that

Hn is an A-bimodule. It then follows that there is an induced bimodule structure

on the quotients, Jn. Here however even more is true. We observe that, given

a ∈ A and B ∈ Hn, then LaB − RaB = δaB ∈ Hn−1. Thus, using the same

notation for the induced maps on Jn, we see that La = Ra as operators on Jn;

that is for, j ∈ Jn and a ∈ A, we have aj = ja as elements of Jn.

For normed spaces V and W we denote by Map(V,W ) the space of continuous

linear maps from V to W .

If X is an A-bimodule, an element D ∈ Map(A,X) is called a derivation if

D(ab) = aD(b) +D(a)b for all a, b ∈ A. We denote the space of such derivations

by Deriv(A,X). For instance, M = Map(Bilin(K),Bilin(K)) is an A-bimodule

if we define left and right multiplication by

(am)(B) = a(mB) and (mb)(B) = (mB)b

for all a, b ∈ A, m ∈ M , and B ∈ Bilin(K). If we now define a map, D,

of A into M by setting D(a) = δa, part (2) of Proposition 2.3 implies that

D ∈ Deriv(A,M).

Given B ∈ Bilin(K), we define ∆(B) ∈ Map(A,Bilin(K)) by

∆(B)(a) = δaB.

Now fix α ∈ A. We define a mapping ∇α that takes Map(A,Bilin(K)) to densely

defined bilinear forms by the following rule: For ∆̃ ∈ Map(A,Bilin(K)),

∇α(∆̃)(f, g) = ∆̃(f)(α, g).

Thus ∇α(∆̃) is defined for f ∈ A and g ∈ K; recall that A is dense in K. If

1 ∈ A, the choice α = 1 is a natural one to consider.

The next theorem concerns the properties of these two maps.

Theorem 2.5. For n = 1, 2, . . . we have:

(1) ∆ : Jn+1 → Deriv(A, Jn).

(2) ∇α : Deriv(A, Jn) → Jn+1.

(3) ∇α(∆(B)) = αB for any B ∈ Jn+1, and ∆(∇α(D)) = αD for any D ∈

Deriv(A, Jn).

Remark 2.6. We are abusing the notation slightly when we use ∆ and ∇α for

induced maps. This should cause no problem.

Remark 2.7. Informally, and most clearly for the case α = 1, the theorem says

that Jn+1 = Deriv(A, Jn).
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Proof of Theorem 2.5. (1) We know that ∆(B) takes A to bilinear forms.

Pick B ∈ Hn+1. By (3) in Proposition 2.3 we know that, for all a, b ∈ A,

∆(B)(ab) = δabB = aδbB + bδaB − δaδbB

= a(∆(B)b) + b(∆(B)a) − δaδbB.

The second line shows that ∆(B)(ab) is in Hn. Now note that δaδbB ∈ Hn−1;

and hence, as a map into the quotient Jn, ∆(B) satisfies

∆(B)(ab) = a∆(B)(b) + b∆(B)(a).

Recall that left and right multiplication by A agree on Jn. Hence the previous

equation establishes that ∆(B) is a derivation. Finally note that, if we change B

by an element of Hn, the range of ∆(B) changes by elements of Hn−1. Hence,

as an element of Jn, the image is unchanged. Thus our map is well-defined on

Jn+1.

(2) We start with D ∈ Deriv(A, Jn). Define B by

B(x, y) = ∇α(D)(x, y) = D(x)(α, y).

Certainly B is bilinear. Pick a ∈ A. We have

(δaB)(x, y) = B(ax, y) − B(x, ay)

= D(ax)(α, y) − D(x)(α, ay)

= (aD(x) + xD(a))(α, y) − D(x)(α, ay).

Here we used the fact that D is a derivation and the fact that its range is J n, a

module on which left and right multiplication by A agree. We continue with

(δaB)(x, y) = D(x)(aα, y) + D(a)(αx, y) − D(x)(α, ay)

= δa(D(x))(α, y) + D(a)(αx, y).

We want to show (δaB) ∈ Hn. D(a) is in Hn, hence so is the mapping from

(x, y) to D(a)(αx, y). To finish we need to shown that C, defined by C(x, y) =

δa(D(x))(α, y), is in Hn−1. We do this by induction on n. First note that if

n = 1 then D(x) is in H1, hence δa(D(x)) ≡ 0 and we are fine. Suppose now

that we are fine up to index n − 1. It is direct to check that D ∈ Deriv(A, Jn)

implies that the map δa ◦ D taking x to δa(D(x)) is in Deriv(A, Jn−1). Hence,

by the computations in the proof of the case n− 1 of the theorem, we know that

∇α(δa ◦ D) ∈ Hn−1. Unwinding the definition of ∇α we find that this is what

we needed. Finally note that, if the choice of the representative of D(x) in J n

is changed, then δa(D(x)) changes by an element of Hn−1, so we get the same

image of ∇αD in Jn+1; that is, the choice of representative doesn’t change the

outcome of the computation.

(3) Suppose B ∈ Jn+1. We have

∇α(∆(B))(x, y) = ∆(B)(x)(α, y) = (δxB)(α, y) = B(αx, y) − B(α, xy).
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The bilinear form that takes (x, y) to B(α, xy) is in H1. Hence the previous com-

putation shows that ∇α(∆(B)) = αB as maps into Jn+1. As before, note that

the outcome doesn’t depend on choices made for the representative of ∆(B)(x).

