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Commuting Operators and Function Theory

on a Riemann Surface

VICTOR VINNIKOV

Abstract. In the late 70’s M. S. Livšic has discovered that a pair of com-
muting nonselfadjoint operators in a Hilbert space, with finite nonhermi-
tian ranks, satisfy a polynomial equation with constant (real) coefficients;
in particular the joint spectrum of such a pair of operators lies on a certain
algebraic curve in the complex plane, the so called discriminant curve of
the pair of operators. More generally, it turns out that much in the same
way as the study of a single nonselfadjoint operator is intimately related to
the function theory on the complex plane, more specifically on the upper
half-plane, the study of a system of commuting nonselfadjoint operators, at
least with finite nonhermitian ranks, is related to the function theory on a
compact Riemann surface of a higher genus, more specifically on a compact
real Riemann surface. From a different perspective, while the study of a
single nonselfadjoint operator leads to one-variable continuous time linear
systems, the study of a pair of commuting nonselfadjoint operators leads
to two-variable continuous time systems, which are necessarily overdeter-
mined, hence must be considered together with an additional structure of
compatibility conditions at the input and at the output. In this survey we
give an introduction to the spectral theory of commuting nonselfadjoint op-
erators and its interplay with system theory and the theory of Riemann sur-
faces and algebraic curves, including some recent results and open problems.

Introduction

It is fair to say that until the 1940’s operator theory was mostly concerned

with selfadjoint or unitary operators; several commuting selfadjoint or unitary

operators do not present any essential new problems because such operators pos-

sess commuting resolutions of the identity. Starting with the work of Livšic and

his associates in the 1940’s and 1950’s [Brodskĭı and Livšic 1958; Brodskĭı 1969],

and later that of Sz.-Nagy and Foiaş [1967] and of de Branges and Rovnyak

[1966a; 1966b], a comprehensive study of nonselfadjoint and nonunitary opera-

tors began, especially for operators that are not “too far” from being selfadjoint
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or unitary (i.e., the nonhermitian part A − A∗ or the defect operators I − AA∗,

I − A∗A are of finite rank, or trace class). This study has revealed deep con-

nections with the theory of bounded analytic functions on the upper half-plane

or on the unit disk, and more generally with the theory of matrix-valued and

operator-valued functions on these domains possessing metric properties such as

contractivity, and with system theory. The main point is that there is a relation

between invariant subspaces of an operator and factorizations of its so-called

characteristic function. The characteristic function turns out to be the trans-

fer function of a certain associated linear time-invariant conservative dynamical

system.

Initial attempts to generalize these results to several commuting nonselfad-

joint or nonunitary operators ran into serious difficulties, since it was natural

now to define the characteristic function as a function of several complex vari-

ables, which therefore does not admit a good factorization theory. However, it

was discovered by Livšic in the late 1970’s that a pair of commuting nonselfad-

joint operators with finite nonhermitian ranks satisfy a polynomial equation with

constant (real) coefficients. Therefore the joint spectrum of such a pair of op-

erators lies on a (real) algebraic curve in C
2, called the discriminant curve; and

it seems natural that their spectral study would lead to function theory on the

corresponding compact real Riemann surface (i.e., compact Riemann surface en-

dowed with an antiholomorphic involution coming from the complex conjugation

on the curve) rather than to function theory of two independent complex vari-

ables. This is indeed the case, and the proper analogue of the notion of the

characteristic function of a single nonselfadjoint operator is the so-called joint

characteristic function of a pair of operators, which is a mapping of certain vec-

tor bundles (or more generally, of certain sheaves) on the discriminant curve. It

turns out again to have a system-theoretic interpretation as the transfer function

of the associated linear time-invariant conservative dynamical system, which is

now two-dimensional: the input, the state, and the output depend on two (con-

tinuous) parameters rather than one.

The objective of this survey is to give an introduction to the spectral theory of

commuting nonselfadjoint operators and its interplay with system theory and the

theory of Riemann surfaces and algebraic curves, including some recent results

and open problems. In Section 1 we review the basic constructions as established

by Livšic [1979; 1980; 1983; 1986a]; see also [Livšic 1987; Waksman 1987; Krav-

itsky 1983; Vinnikov 1992]. Section 2 discusses the joint characteristic function

introduced in [Livšic 1986b] and further investigated in [Vinnikov 1992; 1994];

see also [Ball and Vinnikov 1996]. Much of the material discussed in Sections 1

and 2 appears in [Livšic et al. 1995]. In Section 3 we discuss semicontractive and

semiexpansive functions on a compact real Riemann surface—the analogues of

contractive and expansive functions on the upper half-plane or unit disk—and

their canonical factorizations and we present functional models for commuting

nonselfadjoint operators constructed by Alpay and Vinnikov [1994; a].
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All the results obtained up to now deal with commuting operators close to self-

adjoint. Of course, commuting operators close to unitary have to be studied as

well. System-theoretically this means studying conservative discrete-time, rather

than continuous-time, systems in two or more dimensions. It turns out to be quite

nontrivial how to transfer various notions from the nonselfadjoint to the nonuni-

tary case. As an indication (see Section 1 for a motivation), it is obvious what to

require of the matrices σ1, σ2, γ if we want the curve det(λ1σ2−λ2σ1 +γ) = 0 to

be invariant under the anti-holomorphic involution (λ1, λ2) 7→ (λ1, λ2) (namely,

the matrices should be self-adjoint); but what if we consider instead the anti-

holomorphic involution

(λ1, λ2) 7→
(

1

λ1

,
1

λ2

)
?

Some progress on the corresponding proper framework for the study of commut-

ing nonunitary operators has been achieved recently in joint work with J. Ball.

Once the basic notions are fixed, given two commuting contractions A1, A2 with

finite defects, the corresponding compact real Riemann surface X should be

necessarily dividing (see Section 3 for the definition), and the functional model

would also yield an H∞(X+) functional calculus for A1, A2. In particular if X

is the double of a finitely connected planar domain S, and we denote by Z the

global planar coordinate on S = X+, then T = Z(A1, A2) is an operator with

spectral set S. This should provide a link to the work of Abrahamse and Douglas

[1976], and may be also a useful approach to the well-known question whether

an operator with a multiply connected spectral set admits a normal boundary

dilation [Agler 1985].

1. Commuting Nonselfadjoint Operators, Two-Dimensional

Systems, and Algebraic Curves

It is well-known (see, for example, [Brodskĭı 1969; Livšic and Yantsevich 1971;

Ball and Cohen 1991]) that the most natural object to consider in the study of

a single (bounded) nonselfadjoint operator A in a Hilbert space H is not the

operator A itself, but rather an operator colligation (or node) C = (A,H,Φ, E, σ).

Here E is an auxiliary Hilbert space called the external space of the colligation

(H is called the inner space), Φ : H → E and σ : E → E are bounded linear

mappings with σ∗ = σ, and

1

i
(A − A∗) = Φ∗σΦ. (1–1)

We shall be considering only operators with a finite nonhermitian rank (dim(A−
A∗)H < ∞), so we assume dimE = M < ∞. Note that a given operator A in

H (with a finite nonhermitian rank) can be always embedded in a colligation by

setting

E = (A − A∗)H, Φ = PE , σ =
1

i
(A − A∗)

∣∣∣
E

, (1–2)
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where PE is the orthogonal projection of H onto E. (Another possible embedding

is obtained by setting

Φ =

∣∣∣∣
A − A∗

i

∣∣∣
E

∣∣∣∣
1/2

, σ = sign
A − A∗

i

∣∣∣
E

,

where the absolute value and the sign functions are understood in the sense of

the usual functional calculus for self-adjoint operators; this is used more often in

single-operator theory because of the added convenience of σ2 = I, but it does

not admit a good generalization to the two-operator case.)

The advantage of the notion of colligation is that it allows us to “isolate” the

nonhermitian part of the operator. In particular, given two colligations

C
′ = (A′,H ′,Φ′, E, σ) and C

′′ = (A′′,H ′′,Φ′′, E, σ),

with the same external part (E, σ), we define their coupling

C = C
′ ∨ C

′′ = (A,H,Φ, E, σ),

where H = H ′ ⊕ H ′′ and

A =

(
A′ 0

iΦ′′∗σΦ′ A′′

)
, Φ = ( Φ′ Φ′′ ) , (1–3)

the operators being written in the block form with respect to the direct sum

decomposition H = H ′ ⊕ H ′′. The coupling procedure allows us to construct

operators with a more complicated spectral data out of operators with a simpler

one, while preserving the nonhermitian part. Note that H ′′ is an invariant

subspace of A. Conversely, if H ′′ ⊂ H is an invariant subspace of the operator

A in a colligation C = (A,H,Φ, E, σ) and H ′ = H 	H ′′, it is easy to see that we

can write C = C′ ∨ C′′, where C′, C′′ are the projections of C onto the subspaces

H ′, H ′′ respectively, given by

C
′ = (P ′A|H′ ,H ′,Φ|H′ , E, σ), (1–4)

C
′′ = (A|H′′ ,H ′′,Φ|H′′ , E, σ). (1–5)

Here P ′ is the orthogonal projection of H onto H ′.

The notion of a colligation has also a system-theoretic significance: a colliga-

tion C = (A,H,Φ, E, σ) defines a (linear time-invariant) conservative system

i
df

dt
+ Af = Φ∗σu, (1–6)

v = u − iΦf. (1–7)

Here f = f(t) is the state, with values in the inner space H, and u = u(t),

v = v(t) are respectively the input and the output, with values in the external

space E. Conservativeness means that the difference in energy between the input

and the output equals the change in the energy of the state; here we use the

inner product as the energy form on the state (inner) space H and the hermitian
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form induced by σ as the (possibly indefinite) energy form on the input/output

(external) space E. Thus the conservation law is

d

dt
(f, f) = (σu, u) − (σv, v). (1–8)

The coupling of colligations corresponds to the cascade connection of systems,

i.e., forming a new system by feeding the output of the first one as the input

into the second one: if u′, f ′ and v′ and u′′, f ′′ and v′′ are the input, the state

and the output of the first and the second system respectively, then the input,

the state and the output u, f and v of the new system are given by

u = u′, f =

(
f ′

f ′′

)
, v = v′′,

while setting u′′ = v′. A substitution into the system equations shows that we

get exactly the formula (1–3) for the coupling.

