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DONALD SARASON

Abstract. This article traces several prominent trends in the development

of the subject of holomorphic spaces, with emphasis on operator-theoretic

aspects.

The term “Holomorphic Spaces,” the title of a program held at the Mathemat-

ical Sciences Research Institute in the fall semester of 1995, is short for “Spaces

of Holomorphic Functions.” It refers not so much to a branch of mathemat-

ics as to a common thread running through much of modern analysis—through

functional analysis, operator theory, harmonic analysis, and, of course, complex

analysis. This article will briefly outline the development of the subject from its

origins in the early 1900’s to the present, with a bias toward operator-theoretic

aspects, in keeping with the main emphasis of the MSRI program. I hope that

the article will be accessible not only to workers in the field but to analysts in

general.

Origins

The subject began with the thesis of P. Fatou [1906], a student of H. Lebesgue.

The thesis is a study of the boundary behavior of certain harmonic functions in

the unit disk (those representable as Poisson integrals). It contains a proof, for

example, that a bounded holomorphic function in the disk has a nontangential

limit at almost every point of the unit circle. This initial link between function

theory on the circle (real analysis) and function theory in the disk (complex

analysis) recurred continually in the ensuing years. Some of the highlights are

the paper of F. Riesz and M. Riesz [1916] on the absolute continuity of analytic

measures; F. Riesz’s paper [1923] in which he christened the Hardy spaces, H p,

and introduced the technique of dividing out zeros (i.e., factoring by a Blaschke

product); G. Szegö’s investigations [1920; 1921] of Toeplitz forms; M. Riesz’s

proof [1924] of the Lp boundedness of the conjugation operator (1 < p < ∞);
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A. N. Kolmogorov’s proof [1925] of the weak-L1 boundedness of the conjuga-

tion operator; G. H. Hardy and J. E. Littlewood’s introduction of their maximal

function [1930]; and R. Nevanlinna’s development [1936] of his theory of func-

tions of bounded characteristic. By the late 1930’s the theory had expanded to

the point where it could become the subject of a monograph. The well-known

book of I. I. Privalov appeared in 1941, the year of the author’s death, and was

republished nine years later [Privalov 1950], followed by a German translation

[Privalov 1956].

Beurling’s Paper

Simultaneously, the general theory of Banach spaces and their operators had

been developing. By mid-century, when A. Beurling published a seminal paper

[1949], the time was ripe for mutual infusion. After posing two general questions

about Hilbert space operators with complete sets of eigenvectors, Beurling’s

paper focuses on the (closed) invariant subspaces of the unilateral shift operator

on the Hardy space H2 of the unit disk (an operator whose adjoint is of the kind

just mentioned).

For the benefit of readers who do not work in the field, here are a few of

the basic definitions. For p > 0 the Hardy space Hp consists of the holomorphic

functions f in the unit disk, D, satisfying the growth condition sup0<r<1 ‖fr‖p <
∞, where fr is the function on the unit circle defined by fr

(

eiθ
)

= f
(

reiθ
)

, and

‖fr‖p denotes the norm of fr in the Lp space of normalized Lebesgue measure

on the circle, hereafter denoted simply by Lp. As noted earlier, the spaces Hp

were introduced by F. Riesz [1923]; they were named by him in honor of G. H.

Hardy, who had proved [1915] that ‖fr‖p increases with r (unless f is constant).

From the work of Fatou and his successors one knows that each function in H p

has an associated boundary function, defined almost everywhere on ∂D in terms

of nontangential limits. Because of this, one can identify Hp with a subspace

of Lp; in case p ≥ 1, the subspace in question consists of the functions in Lp

whose Fourier coefficients with negative indices vanish (i.e., the functions whose

Fourier series are of power series type). A function in Hp, for p ≥ 1, can be

reconstructed from its boundary function by means of the Poisson integral, or

the Cauchy integral. The space H2 can be alternatively described as the space

of holomorphic functions in D whose Taylor coefficients at the origin are square

summable. In the obvious way it acquires a Hilbert space structure in which the

functions zn, for n = 0, 1, 2, . . . , form an orthonormal basis.

The unilateral shift is the operator S onH2 of multiplication by z, the identity

function. It is an isometry, sending the n-th basis vector, zn, to the (n + 1)-st,

zn+1. It is, in fact, the simplest pure isometry. (A Hilbert space isometry is

called pure if it has no unitary direct summand. Every pure isometry is a direct

sum of copies of S.) Beurling showed that the invariant subspace structure of S

mirrors the factorization theory of H2 functions.
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From the work of F. Riesz and Nevanlinna it is known that every nonzero

function in Hp can be written as the product of what Beurling called an outer

function and an inner function. The factors are unique to within unimodular

multiplicative constants. An outer function is a nowhere vanishing holomorphic

function f in D such that log |f | is the Poisson integral of its boundary function.

Beurling showed that the outer functions in H2 are the cyclic vectors of the op-

erator S (i.e., the functions contained in no proper S-invariant subspaces). An

inner function is a function in H∞ whose boundary function has unit modulus

almost everywhere. Beurling showed that if the H2 function f has the factor-

ization f = uf0, with u an inner function and f0 an outer function, then the

S-invariant subspace generated by f is the same as that generated by u, and

it equals uH2. Finally, Beurling showed that every invariant subspace of S is

generated by a single function, and hence by an inner function. Thus, under-

standing the invariant subspace structure of S is tantamount to understanding

the structure of inner functions.

There are two basic kinds of inner functions: Blaschke products and singular

functions. Only the constant inner functions are of both kinds, and every in-

ner function is the product of a Blaschke product and a singular function, the

factors being unique to within unimodular multiplicative constants. Blaschke

products (products of Blaschke factors) are associated with zero sequences. The

zero sequence of a function in H2 (in fact, of a function in any Hp) is a so-

called Blaschke sequence, a finite sequence in D or an infinite sequence (zn)
∞
n=1

satisfying
∑

(1 − |zn|) < ∞ (the Blaschke condition). The Blaschke factor cor-

responding to a point w of D is, in case w 6= 0, the linear-fractional map of D

onto D that sends w to 0 and 0 to the positive real axis, and in case w = 0

it is the identity function. A Blaschke product is the product of the Blaschke

factors corresponding to the terms of a Blaschke sequence, or a unimodular con-

stant times such a function. In the case of a finite sequence it is obviously an

inner function, and in the case of an infinite sequence, the Blaschke condition

is exactly what one needs to prove that the corresponding infinite product of

Blaschke factors converges locally uniformly in D to an inner function. If the in-

ner function associated with an S-invariant subspace is a Blaschke product, then

the subspace is just the subspace of functions in H2 that vanish at the points

of the corresponding Blaschke sequence (with the appropriate multiplicities at

repeated points).

A singular function is an inner function without zeroes in D. The logarithm

of the modulus of such a function, if the function is nonconstant, is a negative

harmonic function in D having the nontangential limit 0 at almost every point

of ∂D. One can conclude on the basis of the theory of Poisson integrals that

the logarithm of the modulus of a nonconstant singular function is the Poisson

integral of a negative singular measure on ∂D. The most general nonconstant
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singular function can thus be represented as

λ exp

(

−
∫

∂D

eiθ + z

eiθ − z
dµ (eiθ)

)

for z ∈ D,

where λ is a unimodular constant and µ is a positive singular measure on ∂D.

The simplest such function is

exp

(

z + 1

z − 1

)

,

corresponding to the case where λ = 1 and µ consists of a unit point mass at

the point 1. If the inner function associated with an S-invariant subspace is a

singular function, then the functions in the subspace have no common zeroes in

D, but the common singular inner factor they share forces them all to have the

nontangential limit 0 almost everywhere on ∂D with respect to the associated

singular measure.

Because of Beurling’s theorem, the preceding description of inner functions

translates into a description of the invariant subspaces of the operator S. The

theorem is a splendid early example of how a natural question in operator theory

can lead deeply into analysis.

Multiple Shifts and Operator Models

Beurling’s work was extended to multiple shifts by P. D. Lax [1959] and P. R.

Halmos [1961]. Here one naturally encounters vector-valued function theory.