Now select D ∈ Deriv(A, Jn), a ∈ A, and x, y ∈ K. We have

∆(∇αD)(a)(x, y) = δa(∇αD)(x, y) = (∇αD)(ax, y) − (∇αD)(ax, y)

= (aD(x) + xD(a))(α, y) − D(x)(α, ay)

= D(x)(αa, y) + D(a)(αx, y) − D(x)(α, ay)

= (δaD(x))(α, y) + αD(a)(x, y).

The second term on the right is exactly what we wanted. We are working with

derivations into Jn, so we are done if we show that the bilinear map of (x, y)

to (δaD(x))(α, y) is a map into Hn−1. As before, this follows by induction. If

n = 1 then δaD(x) is the zero functional. Then we proceed as in the end of the

proof of part (2), to see that ∇α(δa ◦ D) ∈ Hn−1. ˜

We now refine these calculations to develop structure theorems. When doing

this we make further assumptions: that K is a space of functions of one variable

and that the polynomials, P , are contained in A. The first assumption is for

notational convenience. We return to the second later in the section.

Theorem 2.8. Suppose P ⊂ A and n ≥ 1. If B ∈ Hn then

B(p, g) = B(1, pg) +

n−1
∑

j=1

(−1)j+1

j!
(δn

z B)(p(j), g). (2–2)

for all p ∈ P and g ∈ K.

Proof. First we develop a combinatoric formula for δf , where f ∈ P . We apply

Proposition 2.3 (3) to the function z2 and obtain δz2 = 2zδz + δ2
z . This is our

starting point for an inductive proof that

δf =

∞
∑

n=1

(−1)n+1

n!
f (n)δn

z . (2–3)

Repeated application of Proposition 2.3 (3) clearly gives

δf(z) =
∞
∑

n=1

Λn(f)δn
z

for some linear operators Λn. By Proposition 2.3 (3) we have

δzf = zδf + fδz − δzδf ; (2–4)

this insures that

Λ1(zf) = zΛ1(f) + f. (2–5)
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We already observed that Λ1(z
2) = 2z. The required formula for Λ1 for the

remaining monomials follows from (2–5) by induction on degree and then for all

of P by linearity. Equation (2–4) also implies that

Λn(zf) = zΛn(f) − Λn−1(f)

for n > 1. We now proceed by induction on n. Suppose the formula for Λn−1 is

established. Thus

Λn(zf) = zΛn(f) +
(−1)n

(n − 1)!
f (n−1). (2–6)

It follows easily from (2–4) that Λn(zk) = 0 for k < n and that Λn(zn) =

(−1)n+1. The formula for general monomials now follows by induction using

(2–6) and, again, for general polynomials by linearity. This gives us (2–3).

The theorem now follows by writing B(p, g) = B(1, pg)−(δpB)(1, g), applying

(2–3) to δpB, and noting that, because B ∈ Hn, the series ends after the term

involving δn−1
z . ˜

Remark 2.9. Equation (2–3) can be viewed as a formal Taylor series and

summed, yielding δf(z) = f(z) − f(z − δz). This formula can also be derived

formally by writing δf(z) = Lf(z) − Rf(z) = f(L) − f(R) = f(z) − f(z − δz).

Remark 2.10. The restriction to functions of a single variable was for notational

convenience. The analog of (2–3), for instance, for polynomials in two variables

is, symbolically,

δf(z,w) = f(z, w) − f(z − δz, w − δw).

Remark 2.11. From an algebraic point of view, Theorem 2.8 is a complete

structure theorem for Hankel forms. If we also consider topology, the situation

is not clear. Suppose n = 2. If we restrict to polynomials, p, q, then for B ∈ H 2

B(p, q) = B(1, pq) +
1

2
(δzB)(p′, q).

Formally the map C(p, q) = B(1, pq) is a Hankel form of type 1; that is, δfC = 0

for any polynomial f . Likewise, δzB is a form of type 1; thus the form of type

2 has been represented as a linear combination of a form of type 1 and a form

of type 1 composed with differentiation (which produces a form of type 2). For

general n the conclusion is that every form of type n is built from forms of lower

type by composing with differentiation in certain explicit ways. Algebraically this

is the whole story. However, it is not clear how to obtain the continuity results

for the new forms: are there estimates of the form |B(1, pq)| ≤ c ‖p‖K ‖q‖K and

|(δzB)(p′, q)| ≤ c ‖p‖K ‖q‖K? (Because each form is a bounded perturbation of

the other, the two estimates are equivalent.) It is not clear if this issue can

be settled algebraically or needs analytical work. We return to this issue in

Remark 4.4, where we settle a minor variation of this question for n = 2.
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We now turn to forms of finite rank. We will say a bilinear form, B, is of rank

k if there are 2k continuous linear functionals, h1, . . . , hk, j1, . . . , jk, such that

B(f, g) =

k
∑

i=1

hi(f)ki(g)

for any f, g ∈ K. We denote the set of all such forms by Fk and write F =
⋃

n Fn.

If ζ is a point in D for which all the functionals hi(f) = f (i)(ζ) are continuous

then B(f, g) = f (i)(ζ)g(n−i)(ζ) is an example of a form in Hn+1 ∩ F1. The

content of the next theorem is, roughly, that these are the only examples.

We will use the following convexity and continuity hypothesis on K.

Convexity hypothesis. For each point ζ /∈ D and each M > 0 there is a

polynomial p ∈ K so that ‖p‖K = 1 and |p(ζ)| > M .

Continuity hypothesis. For each ζ ∈ D and each integer n the functional

which takes f ∈ K to f (n)(ζ) is continuous.