We pass now to the study of a pair A1, A2 of (bounded) commuting non-

selfadjoint operators in a Hilbert space H, with finite nonhermitian ranks. As a

first try we may consider a commutative (two-operator) colligation

C = (A1, A2,H,Φ, E, σ1, σ2);

here again E is another Hilbert space (the external space, whose dimension we

assume is M < ∞), Φ : H → E and σ1, σ2 : E → E are bounded linear mappings

with σ∗

1 = σ1, σ∗

2 = σ2, and

1

i
(Ak − A∗

k) = Φ∗σkΦ for k = 1, 2. (1–9)

However, the notion of a commutative colligation does not possess enough struc-

ture: there is nothing in it to reflect the interplay between the two operators

A1, A2. More concretely, the coupling of two commutative colligations with the

same external part (E, σ1, σ2) (defined as in (1–3) except that one uses σ1 and σ2

instead of σ in the formulas for A1 and A2 respectively) is in general not commu-

tative. In fact, even in a finite dimensional Hilbert space H it is not at all clear

how to construct commuting nonselfadjoint operators with given nonhermitian

parts.

It turns out that the correct object to consider in the study of a pair of

commuting nonselfadjoint operators is a (commutative two-operator) vessel V =

(A1, A2,H,Φ, E, σ1, σ2, γ, γ̃). Here (A1, A2,H,Φ, E, σ1, σ2) is a commutative

two-operator colligation as in (1–9), and γ, γ̃ : E → E are (bounded) self-adjoint

operators such that

σ1ΦA∗

2 − σ2ΦA∗

1 = γΦ, (1–10)

σ1ΦA2 − σ2ΦA1 = γ̃Φ, (1–11)

γ̃ − γ = i (σ1ΦΦ∗σ2 − σ2ΦΦ∗σ1). (1–12)
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(The term “vessel” was coined in [Livšic et al. 1995]; earlier papers use instead

the term “regular colligation”.) Upon multiplying (1–10) and (1–11) by Φ∗ on

the left and using (1–9) and the obvious identities

(A1 − A∗

1)A
∗

2 − (A2 − A∗

2)A
∗

1= A1A
∗

2 − A2A
∗

1, (1–13)

(A1 − A∗

1)A2 − (A2 − A∗

2)A1= A∗

2A1 − A∗

1A2, (1–14)

which follow from the commutativity of A1 and A2, we obtain

1
i (A1A

∗

2 − A2A
∗

1) = Φ∗γΦ, (1–15)
1
i (A∗

2A1 − A∗

1A2) = Φ∗γ̃Φ. (1–16)

Therefore the self-adjoint operators γ and γ̃ are related to the nonhermitian parts

of A1A
∗

2 and A∗

2A1 respectively, and thus carry information about the interaction

of A1 and A2. In the case when Φ : H → E is onto, equations (1–15)–(1–16) are

equivalent to (1–10)–(1–12), but in general the stronger relations (1–10)–(1–12)

are needed for subsequent development. Note that analogously to (1–2), a given

pair A1, A2 of commuting operators in H (with finite nonhermitian ranks) can

be always embedded in a commutative vessel by setting

E = (A1 − A∗

1)H + (A2 − A∗

2)H, Φ = PE , (1–17)

σ1 = 1
i (A1 − A∗

1)|E , σ2 = 1
i (A2 − A∗

2)|E ,

γ = 1
i (A1A

∗

2 − A2A
∗

1)|E , γ̃ = 1
i (A∗

2A1 − A∗

1A2)|E ;

the subspace E is invariant under A1A
∗

2 − A2A
∗

1 and A∗

2A1 − A∗

1A2 because of

(1–13)–(1–14).

Given a commutative vessel V = (A1, A2,H,Φ, E, σ1, σ2, γ, γ̃), we define a

polynomial in two complex variables λ1, λ2 by setting

p(λ1, λ2) = det(λ1σ2 − λ2σ1 + γ). (1–18)

We assume that p(λ1, λ2) 6≡ 0, so that p(λ1, λ2) is a polynomial with real co-

efficients of degree M = dimE at most. We call p(λ1, λ2) the discriminant

polynomial of the vessel V, and the real (affine) plane algebraic curve C0 with an

equation p(λ1, λ2) = 0—the (affine) discriminant curve. To state the first fun-

damental result discovered by Livšic we have to introduce the principal subspace

Ĥ ⊆ H of the vessel V,

Ĥ =

∞∨

k1,k2=0

Ak1
1 Ak2

2 Φ∗(E) =

∞∨

k1,k2=0

A∗k1
1 A∗k2

2 Φ∗(E). (1–19)

Then Ĥ is reducing for A1 and A2, and the restrictions of A1 and A2 to H 	 Ĥ

are self-adjoint operators (the restriction of Φ to H 	 Ĥ is 0); hence it is enough,

at least in principle, to consider the restriction of our operators to the principal

subspace.
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Theorem 1.1 (Generalized Cayley–Hamilton Theorem [Livšic 1979;

1983]). The operator p(A1, A2) vanishes on the principal subspace Ĥ.

This theorem contains as special cases the classical Cayley–Hamilton Theorem

and the theorem of Burchnall and Chaundy [1928] stating that a pair of com-

muting linear differential operators satisfy a polynomial equation with constant

coefficients—a result that plays an important role in the study of finite-zone

solutions of the KdV equation and other completely integrable nonlinear PDEs

[Dubrovin 1981]. (To be precise, Theorem 1.1 implies the theorem of Burchnall

and Chaundy only for formally self-adjoint differential operators; the general case

follows from a more general version of Theorem 1.1, due to Kravitsky [1983].)

Theorem 1.1 implies that the joint spectrum of the operators A1 and A2,

restricted to the principal subspace Ĥ, lies on the affine discriminant curve C0.

(The joint spectrum is the set of all points λ = (λ1, λ2) ∈ C
2 such that there

exists a sequence h1, h2, . . . of vectors of unit length in H satisfying

lim
n→∞

(Ak − λkI)hn = 0 for k = 1, 2;

it was proved in [Livšic and Markus 1994] that for a pair of commuting oper-

ators with finite-dimensional (or more generally, compact) nonhermitian parts

this is equivalent to any other reasonable definition of the joint spectrum; see

[Harte 1972; Taylor 1970].) This is a first indication that the spectral analysis

of a pair of commuting nonselfadjoint operators with finite nonhermitian ranks

should be developed on a compact real Riemann surface (the normalization of

the projective closure of C0) rather than on a domain in C
2.

In the definition (1–18) of the discriminant polynomial we have discriminated

in favour of γ and against γ̃. However, we have the following remarkable equality.

Theorem 1.2 [Livšic 1979; 1983]. det(λ1σ2 −λ2σ1 +γ) = det(λ1σ2 −λ2σ1 + γ̃).

The proof is based on the theory of characteristic functions; we will give a system-

theoretic explanation of why Theorem 1.2 is true in Section 2 below. We see that

associated to the vessel V we have the discriminant polynomial p(λ1, λ2) and two

self-adjoint determinantal representations of it, λ1σ2−λ2σ1+γ and λ1σ2−λ2σ1+

γ̃ (called, for system-theoretic reasons, the input and the output determinantal

representation respectively); more geometrically, we have the affine discriminant

curve C0 (or rather its projective closure) and a pair of sheaves on it, given by

the kernels of the matrices λ1σ2 − λ2σ1 + γ and λ1σ2 − λ2σ1 + γ̃. This will turn

out to provide a proper algebro-geometrical framework for the study of the pair

of operators A1, A2.

We now proceed to a system-theoretic interpretation. We start with a commu-

tative two-operator colligation C = (A1, A2,H,Φ, E, σ1, σ2) as in (1–9), and we

write the corresponding (linear time-invariant) commutative conservative two-

dimensional system
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i
∂f

∂t1
+ A1f = Φ∗σ1u, (1–20)

i
∂f

∂t2
+ A2f = Φ∗σ2u, (1–21)

v = u − iΦf. (1–22)

Here, as in (1–6)–(1–7), f = f(t1, t2), u = u(t1, t2) and v = v(t1, t2) are the

state, the input and the output respectively; the difference is that now we have

a two-dimensional parameter t = (t1, t2). One may think of t1 as a time variable

and of t2 as a spatial variable, so that (1–20)–(1–22) describes a continuum of

interacting temporal systems distributed in space; see [Livšic 1986a]. The energy

conservation law is
(

ξ1
∂

∂t1
+ ξ2

∂

∂t2

)
(f, f) = ((ξ1σ1 + ξ2σ2)u, u) − ((ξ1σ1 + ξ2σ2)v, v); (1–23)

that is, the system conserves energy in any direction (ξ1, ξ2) in the (t1, t2) plane,

where the (possibly indefinite) energy form in the input/output space in the

direction (ξ1, ξ2) is induced by ξ1σ1 + ξ2σ2.