For 1 ≤ n ≤ ℵ0, the unilateral shift of multiplicity n (that is, the direct sum

of n copies of S) can be modeled as the operator of multiplication by z on a

vector-valued version of H2; the functions in this space have values belonging

to an auxiliary Hilbert space E of dimension n. The space, usually denoted by

H2(E), can be defined, analogously to the scalar case, as the space of holomor-

phic E-valued functions in D whose Taylor coefficients at the origin are square

summable. The shift-invariant subspaces of H2(E) have a description analogous

to that in Beurling’s theorem, the inner functions in that theorem being replaced

by operator-valued analogues. Something is lost in the generalization, because

the latter functions are not generally susceptible to a precise structural descrip-

tion like the one discussed above for scalar inner functions. (An exception is

afforded by what are usually called matrix inner functions, bounded holomor-

phic matrix-valued functions in D having unitary nontangential limits almost

everywhere on ∂D. For this class of functions, and a symplectic analogue, V. P.

Potapov [1955] has developed a beautiful structure theory.)

Multiple shifts play a prominent role in model theories for Hilbert space con-

tractions. The prototypical theory of operator models is, of course, the classical

spectral theorem, which in its various incarnations provides canonical models

for self-adjoint operators, normal operators, one-parameter unitary groups, and
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commutative C∗-algebras. Model theories that go beyond the confines of the

classical spectral theorem developed on several parallel fronts beginning in the

1950’s. The theory originated by M. S. Livshitz [1952] and M. S. Brodskii [1956]

focuses on operators that are “nearly” self-adjoint. The theories of B. Sz.-Nagy

and C. Foiaş [1967] and L. de Branges and J. Rovnyak [1966, Appendix, pp. 347–

392] apply to general contractions but are most effective for “nearly” unitary

ones.

The spirit of these “nonclassical” model theories can be illustrated with the

Volterra operator, the operator V on L2[0, 1] of indefinite integration:

(V f)(x) =

∫ x

0

f(t) dt for 0 ≤ x ≤ 1.

The adjoint of V is given by

(V ∗f)(x) =

∫ 1

x

f(t) dt for 0 ≤ x ≤ 1,

from which one sees that V + V ∗ is a positive operator of rank one, and hence

that the operator (I−V )(I+V )−1 is a contraction and a rank-one perturbation

of a unitary operator.

The invariant subspaces of V were determined, by different methods, by Brod-

skii [1957] and W. F. Donoghue [1957]. The result is also a corollary of earlier

work of S. Agmon [1949]; it says that the only invariant subspaces of V are the

obvious ones, the subspaces L2[a, 1] for 0 ≤ a ≤ 1. (Here, L2[a, 1] is identified

with the subspace of functions in L2[0, 1] that vanish off [a, 1].) It was even-

tually recognized that the Agmon–Brodskii–Donoghue result is “contained” in

Beurling’s theorem [Sarason 1965].

To explain the last remark we consider, for a > 0, the singular inner function

ua(z) = exp

(

a
(

z + 1

z − 1

)

)

,

and the orthogonal complement of its corresponding invariant subspace, which

we denote by Ka:

Ka = H2 	 uaH
2.

We look in particular at K1, and on K1 we consider the operator S1 one obtains

by compressing the shift S. Thus, to apply S1 to a function in K1, one first

multiplies the function by z and then projects the result onto K1. (The adjoint

of S1 is the restriction of S∗ to K1.)

There is a natural isometry, involving the Cayley transform, that maps L2

(of ∂D) onto L2(R). If one follows that isometry by the Fourier–Plancherel

transformation, one obtains again an isometry of L2 onto L2(R). The latter

isometry maps H2 onto L2[0,∞) and maps Ka onto L2[0, a]. And it transforms

the operator S1 on K1 to the operator (I−V )(I+V )−1 on L2(0, 1). The operator

S1 is thus a “model” of the operator (I − V )(I + V )−1.
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By Beurling’s theorem, the invariant subspaces of S1 are exactly the subspaces

uH2 	 u1H
2 with u an inner function that divides u1 (divides, that is, in the

algebra H∞ of bounded holomorphic functions in D). From the structure theory

for inner functions described earlier one can see that the only inner functions that

divide u1 are the functions ua with 0 ≤ a ≤ 1 (and their multiples by unimodular

constants). On the basis of the transformation described above, one concludes

that the invariant subspaces of (I −V )(I +V )−1 are the subspaces L2[a, 1] with

0 ≤ a ≤ 1. Finally, each of the operators V and (I−V )(I+V )−1 is easily seen to

be approximable in norm by polynomials in the other, implying that these two

operators have the same invariant subspaces. The Agmon–Brodskii–Donoghue

result follows.

One can sum up the preceding remarks by saying that the Volterra operator,

V , is “contained in” the shift operator, S. A simple and elegant observation of

G. C. Rota [1960], which provides a hint of the Sz.-Nagy–Foiaş and de Branges–

Rovnyak model theories, shows, startlingly, that all Hilbert space operators are

“contained in” multiple shifts. Consider an operator T of spectral radius less

than 1 on a Hilbert space E. With each vector x in E we associate the E-valued

holomorphic function fx given by the power series
∑∞
n=0 z

nT ∗nx. Because of

the spectral condition imposed on T , the function fx is holomorphic on D, so in

particular it belongs to H2(E). The space of all such functions fx is a subspace

K of H2(E), invariant under the adjoint of the shift operator on H2(E). The

map x→ fx from E onto K is a bounded, invertible operator that intertwines T ∗

with the adjoint of the shift operator. It follows that the operator T is similar

to the compression of the shift operator to K. In a sense, then, multiple shifts

provide replicas of all operators.

To be a bit more precise, Rota’s observation provides a similarity model for

every Hilbert space operator whose spectral radius is less than 1. The model

space is the orthogonal complement of a shift-invariant subspace of a vector-

valued H2 space, and the model operator is the compression of the shift to the

model space. The more powerful Sz.-Nagy–Foiaş and de Branges–Rovnyak theo-

ries provide unitarily equivalent models, not merely similarity models, for Hilbert

space contractions. The theory of Sz.-Nagy and Foiaş springs from the subject of

unitary dilations. Their model spaces include, among a wider class, the orthogo-

nal complements of all shift-invariant subspaces of vector-valued H 2 spaces, the

corresponding model operators being compressions of shifts. The model spaces

of de Branges–Rovnyak are certain Hilbert spaces that live inside vector-valued

H2 spaces, not necessarily as subspaces but as contractively contained spaces,

that is, spaces whose norms dominate the norms of the containing spaces.

The connection between the model theories of Sz.-Nagy–Foiaş and de Branges–

Rovnyak has been explained by J. A. Ball and T. L. Kriete [1987]. Further insight

was provided by N. K. Nikolskii and V. I. Vasyunin [1989], who developed what

they term a coordinate-free model theory that contains, as particular cases, the

Sz.-Nagy–Foiaş and de Branges–Rovnyak theories.
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Interpolation

The operators S and S∗ are themselves model operators in the Sz.-Nagy–Foiaş

theory, and rather transparent ones. They model irreducible pure isometries

and their adjoints, respectively. Next in simplicity are the compressions of S to

proper S∗-invariant subspaces of H2. For u a nonconstant inner function, let Ku

denote the orthogonal complement in H2 of the Beurling subspace uH2, and let

Su denote the compression of S to Ku. (The action of Su is thus multiplication

by z followed by projection onto Ku.) J. W. Moeller [1962] showed that the

spectrum of Su consists of the zeros of u in D plus the points on ∂D where u

has 0 as a cluster value. Moeller’s paper and other considerations led the author

to suspect that every operator commuting with Su should be obtainable as the

compression of an operator commuting with S. The operators of the latter kind

are just the multiplication operators onH2 induced by H∞ functions. The result

was eventually proved in a more precise form: an operator T that commutes with

Su is the compression of an operator that commutes with S and has the same

norm as T [Sarason 1967]. There is a close link with two classical interpolation

problems, the problems of Carathéodory–Fejér and Nevanlinna–Pick.

In the first of these problems [Carathéodory and Fejér 1911], one is given as

data a finite sequence c0, c1, . . . , cN−1 of complex numbers, and one wants to

find a function in the unit ball of H∞ having those numbers as its first N Taylor

coefficients at the origin. To recast this as a problem about operators, let u be

the inner function zN . The functions 1, z, . . . , zN−1 form an orthonormal basis

for the corresponding space Ku, and the matrix in this basis for the operator

Su has the entry 1 in each position immediately below the main diagonal and 0

elsewhere. Let T =
∑N−1
j=0 cjS

j
u, so the matrix for T is lower triangular with the

entry cj in each position j steps below the main diagonal. Then T commutes

with Su, and the question of whether the Carathéodory–Fejér problem has a

solution for the data c0, c1, . . . , cN−1 is the same as the question of whether T is

the compression of an operator commuting with S and having norm at most 1.