Theorem 2.12. Suppose P ⊂ K and that K satisfies the two preceding hy-

potheses. Given B ∈ Hn ∩ Fk for some n, k ≥ 1, it is possible to find constants

M = M(n, k) and C = C(n, k), points ζ1, . . . , ζM ∈ D, and scalars ci,j,m such

that

B(f, g) =
∑

i≤n−1
j≤C, m≤M

ci,j,m(f (i)g)(j)(ζm). (2–7)

Remark 2.13. The form that takes (f, g) to (f (i)g)(j)(ζm) is of type i + 1,

independently of j. This can be verified by an elementary induction on i. Also

note that it suffices to use only these asymmetric representations because, for

example, fg′ = (fg)′ − f ′g.

Proof of Theorem 2.12. We work by induction on n. The case n = 1 is in

[Janson et al. 1987, Section 14]. The basic point there is that by restricting from

K × K to P × P we end up with a problem about ideals in polynomial rings,

which can then be analyzed using tools from commutative algebra. We continue

to restrict our attention to the forms acting on P × P and will next show that

forms, B, on P × P that satisfy δn
a B = 0 for every a ∈ P have representations

of the form (2–7). Suppose B ∈ H2 ∩ F. By Theorem 2.8,

B(f, g) = B(1, fg) + (δzB)(f ′, g).

The maps (f, g) 7→ B(f, g) and (f, g) 7→ (δzB)(f ′, g) are both in F, hence so

is the form C(f, g) = B(1, fg). Thus, in terms of their action on polynomials,

both C and δzB are in H1 ∩F . (That is, they are annihilated by δz; we are not

considering continuity.) Hence the result for n = 1, for forms acting on P × P ,

can be applied to both of them. This gives the required form. The rank of C

is at most the sum of the ranks of B and δzB and hence at most 3k; thus we

keep control of the ranks. Now we suppose that, as a form on P × P , we have



HIGHER-ORDER HANKEL FORMS AND COMMUTATORS 165

B ∈ H3 ∩ F; the argument here will make the general induction step clear. By

Theorem 2.8,

B(f, g) = B(1, fg) + (δzB)(f ′, g) + c(δ2
zB)(f ′′, g)

(with c = − 1
2 ). We can write C(f, g) = B(1, fg) as a sum of three terms, all

in F; hence C(f, g) is in F and we can estimate its rank in terms of k. We now

apply the case n = 1 of the theorem to C and to δ2
zB, and the case n = 2 to

δB, to obtain the required form. Clearly this approach will also deal with the

general induction step.

We now need to check that the ζi’s are in D. Suppose ζ1 /∈ D. Suppose N

is the highest-order derivative of f that is evaluated at ζ1 in the representation.

Pick r ∈ P so that r vanishes at ζ2, . . . , ζM to order higher than the order of

any derivative being evaluated at ζj , for j ≥ 2, and vanishes to order N − 1 at

ζ1. Pick g ∈ P so that neither g nor any of its first N derivatives vanish at ζ1.

Let p be the polynomial whose existence is insured by the Convexity Hypothesis,

which has unit norm and is large at ζ1. We have B(rp, g) = c(r, g,B)p(ζ1). This

isn’t compatible with the boundedness estimate
∣

∣B(rp, g)
∣

∣ ≤ cB ‖rp‖ ‖g‖ ≤ c′B‖p‖ ‖g‖ = c′B‖g‖.

Now that we know that all the points are in D, the representation extends to all

of K by continuity, using the Continutity Hypothesis. ˜

Remark 2.14. Again the restriction to functions of a single variable is for

notational convenience. The formulation of the more general result can be seen

in [Rochberg 1995]. Those proofs are more computational than the ones here.

The requirement in Theorem 2.12 that the polynomials be dense precludes such

basic examples as K = A2(R2
+), the Bergman space of the upper half-plane. We

now show how to use the previous result (or rather its proof) to obtain results for

K = A2(R2
+). Similar arguments could be used for other simple examples, for

instance the spaces A2(R2
+; yαdx dy) with α > −1, but the story for complicated

choices of K is not clear.

Theorem 2.15. Let K = A2(R2
+) and suppose B ∈ Bilin(K). If B ∈ Hn ∩ Fk

for some n, k ≥ 1 then B has a representation of the type (2–7).

Proof. B is of finite rank; hence we can find linear functionals hi, ki such that

B(f, g) =
∑k

1 hi(f)ki(g), and we may assume that the ki are linearly indepen-

dent. Set

V =
{

f : B(f, g) = 0 for all g ∈ K
}

.

Because the ki are linearly independent, V =
⋂

ker(hi). Let α be a conformal

map of the upper half-plane to the unit disk, and set

W =
{

f : f, αf, . . . , αn−1f ∈ V
}

=
⋂

i,j

{

f : hi(α
jf) = 0

}

.
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From this it is clear that W is a closed subspace of K of finite codimension,

dim(K/W ) ≤ kn. We now claim that W is invariant under multiplication by α.

Pick f ∈ W ; we need to show that B(αnf, g) = 0 for all g ∈ K. To see this note

that B ∈ Hn, so δn
a (B) = 0. Hence

B(αnf, g) =
n−1
∑

k=0

ckB
(

αn−1−kf, αk+1g
)

.

Because f ∈ W the right hand side is 0. This shows that αW ⊂ W .

Let X be the closed subalgebra of H∞(R2
+) generated by 1 and α. Let

Y = {β ∈ X : βf ∈ W for all f ∈ K}.