Unlike the usual one-dimensional system (1–6)–(1–7), the system (1–20)–

(1–22) is overdetermined, the compatibility conditions arising from the equality

of the mixed partials
∂2f

∂t1∂t2
=

∂2f

∂t2∂t1
. The commutativity A1A2 = A2A1 means

precisely that the system is consistent for an arbitrary initial state f(0, 0) = f0

and the identically zero input. For an arbitrary input u the system (1–20)–(1–22)

will not in general be consistent; using the system equations twice in the equality

of the mixed partials we obtain

Φ∗

(
σ2

∂u

∂t2
− σ1

∂u

∂t1

)
+ iA2Φ

∗σ1u − iA1Φ
∗σ2u = 0. (1–24)

We see thus that if we assume the vessel condition (1–10), then a necessary and

sufficient condition for the input to be compatible is given by

Φ∗

(
σ2

∂

∂t1
− σ1

∂

∂t2
+ iγ

)
u = 0. (1–25)

In particular we get a sufficient condition for the compatibility of the input

entirely in terms of the external data of the system
(

σ2
∂

∂t1
− σ1

∂

∂t2
+ iγ

)
u = 0. (1–26)

If we use (1–22) to express the input in terms of the output and the state, and

substitute into (1–26), we obtain(
σ2

∂

∂t1
− σ1

∂

∂t2
+ i (γ + i σ1ΦΦ∗σ2 − i σ2ΦΦ∗σ1)

)
v

+i (σ1ΦA2 − σ2ΦA1 − (γ + i σ1ΦΦ∗σ2 − i σ2ΦΦ∗σ1)Φ)f = 0. (1–27)
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So we see that if we assume in addition the vessel conditions (1–11) and (1–12),

then corresponding to (1–26) there is a sufficient condition for the compatibility

of the output (
σ2

∂

∂t1
− σ1

∂

∂t2
+ iγ̃

)
v = 0. (1–28)

Therefore a commutative two-operator vessel is a commutative two-dimensional

system (1–20)–(1–22) together with the compatibility PDEs (1–26) and (1–28) at

the input and at the output respectively.

To illustrate how well the notion of vessel suits the needs of the theory, let us

consider the problem of coupling of two commutative two-operator colligations,

i.e., cascade connection of two commutative two-dimensional systems. As we

have noticed, the result will not in general be commutative. Now assume that

we have two commutative vessels

V
′ = (A′

1, A
′

2,H
′,Φ′, E, σ1, σ2, γ

′, γ̃′),

V
′′ = (A′′

1 , A′′

2 ,H ′′,Φ′′, E, σ1, σ2, γ
′′, γ̃′′)

with the same (E, σ1, σ2), and we want their coupling

V = V
′ ∨ V

′′ = (A1, A2,H,Φ, E, σ1, σ2, γ, γ̃)

to be a commutative vessel, where, as in (1–3), H = H ′ ⊕ H ′′ and

Ak =

(
A′

k 0

iΦ′′∗σkΦ′ A′′

k

)
for k = 1, 2, Φ = (Φ′ Φ′′ ) . (1–29)

Since, when forming the cascade connection, the output of the first system is fed

into the second, the procedure makes sense only when the output compatibility

PDE of the first system coincides with the input compatibility PDE of the second

(and in this case the input compatibility PDE of the new system coincides with

the input compatibility PDE of the first system, and the output compatibility

PDE of the new system coincides with the output compatibility PDE of the

second system). This explains the following result.

Theorem 1.3 (Matching Theorem [Livšic 1979; 1983]). V (with γ = γ ′ and

γ̃ = γ̃′′) is a commutative vessel if and only if γ̃ ′ = γ′′.

We can consider now the following inverse problem. Suppose we are given a

real polynomial p(λ1, λ2) defining a real (affine) plane curve C0, a self-adjoint

determinantal representation λ1σ2 − λ2σ1 + γ of p(λ1, λ2), and a subset S of C0

which is closed and bounded in C
2 and all of whose accumulation points are real

points of C0. We want to construct, up to the unitary equivalence on the princi-

pal subspace, all commutative two-operator vessels with discriminant polynomial

p(λ1, λ2), input determinantal representation λ1σ2 −λ2σ1 +γ, and the operators

A1, A2 in the vessel having, on the principal subspace, joint spectrum S. Here two

commutative two-operator vessels V(α) = (A
(α)
1 , A

(α)
2 ,H(α),Φ(α), E, σ1, σ2, γ, γ̃)

(α = 1, 2) are said to be unitary equivalent on their principal subspaces Ĥ(1)
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and Ĥ(2) respectively if there is an isometric mapping U of Ĥ(1) onto Ĥ(2) such

that

A
(2)
k |Ĥ(2) = UA

(1)
k |Ĥ(1)U

−1 (k = 1, 2), Φ(2)|Ĥ(2) = Φ(1)|Ĥ(1)U. (1–30)

Suppose p(λ1, λ2) is an irreducible polynomial (and is of degree M = dim E,

so that there are no factors “hidden” at infinity: this amounts to the condition

det(ξ1σ1 + ξ2σ2) 6≡ 0). Suppose also that C0—more precisely, its projective clo-

sure C—is a smooth (irreducible) curve (of degree M). Then a complete and

explicit solution of the inverse problem stated above was obtained in [Vinnikov

1992]; see [Livšic et al. 1995, Chapter 12] for a detailed elementary exposition in

the simplest nontrivial case M = 3. (The assumption that C is a smooth curve

may be replaced by the assumptions that λ1σ2 −λ2σ1 +γ is a maximal determi-

nantal representation of p(λ1, λ2) (i.e., its kernel has a maximal possible dimen-

sion at the singular points of C; see Section 2 below), and that the prescribed set

S does not contain any singular points.) This solution leads to triangular models

for the corresponding pairs of operators A1, A2 with finite nonhermitian ranks,

generalizing the well-known triangular models (see [Brodskĭı and Livšic 1958;

Brodskĭı 1969], for example) for a single nonselfadjoint operator. The solution

is based on first constructing elementary objects—vessels with one-dimensional

inner space corresponding to the points of the joint spectrum, and then coupling

them using Theorem 1.3. It follows from the vessel condition (1–12) that in a

vessel with one-dimensional inner space the output determinantal representation

is determined by the input determinantal representation and the spectral data;

the successive matching of output and input determinantal representations in

Theorem 1.3 then gives a system of nonlinear difference (for the discrete part of

the spectrum) and differential (for the continuous part of the spectrum) equa-

tions for self-adjoint determinantal representations of the polynomial p(λ1, λ2).

The geometric assumptions on the curve C imply that self-adjoint determinantal

representations can be parametrized by certain points in the Jacobian variety of

C [Vinnikov 1993]; and it turns out that passing from a self-adjoint determinan-

tal representation to the corresponding point in the Jacobian variety linearises

the systems of nonlinear difference and differential equations alluded to above.

Actually, the system can be even solved explicitly using the theta functions,

yielding explicit formulas for the operators A1, A2 in a triangular model. These

formulas contain as a special case the “algebro-geometrical” formulas for finite-

zone solutions of completely integrable nonlinear PDEs [Dubrovin 1981].

The fact that triangular models give us all the solutions to the inverse prob-

lem, i.e., that every commutative two-operator vessel with a smooth irreducible

discriminant curve is unitarily equivalent (on its principal subspace) to a tri-

angular model vessel (on its principal subspace) is related to the fact that the

operators A1, A2 in the given vessel possess a “sufficiently nice” maximal chain

of joint invariant subspaces; compare [Brodskĭı 1969], for example, for the single-

operator case. More important, this is related to the canonical factorization of
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the (normalized) joint characteristic function of the vessel — we will return to

this point in Section 3.

We end this section by discussing several generalizations. First, even though

we restrict our attention in this paper to pairs of commuting nonselfadjoint op-

erators, the same framework can be applied to l-tuples for any l; much work

here remains to be done, and we shall just review briefly the basic constructions,

following [Livšic et al. 1995, Chapters 2,3,4,7]. We start with l commuting op-

erators A1, . . . , Al in a Hilbert space H (with finite nonhermitian ranks), and

consider a commutative l-operator vessel

V =
(
Ak (k = 1, . . . , l), H, Φ,

E, σk (k = 1, . . . , l), γkj (k, j = 1, . . . , l), γ̃kj (k, j = 1, . . . , l)
)
,

where again E is the external space of the vessel (of dimension M < ∞), and

Φ : H → E, σk, γkj , γ̃kj : E → E are bounded linear mappings with σ∗

k = σk,

γ∗

kj = γkj , γ̃∗

kj = γ̃kj , γkj = −γjk, γ̃kj = −γ̃jk, and

1
i (Ak − A∗

k) = Φ∗σkΦ, (1–31)

σkΦA∗

j − σjΦA∗

k = γkjΦ, (1–32)

σkΦAj − σjΦAk = γ̃kjΦ, (1–33)

γ̃kj − γkj = i (σkΦΦ∗σj − σjΦΦ∗σk), (1–34)

for k, j = 1, . . . , l. Analogously to the two-operator case, V defines a (linear

time-invariant) commutative conservative lD system together with appropriate

compatibility PDEs at the input and at the output. We define the input discrim-

inant ideal I of the vessel V to be the ideal in the polynomial ring C[λ1, . . . , λl]

generated by all polynomials of the form

p(λ1, . . . , λl) = det

( l∑

k,j=1

Mkj(λkσj − λjσk + γkj)

)
, (1–35)

where Mkj = −M jk are arbitrary operators on E; the (affine) input discriminant

variety D is the zero variety of the ideal I, or what turns out to be the same,

the set of all points (λ1, . . . , λl) ∈ C
l such that

l⋂

k,j=1

ker(λkσj − λjσk + γkj) 6= {0}. (1–36)

The output discriminant ideal Ĩ of V and the (affine) output discriminant variety

D̃ are defined similarly replacing γkj by γ̃kj . The generalized Cayley–Hamilton

theorem states that

p(A∗

1, . . . , A
∗

l ) = 0 (1–37)

for all p ∈ I and

p(A1, . . . , Al ) = 0 (1–38)
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for all p ∈ Ĩ, on the appropriately defined principal subspace Ĥ . The analogue

of Theorem 1.2 in general fails, i.e., we may have I 6= Ĩ; however—see Livšic and

Markus [1994]—the discriminant varieties D and D̃ may differ only by a finite

number of isolated points, which have to be nonreal joint eigenvalues of finite

multiplicity of either A∗

1, . . . , A
∗

l or A1, . . . , Al .