According to the result from [Sarason 1967], T has such a compression if and

only if its norm is at most 1. One recaptures in this way a solvability criterion

for the Carathéodory–Fejér problem attributed by those authors to O. Toeplitz.

In the second classical interpolation problem [Nevanlinna 1919; Pick 1916],

one is given as data a finite sequence z1, . . . , zN of distinct points in D and a

finite sequence w1, . . . , wN of complex numbers. One wants to find a function

in the unit ball of H∞ taking the value wj at zj , for j = 1, . . . , N . For an

operator reinterpretation, let u be the finite Blaschke product with zero sequence

z1, . . . , zN . The space Ku is spanned by the kernel functions for the points

z1, . . . , zN , the functions kj(z) = (1−z̄jz)−1, where j = 1, . . . , N . The distinctive

property of kj is that the linear functional it induces on H2 is the functional of

evaluation at zj . From this one sees that S∗kj = z̄jkj , so the functions k1, . . . , kN
form an eigenbasis for S∗

u. Let the operator T on Ku be defined by T ∗kj = w̄jkj .
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Then T commutes with Su, and the question of whether the Nevanlinna–Pick

problem is solvable for the given data is the same as the question of whether T is

the compression of an operator that commutes with S and has norm at most 1.

By the result from [Sarason 1967], the latter happens if and only if the norm of

T is at most 1, which is easily seen to coincide with Pick’s solvability criterion,

namely, the positive semidefiniteness of the matrix

(

1 − wjw̄k
1 − zj z̄k

)N

j,k=1

.

Subsequently, Sz.-Nagy and Foiaş established their famous commutant-lifting

theorem [1968; 1967], according to which the result from [Sarason 1967] is a

special case of a general property of unitary dilations. The commutant-lifting

theorem provides an operator approach to a variety of interpolation problems.

The books [Rosenblum and Rovnyak 1985; Foiaş and Frazho 1990], are good

sources for this material. H. Dym’s review of the latter book [Dym 1994] is also

recommended.

The commutant-lifting approach is just one of several operator approaches to

interpolation problems. In the same year that the commutant-lifting theorem

appeared, V. M. Adamyan, D. Z. Arov and M. G. Krein published the first two

of a remarkable series of papers on the Nehari interpolation problem [Adamyan

et al. 1968b; 1968a]. In the Nehari problem one is given as data a sequence

(cn)
∞
n=1 of complex numbers, and one wants to find a function f in the unit

ball of L∞ (on the unit circle) having these numbers as its negatively indexed

Fourier coefficients (i.e., f̂(−n) = cn for n = 1, 2, . . . ). Z. Nehari [1957] proved

that the problem is solvable if and only if the Hankel matrix (cj+k+1)
∞
j,k=0 has

norm at most 1 as an operator on l2. Using a method akin to the operator

approach to the Hamburger moment problem, Adamyan, Arov and Krein proved

that finding a solution f , in case one exists, is tantamount to finding a unitary

extension of a certain isometric operator constructed from the data. What is

more, the family of all such solutions is in one-to-one correspondence with the

family of all such unitary extensions (satisfying a minimality requirement), a

connection that enabled them to derive a linear-fractional parameterization of the

set of all solutions in case the problem is indeterminate. For the indeterminate

Nevanlinna–Pick problem, a linear-fractional parameterization of the solution set

was found by Nevanlinna [1919] on the basis of the Schur algorithm, a technique

invented by I. Schur [1917] in connection with the Carathéodory–Fejér problem.

Nevanlinna’s parameterization, and the corresponding one implicit in Schur’s

paper, can be deduced from the one of Adamyan, Arov and Krein, because

one can show that the Nehari problem embraces the Carathéodory–Fejér and

Nevanlinna–Pick problems.

There is a close connection between the commutant-lifting theorem and the

work of Nehari and Adamyan, Arov and Krein. Nehari’s theorem is in fact a
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corollary of the commutant-lifting theorem; the details can be found, for example,

in [Sarason 1991]. In the other direction, it was recognized by D. N. Clark

(unpublished notes) and N. K. Nikolskii [1986] that the theorem from [Sarason

1967] can be deduced very simply from Nehari’s theorem, and more recently R.

Arocena [1989] has shown how to give a proof of the commutant-lifting theorem

using the methods of Adamyan, Arov and Krein. Further discussion can be

found in [Sarason 1987; 1991].

There follows a brief description of some other approaches to interpolation

problems.

• The Abstract Interpolation Problem of V. E. Katsnelson, A. Ya. Kheifets

and P. M. Yuditskii [Katsnelson et al. 1987; Kheifets and Yuditskii 1994] is based

on the approach of V. P. Potapov and coworkers to problems of Nevanlinna–

Pick type [Kovalishina and Potapov 1974; Kovalishina 1974; 1983]. It abstracts

the key elements of Potapov’s theory to an operator setting and yields, upon

specialization, a wide variety of classical problems. The model spaces of de

Branges–Rovnyak play an important role in this approach. As was the case

with the Adamyan–Arov–Krein treatment of the Nehari problem, the solutions

of the Abstract Interpolation Problem correspond to the unitary extensions of a

certain isometric operator. There is a unified derivation of the linear-fractional

parameterizations of the solution sets of indeterminate problems.

• The approach favored by H. Dym [1989] emphasizes reproducing kernel

Hilbert spaces, especially certain de Branges–Rovnyak spaces, and J-inner ma-

trix functions. (The J here refers to a signature matrix, a square, self-adjoint,

unitary matrix. A meromorphic matrix function in D, with values of the same

size as J , is called J-inner if it is J-contractive at each point of D where it is

holomorphic, and its boundary function is J-unitary almost everywhere on ∂D.

These are the symplectic analogues of inner functions that, as mentioned earlier,

have been analyzed by Potapov [1955].)

• J. A. Ball and J. W. Helton [1983] have developed a Krein space approach

to interpolation problems. In their approach an interpolation problem, rather

than being reinterpreted as an operator extension problem, is reinterpreted as a

subspace extension problem in a suitable Krein space. Shift-invariant subspaces

of vector H2 spaces that are endowed with a Krein space structure arise. One

of the key results is a Beurling-type theorem for such subspaces. A treatment of

the Nehari problem using this method can be found in [Sarason 1987].

• J. Agler [1989] has, in a sense, axiomatized the Nevanlinna–Pick problem

and obtained the analogue of Pick’s criterion in two new contexts, interpolation

by multipliers of the Dirichlet space (the space of holomorphic functions in D

whose derivatives are square integrable with respect to area), and interpolation

by bounded holomorphic functions in the bidisk.

• M. Cotlar and C. Sadosky [1994] have used their theory of Hankel forms to

attack problems of Nevanlinna–Pick and Nehari type in the polydisk.
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• B. Cole, K. Lewis and J. Wermer have attacked problems of Nevanlinna–Pick

type from the perspective of uniform algebras [Cole et al. 1992].

The foregoing list is but a partial sample of the enormous activity surrounding

interpolation problems.

Systems Theory

In the early 1970’s J. W. Helton became aware that there is a large overlap

between the mathematics of linear systems theory and the operator theory that

had grown around dilation theory and interpolation problems. In an April 17,

1972 letter to the author, he wrote: “I’ve spent the year learning engineering

systems which at some levels is almost straight operator theory. Some of the

best functional analysis (Krein, Livsic) has come from engineering institutes and

I’m beginning to see why. Such collaboration does not exist in this country. . . .

The [Sz.-]Nagy–Foiaş canonical model theory is precisely a study of infinite di-

mensional discrete time systems which lose and gain no energy.”

Helton embarked upon a program to bridge the chasm between operator the-

orists and engineers in the United States. The result has been an enrichment

of both mathematics and engineering. The systems theory viewpoint now per-

meates a large part of operator theory. On the engineering side, a new subject,

H∞ control, has sprung up [Francis 1987].

Bergman Spaces and the Bergman Shift

The mathematics discussed above flows, in large part, from Beurling’s theo-

rem via its generalization to vector H2 spaces, in other words, to multiple shifts.

Another natural direction for exploration unfolds when one replaces the shift,

not by a multiple version of itself, but by its analogue (multiplication by z) on a

holomorphic space of scalar functions other than H2. There are countless possi-

bilities for this other space; one that has turned out to be especially interesting

is the Bergman space.

What was just referred to as “the” Bergman space is really just the most

immediate member of a large family of spaces. Given a bounded domain in the

complex plane and a positive number p, the Bergman space with exponent p for

the domain consists of the holomorphic functions in the domain that are p-th

power integrable with respect to area. These spaces are named for S. Bergman

because the ones with exponent 2, which are Hilbert spaces, played a fundamental

role in much of his work [Bergman 1970]. In the unit disk, the Bergman space

with exponent p is denoted by Ap (or Bp, or Lpa), and it is given the norm (or

“norm,” if p < 1) inherited from Lp of normalized area measure on the disk.