It is not clear at first glance that Y has any nonzero elements, but we now show

that it is rather large. Certainly Y is a closed ideal in X. We will show that Y

contains a polynomial in α. Pick f ∈ K \ W . Because W has codimension at

most nk, there is a polynomial, p1, of degree n1 ≤ nk, such that p1(α)f ∈ W .

Let W1 = span{f, αf, . . . , , αn1−1f}. If W ⊕ W1 6= K we continue, picking

g ∈ (W ⊕ W1) \ W . As before there is a polynomial, now p2 of degree n2, such

that p2(α)g ∈ W ⊕W1. Set W2 = span{g, αg, . . . , , αn2−1g}. This process must

eventually fill K and we will have

K = W ⊕
⊕

i

Wi. (2–8)

Set Q1(α) =
∏

pi(α). If f ∈ K then Q1(α)f ∈ W . To see this, split f using the

decomposition (2–8) as f = g + g1 + g2 + · · · + gj . It is enough to look at each

summand, and g2 is typical: multiplication by p2(α) takes g2 into W ⊕W1, and

hence further multiplication by p1(α) takes the product into W . Because W is

α-invariant, multiplication by the remaining factors of Q1 does no harm. Y is an

ideal and we have now seen that Q1 ∈ Y . Hence Q1X ⊂ Y . The characteristic

property of Q1 is that B(Q1f, g) = 0 for all f, g ∈ K. In exactly the same way

we can find Q2 such that B(f,Q2g) = 0 for all f, g ∈ K. Set Q = Q1Q2.

We now split K as an orthogonal direct sum

K = R ⊕ Q(α)K.

The fundamental property of this splitting is that, for any r1, r2 ∈ R and f1, f2

in K,

B
(

r1 + Q(α)f1, r2 + Q(α)f2

)

= B(r1, r2). (2–9)

Suppose that Q(α) vanishes to order ni at ζi in R
2
+, for i = 1, . . . , N , and that

this is a complete listing of the zeros of Q(α) in R
2
+. If k ∈ K and K vanishes

at each ζi to order at least ni then k = Q(α)h for some h ∈ K. Hence for each

polynomial S there is a unique k(S) in R that agrees with S to order ni at ζi,

for i = 1, . . . , N . We now define a bilinear form on polynomials by setting

B̃(S, T ) = B
(

k(S), k(T )
)

.
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Let γ be an element of H∞(R2
+) that agrees with the monomial Z to order ni

at ζi, for i = 1, . . . , N . For any polynomial U , we have

k(ZU) ≡ γk(U) (mod Q(α)K).

Hence, taking into account (2–9),

B̃(ZS, T ) − B̃(S,ZT ) = B
(

γk(S), k(T )
)

− B
(

k(S), γk(T )
)

.

Hence, for any polynomial U , and for all S, T ,

(δn
U B̃)(S, T ) = (δn

U(γ)B)
(

k(S), k(T )
)

.

Since B ∈ Hn, the expression on the right is always zero. This shows that B̃ is

a Hankel form of type n on polynomials. The proof of Theorem 2.12 then shows

that B̃ has the form (2.8), and certainly the ζ’s that show up in (2.8) must be

among our ζi’s. Now note that if ki ∈ K, for i = 1, 2, then ki = k(Si) + Q(α)hi

for some polynomials Si and some hi ∈ K. Also ki, k(Si), and Si all agree to

order nj at each ζj . Moreover,

B(k1, k2) = B
(

k(S1), k(S2)
)

= B̃(S1, S2).

We have seen that the expression on the right is a linear combination of values

and derivatives of the Si of a sort given by (2.8). Hence the expression on the

left must be the same combination of values and derivatives of the ki. That B

has such a representation is what we wanted to show.

To finish we note that the degree of Q is controlled by n and k, and hence so

is the number of terms in (2.8). ˜

3. Commutators

In this section we develop analogs of the results in the previous section for

certain nonlinear operators. That we worked with bilinear forms before and now

work with operators is not a major change in point of view. Those results for

bilinear forms could have been formulated as results about operators. Given a

bilinear form B on K there is an induced linear map TB from K to its dual

space K ′, given by TB(f)(g) = B(f, g). (We don’t want to identify the Hilbert

space K with its dual using the inner product because that map is conjugate

linear rather than linear.) If we have an algebra A of functions that act on K

by multiplication, we can consider the corresponding multiplication operators

Ma(f) = af . Everything in the previous section that was formulated in terms

of operators that send B to aB, Ba, and aB −Ba can be recast in terms of the

operators that send TB to TBMa, M∗
a TB , and TBMa − M∗

aTB .

Before going further we mention why one might look for such analogies be-

tween the results in the previous sections and commutators.

We’ll work on L2(R). For f ∈ L2 set Λ1(f) = f ln |f |. For any function a

defined on R let Ma be the operator of multiplication by a. Pick an unbounded
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function b in BMO(R). (We need nothing here about BMO except that it con-

tains unbounded functions—for instance, b(x) = ln |x|). Let Λ2 = Mb. Let P

be the Cauchy–Szegő projection acting on L2(R). For any operators acting on

functions, linear or not, we define the commutator [A,B] of A and B by

[A,B](f) = (AB − BA)(f) = A(B(f)) − B(A(f)).