At least if we assume a nondegeneracy condition det
(∑l

k=1 ξkσk

)
6≡ 0, it fol-

lows from (1–36) that the discriminant varieties D and D̃ cannot contain compo-

nents of (complex) dimension greater than 1 (e.g., if detσ1 6= 0, then it follows

that the projection onto the first coordinate λ1 is (at most) finite to one). Hence

D and D̃ consist of one and the same (affine) algebraic curve in C
l, and two

possibly distinct finite collections of isolated points. It seems that these isolated

points are related to various well-known pathologies for l commuting nonselfad-

joint or nonunitary operators with l > 2, such as the failure of von Neumann’s

inequality and the nonexistence of commuting unitary dilations for three or more

commuting contractions.

Linear time-invariant one-dimensional systems without energy balance con-

dition (1–8) are the basic object of study in system theory, starting with the

work of Kalman; see, for example, [Kailath 1980; Bart et al. 1979]. There is a

similar nonconservative analogue of the notion of vessel; it has been worked out

by Kravitsky [1983]; see also [Livšic et al. 1995, Chapter 8; Vinnikov 1994; Ball

and Vinnikov 1996]. In particular, we may use these nonconservative vessels to

study meromorphic matrix functions on a compact Riemann surface via their

realizations as the (normalized) joint transfer function of a vessel; see below in

Section 2.

Another interesting generalization is a time-varying analogue of the notion of

vessel that was considered by Gauchman [1983b; 1983a] (in a very general setting

of Hilbert bundles on differentiable manifolds) and recently by Livšic [1996]; for

simplicity we restrict ourselves again to the conservative two-dimensional case.

We consider a linear time-varying conservative two-dimensional system exactly

as in (1–20)–(1–22), except that A1 = A1(t1, t2), A2 = A2(t1, t2), Φ = Φ(t1, t2),

σ1 = σ1(t1, t2) and σ2 = σ2(t1, t2) are functions of t = (t1, t2); we still assume

that σ1(t) and σ2(t) are self-adjoint and the colligation conditions (1–9) hold (for

all t). The condition for the system to be compatible for identically zero input

and arbitrary initial state becomes the so-called zero-curvature condition:

∂A1

∂t2
− ∂A2

∂t1
+ i[A1, A2] = 0. (1–39)

Repeating the derivation of (1–24) and (1–27) (taking into account various partial

derivatives of system operators coming in) we see that we obtain again linear

compatibility PDEs (but with variable coefficients) (1–26) and (1–28) at the

input and at the output respectively if we assume that we have a time-varying
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zero-curvature two-operator vessel

V = (A1(t), A2(t),H,Φ(t), E, σ1(t), σ2(t), γ(t), γ̃(t)),

where γ(t), γ̃(t) : E → E are (bounded) operators such that

σ1ΦA∗

2 − σ2ΦA∗

1 − i(σ1
∂Φ

∂t2
− σ2

∂Φ

∂t1
) = γΦ, (1–40)

σ1ΦA2 − σ2ΦA1 − i(σ1
∂Φ

∂t2
− σ2

∂Φ

∂t1
) = γ̃Φ, (1–41)

γ̃ − γ = i (σ1ΦΦ∗σ2 − σ2ΦΦ∗σ1), (1–42)

1

i
(γ − γ∗) =

∂σ2

∂t1
− ∂σ1

∂t2
. (1–43)

Note that γ(t) and γ̃(t) are generally not self-adjoint. An analogue of Theo-

rem 1.3 holds for time-varying zero-curvature vessels, so that we may construct

zero-curvature vessels by coupling elementary objects—zero-curvature vessels

with one-dimensional state space. A more detailed study of the resulting “cou-

pling chains”, both discrete and continuous, remains to be done. Another basic

problem is to study the input-output map of the vessel, which goes from the so-

lution space of the input compatibility PDE to the solution space of the output

compatibility PDE, and to describe the class of all input-output maps.

An especially important situation is when all the operators depend on only

one of the two variables, let us say on t1. In this case it seems reasonable to

consider a perturbation problem, i.e., our time-varying vessel is either compactly

supported or rapidly decaying perturbation of a usual time-invariant vessel.

2. The Joint Characteristic Function

The fundamental interplay between the spectral theory of a single nonselfad-

joint operator in a Hilbert space and function theory is based on the notion of the

characteristic function of an operator, more precisely of an operator colligation

C = (A,H,Φ, E, σ), defined by

S(λ) = I − iΦ(A − λI)−1Φ∗σ. (2–1)

See, for example, [Brodskĭı and Livšic 1958; Brodskĭı 1969; Sz.-Nagy and Foiaş

1967; de Branges and Rovnyak 1966b; 1966a]. It is an analytic function of λ ∈ C

for λ outside the spectrum of A, whose values are operators on E—or, since

we are assuming dimE = M < ∞, matrices. Equation (2–1) has the following

consequences:

(1) S(λ) is analytic in a neigbourhood of λ = ∞, and S(∞) = I.
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(2) S(λ) is meromorphic on C \R, and satisfies in its domain of analyticity the

following metric properties with respect to the self-adjoint operator σ:

S∗(λ)σS(λ)≥ σ when Im λ > 0, (2–2)

S∗(λ)σS(λ)≤ σ when Im λ < 0, (2–3)

S∗(λ)σS(λ)= σ when Im λ = 0. (2–4)

Conversely, given E and σ with detσ 6= 0, any function satisfying (1) and

(2) is the characteristic function of some colligation with external part (E, σ).

Furtermore, the characteristic function determines the correspoding colligation

uniquely, up to the unitary equivalence on the principal subspace.

We mention two basic facts relating multiplicative properties of the charac-

teristic function to the spectral properties of the operator A in the colligation.

• The set of singularities of S(λ) (i.e., the set of points in the complex plane

to a neighborhood of which S(λ) cannot be continued analytically) coincides

with the spectrum of A restricted to the principal subspace of the colligation.

• If C = C′ ∨C′′ and S′(λ), S′′(λ) are the characteristic functions of the colliga-

tions C′, C′′ respectively, then S(λ) = S ′′(λ)S′(λ).

It follows from the second fact that the canonical factorization of S(λ) (the Riesz–

Nevanlinna–Smirnov factorization for dim E = 1, when S(λ) is just a bounded

analytic function in the lower or the upper half-plane, and the Potapov [1955]

factorization for dimE > 1) is related to the reduction of the operator A to a

triangular form; more generally, factorizations of S(λ) are related to invariant

subspaces of A.

System-theoretically, the characteristic function of the colligation is the trans-

fer function of the corresponding system (1–6)–(1–7). There are many equivalent

ways to define the transfer function of a linear time-invariant system. The sim-

plest one for our purposes is to assume that the input, the state and the output

of the system are waves with the same frequency λ: u(t) = u0e
itλ, f(t) = f0e

itλ,

v(t) = v0e
itλ, where u0, v0 ∈ E, f0 ∈ H. Substitution into the system equations

(1–6)–(1–7) shows that

v0 = S(λ)u0; (2–5)

that is, the transfer function (the characteristic function) maps the input ampli-

tude to the output amplitude.

We now consider a commutative vessel V = (A1, A2,H,Φ, E, σ1, σ2, γ, γ̃) with

the discriminant polynomial

p(λ1, λ2) = det(λ1σ2 − λ2σ1 + γ) = det(λ1σ2 − λ2σ1 + γ̃),

and the (affine) discriminant curve C0 with the equation p(λ1, λ2) = 0. We first

define the complete characteristic function of the vessel by

W (ξ1, ξ2, z) = I − iΦ(ξ1A1 + ξ2A2 − zI)−1Φ∗(ξ1σ1 + ξ2σ2). (2–6)
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It is an analytic function of ξ1, ξ2, z ∈ C for z outside the spectrum of ξ1A1+ξ2A2.

Since it consists essentially of usual characteristic functions of single-operator

colligations obtained from V by averaging in all possible directions, it is not hard

to show that the complete characteristic function determines the corresponding

vessel uniquely, up to the unitary equivalence on the principal subspace. We also

have appropriate metric properties (where ξ1, ξ2 ∈ R):

W ∗(ξ1, ξ2, z)(ξ1σ1 + ξ2σ2)W (ξ1, ξ2, z)≥ ξ1σ1 + ξ2σ2 when Im z > 0, (2–7)

W ∗(ξ1, ξ2, z)(ξ1σ1 + ξ2σ2)W (ξ1, ξ2, z)≤ ξ1σ1 + ξ2σ2 when Im z < 0, (2–8)

W ∗(ξ1, ξ2, z)(ξ1σ1 + ξ2σ2)W (ξ1, ξ2, z)= ξ1σ1 + ξ2σ2 when Im z = 0. (2–9)

But since W (ξ1, ξ2, z) is a function of two independent complex variables (two,

because of the homogeneity), it does not admit a good factorization theory to

relate to the spectral theory of the pair of operators A1, A2.

However it turns out that the complete characteristic function fits perfectly

into the algebro-geometrical framework associated to the vessel, given by the

discriminant polynomial p(λ1, λ2) and its two determinantal representations. For

each point λ = (λ1, λ2) ∈ C0 we may define two nontrivial subspaces of the

external space E:

E(λ)= ker(λ1σ2 − λ2σ1 + γ), (2–10)

Ẽ(λ)= ker(λ1σ2 − λ2σ1 + γ̃). (2–11)

Theorem 2.1 [Livšic 1986b]. For any point λ = (λ1, λ2) on C0 and for arbi-

trary complex numbers ξ1, ξ2 (such that ξ1λ1 + ξ2λ2 is outside the spectrum of

ξ1A1 + ξ2A2), W (ξ1, ξ2, ξ1λ1 + ξ2λ2) maps E(λ) into Ẽ(λ), and the restriction

W (ξ1, ξ2, ξ1λ1 + ξ2λ2)|E(λ) is independent of ξ1, ξ2.