The powers of z form an orthogonal basis for the Hilbert space A2, the norm

of zn being 1/
√
n+ 1. Thus, a holomorphic function in D belongs to A2 if and

only if its Taylor coefficients at the origin are square summable when weighted
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against the sequence
(

1/(n + 1)
)∞

n=0
. From this one can see that functions in

A2 need not possess boundary values in the usual sense of nontangential limits.

For example, the function
∑∞

n=0 (n+ 1)
−1/2

zn is in A2, but its coefficients are

not square summable. A probabilistic argument shows that by randomly chang-

ing the signs of the coefficients of such a function, one almost surely obtains

a function, obviously also in A2, failing at almost every point of ∂D to have a

radial limit (details are in [Duren 1970, p. 228]). With more work one can make

a similar argument for any of the spaces Ap. Thus, in the study of Bergman

spaces, one of the main techniques used to study Hardy spaces, the reliance on

boundary functions, is lacking.

The Bergman shift is the operator on A2 of multiplication by z. It acts

on the orthonormal basis
(√
n+ 1 zn

)∞

n=0
by sending the n-th basis vector to

√

(n+ 1)/(n+ 2) times the (n+1)-st basis vector. It thus belongs to the class of

weighted shifts, a seemingly restricted family of operators that exhibit surpris-

ingly diverse behavior [Shields 1974]. A natural problem, in view of Beurling’s

theorem, is that of classifying the shift-invariant subspaces of A2 (hereafter called

just invariant subspaces of A2). Part of that problem, and a natural starting

place, is the problem of describing the zero sequences for A2 functions, because

associated with each zero sequence is the invariant subspace of functions in A2

that vanish on it.

Significant progress in understanding Ap zero sequences was made by C.

Horowitz [1974]. Among his results: (1) For p < q, there are Ap zero sequences

that are not Aq zero sequences. This contrasts with the situation for the Hardy

spaces: for every p, the Hp zero sequences are just the Blaschke sequences.

(2) There exist two Ap zero sequences whose union is not an Ap zero sequence.

Taking p = 2, one obtains an example of a pair of nontrivial invariant subspaces

of A2 whose intersection is trivial, a phenomenon that does not occur in the

space H2. (3) Every subsequence of an Ap zero sequence is an Ap zero sequence.

To elaborate, suppose (zk)
∞
k=1 is a subsequence of the zero sequence of the Ap

function f . For each k, let bk be the Blaschke factor for the point zk. Horowitz

showed that the infinite product h =
∏

bk (2 − bk) converges, and that f/h is

again in Ap. This furnishes an analogue of F. Riesz’s Hardy space technique of

dividing out zeros, but with a divisor h that need not itself be in Ap.

The Bergman shift belongs to a class, called Aℵ0
, studied by C. Apostol,

H. Bercovici, C. Foiaş, C. Pearcy, and others [Apostol et al. 1985; Bercovici

et al. 1985]. On the basis of the theory of what the preceding authors call dual

algebras, they established certain properties of the lattice of invariant subspaces

of A2 that raise pessimism over the prospects of ever understanding that lattice

well. Apostol, Bercovici, Foiaş and Pearcy showed that for each n between 1 and

ℵ0 there is an invariant subspace M of A2 such that zM has codimension n in M ;

that the lattice of invariant subspaces of A2 has a sublattice isomorphic to the

lattice of all the subspaces of a Hilbert space of dimension ℵ0; and, to strengthen
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one of Horowitz’s results, that there is a family of invariant subspaces of A2 with

the cardinality of the continuum any two of which have a trivial intersection. The

lattice of invariant subspaces of A2 thus differs in striking ways from Beurling’s

lattice. It appears to be considerably “wilder.”

Despite the preceding results, a substantially clearer picture of the invariant

subspaces of A2 has emerged in the past few years. The initial breakthrough

came in a paper of H. Hedenmalm [1991]. In H2, the normalized inner function

(normalized in the sense that its first nonvanishing Taylor coefficient at 0 is

positive) associated with a nontrivial invariant subspace solves a certain extremal

problem: if N is the smallest integer such that some function in the subspace

has a nonvanishing N -th derivative at the origin, then it maximizes Re f (n)(0)

among all functions f in the subspace having unit norm. Hedenmalm examined

the corresponding functions associated with invariant subspaces of A2. In case

the invariant subspace consists of the functions that vanish along a given A2 zero

sequence, he showed that every function in the subspace is divisible in A2 by the

extremal function, the norm of the quotient being no larger than the norm of

the original function. One can thus divide out the zeros of an A2 function in

such a way that both terms of the factored function are in A2. For a general

invariant subspace, Hedenmalm showed that the contractive divisibility property

holds at least for functions in the invariant subspace generated by the extremal

function. Hedenmalm’s extremal functions appear to be natural A2 analogues

of inner functions.

Hedenmalm’s results were quickly extended to general Ap spaces. This re-

quired new techniques and insights, provided by P. Duren, D. Khavinson, H.

S. Shapiro, and C. Sundberg [Duren et al. 1993; 1994]; see also [Hedenmalm

1994; Khavinson and Shapiro 1994]. An interesting aspect of this work is the

role played by the biharmonic Green function, the Green function in D for the

square of the Laplacian. The positivity of that function turns out to be the key

to contractive divisibility. A. Aleman, S. Richter and Sundberg [Aleman et al.

1996], using related techniques, have shown that at least one vestige of Beurl-

ing’s theorem carries over to A2: if M is an invariant subspace of A2, then M is

generated as an invariant subspace by M 	 zM .

By the index of an invariant subspace M of A2 one means the dimension of

M 	 zM . As mentioned above, Apostol, Bercovici, Foiaş and Pearcy showed

using the theory of dual algebras that this number can take any value between

1 and ℵ0. Their argument, since it applies to a general class of operators, does

not give insight into the mechanism behind the phenomenon for the Bergman

shift. Hedenmalm [1993] responded by giving an explicit example of an invariant

subspace of A2 with index 2; his argument is based on K. Seip’s characteriza-

tion of sampling and interpolating sequences in A2 [Seip 1993]. Subsequently,

Hedenmalm, Richter and Seip [Hedenmalm et al. 1996] gave explicit examples

of invariant subspaces of all indices in A2. In the other direction, Aleman and

Richter [1997] showed that an invariant subspace of A2 will have index 1 if
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it contains a reasonably well-behaved function, for example, a function in the

Nevanlinna class.

There has been much additional recent progress on invariant subspaces of A2,

and on other aspects of Bergman spaces, and many important contributions and

contributors (B. I. Korenblum and K. Zhu, to name just two) are not mentioned

in the discussion above, which is meant merely to present a sample of the work

from this intensely active field.

Dirichlet Spaces and the Dirichlet Shift

The Dirichlet integral of a holomorphic function f in the unit disk is defined

by

D(f) =

∫

D

|f ′|2 dA ,

where A is normalized area measure on D. The Dirichlet space, D, consists of

those functions f for which D(f) is finite. It is contained in H2 and is a Hilbert

space under the norm defined by

‖f‖2
D = ‖f‖2

2 +D(f) ,

(where ‖ ·‖
2

denotes the norm in H2). The powers of z form an orthogonal basis

for D, the norm of zn being
√
n+ 1.

The Dirichlet shift is the operator on D of multiplication by z. It is another

weighted shift, sending the n-th vector in the orthonormal basis
(

zn/
√
n+ 1

)∞

n=1

to
√

(n+ 2)/(n+ 1) times the (n + 1)-st vector. Because D is contained in

the well-understood space H2, one would expect the Dirichlet shift to be more

manageable than the Bergman shift. Although that turns out to be the case, we

are still a long way from a thorough understanding of the Dirichlet space and

its invariant subspaces. For example, L. Carleson [1952] and later H. S. Shapiro

and A. L. Shields [1962] long ago obtained information about the zero sequences

of functions in D, but we still lack a characterization. More recently, L. Brown

and Shields [1984] obtained information about the cyclic vectors of the Dirichlet

shift, but, again, we still lack a characterization.