It is elementary that both Λ1 and Λ2 are unbounded, that if a is a bounded func-

tion then the operator [Ma,Λ1] is bounded on L2(R), and that
[

Ma, [Ma,Λ1]
]

=
[

Mb,Λ2

]

= 0. Also true, but not elementary, is that
[

Λ1, P
]

,
[

Λ2, P
]

, and
[

Λ2,
[

Λ2, P ]
]

are all bounded on L2(R). The boundedness of all three can be

given a unified proof using interpolation theory. (I don’t think that
[

Λ1, [Λ1, P ]
]

is bounded. The story there is complicated by the nonlinearities. Set Ωf =
1
2f

(

ln |f |
)2

. The operator that is bounded is [P,Ω]−Λ1[P,Λ1]. ) To see how this

is related to the previous section we define Hankel forms on H2(R) = P
(

L2(R)
)

by the natural analog of (1–1), namely

B(f, g) =

∫

R

fgb̄. (3–1)

Now f, g ∈ H2(R) and b is the boundary value of a function holomorphic in the

upper half-plane. It is direct to check that

B(f, g) =
〈

g, (I − P )(b̄f)
〉

.

Hence the properties of B are all to be found in the theory of the linear operator

that takes f to (I − P )(b̄f). Now note that if we choose for b in the definition

of Λ2 the function b̄ in (3–1), we have

[Λ2, P ]f = b̄Pf − P (b̄f) = b̄f − P (b̄f) = (I − P )(b̄f).

Thus, from good information about [Λ2, P ] we can derive equally good infor-

mation about the Hankel operator with symbol b. Conversely, for any choice of

b, the commutator [Λ2, P ] can be written as an orthogonal direct sum of two

operators, one a Hankel operator and the other unitarily equivalent to a Hankel

operator. In sum, the theories of Hankel operators on H2(R) and the theory of

the operators [Λ2, P ] are essentially equivalent. This suggests that the results for

higher-order Hankel forms may have analogs for commutators (including possibly

the nonlinear ones involving Λ1, Ω, and related operators). The relations be-

tween the two topics, both those mentioned and those we develop in this section,

suggest that there may be deeper connections.

(In another direction, the implication for Hankel operators and their general-

izations of the boundedness of
[

Λ2, [Λ2, P ]
]

, as well as higher-order commutators

such as
[

Λ2, [Λ2, [Λ2, P ]]
]

that are also bounded, is not clear.)

Another reason for suspecting that there may be a connection between the

two topics is a similarity between some of the detailed computations that led
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to the results in [Janson and Peetre 1987] and those that led to the results in

[Rochberg 1996].

Finally, the theory of Hankel forms is related to the study of bilinear forms

on vector spaces that have additional structure; namely, there is a notion of

pointwise products. The Hankel forms are those that only depend on the prod-

uct of its arguments. The higher-order Hankel forms represent, in some sense,

infinitesimal perturbations away from that situation PR. The commutators we

consider arise in interpolation theory in ways related to infinitesimal changes in

Banach space structure. The commutators that arise when working with the

Lp scale involve the infinitesimal versions of changes which respect the multi-

plicative structure but not the linear structure. We return to this rather vague

comment in Remark 4.5.

The setup. Our main interest here is in developing algebraic properties. We

will be quite informal about the type of continuity possessed by the various maps

considered.

Let X be a space of functions (on some space that we generally won’t bother

to specify) and let A be an algebra of functions with the property that, for a ∈ A

and x ∈ X, we have ax ∈ X and ‖ax‖X ≤ C ‖a‖A‖x‖X . For instance, A could

be the bounded holomorphic functions on the disk and X the Bergman space of

the disk, or A could be L∞(R) and X = L2(R). We also assume A∩X is dense

in X. (We could get by with less, but for now we just want to capture the basic

examples.)

Suppose Λ is a map from X to functions and that a ∈ A. We do not assume

that Λ is linear. We define left and right multiplication as before: for all a ∈ A

and f ∈ X, we set

(LaΛ)(f) = (aΛ)(f) = a(Λf),

(RaΛ)(f) = (Λa)(f) = Λ(af),

δaΛ = LaΛ − RaΛ.

Continuing the analogy with the previous section we say that Λ ∈ L1 if δaΛ = 0

for all a ∈ A, and for n = 1, 2, . . . we say that Λ ∈ Ln+1 if δaΛ ∈ Ln for

all a ∈ A. If we are looking at linear operators this would be the setup for

an operator version of the higher-order Hankel forms. The point now is that

many of the algebraic results of the previous section still go through without the

assumption of linearity.

Elementary properties. The following facts, valid for a, b, c ∈ A and Λ ∈ Ln,

follow immediately from the definitions:

(1) Ln ⊂ Ln+1.

(2) LaΛ, RaΛ ∈ Ln, and δaΛ ∈ Ln−1.

(3) La, Rb, and δc commute.

(4) δaδb = δbδa.
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(5) δab = Laδb + Rbδa = Lbδa + Raδb.

(6) δab = aδb + bδa − δbδa.

(7) Ω ∈ Ln if and only if δn
a Ω = 0 for all a ∈ A.

Ln+1 and Ln are vector spaces and A-bimodules. Hence the quotient spaces,

In+1 = Ln+1/Ln, are A-bimodules and the induced action of A on the In is

commutative; that is, for a ∈ A and i ∈ In, we have ai = ia as elements of In.

Having collected all of these facts, which are analogous to Proposition 2.3 and

related facts in the proceeding section, we should note that the situation is not

always that simple. Recall that a linear map D of A to itself is called a derivation

if D(ab) = aD(b) + bD(a) for all a, b ∈ A. Given such a D and given Λ ∈ L1, is

ΛD ∈ L2? (This construction with the choice D(f) = f ′ was used frequently in

the previous section.) We compute

(δa(ΛD))(f) = a(ΛD)(f) − (ΛD)(af) = aΛ(Df) − Λ(D(af))

= Λ(aDf) − Λ(fDa + aDf).