This theorem allows us to define the joint characteristic function of the vessel

by restricting the complete characteristic function to the discriminant curve and

to the fibres of the “input family of subspaces” (2–10):

S(λ) = W (ξ1, ξ2, ξ1λ1 + ξ2λ2)|E(λ) : E(λ) −→ Ẽ(λ), (2–12)

where λ = (λ1, λ2) ∈ C0 and ξ1, ξ2 are free complex parameters such that

ξ1λ1 + ξ2λ2 is outside the spectrum of ξ1A1 + ξ2A2.

To clarify the definition of the joint characteristic function we shall interpret

it as the joint transfer function of the corresponding commutative two-dimen-

sional system (1–20)–(1–22) together with the compatibility PDEs (1–26) and

(1–28) at the input and at the output. We assume as before that the input, the

state and the output of the system are (planar) waves with the same (double)

frequency λ = (λ1, λ2) ∈ C
2:

u(t1, t2) = u0e
it1λ1+it2λ2 ,

f(t1, t2) = f0e
it1λ1+it2λ2 ,

v(t1, t2) = v0e
it1λ1+it2λ2 ,
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where u0, v0 ∈ E, f0 ∈ H. The input compatibility PDE (1–26) yields

(λ1σ2 − λ2σ1 + γ)u0 = 0; (2–13)

hence λ ∈ C0 and u0 ∈ E(λ). The output compatibility PDE (1–28) yields

(λ1σ2 − λ2σ1 + γ̃)v0 = 0, (2–14)

hence again λ ∈ C0 (this explains the equality of determinants in Theorem 1.2)

and v0 ∈ Ẽ(λ). Substituting into the system equations, multiplying (1–20) and

(1–21) by free complex parameters ξ1 and ξ2 respectively and adding, we obtain

v0 = S(λ)u0. (2–15)

Hence as before the joint transfer function (the joint characteristic function)

maps the input amplitude at a given (double) frequency to the output amplitude,

except that because of the compatibility PDEs the double frequency is restricted

to lie on the (affine) discriminant curve and the input and output amplitudes

must lie in the fibres of the input and the output families of subspaces (2–10)

and (2–11) respectively at this double frequency.

Unlike the complete characteristic function, which depends on two indepen-

dent complex variables, the joint characteristic function depends on a point on a

one-dimensional complex variety, namely the discriminant curve. We would like

to claim that no information is lost by passing to the joint characteristic function.

We make two geometric assumptions. The first one is mainly for the simplicity

of exposition. We assume that the discriminant polynomial p(λ1, λ2) has only

one, possibly multiple, irreducible factor (and is of degree M = dimE, so that

there are no factors hidden at infinity). Thus p(λ1, λ2) =
(
f(λ1, λ2)

)r
for some

r ≥ 1, where f(λ1, λ2) = 0 is the irreducible affine equation of a real irreducible

projective plane curve C—the projective closure of the affine discriminant curve

C0—of degree m, where M = mr.

The second assumption is deeper. We assume that for all smooth points µ on

C, we have dim E(µ) = dim Ẽ(µ) = r; if µ ∈ C is a singular point of multiplicity

s, we assume dim E(µ) = dim Ẽ(µ) = rs. In general we have only inequalities:

1 ≤ dim E(µ) ≤ r, 1 ≤ dim Ẽ(µ) ≤ r

at smooth points, and

1 ≤ dim E(µ) ≤ rs, 1 ≤ dim Ẽ(µ) ≤ rs

at a singular point of multiplicity s. We refer to this second assumption as

the maximality of the input and the output determinantal representations of

p(λ1, λ2). Note that it holds automatically if r = 1, i.e., if p(λ1, λ2) is irreducible,

and C is smooth.

It follows from the maximality that the subspaces E(µ), Ẽ(µ) for different

points µ on C (including, of course, the points at infinity) fit together to form

two complex holomorphic rank r vector bundles E, Ẽ on a compact Riemann



COMMUTING OPERATORS AND FUNCTIONS ON A RIEMANN SURFACE 461

surface X which is the desingularization (normalization) of C; here X = C

when C is smooth, and when C is singular X is obtained from C by resolving

the singularities (see [Fulton 1969] or [Griffiths 1989], for example). Note that,

since C is a real curve, X is a real Riemann surface, that is, a Riemann surface

equipped with an anti-holomorphic involution (the complex conjugation on C).

The joint characteristic function S : E → Ẽ is (after the natural extension to the

points of C at infinity) simply a bundle mapping, holomorphic outside the joint

spectrum of A1, A2. It is meromorphic on X \XR , where XR is the set of real

points of X (fixed points of the anti-holomorphic involution). The following basic

fact was established by Livšic in the dissipative case (i.e., when ξ1σ1 + ξ2σ2 > 0

for some ξ1, ξ2) and by Vinnikov in general.

Theorem 2.2 [Vinnikov 1992; Ball and Vinnikov 1996]. The joint characteristic

function of a vessel (having maximal input and output determinantal represen-

tations) determines uniquely the complete characteristic function.

Proof. Since C is a plane curve of degree m, for (ξ1, ξ2, z) ∈ C
3 generic

the straight line ξ1λ1 + ξ2λ2 = z intersects the curve C in m distinct (affine)

points λ1, . . . , λm (that are all smooth points of C). These points correspond

to the m distinct eigenvalues of the (one variable) matrix pencil obtained by

restricting λ1σ2 − λ2σ1 + γ to the given line. The corresponding eigenspaces

are just E(λ1), . . . , E(λm); by the maximality assumption each one of them has

dimension r, so that the sum of their dimensions equals mr and coincides with

the dimension M of the ambient space E. Thus we have a (nonorthogonal) direct

sum decomposition

E(λ1)+̇ · · · +̇E(λm) = E. (2–16)

Let P (ξ1, ξ2, λ
i) be the corresponding projections of E onto E(λi), so that

P (ξ1, ξ2, λ
1) + · · · + P (ξ1, ξ2, λ

m) = I. (2–17)

Since W (ξ1, ξ2, z)|E(λi) = S(λi) for all i by the definition of the joint character-

istic function, we obtain from (2–17) an explicit formula, called the restoration

formula

W (ξ1, ξ2, z) =
m∑

i=1

S(λi)P (ξ1, ξ2, λ
i) (2–18)

for the complete characteristic function in terms of the joint (on an open dense

subset of the domain of analyticity of W (ξ1, ξ2, z)). ˜

The next question is how to express the metric properties (2–7)–(2–9) in terms

of the joint characteristic function. To this end we introduce an (indefinite)

scalar product on the fibres of the input bundle E over nonreal (affine) points,

by setting

[u, v]Eλ = i
v∗(ξ1σ1 + ξ2σ2)u

ξ1(λ1 − λ1) + ξ2(λ2 − λ2)
for u, v ∈ E(λ), (2–19)



462 VICTOR VINNIKOV

and similarly for the output bundle Ẽ; here λ = (λ1, λ2) ∈ C0, λ 6= λ, and ξ1,

ξ2 are free parameters—the value of (2–19) turns out to be independent of ξ1,

ξ2. Note that this metric on the bundle generalizes the Poincaré metric on the

upper half-plane. There is also a version of (2–19) at the real points, taking the

limit and renormalizing it to be finite, namely

[u, v]Eλ =
v∗(ξ1σ1 + ξ2σ2)u

ξ1 dλ1(λ) + ξ2 dλ2(λ)
for u, v ∈ E(λ); (2–20)

here λ = (λ1, λ2) ∈ C0, λ = λ, and ξ1, ξ2 are free parameters—the value of

(2–20) turns out again to be independent of ξ1, ξ2. More generally, we introduce

a hermitian pairing between the fibres of the bundle over nonconjugate (affine)

points

[u, v]Eλ1,λ2 = i
v∗(ξ1σ1 + ξ2σ2)u

ξ1(λ1
1 − λ2

1) + ξ2(λ1
2 − λ2

2)
for u ∈ E(λ1), v ∈ E(λ2) (2–21)

(with λ1 = (λ1
1, λ

1
2), λ

2 = (λ2
1, λ

2
2) ∈ C0, λ2 6= λ1), and over conjugate (affine)

points

[u, v]E
λ,λ

=
v∗(ξ1σ1 + ξ2σ2)u

ξ1 dλ1(λ) + ξ2 dλ2(λ)
for u ∈ E(λ), v ∈ E(λ) (2–22)

(with λ = (λ1, λ2) ∈ C0). Then it can be shown, using the restoration formula

(2–18), that the properties (2–7)–(2–9) are equivalent to the following metric

properties of the joint characteristic function in its domain of analyticity:

[S(λ)u, S(µ)v]Ẽλ,µ ≥ [u, v]Eλ,µ for u ∈ E(λ), v ∈ E(µ), (2–23)

[S(λ)u, S(λ)v]Ẽ
λ,λ

= [u, v]E
λ,λ

for u ∈ E(λ), v ∈ E(λ). (2–24)

See [Vinnikov 1992] and, for details, [Livšic et al. 1995, Chapter 10]. The in-

equality in (2–23) means as usual that the expression appearing on the left-hand

side is a positive definite kernel, i.e., for any N points λ1, . . . , λN on C0 in the

domain of analyticity of S(λ) (λi 6= λj) and any ui ∈ E(λi) we have

(
[S(λi)ui, S(λj)uj ]

Ẽ

λi,λj − [ui, uj ]
E

λi,λj

)
i,j=1,...,N

≥ 0.

In particular, the bundle map S is expansive at nonreal points and isometric at

real points with respect to the scalar product (2–19)–(2–20) on the input and

the output bundles.

The joint characteristic function is not quite the end of the quest for a proper

generalization of the usual characteristic function, since the kernel bundles E

and Ẽ and the scalar product (2–19)–(2–20) are hard to deal with analytically.