The Dirichlet shift belongs to a class of operators, called two-isometries, that

arose in the work of J. Agler [1990]. A Hilbert space operator T is called a two-

isometry if it satisfies T ∗2T 2 + I = 2T ∗T . S. Richter, in trying to understand

the invariant subspaces of D, naturally began exploring general properties of

two-isometries. From [Richter and Shields 1988] he knew that every nontrivial

invariant subspace of D has index 1. In [Richter 1988] he proved a general result

about two-isometries, which, together with the result just mentioned, implies

that every nontrivial invariant subspace of D is cyclic; more precisely, if M is a

nontrivial invariant subspace of D then M is generated as an invariant subspace

by any nonzero vector in M 	 zM . Thus, the restriction of the Dirichlet shift

to any of its nontrivial invariant subspaces is a cyclic two-isometry. It is also
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what Richter calls analytic, meaning that the intersection of the ranges of its

powers is trivial. A model theory for cyclic analytic two-isometries is developed

in [Richter 1991].

Richter’s model spaces are variants of the space D. Given a positive measure

µ on ∂D, let Pµ denote its Poisson integral. For f a holomorphic function in D,

the Dirichlet integral of f with respect to µ is defined by

Dµ(f) =

∫

D

|f ′|2 Pµ dA .

The space D(µ) consists of all f such that Dµ(f) is finite. It is contained in H2

and is a Hilbert space under the norm defined by

‖f‖2
µ = ‖f‖2

2 +Dµ(f) .

One obtains the space D by taking µ to be normalized Lebesgue measure on

∂D. The space D(0), corresponding to the zero measure, is defined to be just

H2. Richter’s structure theorem states that Sµ, the operator of multiplication

by z on D(µ), is a cyclic analytic two-isometry, and that any cyclic analytic

two-isometry is unitarily equivalent to Sµ for a unique µ. The invariant spaces

of D are thus modeled by certain of the spaces D(µ).

In collaboration with C. Sundberg, Richter continued the study of the spaces

D(µ) [Richter and Sundberg 1991; 1992]. Among many other interesting results

in those papers is a structure theorem for the invariant subspaces of D(µ): If M

is a nontrivial invariant subspace of D(µ), then M has index 1, and if ϕ is a func-

tion of unit norm in M 	 zM , then M is the isometric image of D(|ϕ|2µ) under

the operator of multiplication by ϕ. The functions ϕ in the preceding state-

ment are the analogues in D(µ) of inner functions in H2 and of Hedenmalm’s

extremal functions in A2. The result of Richter and Sundberg reduces the prob-

lem of understanding the invariant subspace structure of D(µ) to the problem

of understanding the structure of these extremal functions. This awaits further

study, although interesting progress for the space D was made in [Richter and

Sundberg 1994]. In particular, the authors showed that the extremal functions in

D are contractive multipliers of D. This contrasts with Hedenmalm’s extremal

functions in A2, which are expansive multipliers in the sense that multiplication

by one of them does not decrease the A2 norm of any polynomial. A study of

S. M. Shimorin [1995] sheds further light on this phenomenon.

Hankel Operators

A Hankel matrix is a square matrix (finite or infinite) with constant cross

diagonals, in other words, a matrix whose (j, k)-th entry depends only on the sum

j + k. A famous example is the Hilbert matrix,
(

1/(j + k + 1)
)∞

j,k=0
. According

to [Hardy et al. 1952, p. 226], D. Hilbert proved in his lectures that this matrix
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induces a bounded operator on l2. I. Schur [1911] showed that the sharp bound

is π and W. Magnus [1950] that the spectrum is [0, π] and purely continuous.

It was noted earlier that semi-infinite Hankel matrices arise in the Nehari in-

terpolation problem. The theorem of Nehari (page ) characterizes their bound-

edness as operators on l2. Nehari’s result will now be restated in slightly different

language. By a Hankel operator we shall mean an operator on H2, possibly un-

bounded, whose domain contains the vectors in the standard orthonormal basis,

and whose matrix in that basis is a Hankel matrix. With each function ϕ in

L2 of the circle we associate such an operator, which we denote by Γϕ; it is the

one whose matrix has as its (j, k)-th entry the Fourier coefficient ϕ̂(−j − k− 1),

where j, k = 0, 1, 2, . . . . Thus, Γϕ depends only on P−ϕ, the projection of ϕ onto

L2 	H2. One calls ϕ a symbol of Γϕ. Each Hankel operator Γ is Γϕ for some ϕ;

one can take for ϕ the image of Γ1 under the “reflection” operator R, the oper-

ator on L2 defined by (Rf)
(

eiθ
)

= e−iθf
(

e−iθ
)

(which sends H2 onto L2 	H2,

and vice versa). But as a symbol for Γ one can also take any function differing

from RΓ1 by a function in H2. For example, the function ϕ
(

eiθ
)

= i(θ − π)

(0 < θ < 2π) is a symbol for the operator whose matrix is the Hilbert matrix.

One easily sees that the action of Γϕ, on polynomials, say, consists of mul-

tiplication by ϕ, followed by projection onto L2 	H2 (i.e., application of P−),

followed by reflection (i.e., application of R). In particular, if ϕ is bounded then

so is Γϕ, with norm at most ‖ϕ‖∞. (Thus, because the operator correspond-

ing to the Hilbert matrix has a symbol of supremum norm π, the norm of the

Hilbert matrix is at most π, which is part of Schur’s result.) Nehari’s theorem,

expressed qualitatively, states that a Hankel operator is bounded if and only if it

has a bounded symbol. (The quantitative version adds that there exists a symbol

whose supremum norm is the norm of the operator.) A companion theorem of

P. Hartman [1958] states that a Hankel operator is compact if and only if it has

a continuous symbol (of supremum norm arbitrarily close to the norm of the op-

erator). Together with C. Fefferman’s characterization of functions of bounded

mean oscillation [Fefferman 1971; Garnett 1981] and a related characterization of

functions of vanishing mean oscillation [Sarason 1975], these two theorems give

the following boundedness and compactness criteria for Hankel operators: Γϕ is

bounded if and only if P−ϕ is in BMO, the space of functions of bounded mean

oscillation on ∂D, and Γϕ is compact if and only if P−ϕ is in VMO, the space

of functions of vanishing mean oscillation on ∂D. The condition for a Hankel

operator to have finite rank was found by L. Kronecker long ago [1881]: Γϕ has

finite rank if and only if P−ϕ is a rational function.

By the conjugate-analytic symbol of Γϕ one means the function P−ϕ, the

unique symbol in L2	H2. The results of Kronecker–Nehari–Hartman thus relate

certain basic properties of a Hankel operator to the structure of its conjugate-

analytic symbol. This illustrates a recurrent theme in concrete operator theory.

Typically in this subject, one is given a natural class of operators induced in

some way or other by certain functions, often referred to as the symbols of
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the operators they induce. One wants to understand how the properties of

the operators are encoded by their inducing functions. The Kronecker–Nehari–

Hartman results suggest the problem of characterizing the Hankel operators that

belong to the Schatten class Sp, the class of compact operators whose singular

values are p-th-power summable, where 0 < p <∞.

The preceding question for S2, the Hilbert–Schmidt class, is easy, because an

operator is in S2 if and only if its matrix entries (in any orthonormal basis) are

square summable. It follows that a Hankel operator is in S2 if and only if its

conjugate-analytic symbol is the image under the reflection operator R of (the

boundary function of) a function in D, the Dirichlet space. The question for

general Sp remained a mystery for a long time despite some suggestive work

of M. Rosenblum and J. Howland [Howland 1971] pertaining to S1, the trace

class. The breakthrough came in 1979 when V. V. Peller found the condition

for a Hankel operator to be in S1. A short time later he handled the case of

Sp for p ≥ 1 [Peller 1980]. His result says that Γϕ belongs to Sp if and only

if P−ϕ belongs to a certain Besov space (the space B
1/p
p ). This was extended

to 0 < p < 1 independently by Peller [1983] and S. Semmes [1984]. The results

have interesting applications to prediction theory and to rational approximation,

which can be found in [Peller and Khrushchëv 1982; Khrushchëv and Peller 1986].

Since Peller’s work it has been recognized that results like his and those of his

predecessors hold in many other settings. For Hankel operators on the Bergman

space, A2, for instance, boundedness and compactness criteria have been estab-

lished by S. Axler [1986], K. Zhu [1987], and K. Stroethoff [1990], and Schatten

class criteria by J. Arazy, S. Fisher and J. Peetre [Arazy et al. 1988]. More

information on this and related matters can be found in [Zhu 1990].

The spectral theory of Hankel operators has been developed to an extent,

notably by S. C. Power, whose book [1982] can be consulted for information

and references. There have been some interesting developments since that book

appeared. Power [1984] showed that there are no nontrivial nilpotent Hankel

operators and raised the question whether there are any quasinilpotent ones.