If Λ is linear we can continue with

(δa(ΛD))(f) = Λ(aDf) − Λ(fDa) − Λ(aDf) = −DaΛ(f).

Thus δa(ΛD) is in L1. Thus we see that the linearity of D is irrelevant but that

this process will construct an element of L2 from Λ ∈ L1 only if Λ is linear. To

go even further and show ΛD2 is in L3 we would also need D to be linear.

Examples. Having just seen that composition with derivations doesn’t neces-

sarily generate elements of Ln for n > 1, we now show how to generate elements

of L1 and, more generally, all the Ln.

Proposition 3.1. Suppose A is dense in X and suppose D is a derivation on

A. For n = 1, 2, . . . the map Λn given by

Λn(f) = f
(

Df

f

)n

is an element of Ln+1.

Remark 3.2. Of course Λn is only defined on the dense subspace A and for

each f there is a problem on the set where f = 0. We put aside these issues and

concentrate on formal structure.

Remark 3.3. We do not assume that D is linear.

Proof. The case n = 0 is trivial. For n = 1 we compute

(δaΛ1)(f) = (δaD)(f) = D(af) − aD(f) = aD(f) + D(a)f − aD(f) = D(a)f.

As required, δaΛ1 is an element of L1. It is straightforward to complete the

proof by induction. However, with an eye to later discussion, we take a slightly

less direct route.
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For a ∈ A and t ∈ R we define

Tt(a) = a exp(t(
Da

a
)).

Lemma 3.4. For all a, b ∈ A we have Tt(ab) = Tt(a)Tt(b).

Proof.

Tt(ab) = ab exp
(

t
(

D(ba)

ab

))

= ab exp
(

t
(

aDb + bDa

ab

))

= ab exp
(

t
(

Db

b
+

Da

a

))

= ab
(

exp t
(

Da

a

))(

exp t
(

Db

b

))

= Tt(a)Tt(b),

as required. ˜

We write

Tt(a) =
∑

Γn(a)tn.

We now equate powers of t in the proposition. That gives

Γn(ab) =
∑

ckΓn−k(a)Γk(b) = aΓn(b) +
n−1
∑

k=0

ckΓn−k(a)Γk(b).

We now complete an inductive proof of the proposition. We need to show

Γn ∈ Ln+1, and the case n = 1 is done. Suppose the cases up to n− 1 are done.

(δaΓn)(b) = aΓn(b) − Γn(ab)

= aΓn(b) −

(

aΓn(b) +

n−1
∑

k=0

ckΓn−k(a)Γk(b)

)

=

n−1
∑

k=0

ckΓn−k(a)Γk(b).

By the induction hypothesis this is of the required form, and the proposition is

proved. ˜

To use the proposition to construct examples we need examples of operators D

that are not assumed linear but satisfy

D(fg) = fD(g) − gD(f). (3–2)

Suppose that D is of the form D(f) = fϕ(ln(f)) for some operator ϕ. To verify

(3–2) we compute

D(fg) = fgϕ(ln(fg)) = fgϕ(ln(f) + ln(g)).

Hence we will have the required form if ϕ is any linear operator. Similarly if

D(f) = fϕ1(ln |f |) then (3–2) will be satisfied if ϕ1 is linear.

Here are some examples of elements of Ln.
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Example 3.5. If D is a derivation, the proposition tells us that the map of f

to D(f) is in L2.

Example 3.6. Suppose A consists of holomorphic functions and set ϕ(ln f) =

(ln(f))′. We have Λ1(f) = f ′. That example was central in the previous sections,

as were the powers Λn
1 (f) = f (n). However, the fact that the powers have

properties which we can work with rests on the linearity of Λ1.

For n > 1 the previous computations give us expressions that are in the

Ln+1; we have Λn(f) = f−n+1(f ′)n. We don’t know of other places where these

operators arise.

Example 3.7. Suppose D(f) = fϕ1(ln |f |) = f ln |f |. We have Λn(f) =

f(ln |f |)n. This series of examples, starting with Λ1(f) = f ln |f |, is used to form

some of the basic examples the nonlinear commutators that arise in interpolation

theory. For instance, with X = L2(R) and P the Cauchy–Szegő projection, the

operator

2[P,Λ2] − Λ1[P,Λ1] (3–3)

is bounded.

Example 3.8. The previous two examples are related to the themes of this sec-

tion and the preceding one. As soon as we move to other examples we encounter

rather unfamiliar nonlinear operators. For instance, suppose D(f) = fϕ(ln(f)),

with ϕ(ln f) = (ln(f))′′; then

Λ0(f) = f, Λ1(f) =
ff ′′ − f ′2

f
, . . . .

Derivations. The results in the previous section relating Jn+1 to derivations

into Jn used the fact that the J ’s are linear spaces but not the fact that the

elements of the spaces were linear forms. Hence the results go through for I’s.

We need to change the details slightly because we are now dealing with operators

rather than forms and we need to be attentive to the fact that the elements of

the I’s may be nonlinear. But the similarities are very strong, so we will be

quick.

Let M denote the set of maps from X to functions. Given Λ ∈ M we define

a map from A to M by

∆(Λ)(a) = δaΛ.

Pick and fix α ∈ A. We define an operator, ∇α, that takes a mapping, ∆̃, of A

into M to an element of M by

∇α(∆̃)(f) = ∆̃(f)(α).