However, it follows from the theory of determinantal representations of plane al-

gebraic curves [Vinnikov 1989; 1993; Ball and Vinnikov 1996] that these bundles

are isomorphic (up to an inessential twist) to certain vector bundles of the form

Vχ ⊗ ∆, where Vχ is the flat vector bundle corresponding to a representation

χ : π1(X) → GL(r, C) of the fundamental group of the Riemann surface X, and
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∆ is a line bundle of half-order differentials on X (a square root of the canonical

bundle). Sections of Vχ ⊗ ∆ are thus multiplicative C
r-valued half-order differ-

entials on X; here a half-order differential is an expression locally of the form

f(t)
√

dt where t is a local parameter on X, and “multiplicative” means that our

vector-valued half-order differential picks up a multiplier (factor of automorphy)

χ(R) when we go around a closed loop R on X. We see then that we obtain

from the joint characteristic function of the vessel a so-called normalized joint

characteristic function, which is a mapping of flat vector bundles on X, i.e., a

multiplicative r × r matrix function on X, with appropriate multipliers on the

left and on the right. We proceed, following [Vinnikov 1992], to describe the

scalar case r = 1 (line bundles); in this case the results are the most complete

since we may use the classical theory of Jacobian varieties and theta functions

(see also [Livšic et al. 1995, Chapters 10–11] for a detailed exposition, using el-

liptic functions only, of the simplest nontrivial case when the discriminant curve

C is a smooth cubic, m = 3).

We let g be the genus (the “number of handles”) of the compact Riemann

surface X; when C is a smooth curve, the genus is given in terms of the degree of

C by the formula g = (m − 1)(m − 2)/2. We choose a canonical homology basis

on X consisting of the A-cycles A1, . . . , Ag and the B-cycles B1, . . . , Bg (and

satisfying certain symmetry requirements with respect to the anti-holomorphic

involution on X: see [Vinnikov 1993]). We can then construct a basis ω1, . . . , ωg

for the space of holomorphic differentials on X which is normalized with repect

to our homology basis:
∫

A
j

ωi = δij ; the so-called period matrix Ω =
(∫

Bj
ωi

)
∈

C
g×g; the period lattice Λ = Z

g + ΩZ
g ⊂ C

g (this is the lattice in C
g formed

by integrals of the column with entries ω1, . . . , ωg over all possible closed loops

on X); the Jacobian variety J(X) = C
g/Λ, and the associated Riemann’s theta

function θ(w) = θ(w; Ω), w ∈ C
g. See [Mumford 1983], for example, for all these

classical notions. For ζ ∈ J(X) we let Lζ be the flat line bundle with multipliers

of absolute value 1 corresponding to ζ: we write ζ = b + Ωa where a, b ∈ R
g

have coordinates aj , bj , and the multipliers over the cycles Aj and Bj are given

by e−2πiaj and e2πibj respectively, for j = 1, . . . , g. We let ∆ be the line bundle

of half-order differentials corresponding to −κ, where κ ∈ J(X) is the so-called

Riemann’s constant. Then E is isomorphic to the kernel bundle associated to

a maximal self-adjoint determinantal representation of the irreducible defining

polynomial f(λ1, λ2) of C if and only if

E ⊗ O(m − 2)(−D) ∼= Lζ ⊗ ∆, (2–25)

where D is the divisor of singularities of C on X (D = 0 when C is smooth) and

ζ ∈ J(X) satisfies

θ(ζ) 6= 0 (2–26)

(this is equivalent, by Riemann’s Theorem, to the fact that the line bundle Lζ⊗∆

has no global holomorphic sections, and is a necessary and sufficient condition
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for E to be isomorphic to the kernel bundle associated to some—not necessarily

self-adjoint—determinantal representation of f(λ1, λ2)), and

ζ + ζ = κ − κ (2–27)

(this condition ensures the self-adjointness). The solution set of (2–26)–(2–27) in

the g-dimensional complex torus J(X) is a finite disjoint union of punctured g-

dimensional real tori, the punctures coming from the zeroes of the theta function.

In concrete terms, the isomorphism (2–25) means that there exists a nowhere

zero section u×(p) of E on X, whose entries are multiplicative meromorphic half-

order differentials with multipliers corresponding to −ζ and with simple poles

(at most) at the points of C at infinity; the isomorphism is then given by

y(p) 7→ 1

ω(p)
y(p)u×(p), (2–28)

where y(p) is a holomorphic multiplicative half-order differential on an open

subset U of X with multipliers corresponding to ζ (a holomorphic section of

Lζ ⊗ ∆ on U), and

ω =
dλ1

∂f/∂λ2
= − dλ2

∂f/∂λ1

is a fixed meromorphic differential on X with zeroes of order m−3 at infinity and

poles on the divisor of singularities D; note that the right-hand side of (2–28) is

a section of E on U whose entries are meromorphic functions with poles of order

m−2 (at most) at the points of C at infinity and vanishing on D (a holomorphic

section of E ⊗ O(m − 2)(−D) on U), as required. We call u×(p) a normalized

section of E; it is determined uniquely up to a nonzero constant factor.

It follows that, if the input and the output line bundles E and Ẽ of the vessel V

correspond as in (2–25) to the points ζ and ζ̃ in J(X) respectively, then the joint

characteristic function S : E → Ẽ yields, under the corresponding isomorphisms,

a scalar multiplicative function T on X with multipliers corresponding to ζ̃ − ζ,

called the normalized joint characteristic function. T (p) is holomorphic and

nonzero in a neighborhood of the points of C at infinity, and is meromorphic on

X \XR . In terms of normalized sections u×(p) and ũ×(p) of E and Ẽ respectively

we have

S(p)u×(p) = T (p)ũ×(p). (2–29)

Now—and this is the main point—the scalar product (2–19)–(2–20) on the line

bundles E and Ẽ, and more generally the pairing (2–21)–(2–22), can be expressed

analytically in terms of theta functions. Explicitly, we have (after adjusting

u×(p) by an appropriate constant factor)

[u×(p), u×(q)]Ep,q = ε

θ
[

a

b

]
(p − q̄)

i θ
[

a

b

]
(0)E(p, q̄)

when p 6= q̄, (2–30)
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[u×(p), u×(p)]Ep,p̄ = ε, (2–31)

and similarly for the output line bundle Ẽ, the notation being this: ε = ±1 is

the so-called sign of the input determinantal representation, which distinguishes

between two self-adjoint determinantal representations that differ by a factor

of −1 and hence have the same kernel bundle (it turns out that the output

determinantal representation has the same sign ε);

θ
[

a

b

]
(w), for w ∈ C

g,

is the theta function with characteristics a, b ∈ R
g corresponding to ζ in J(X),

i.e., ζ = b + Ωa (whenever we write a point on the Riemann surface X in the

argument of a theta function, we mean the image of the point in J(X) under the

Abel–Jacobi map—more precisely, some lifting of the image to C
g); and finally,

E( · , · ) is the prime form on X, whose main property is that E(p, s) = 0 if and

only if p = s (this is a generalization to a compact Riemann surface of higher

genus of the difference between two numbers in the complex plane). For more

on the prime form, see [Mumford 1984; Fay 1973].

It follows from (2–30)–(2–31) that the metric properties (2–23)–(2–24) be-

come, in terms of T

εT (p)T (q)

θ
[

ã

b̃

]
(p − q̄)

i θ
[

ã

b̃

]
(0)E(p, q̄)

− ε

θ
[

a

b

]
(p − q̄)

i θ
[

a

b

]
(0)E(p, q̄)

≥ 0, (2–32)

T (p)T (p̄) = 1 (2–33)

in the domain of analyticity of T (p) on X. Here a, b ∈ R
g and ã, b̃ ∈ R

g are the

characteristics corresponding to ζ and ζ̃ in J(X) respectively, i.e., ζ = b + Ωa

and ζ̃ = b̃+Ωã. The inequality in (2–32) means as in (2–23) that the expression

appearing on the left-hand side is a positive definite kernel.

We can give now a complete analytic description of the class of normalized

joint characteristic functions of vessels with an irreducible discriminant polyno-

mial (and maximal input and output determinantal representations).

Theorem 2.3. A multiplicative function T (p) on X with multipliers corre-

sponding to ζ̃ − ζ is the normalized joint characteristic function of a vessel with

discriminant polynomial f(λ1, λ2) and having maximal input and output deter-

minantal representations of sign ε and corresponding to points ζ and ζ̃ in J(X)

respectively if and only if T (p) is holomorphic and nonzero in a neighborhood of

the points of C at infinity , is meromorphic on X \XR , and satisfies (2–33) and

(2–32).

It is worthwhile to mention that the corresponding point in J(X) and the sign

determine a maximal self-adjoint determinantal representation of f(λ1, λ2) up
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to equivalence, where the equivalence relation is defined by multiplying a self-

adjoint determinantal representation on the right and on the left by a (constant)

invertible operator on the external space E and by its adjoint respectively. In

Theorem 2.3 we may choose arbitrarily the input determinantal representation

of the vessel within the equivalence class corresponding to ζ ∈ J(X) and ε,

and then the output determinantal representation is uniquely (and explicitly)

determined (within the equivalence class corresponding to ζ̃ ∈ J(X) and ε) by

the given normalized joint characteristic function T (p) (actually, by the values

of T (p) at the points of C at infinity). This fact is of fundamental importance

in the construction of triangular models; see [Livšic et al. 1995, Chapter 12].

Finally, it can be also shown that the set of singularities of the normalized

joint characteristic function coincides with the joint spectrum of the operators

A1 and A2 in the vessel restricted to the principal subspace.