A. V. Megretskii [1990] used a clever construction to answer that question in

the affirmative. In a very nice paper [Megretskii et al. 1995], Megretskii, Peller

and S. R. Treil have given a spectral characterization of self-adjoint Hankel op-

erators, that is, a set of necessary and sufficient conditions, expressed solely in

terms of spectral data, for a self-adjoint operator to be unitarily equivalent to a

Hankel operator. Ideas from systems theory, especially the notion of a balanced

realization, play a prominent role in their analysis.

Toeplitz Operators

This vast subject cannot be adequately addressed in an article such as this

one. Only a few highlights will be touched on. The excellent book of A. Böttcher

and B. Silbermann [1990] can be consulted for further information.
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A Toeplitz matrix is a square matrix with constant diagonals, in other words,

a matrix whose (j, k)-th entry depends only on the difference j − k. Toeplitz

operators can be introduced in many settings, but here the focus will be on

the classical Toeplitz operators, which are the bounded operators on H 2 whose

matrices with respect to the standard orthonormal basis are Toeplitz matrices.

With each such operator is associated a unique symbol, namely, the function ϕ

in L2 such that the (j, k)-th entry of the corresponding Toeplitz matrix equals

the Fourier coefficient ϕ̂(j − k). It is a result of P. Hartman and A. Wintner

[1950] that ϕ is actually in L∞, with supremum norm equal to the norm of the

corresponding operator. The Toeplitz operator with symbol ϕ is denoted by Tϕ.

It is the compression to H2 of the operator on L2 of multiplication by ϕ; in other

words, it acts on a function in H2 as multiplication by ϕ followed by projection

onto H2.

Toeplitz operators are discrete versions of Wiener–Hopf operators, that is,

integral operators on L2(0,∞) whose kernels, which are functions on (0,∞) ×
(0,∞), depend only on the difference of the arguments (and so have the form

(x, y) 7→ K(x− y), where K is a function on R). There is in fact more than an

analogy here, because the unitary map fromH2 to L2(0,∞) mentioned earlier (in

the discussion of Beurling’s theorem) transforms Toeplitz operators to Wiener–

Hopf operators (whose kernels, in general, can be distributions). The preceding

observation was first made by M. Rosenblum [1965] and A. Devinatz [1967].

G. Szegö [1920; 1921] has already been mentioned as one of the pioneers of

our subject. Among other things, he studied the asymptotic behavior of finite

sections of Toeplitz matrices, a line of investigation that continues to the present

[Böttcher and Silbermann 1990; Basor and Gohberg 1994].

Self-adjoint Toeplitz operators are well understood. The operator Tϕ is self-

adjoint if and only if ϕ is real valued. In that case, according to a theorem of

Hartman and Wintner [1954], the spectrum of Tϕ is the closed interval whose

lower endpoint is the essential infimum of ϕ and whose upper endpoint is the

essential supremum of ϕ. A concrete spectral representation of Tϕ, for ϕ real, has

been given in [Rosenblum 1965; Rosenblum and Rovnyak 1985]. If the essential

range of ϕ is contained in a line, then Tϕ is a linear function of a self-adjoint

operator and so is described by Rosenblum’s theorem, but that is the only time

Tϕ can be a normal operator, according to a result of A. Brown and P. R. Halmos

[1963]. In investigating Toeplitz operators, therefore, one is largely beyond the

scope of classical spectral theory.

There is no description of the spectrum of Tϕ for general ϕ. Two general

facts are known. One is the spectral inclusion theorem of Hartman and Wintner

[1950], which states that the spectrum of Tϕ always contains the essential range

of ϕ. The other is a deep result of H. Widom [1964]: the spectrum of Tϕ is

always connected.

L. A. Coburn [1966] has observed that a nonzero Toeplitz operator cannot

have both a trivial kernel and a trivial cokernel. Thus, a Toeplitz operator will
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be invertible if it is a Fredholm operator of index 0, a fact that has been useful

in attempts to determine the spectrum of Tϕ. A great many theorems have

been obtained saying, roughly, that if ϕ belongs to such-and-such a class, then

Tϕ is a Fredholm operator if and only if the origin is not in the “range” of ϕ,

in which case the index of Tϕ is the negative of the “winding number” of ϕ

about the origin. Here, “range” is usually interpreted in some generalized sense,

and “winding number” is interpreted accordingly. The original and simplest

version is where ϕ is continuous, in which case range and winding number have

their usual meanings. That result goes back to I. C. Gohberg [1952], M. G.

Krein [1958], Widom [1960], and Devinatz [1964]. The book of Böttcher and

Silbermann [1990] contains many other versions.

Toeplitz operators have interacted strongly with the theory of operator al-

gebras. The works of R. G. Douglas [1972; 1973] are early examples of the

interaction. There has been much subsequent work, a discussion of which would

be beyond this author’s competence.

In another direction, a theory of similarity models for Toeplitz operators with

rational symbols has been developed by D. N. Clark [1981; 1982] (see also earlier

papers referenced there). The following theorem from [Clark and Morrel 1978]

illustrates the kind of results obtained: Let ϕ be a rational function that is

univalent in some annulus ρ ≤ |z| ≤ 1 and whose restriction to ∂D has winding

number 1 about each point of the interior of ϕ(∂D). Then Tϕ is similar to Tψ,

where ψ is a Riemann map of the unit disk onto the interior of ϕ(∂D). The theory

has been extended by D. M. Wang [1984] and D. V. Yakubovich [1989; 1991]

to encompass nonrational symbols satisfying certain smoothness and topological

requirements.

It is unknown whether every Toeplitz operator has a nontrivial invariant sub-

space. The strongest result to date, due to V. V. Peller [1993], gives an affirma-

tive answer for Toeplitz operators with piecewise continuous symbols satisfying

certain extra conditions.

I hope that the scattered remarks above give at least an inkling of the rich-

ness of the subject of Toeplitz operators. There is much more that could be

said. Toeplitz operators on vector Hp spaces have been studied extensively and

are discussed in the book of Böttcher and Silbermann. Besides that, Toeplitz

operators arise naturally in many other settings, and one is likely to find sev-

eral papers on them reviewed in Section 47 of any recent issue of Mathematical

Reviews.
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Holomorphic Composition Operators

Associated with each holomorphic self-map ϕ of D is the corresponding com-

position operator, Cϕ; it acts on any function f defined in D according to the

formula (Cϕf)(z) = f
(

ϕ(z)
)

. A classical result, the surbordination principle of

J. E. Littlewood [1925], guarantees that Cϕ acts boundedly on the Hardy spaces

Hp and on the Bergman spaces Ap.

The study of holomorphic composition operators, from an operator-theoretic

viewpoint, does not date back as far as the study of Toeplitz operators or the

study of Hankel operators. It is now thriving, thanks in large part to the in-

fluence of J. H. Shapiro, especially to a beautiful theorem of his characterizing

when Cϕ acts compactly on the spaces Hp. Shapiro began studying compact

composition operators in [Shapiro and Taylor 1973/74], where, among other re-

sults, the authors proved that if Cϕ is compact on one of the spaces Hp then it

is compact on every Hp. They also obtained a necessary condition for Cϕ to be

compact on Hp, namely, that ϕ not possess an angular derivative in the sense

of Carathéodory (an ADC, for short) at any point of ∂D. (One says ϕ has an

ADC at the point λ of ∂D if ϕ has a nontangential limit of unit modulus at

λ, and the difference quotient
(

ϕ(z) − ϕ(λ)
)

/(z − λ) has a nontangential limit

at λ.) B. D. MacCluer and Shapiro [1986] showed that the angular derivative

condition is not sufficient for the compactness of Cϕ on the spaces Hp, although

it is both necessary and sufficient in the spaces Ap. They also showed that if ϕ

is univalent then the angular derivative condition does imply Cϕ acts compactly

on the spaces Hp.

Shapiro’s characterization came a year later [1987]. It is quite easy to see that

Cϕ is compact on the spaces Hp if ϕ assumes no values near D, in other words,

if ‖ϕ‖∞ < 1. Shapiro’s necessary and sufficient condition is, roughly, that ϕ

not take too many values near D too often. This is quantitized by means of the

Nevanlinna counting function, which is a device from Nevanlinna theory that

gives a biased measure of the number of times ϕ assumes a given value w. The

Nevanlinna counting function of ϕ is defined by

Nϕ(w) =
∑

z∈ϕ−1(w)

log
1

|z| for w ∈ D.