Again, if 1 ∈ A the choice α = 1 is a natural one to consider.

We continue to denote by Deriv(A,M) the derivations of A into an A-module

M .

Theorem 3.9. The following results hold for n = 0, 1, 2, . . . :
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(1) ∆ maps In+1 into Deriv(A, In).

(2) ∇α maps Deriv(A, In) into In+1.

(3) ∇α(∆(Λ)) = −αΛ for all Λ ∈ In+1, and ∆(∇α(D)) = −αD for all D ∈

Deriv(A, In).

Remark 3.10. Again we abuse notation slightly, in using ∆ and ∇α for induced

maps.

Proof of Theorem 3.9. (1) Pick Λ ∈ Ln+1. For all a, b ∈ A, we have

∆(Λ)(ab) = δabΛ = aδbΛ + bδaΛ − δaδbΛ

= a(∆(Λ)b) + b(∆(Λ)a) − δaδbΛ.

The second equality shows that ∆(Λ)(ab) is in Ln. Now δaδbΛ ∈ Ln−1, so

∆(Λ)(ab) = a∆(Λ)(b) + b∆(Λ)(a)

as maps into In. Thus ∆(Λ) is a derivation. Finally, if we change Λ by an

element of Ln, the range of ∆(Λ) changes by elements of Ln−1; hence, as an

element of In, the image is unchanged. Thus our map is well-defined on In+1.

(2) We start with D ∈ Deriv(A, In). Define Λ by

Λ(x) = ∇α(D)(x) = D(x)(α).

Pick a, x ∈ A. Then

(δaΛ)(x) = aΛ(x) − Λ(ax) = aD(x)(α) − D(ax)(α)

= aD(x)(α) − aD(x)(α) − xD(a)(α) = −xD(a)(α).

We now recall that the product xD is the product in the A-module Deriv(A, In).

Thus xD(a)(α) = D(a)(αx), which is an element of In applied to x. This shows

that the map goes into Ln+1. The verification that the coset in In+1 is unchanged

if the choice of D(x) is changed by an element of In−1 is routine.

(3) Suppose Λ ∈ In+1. We have

∇α(∆(Λ))(x) = ∆(Λ)(x)(α) = (δxΛ)(α)

= xΛ(α) − Λ(αx) = xΛ(α) − RαΛ(x).

The operator that takes x to xΛ(α) is in L1. Hence the previous computation

shows that ∇α(∆(Λ)) = −RαΛ as maps into In+1. As before, the outcome

doesn’t depend on choices made for the representative of ∆(Λ)(x). Finally recall

that In is a commutative A-module and hence RαΛ = LαΛ = αΛ, as required.

Now select D ∈ Deriv(A, In) and a, x ∈ A. Recalling again that aD is the

module product, we have

∆(∇αD)(a)(x) = δa(∇αD)(x) = a(∇αD)(x) − (∇αD)(ax)

= a(D(x)(α)) − D(ax)(α) = D(x)(aα) − (aD(x) + xD(a))(α)

= (δaD(x))(α) − αD(a)(x).
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As in the previous section, an easy induction shows that the first term is of lower

order and hence drops out when we pass to quotients. ˜

4. Further Remarks

Remark 4.1. Some of the results in the previous sections involved derivations of

an algebra of functions A into an A-bimodule. Such results can be reformulated

in terms of module cohomology. At this point we don’t see a direct use for

that viewpoint, so we only offer the observation. Background can be found in

[Ferguson 1996] and the references there.

Remark 4.2. A Foguel-type operator is an operator of the form

R(X) =

[

S∗ X

0 S

]

,

where S is the unilateral shift on l2(Z+) and X is an operator on l2(Z+). Such

operators have been considered in the investigation of polynomially bounded

operators (see [Davidson and Paulsen 1997] for details and further references).

One reason is that if X = Γf , the Hankel operator on l2(Z+) with symbol

function f , then polynomials in R(X) are particularly easy to compute. If p is

a polynomial then

p(R(Γf )) =

[

S∗ Γf p′(S)

0 S

]

=

[

p(S∗) Γfp′

0 p(S)

]

. (4–1)

This follows from an elementary induction and the fact that Hankel operators

satisfy S∗Γ − ΓS = 0. Let LS∗ denote multiplication on the left by S∗ and RS

denote multiplication on the right by S. Set δz = LS∗ −RS . For any polynomial

p we use the obvious extension of the notation and set δp(z) = Lp(S∗) − Rp(S).

We are now in the notational set-up of Section 2, adapted to operators. The

Hankel operators are exactly those X for which δp(z)(X) = 0 for all polynomials

p. (Equivalently, δz(X) = 0.) To describe the general pattern, for any polynomial

p in one variable define a new polynomial by

p∗(x, y) =
p(x) − p(y)

x − y
.

A quick induction on the degree of monomials shows that, for any p,

p(R(X)) =

[

p(S∗) p∗(LS∗ , RS)(X)

0 p(S)

]

.

Writing LS∗ = δz + RS we get

p(R(X)) =

[

p(S∗)
∑∞

n=1 p(n)(RS)δn−1
z (X)

0 p(S)

]

=

[

p(S∗)
∑∞

n=1 δn−1
z (X)p(n)(S)

0 p(S)

]

.
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The linear operators induced by Hankel forms of order k are exactly those X for

which δk
z (X) = 0. For those X the infinite series ends and we have a slightly more

complicated but still quite explicit formula for composition with polynomials.