It is natural to try to generalize all these results to the case when the dis-

criminant polynomial has a multiple irreducible factor and the normalized joint

characteristic function is a multiplicative matrix function on a compact real Rie-

mann surface. An appropriate tool for such a generalization seems to be the

notion of the Cauchy kernel K(Vχ; p, s) for a flat vector bundle Vχ of rank r on

a compact Riemann surface X, where it is assumed that Vχ ⊗ ∆ has no global

holomorphic sections. The Cauchy kernel is defined as the unique meromorphic

section of π∗

1Vχ ⊗ π∗

2V ∨

χ ⊗ π∗

1∆ ⊗ π∗

2∆ on X × X, where π1 and π2 denote the

projections of X × X onto the first and the second factor respectively and F ∨

denotes the dual of a vector bundle F , holomorphic except for a simple pole with

residue Ir along the diagonal p = s. This notion was introduced in [Ball and

Vinnikov 1996]; similar kernels were also considered in [Fay 1992]. In the scalar

case r = 1, when Vχ = Lζ is the unitary flat line bundle corresponding to a point

ζ in J(X) with characteristics a, b ∈ R
g as before, we have

K(Vχ; p, s) =

θ
[

a

b

]
(s − p)

θ
[

a

b

]
(0)E(s, p)

. (2–34)

There are so far no similar explicit formulas for r > 1, but the Cauchy kernels

themselves seem to provide the basic building blocks for the theory. For instance,

Fay’s trisecant identity—the fundamental identity satisfied by theta functions on

a compact Riemann surface—was generalized in [Ball and Vinnikov] to vector

bundles of higher rank in terms of the Cauchy kernels. Using the Cauchy kernels

it should be possible to generalize Theorem 2.3 and the functional models of

Section 3 below to the case of a matrix valued normalized joint characteristic

function.

In the usual one-dimensional case, the notion of the transfer function is very

important also for nonconservative systems, especially when the state space is

finite dimensional, so that the transfer function is a rational matrix function;
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in particular, realization of a rational matrix function as the transfer function

is a basic tool in the study of various factorization and interpolation problems;

see, for example, [Bart et al. 1979; Ball et al. 1990]. It is possible to intro-

duce the joint transfer function and (assuming the maximality of determinantal

representations) the normalized joint transfer function also for nonconservative

vessels; see [Vinnikov 1994; Ball and Vinnikov 1996]. In the latter reference

a nonconservative analog of Theorem 2.3 for multiplicative meromorphic r × r

matrix functions on a compact Riemann surface was obtained, i.e., realization

as the normalized joint transfer function of a (nonconservative) vessel with a

finite-dimensional state space. The proof, at least for the case of simple poles

only, is linear-algebraic in the spirit of [Bart et al. 1979], constructing the vessel

explicitly from the poles and the residues of the meromorphic matrix function.

Realizations are then used in [Ball and Vinnikov 1996] to solve completely, for

the case of simple zeroes and poles, the problem of reconstructing a multiplica-

tive meromorphic matrix function from its zero-pole data (including directional

information), i.e., to solve the “homogenous interpolation problem” of [Ball et al.

1990] on a compact Riemann surface of a higher genus.

3. Semiexpansive Functions and Functional Models

Let X be a compact real Riemann surface, let ζ, ζ̃ ∈ J(X) satisfy (2–26) and

(2–27), and let T (p) be a multiplicative function on X with multipliers corre-

sponding to ζ̃ − ζ that is meromorphic on X \XR ; we call T (p) a semiexpansive,

or more specifically (ζ, ζ̃)-expansive, function if it satisfies (2–33) and (2–32) with

ε = +1 (respectively semicontractive or (ζ, ζ̃)-contractive for ε = −1). Theorem

2.3 suggests that the class of semiexpansive (or semicontractive) functions should

be a proper generalization to the case of a compact real Riemann surface of a

higher genus of the class of expansive (or contractive) functions on the upper

half-plane, or on the unit disk. We first list some basic properties.

We assume the set XR of real points of X is nonempty; it follows that XR

is a disjoint union of k > 0 topological circles X0, . . . ,Xk−1. It turns out—

see [Vinnikov 1993]—that the real tori comprising the solution set of (2–27)

can be naturally indexed as Tν , where ν = (ν1, . . . , νk−1) ∈ {0, 1}k−1. Now,

there can be two different situations: either XR disconnects X, necessarily into

two connected components interchanged by the anti-holomorphic involution, X+

(the “interior” with ∂X+ = XR relative to a chosen orientation of XR) and

X− (the “exterior” with ∂X− = −XR)—the dividing case, or X \XR remains

connected—the nondividing case. Note that in the dividing case X is simply the

double of a finite bordered Riemann surface X+.

It is easy to see that ζ and ζ̃ belong to the same real torus Tν . Assume that

X is dividing and that ζ, ζ̃ ∈ T0. Then it turns out that T (p) is (ζ, ζ̃)-expansive

if and only if |T (p)| ≥ 1 for p ∈ X+ (equivalently, by (2–33), |T (p)| ≤ 1 for

p ∈ X−), i.e., T (p) is simply an expansive multiplicative function on X+. This
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follows in a standard way from the fact that

− 1

2π

θ
[

a

b

]
(q̄ − p)

i θ
[

a

b

]
(0)E(q̄, p)

is (in the variable p) the reproducing kernel for the Hardy space H 2(Lζ ⊗∆,X+)

of holomorphic sections of Lζ ⊗ ∆ on X+ with the norm ‖y‖ =
∫

XR

yȳ. Note

that since y is a section of Lζ ⊗∆, yȳ is locally of the form f(t)|dt| where t is a

local parameter on X, so the above integral makes sense; in fact, Hardy spaces

of half-order differentials on a finite bordered Riemann surface, being invariantly

defined without any additional choices, turn out to be more convenient to handle

than more traditional Hardy spaces of functions, which require a choice of some

measure on the boundary; see [Alpay and Vinnikov b].

It is possible to give an operator-theoretic criterion for the above situation, i.e.,

when for a vessel V with irreducible discriminant polynomial and maximal input

and output determinantal representations, X (the compact real Riemann surface

which is the desingularization of the discriminant curve) is dividing, ζ, ζ̃ ∈ T0

and so the normalized joint characteristic function is simply expansive (or con-

tractive if ε = −1) on X+. This happens (assuming the mapping Φ : H → E

in the vessel is surjective) if and only if there exists a real rational function

r(λ1, λ2) of two variables such that the operator r(A1, A2) is defined and dissipa-

tive (i.e., has nonnegative imaginary part). The proof uses the functional model

and the description (see [Vinnikov 1993]) of definite self-adjoint determinantal

representations of a real plane curve; the real rational function r is defined by

z(p) = r(λ1(p), λ2(p)), where λ1(p) and λ2(p) are the affine coordinate functions

on the discriminant curve and z(p) is a meromorphic function on X mapping

X+ onto the upper half-plane. The existence of such functions was established

in [Ahlfors 1950].

In general, if X is dividing and ζ, ζ̃ ∈ Tν , it turns out that the nontangential

boundary value (from the left) on XR of a (ζ, ζ̃)-expansive function T (p) (which

exists almost everywhere) satisfies |T (p)| ≥ 1 if νj = 0 and |T (p)| ≤ 1 if νj = 1

for p ∈ Xj (j = 0, . . . , k−1, we set ν0 = 1). Assuming that T (p) has no zeroes in

X+ and |T (p)| is bounded away from zero on XR , it follows that multiplication

by T (p) defines a contraction from H2
ν (Lζ ⊗ ∆,X−) to H2

ν (Lζ̃ ⊗ ∆,X−), where

H2
ν (·,X−) is the Hardy space of holomorphic sections of an appropriate bundle on

X− with an indefinite inner product [y, y]ν =
∑k−1

j=0 (−1)νj

∫
Xj

yȳ. This indefinite

inner product space is actually a Krĕın space, that is, an orthogonal direct sum

of a Hilbert space and an anti-Hilbert space [Alpay and Vinnikov b]; this fact is

entirely nonobvious even in the simplest case when X+ is an annulus (and X is

a torus). The reproducing kernel for this space is given by the same formula in

terms of theta functions as in the Hilbert space case (ν = 0) above.
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We discuss briefly the canonical factorization theorem for semiexpansive func-

tions, generalizing the Riesz–Nevanlinna–Smirnov factorization for expansive

functions on the upper half-plane; see [Vinnikov 1992], and for an exposition

in the case of genus 1 also [Livšic et al. 1995, Chapter 12]. Every semiexpansive

function on X can be factored into the Blaschke product constructed from its

poles on X \XR , and the singular inner function and outer function constructed

from the singular and absolutely continuous parts respectively (with respect to

the local Lebesgue measure on XR) of a uniquely determined finite positive Borel

measure on XR ; furthermore, ζ̃ can be computed from ζ, the poles and the mea-

sure. When X is dividing and ζ ∈ T0, so that we have an expansive function

on X+, the measure on XR is arbitrary and the poles pi are arbitrary points

in X+ satisfying an appropriate Blaschke condition (
∑

∞

i=1(p̄i − pi) converges

in J(X)); this is a fairly straightforward generalization of the usual canonical

factorization to multiply connected domains and finite bordered Riemann sur-

faces; see [Voichick and Zalcman 1965; Hasumi 1966]. In general, the poles and

the measure must satisfy certain explicit admissibility conditions with respect

to the given ζ having to do with possible zeroes of the theta function; for ex-

ample, we must have θ
(
ζ +

∑
∞

i=1(p̄i − pi)
)
6= 0. The canonical factorization of

the normalized joint characteristic function corresponds to the construction of

the triangular model for the pair of operators A1, A2 in the vessel; and the ad-

missibility conditions for the poles and the measure are precisely the solvability

conditions for the systems of nonlinear difference and differential equations for

self-adjoint determinantal representations that arise in the construction of the

triangular model and were mentionned in Section 1.

We now turn to the description of functional models for commutative two-

operator vessels with irreducible discriminant polynomial (and maximal input

and output determinantal representations); see [Alpay and Vinnikov 1994; a].