In the sum on the right side, the points z in ϕ−1(w) are counted with multiplic-

ities, and the sum is interpreted to be 0 if w is not in ϕ(D). The convergence

of the series, in case ϕ−1(w) is infinite, follows by the Blaschke condition (as-

suming ϕ is not the constant function w). Shapiro’s theorem: Cϕ is compact on

the spaces Hp if and only if Nϕ(w)/ log 1
|w| → 0 as |w| → 1. This remarkable

theorem has inspired much additional interesting work. To mention just two

results, D. H. Luecking and K. Zhu [1992] have characterized the functions ϕ for

which Cϕ belongs to one of the Schatten classes as an operator on H2 or on A2,
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and P. Poggi–Corradini [1997] has characterized those univalent ϕ for which Cϕ
is a Riesz operator (an operator with essential spectral radius 0) on H 2.

Shapiro’s book [1993] is a delightful elementary account of his theorem and

related issues. C. C. Cowen and MacCluer [1995] have written a comprehensive

treatment of holomorphic composition operators.

Composition operators played a key role in L. de Branges’s renowned proof

of the Bieberbach–Robertson–Milin conjectures [de Branges 1985; 1987]. If the

function ϕ is univalent and vanishes at the origin, the operator Cϕ acts con-

tractively in D, the Dirichlet space, and in certain closely related spaces (with

indefinite metrics). De Branges recognized that the Robertson and Milin conjec-

tures can be interpreted as norm inequalities involving composition operators,

an observation that underlies his approach. Although the operator methodology

that led de Branges to his proof has been discarded in many accounts, its appear-

ance is really quite natural, at least to someone reared as a functional analyst.

De Branges’s ideas have been further developed in [Vasyunin and Nikolskii 1990;

1991].

Subnormal Operators

A Hilbert space operator is said to be subnormal if it has a normal extension,

in other words, if there is a normal operator acting on a space containing the

given one as a subspace and coinciding with the given operator in that subspace.

(The given Hilbert space is thus an invariant subspace of the normal operator.)

The notion was introduced by P. R. Halmos [1950].

Among subnormal operators are of course all normal ones, but also all isome-

tries, and all analytic Toeplitz operators, i.e., Toeplitz operators whose symbols

are in H∞, on both H2 and A2. In particular, the unilateral shift and the

Bergman shift are subnormal. These examples are all fairly evident, but some

subnormal operators appear in disguised form. For instance, there are Toeplitz

operators on H2 that are subnormal yet neither normal nor analytic [Cowen and

Long 1984; Cowen 1986]. There are composition operators on H2 whose adjoints

are subnormal, for nonobvious reasons [Cowen and Kriete 1988]. An unexpected

and particularly striking example of a subnormal operator is the Cesàro opera-

tor, the operator on l2 that sends the sequence (xn)
∞
n=0 to the sequence (yn)

∞
n=0

defined by yn = 1
n+1

∑n
k=0 xk [Kriete and Trutt 1971; Cowen 1984].

With each positive compactly supported measure µ in the complex plane,

there is naturally associated a subnormal operator, the operator of multiplication

by z on P 2(µ), the closure of the polynomials in L2(µ). One easily sees on the

basis of the spectral theorem that such operators model all cyclic subnormal

operators. Thus, the study of subnormal operators quickly leads to questions

about polynomial approximation and thence to questions about approximation

by rational functions. A large portion of J. B. Conway’s comprehensive account

of subnormal operators [1991] is devoted to the subject of rational approximation.
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The invariant subspace problem for subnormal operators, the question whether

every subnormal operator has a nontrivial invariant subspace, because it has an

obvious positive answer for noncyclic operators, is equivalent to the question

whether, for every measure µ as above, the space P 2(µ) has a nontrivial invari-

ant subspace (under multiplication by z). In case P 2(µ) = L2(µ) the answer is

clear. In the contrary case, one would like to understand the mechanism behind

the inequality P 2(µ) 6= L2(µ). For example, does it force the functions in P 2(µ)

to behave, in some sense or other, like holomorphic functions, as happens when

µ is Lebesgue measure on ∂D (in which case P 2(µ) = H2) and when µ is area

measure on D (in which case P 2(µ) = A2)? One is thus led to the question: If

P 2(µ) 6= L2(µ), does P 2(µ) carry some kind of analytic structure?

To settle the invariant subspace question, though, one could settle for much

less than analytic structure. A point w in the plane is called a bounded point

evaluation for P 2(µ) if the linear functional p 7→ p(w) on polynomials is bounded

in the norm of L2(µ). In that case the functional extends boundedly to P 2(µ); in

other words, it is meaningful to evaluate the functions in P 2(µ) at w. Moreover,

the subspace of functions in P 2(µ) that vanish at w is a nontrivial invariant

subspace. (We are ignoring here the irrelevant case where µ is a point mass.)

The question thus arises: If P 2(µ) 6= L2(µ), does P 2(µ) possess bounded point

evaluations?

Until recently the preceding question was open, the strongest partial results

being due to J. E. Brennan [1979a; 1979b] (and earlier papers). It is now known

that the answer is positive—more on that presently. The invariant subspace

problem for subnormal operators was eventually settled using a different tack in

S. W. Brown’s dissertation [1978a], surely one of the most influential disserta-

tions in operator theory ever written. (The published version is [Brown 1978b].)

Brown sidestepped P 2(µ) by working instead with P∞(µ), the weak-star clo-

sure of the polynomials in L∞(µ). The structure of P∞(µ) was well understood

at the time of Brown’s work, and in particular it was known that P∞(µ) pos-

sesses weak-star continuous point evaluations whenever it is not all of L∞(µ).

By making various reductions, Brown was able to narrow the invariant subspace

question for P 2(µ) to the case where P∞(µ) is just H∞ of the unit disk, and

P 2(µ) admits no bounded point evaluations. He showed in that case that the

evaluation functionals on H∞ at the points of D have spatial representations of

a certain simple kind in P 2(µ), from which the existence of nontrivial invariant

subspaces follows immediately.

The underlying concept guiding Brown’s work was that of an algebra of op-

erators on a Hilbert space H that is closed in the weak-star topology that the

algebra of all operators on H acquires as the dual of S1, the space of trace-class

operators on H. Such an algebra is then the dual of a certain quotient space of

S1. Of particular interest is the unital weak-star-closed algebra AT generated by

a single operator T on H. For example, if T is the unilateral shift on H 2 then

AT consists of the algebra of analytic Toeplitz operators and so is a replica of
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H∞. Brown’s philosophy was that enough information about the structure of

AT should enable one to find a nontrivial invariant subspace of T .

It was quickly realized that Brown’s basic ideas, including his method for

constructing spatial representations, apply far beyond the realm of subnormal

operators. The outcome has been the theory of dual algebras [Bercovici et al.

1985], mentioned earlier in connection with the Bergman shift. Many existence

theorems for invariant subspaces have resulted from this program. One striking

example: A Hilbert space contraction whose spectrum contains the unit circle

has a nontrivial invariant subspace, as shown by Brown, B. Chevreau and C.

Pearcy [Brown et al. 1988]; see also H. Bercovici [1990].

After Brown’s breakthrough, the existence question for bounded point evalua-

tions on P 2(µ) remained open for over ten years. It was settled, with a vengeance,

by J. E. Thomson [1991] (see also the last chapter of [Conway 1991]). A point

in the plane is called an analytic bounded point evaluation of P 2(µ) if it belongs

to an open set of bounded point evaluations on which the functions in P 2(µ)

are holomorphic. Thomson showed that, if P 2(µ) 6= L2(µ), then P 2(µ) not only

has bounded point evaluations, it has an abundance of analytic bounded point

evaluations. He obtained a structure theorem for P 2(µ) saying, very roughly,

that P 2(µ) can be decomposed into the direct sum of an L2 space and a space

of holomorphic functions. His proof is a tour de force involving powerful and

delicate techniques from the theory of rational approximation plus a variant of

Brown’s basic construction.

Thomson’s result shows, paradoxically, that the situation in which Brown

originally applied his technique (P∞(µ) = H∞, yet P 2(µ) has no bounded point

evaluations) is in fact void. Even theorems about the empty set, it seems, can

contain interesting ideas.

Another long-standing question about subnormal operators was recently set-

tled. It concerns the relation between subnormality and a related concept, hy-

ponormality, also introduced by Halmos [1950] (although the current terminol-

ogy was fixed later). A Hilbert space operator T is called hyponormal if the

self-adjoint operator T ∗T − TT ∗ is positive semidefinite. A simple argument

shows that every subnormal operator is hyponormal.