For instance, if X is a Hankel operator of order 2 we find

p(R(X)) =

[

p(S∗) Xp′(S) + 1
2δz(X)p′′(S)

0 p(S)

]

.

Remark 4.3. In Section 3 we defined classes of operators Ln by Λ ∈ Ln

if δn
u(Λ) = 0 for all u in some class of functions. However that discussion was

motivated by the study of commutators that arise in interpolation theory and the

results in interpolation theory also suggest another, slightly more sophisticated

point of view. We mention it here because it raises a number of interesting

questions. We don’t pursue it further here because it seems less amenable to

formal algebraic analysis than the ideas in Section 3.

The commutator results which arise in interpolation theory involve operators

Λ acting on a space X. The operators are generically unbounded and often

nonlinear. The basic results are that for certain linear operators T which are

bounded on X it is also true that the commutator [T,Λ] is bounded on X. Of-

ten the class of T for which this holds includes all operators of the form Mu

for bounded functions u. However, the construction of Λ involves a number

of choices and in [Cwikel et al. ≥ 1997], for instance, the operators Λ are re-

ally viewed modulo bounded operators. Furthermore, even when it is true that

δu(Λ) = [Mu,Λ] is bounded it is generally not true that δ2
u(Λ) = 0. This sug-

gests considering bounded operators as being of type 1 and defining an operator

to be of type n if δn−1
u (Λ) is a bounded operator for each bounded function

u. This would come closer to the viewpoint of [Cwikel et al. ≥ 1997] and the

results from interpolation theory generate a variety of type 2 operators that are

not type 1. For example, if X is an Lp space and ϕ is any Lipschitz function,

Λ(f) = fϕ(ln |f |) will be of type 2 (in this sense) and not of type 1. However

it is not generally true that δ2
u(Λ) = 0, although it is true in the special case

ϕ(x) = x.

The difficulty with this approach is that it is not clear how to generate objects

of type 3 other than with the ideas used in Section 3. That is, the examples

Λn(f) = f(ln |f |)n give examples of objects of arbitrary type in Section 3. It is

not clear what other examples we would have for the variation just described.

In this context we should mention the very interesting results of Kalton [1988],

which say, roughly, that in some circumstances if Λ has the property that [Mu,Λ]

is bounded for each bounded function u then [T,Λ] is also bounded for a much

larger of linear operators T .

A final word on interpolation. As we mentioned in the introduction it may be

that the computations in Section 3 can be used to extract information from the

boundedness of (3–3) and the more complicated combinations in [Milman and

Rochberg 1995].
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Remark 4.4. We mentioned after Theorem 2.8 that a flaw in this representation

is that we can’t insure that the individual summands are bounded. For n = 2

we can do that if we accept a more complicated, but also more symmetrical,

formulation. Suppose B ∈ H2. By Theorem 2.8 we know that, for p, q ∈ P ,

B(p, q) = B(1, pq) + 1
2 (δzB)(p′, q).

A similar argument in the second variable gives

B(p, q) = B(pq, 1) − 1
2 (δzB)(p, q′).

Adding gives

2B(p, q) = B(pq, 1) + B(1, pq) + (δzB)(p′, q) − (δzB)(p, q′),

which we rewrite as

2B(p, q) = B(pq, 1) + B(1, pq) + (δD(δzB))(p, q).

Computing (δpδqB)(1, 1) and recalling that B ∈ H2 we get

B(pq, 1) + B(1, pq) = B(p, q) + B(q, p). (4–2)

Writing Bsym(p, q) = B(p, q) + B(q, p) we have

2B(p, q) = Bsym(p, q) + (δD(δzB))(p, q). (4–3)

which is the representation we wanted. Clearly

|Bsym(p, q)| ≤ C‖p‖ ‖q‖

and hence

|(δD(δzB))(p, q)| ≤ C‖p‖ ‖q‖.

Using (4–2) we see that Bsym ∈ H1. Thus (4–3) gives a representation of

B as a type 1 form plus a form built from a type 1 form by composing with

differentiation. All the forms are continuous.

Unfortunately it is not clear how to continue this analysis to higher n.

Remark 4.5. We have mentioned that higher-order Hankel forms are related to

deformation of multiplicative structure. One way to formulate this is to introduce

the family of operators Mε defined by Mε(f, g) = f(z + ε)g(z− ε). If we expand

this in powers of ε we get
∑

Bn(f, g)εn = fg + (f ′g − gf ′)ε + · · · .

Hankel forms are those that only depend on B0(f, g) = fg; Hankel forms of type

2 are linear functions of B0(f, g) and B1(f, g); and so on.

In Section 3 we introduced the operator Tt(a) = a exp(t(Da/a)) and noted

that Tt(ab) = Tt(a)Tt(b) (Lemma 3.4). In the basic example from interpolation
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theory, when D(f) = f ln |f |, this becomes Tt(f) = f |f |t. The reason this

operator plays a crucial role in interpolation theory is that

‖f‖Lp = ‖Tt(f)‖Lp/(1+t) .

The crucial fact is that Tt moves functions through the scale of spaces without

changing the norm. For general scales of spaces the operators Λ that arise are

the derivative of a family of operators with similar properties. Thus, from the

interpolation theoretic point of view, it is just an accident that the formula for

D(f) = f ln |f | can be used to generate a multiplicative operator. However, this

fact is basic to our algebraic computations.

Question 4.6. Can the algebraic approach in Section 2 be extended to trilinear

forms in a natural way? Cobos, Kühn, and Peetre have developed a theory of

trilinear forms acting on a Hilbert space in [Cobos et al. 1992].
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