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Some Function-Theoretic Issues

in Feedback Stabilisation

NICHOLAS YOUNG

Abstract. This article aims to present for a mathematical audience some

interesting function theory elaborated over recent years by control engi-

neers in connection with the problem of robustly stabilising an imperfectly

modelled physical device.

The theory of feedback extends over a broad field, from rarefied differential

geometry to down-to-earth nuts-and-bolts engineering. Function theory enters

into the study of a class of problems of great practical importance, those relating

to linear time-invariant systems. It is still the case that the great majority of en-

gineering devices are modelled by such systems, and function theory remains an

important strand in recent engineering researches on the stabilisation of uncer-

tain systems. The connection with H∞ and Hankel operators is widely known by

now, but the extent to which engineers have developed the mathematical theory

along novel lines deserves publicity. Challenges of an engineering nature have

given rise to some beautiful ideas and results in function theory, and the purpose

of this expository article is to present some notions arising from studies of robust

stabilisation which deserve the attention of mathematicians. These notions re-

late to certain spaces of functions on the real line or subsets of the complex plane

and to sundry metrics on these spaces which measure closeness of functions from

the point of view of stabilisability. Many engineers have contributed to these

developments, notably M. Vidyasagar, T. T. Georgiou, M. C. Smith, K. Glover,

D. C. McFarlane, and G. Vinnicombe. Virtually everything in this paper is from

[Vidyasagar 1984; Georgiou and Smith 1990; 1993; McFarlane and Glover 1990;

Vinnicombe 1993; Curtain and Zwart 1995]. A useful textbook covering the

elements of H∞-control is [Doyle et al. 1992]. However, these sources assume
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knowledge of control theory, and my hope here is to provide function-theorists

with a way into some fine and relevant mathematics in places they would not

normally look. I am grateful to Keith Glover and Malcolm Smith for helpful

comments.

1. Robust Stabilisation

Consider this standard feedback configuration:

v1
+

u
P y

v2+C

Here, as usual, P is the plant—that is, a function representing the object to

be controlled—and C is the controller. We work in the frequency domain, so

u and y represent the Laplace transforms of input and output signals to the

plant. Subject to zero initial conditions, u and y are related by y = Pu, where

u, y, and P are functions of the frequency variable s. We describe P as the

transfer function of the system. The signal v2 can be thought of as noise in the

sensors that measure y. If the plant is modelled by a system of linear constant-

coefficient differential equations then P will be a rational function, but if the

model contains delays then P will have some exponential terms. Although much

of the engineering literature concentrates on rational P there is a substantial

body of work addressing the question of the most appropriate spaces of functions

for the analysis of stablisation of general (not necessarily rational) plants. We

shall return to this issue below, but to begin with let us think of rational plants

P , and let us suppose that P is unstable, i.e., has at least one pole in the closed

right half plane {s ∈ C : Re s ≥ 0}. We wish to stabilise P with a rational

controller C. In the feedback loop of Figure 1 we have

y = Pu = P (v1 + Cy + Cv2)

and so

y = (1− PC)−1Pv1 + (1− PC)−1PCv2

Thus for the loop to be stable we need the rational functions (1− PC)−1P and

(1 − PC)−1PC to be analytic in the closed right half-plane. For true peace of

mind, though, we need somewhat more, since if there is instability in any of the

connections of the loop then that connection will be liable to burn out.
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Note that

u = v1 + Cy + Cv2 = v1 + CPu + Cv2

and so

u = (1− CP )−1v1 + (1− CP )−1Cv2.

Thus
[

y

u

]

=

[

(1− PC)−1P (1− PC)−1PC

(1− CP )−1 (1− CP )−1C

] [

v1

v2

]

=

[

P

1

]

(1−CP )−1 [ 1 C ]

[

v1

v2

]

We shall say that the system (P,C) is stable or that C stabilises P if

H(P,C)
def
=

[

P

1

]

(1− CP )−1 [ 1 C ] (1–1)

is bounded and analytic in the closed right half-plane (this property is sometimes

also called internal stability). The simplest form of the stabilisation problem is:

Given a plant P , find a controller C such that (P,C) is stable.