Although the inequality T ∗T − TT ∗ ≥ 0 might seem at first glance a rather

weak condition to impose on an operator, it has unexpectedly strong implica-

tions. A substantial and very interesting theory of hyponormal operators has

grown over the years, which, however, will not be discussed here. See [Putnam

1967; Clancey 1979; Vol’berg et al. 1990; Martin and Putinar 1989].

If an operator is subnormal then so are all of its powers. Halmos [1950]

gave an example of a hyponormal operator whose square is not hyponormal,

thus showing that hyponormality does not imply subnormality. S. K. Berberian

raised the question of whether an operator is subnormal if all of its powers are

hyponormal. This was answered in the negative by J. G. Stampfli [1965]; his

counterexample is a bilateral weighted shift. At about that time the question
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arose whether an operator T is subnormal if it is polynomially hyponormal, in

other words, if p(T ) is hyponormal for every polynomial T . This question resisted

attack for over 25 years, until R. Curto and M. Putinar [1993] obtained a strong

negative answer. Their analysis shows a close relation between the question and

classical moment problems.

Several Variables

The discussion so far has dealt almost exclusively with the one-dimensional

theory. The theory in several variables, while less well developed, is being ener-

getically pursued and is maturing. Because this author’s knowledge is limited,

the remarks to follow are brief and incomplete.

The basic theory of Hardy spaces in the polydisk and the ball of C
N can be

found in two books of W. Rudin [1969; 1980]. Some properties from one di-

mension, such as existence of boundary values, extend nicely. Lacking, however,

is a version of the inner-outer factorization. In fact, inner functions in several

variables are hard to deal with. In the polydisk it is easy to produce examples,

but the general inner function is not well understood; some information is in

[Rudin 1969]. In the ball it was an open question for a long time whether there

are any nonconstant inner functions. That there are was eventually proved by

A. B. Aleksandrov [1982] and E. Løw [1982]. Although inner functions do not

play the same central role in the ball that they do in the disk, the ideas needed

to prove their existence have had interesting repercussions; further information

can be found in [Rudin 1986].

By an invariant subspace of H2 of the polydisk one means a subspace that is

invariant under multiplication by all of the coordinate functions. Many studies

of these invariant subspaces have been made, with still very incomplete results.

This is part of the emerging theory of multivariable spectral theory, the study

of commuting N -tuples of operators. An interesting approach, the theory of

Hilbert modules, was initiated by R. G. Douglas and is developed in [Douglas

and Paulsen 1989]. The recent book of J. Eschmeier and M. Putinar [1996]

emphasizes sheaf-theoretic methods. See also the articles in [Curto et al. 1995].

Hankel, Toeplitz, and composition operators in several variables have received

a great deal of attention. A recent study of Hankel operators is [Arazy 1996]. The

book [Upmeier 1996] concerns Toeplitz operators. Information on holomorphic

composition operators in several variables can be found in [Cowen and MacCluer

1995].

The corona problem, solved for the unit disk by L. Carleson [1962], is one

of the basic open problems in several complex variables. The corona problem

for a domain in the plane or in C
N is the problem of deciding whether the

points of the domain (more accurately, the evaluation functionals at these points)

are dense in the Gelfand space of the Banach algebra of bounded holomorphic

functions in the domain. In more concrete terms, it asks whether a finite set of
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bounded holomorphic functions in the domain must generate the whole algebra

of bounded holomorphic functions as an ideal, if the given functions satisfy the

obvious necessary condition, namely, that they do not tend to 0 simultaneously

on any sequence in the domain. Carleson’s positive solution for the unit disk,

despite not having been previously mentioned in this narrative, is a landmark of

twentieth century function theory. It would be hard to overestimate the amount

of mathematics that has flowed from Carleson’s proof.

Carleson’s theorem was quickly extended to finitely connected domains in the

plane and to finite bordered Riemann surfaces by various people. The problem

for general planar domains is still open, although a positive solution is known

for some infinitely connected domains, notably domains whose complements lie

on the real axis [Garnett and Jones 1985]. B. Cole has constructed a Riemann

surface for which the solution is negative; his example can be found in [Gamelin

1978, Chapter IV].

A few years after Carleson’s proof, L. Hörmander [1967] pointed out the con-

nection between the corona problem and the ∂̄-equation. A positive solution to

a corona problem can be reduced to the existence of bounded solutions of certain

∂̄-equations. Despite many advances in ∂̄-technology, the corona problems for

the polydisk and the ball in several variables remain open.
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[Brodskii 1956] M. S. Brodskĭı, “Characteristic matrix functions of linear operators”,
Mat. Sb. N.S. 39(81) (1956), 179–200. In Russian.
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hang der extremen von harmonischen Funktionen mit ihren Koeffizienten und über
den Picard-Landau’schen Satz”, Rend. Circ. Mat. Palermo 32 (1911), 218–239.

[Carleson 1952] L. Carleson, “On the zeros of functions with bounded Dirichlet
integrals”, Math. Z. 56 (1952), 289–295.

[Carleson 1962] L. Carleson, “Interpolations by bounded analytic functions and the
corona problem”, Ann. of Math. (2) 76:3 (1962), 547–559.

[Clancey 1979] K. Clancey, Seminormal operators, Lecture Notes in Math. 742,
Springer, Berlin, 1979.

[Clark 1981] D. N. Clark, “On the structure of rational Toeplitz operators”, pp. 63–72
in Contributions to analysis and geometry (Baltimore, 1980), edited by D. N. Clark
et al., Johns Hopkins Univ. Press, Baltimore, 1981.

[Clark 1982] D. N. Clark, “On Toeplitz operators with loops, II”, J. Operator Theory

7:1 (1982), 109–123.

[Clark and Morrel 1978] D. N. Clark and J. H. Morrel, “On Toeplitz operators and
similarity”, Amer. J. Math. 100:5 (1978), 973–986.

[Coburn 1966] L. A. Coburn, “Weyl’s theorem for nonnormal operators”, Michigan

Math. J. 13 (1966), 285–288.

[Cole et al. 1992] B. Cole, K. Lewis, and J. Wermer, “Pick conditions on a uniform
algebra and von Neumann inequalities”, J. Funct. Anal. 107:2 (1992), 235–254.

[Conway 1991] J. B. Conway, The theory of subnormal operators, Mathematical Surveys
and Monographs 36, Amer. Math. Soc., Providence, 1991.



HOLOMORPHIC SPACES: BRIEF AND SELECTIVE SURVEY 27

[Cotlar and Sadosky 1994] M. Cotlar and C. Sadosky, “Nehari and Nevanlinna–Pick
problems and holomorphic extensions in the polydisk in terms of restricted BMO”,
J. Funct. Anal. 124:1 (1994), 205–210.

[Cowen 1984] C. C. Cowen, “Subnormality of the Cesàro operator and a semigroup of
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Carathéodory”, Akad. Nauk Armyan. SSR Dokl. 59 (1974), 129–135. In Russian.

[Kovalishina 1983] I. V. Kovalishina, “Analytic theory of a class of interpolation
problems”, Izv. Akad. Nauk SSSR Ser. Mat. 47:3 (1983), 455–497. In Russian.

[Kovalishina and Potapov 1974] I. V. Kovalishina and V. P. Potapov, “An indefinite
metric in the Nevanlinna–Pick problem”, Akad. Nauk Armyan. SSR Dokl. 59 (1974),
17–22. In Russian.



30 DONALD SARASON
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[Livshitz 1952] M. S. Livšic, “On the reduction of a linear non-Hermitian operator to
‘triangular’ form”, Dokl. Akad. Nauk SSSR 84 (1952), 873–876.

[Løw 1982] E. Løw, “A construction of inner functions on the unit ball in C
p”, Invent.

Math. 67:2 (1982), 223–229.

[Luecking and Zhu 1992] D. H. Luecking and K. H. Zhu, “Composition operators
belonging to the Schatten ideals”, Amer. J. Math. 114:5 (1992), 1127–1145.

[MacCluer and Shapiro 1986] B. D. MacCluer and J. H. Shapiro, “Angular derivatives
and compact composition operators on the Hardy and Bergman spaces”, Canad. J.

Math. 38:4 (1986), 878–906.

[Magnus 1950] W. Magnus, “On the spectrum of Hilbert’s matrix”, Amer. J. Math.

72 (1950), 699–704.

[Martin and Putinar 1989] M. Martin and M. Putinar, Lectures on hyponormal

operators, Oper. Theory Adv. Appl. 39, Birkhäuser, Basel, 1989.
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