For the single-operator case see [Sz.-Nagy and Foiaş 1967; de Branges and

Rovnyak 1966a; 1966b], as well as the more recent surveys [Nikolskii and Vasyunin

1986; Ball and Cohen 1991]. We shall describe an analog of the de Branges–

Rovnyak functional model; at least in the case when X is dividing and ζ, ζ̃ ∈ T0,

an analog of Sz.-Nagy–Foiaş functional model can be constructed as well. It

would be very interesting to further investigate, in this case, the geometry of

the minimal joint unitary dilation of the corresponding commuting continuous

semigroups of contractions, and also to find an analogue of the “coordinate free”

functional model of Nikolskii and Vasyunin [1986; 1998].

For a given (ζ, ζ̃)-expansive function T (p) on X we let the corresponding

model space H(T ) be the reproducing kernel Hilbert space with reproducing

kernel

KT (p, q) =

θ
[

ã

b̃

]
(q̄ − p)

i θ
[

ã

b̃

]
(0)E(q̄, p)

− T (p)T (q)

θ
[

a

b

]
(q̄ − p)

i θ
[

a

b

]
(0)E(q̄, p)

. (3–1)
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By the definition of semiexpansive functions KT (p, q) is a positive definite kernel

(here, as in (2–32), the characteristics a, b ∈ R
g and ã, b̃ ∈ R

g correspond to ζ

and ζ̃ in J(X) respectively); therefore H(T ) exists and its elements are sections

of Lζ̃ ⊗ ∆ holomorphic on the domain of analyticity of T (p). Assume that X is

dividing and ζ, ζ̃ ∈ T0. If in addition we assume that T (p) is (ζ, ζ̃)-inner, i.e.,

the nontangential boundary values satisfy |T (p)| = 1 on XR almost everywhere,

then it follows in a standard way that

H(T ) = H2(Lζ̃ ⊗ ∆,X−) 	 TH2(Lζ ⊗ ∆,X−). (3–2)

(The equality sign here is a bit sloppy since the elements of the right-hand side

space are defined only on X−, while the elements of H(T ) are defined on X+

as well, except for the poles of T (p); we mean a natural isomorphism given by

the restriction of an element of H(T ) to X−.) If we don’t assume that T (p) is

(ζ, ζ̃)-inner, then H(T ) is the generalized orthogonal complement, in the sense

of de Branges, of TH2(Lζ ⊗ ∆,X−) in H2(Lζ̃ ⊗ ∆,X−). If X is dividing and

ζ, ζ̃ ∈ Tν we have similar formulas using the Krĕın spaces H2
ν (Lζ ⊗ ∆,X−) and

H2
ν (Lζ̃ ⊗∆,X−) instead (assuming that T (p) has no zeroes in X+ and |T (p)| is

bounded away from zero on XR).

We proceed to define the model operators. Let z(p) be a meromorphic function

on X whose poles are contained in the domain of analyticity of T (p). For any

section y of Lζ̃ ⊗∆ which is holomorphic in a neighborhood of the poles of z(p)

we define

(Mzy)(p) = z(p)y(p) −
n∑

i=1

ciy(pi)

θ
[

ã

b̃

]
(pi − p)

θ
[

ã

b̃

]
(0)E(pi, p)

. (3–3)

Here n is the degree of the meromorphic function z(p), p1, . . . , pn are the poles

of z(p)—assumed to be all simple for the ease of notation, and ci is the residue

of z(p) at pi (in terms of some local parameter—since the other two factors in

each term in the sum on the right-hand side of (3–3) are half-order differentials,

the product is well-defined independently of the choice of local parameter). It

follows that M zy is again holomorphic in a neighborhood of p1, . . . , pn. Actually,

Mz is a bounded linear operator on H(T ), and for two meromorphic functions

z(p) and w(p) the operators M z and Mw commute. It is worthwhile to write

down the resolvent Rz
α = (Mz − αI)−1 of the operator M z:

(Rz
αy)(p) =

y(p)

z(p) − α
−

n∑

i=1

1

dz(pi(α))
y(pi(α))

θ
[

ã

b̃

]
(pi(α) − p)

θ
[

ã

b̃

]
(0)E(pi(α), p)

, (3–4)

where n is as before the degree of z(p) and p1(α), . . . , pn(α) are the points on X

with z(p) = α (assumed to be all distinct, and to lie in the domain of analyticity
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of T (p)). Note that this is a natural generalization of the usual difference quo-

tients transformation to a compact Riemann surface represented as a (ramified)

covering of the Riemann sphere by means of the meromorphic function z(p).

We now pick a pair of real meromorphic functions λ1(p), λ2(p) on X (i.e.,

meromorphic functions satisfying λk(p̄) = λk(p) for k = 1, 2) that generate the

whole field of meromorphic functions on X. By standard results in the theory

of compact Riemann surfaces, λ1(p) and λ2(p) satisfy an irreducible polynomial

equation f(λ1(p), λ2(p)) = 0 of some degree m (with real coefficients) and X is

the desingularization of the real irreducible projective plane curve C with the

irreducible affine equation f(λ1, λ2) = 0. We assume that T (p) is holomorphic

and invertible at the poles of λ1 and λ2 on X, which are the points of C at

infinity. Then Mλ1 and Mλ2 are commuting bounded linear operators on H(T ).

Furthermore:

Theorem 3.1. VT = (Mλ1 ,Mλ2 ,H(T ),Φ, C
m, σ1, σ2, γ, γ̃) is a commutative

two-operator vessel with discriminant polynomial f(λ1, λ2) and normalized joint

characteristic function T (p). Here Φ : H(T ) → C
m is the evaluation at the

poles of λ1 and λ2 (assuming all the poles to be simple—for a pole of order h

we have to evaluate the derivatives up to order h − 1, with respect to some local

parameter , as well), and σ1, σ2, γ, γ̃ are given by certain explicit formulas in

terms of theta functions with characteristics a, b and ã, b̃ corresponding to ζ and

ζ̃ in J(X) respectively , so that λ1σ2−λ2σ1 +γ and λ1σ2−λ2σ1 + γ̃ are maximal

determinantal representations of f(λ1, λ2) corresponding to ζ and ζ̃ (and having

sign +1).

It can be shown that the vessel VT is irreducible (or minimal), i.e., the principal

subspace coincides with all of the inner space H(T ).

We call VT the model vessel corresponding to the semiexpansive function

T (p). To justify this name we have to show that any commutative two-operator

vessel V = (A1, A2,H,Φ, E, σ1, σ2, γ, γ̃) with discriminant polynomial f(λ1, λ2)

and maximal input and output determinantal representations corresponding to

ζ and ζ̃ in J(X) (and having sign +1, say) is unitarily equivalent, on its principal

subspace, to the model vessel corresponding to its normalized joint characteristic

function (up to an automorphism of the external space E). The mapping from

the inner space H of the given vessel V to the model space H(T ) is given explicitly

by

h 7→ ξ1dλ1(p) + ξ2dλ2(p)

ω(p)
P (ξ1, ξ2, p)Φ

(
ξ1A1 + ξ2A2 − ξ1λ1(p) − ξ2λ2(p)

)−1
h.

(3–5)

Here h ∈ H, p ∈ X, and ξ1, ξ2 are free parameters — the right-hand side of

(3–5) turns out to be independent of ξ1, ξ2. P (ξ1, ξ2, p) is the projection of E

onto the fibre Ẽ(p) of the output bundle at p “in the direction” ξ1, ξ2, appearing

in the restoration formula (2–18), and ω(p) is a meromorphic differential with

zeroes of order m − 3 at the points of C at infinity and poles on the divisor of
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singularities D as in (2–28). The right-hand side of (3–5) is a section of Ẽ with

poles of order m − 2 at the points of C at infinity and vanishing on D, and the

isomorphism (2–28) gives us a section of Lζ̃ ⊗ ∆ holomorphic outside the joint

spectrum of A1, A2. We may arrive at the functional model by starting with the

mapping (3–5) (restricted to the principal subspace), imposing the range norm

on the image and then verifying that we actually obtain the reproducing kernel

Hilbert space with reproducing kernel KT (p, q) of (3–1). The mapping (3–5)

has a system-theoretic significance, since it is (at least in the stable dissipative

case) the output of the two-dimensional system (1–20)–(1–22) with identically

zero input and initial state f(0, 0) = h after taking a suitably defined “Laplace

transform along the discriminant curve”.

We make two final remarks on functional models. First, it may be checked that

the mapping z 7→ Mz defines a homomorphism from the algebra of meromorphic

functions z(p) on X, whose poles are contained in the domain of analyticity

of T (p), to the algebra of bounded linear operators on H(T ). Thus when we

construct the functional model for a given vessel V, we obtain model operators

not only for A1 and A2, but for all the operators in the algebra of rational

functions in A1, A2.

Second, it is possible to characterize the spaces of the form H(T ) for a (ζ, ζ̃)-

expansive T as reproducing kernel Hilbert spaces whose elements are meromor-

phic sections of Lζ̃ ⊗∆ on X \XR , which are invariant under a pair of operators

of the form Rλ1
α1

and Rλ2
α2

as in (3–4) and such that a certain identity, generalizing

de Branges identity for difference quotients, holds. (Here ζ̃ is fixed, while ζ may

be arbitrary.) In particular, this yields a generalization of Beurling’s Theorem

on invariant subspaces of H2 on the unit disk to multiply connected domains

and finite bordered Riemann surfaces, proved by Sarason [1965], Voichick [1964]

and Hasumi [1966].
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1979.
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[Livšic 1986b] M. S. Livšic, “Commuting nonselfadjoint operators and mappings of
vector bundles on algebraic curves”, pp. 255–277 in Operator theory and systems

(Amsterdam, 1985), edited by H. Bart et al., Oper. Theory: Adv. Appl. 19,
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[Nikolskii and Vasyunin 1986] N. K. Nikol’skĭı and V. I. Vasyunin, “Notes on two
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