Classical control is full of recipes for constructing such Cs and simultaneously

achieving various desirable performance characteristics [Rohrs et al. 1993]. This

simple formulation, however, leaves out of account one of the most important

aspects of control system design: the fact that models of plants are only approx-

imate. Control engineers have long had ways of addressing this difficulty, but

the development of a theory that meets it head-on is relatively recent. “H∞

control” began around 1980 and is based on the notion that instead of finding C

to stabilise a single plant P one should be looking for a C that stabilises not only

the chosen model P but also all sufficiently close plants. The idea is natural:

one constructs a model P0 of a physical device by making several idealisations,

simplifications, approximations and estimates. This P0 is called the “nominal

plant”. One posits that there is a “true plant” P that is close to P0, and it is P

that one really wants to stabilise. Since P is unknown one should try to find a

C that simultaneously stabilises as large a neighbourhood of P0 as possible. To

put this approach into effect for any given application one must decide

(1) What is the appropriate space of functions P?

(2) What is the appropriate notion of closeness?

The most natural interpretation of the second question is that one should

give a metric on the chosen space of transfer functions; then one could try to

stabilise the ball of greatest possible radius about P0. However a weaker version

is also of interest: what is the appropriate topology on the space of transfer func-

tions [Vidyasagar 1984; Zames and El-Sakkary 1980]? Answering these questions

requires significant mathematical as well as engineering considerations.

Corresponding to any answer to questions (1) and (2), then, we have a version

of the robust stabilisation problem:

Given a nominal plant P0 find the largest possible neighbourhood U of P0

such that there is a controller C that stabilises every element of U .
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In the case that closeness of plants is measurable by a metric then it is natural

to seek the neighbourhood U that is the open ball of greatest possible radius.

The simplest version of the theory arises from choosing the space of rational

functions without purely imaginary poles and the metric to be the L∞ norm on

the imaginary axis. This norm is physically well motivated, since it is roughly

speaking the square root of the maximum ratio of the energies of output to

input signals. Thus two plants are close in the L∞ norm if, for the same input

of unit energy they produce uniformly close outputs. This form of the robust

stabilisation problem has an elegant solution in which an important ingredient is

some classical analysis: Nevanlinna-Pick theory or Nehari’s theorem. An account

can be found in [Francis 1987, Chapter 6], and a simplified one in [Young 1988,

Chapter 14]. The solution has, however, a slightly undesirable feature. Suppose

we are given a strictly proper rational plant P0 (a rational function is strictly

proper if it vanishes at infinity). For ε > 0 we denote by V (P0, ε) the set of strictly

proper rational plants P , analytic on the imaginary axis, such that ‖P−P0‖∞ < ε

and P has the same number of poles as P0 in the right half-plane. The theory

tells us that the largest value of ε for which all members of V (P0, ε) can be

simultaneously stabilised by a single controller is the reciprocal of the norm of a

certain Hankel operator. This is an elegant robust stabilisation result, but it is

not precisely the answer to the problem as posed. The restriction on the number

of right-half-plane poles of the perturbed plant P is a requirement of the method

of solution rather than a natural engineering assumption: the nominal plant

P0 and the nearby “true plant” P may perfectly easily have different numbers

of poles in the right half-plane. Indeed, there is no reason to rule out plants

with poles on the imaginary axis. These considerations led engineers to seek

alternative approaches even within the framework of rational functions. One

that has been particularly successful is a different representation of rational

functions that allows us to use the L∞ norm even in the presence of poles on the

imaginary axis.

2. Graphs and Metrics

Stable plants have transfer functions that are bounded and analytic in the

closed right half-plane, and so the H∞ norm immediately gives a natural metric

on the set of stable plants. The analysis of robust stabilization demands a metric

for unstable plants, and it is less clear how that should be defined. An approach

that has been successful is to focus not so much on the concrete rational transfer

function but rather on the operator from inputs to outputs, and more particularly

on its graph. One could after all argue that this is a more fundamental entity

than the transfer function. This approach leads to a single natural topology on

rational plants, the graph topology, which seems to have gained acceptance among

engineers as the appropriate one for the robust stabilisation problem. However,

there are several different metrics that give rise to this topology, or what is
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the same thing, several inequivalent ways of representing modelling uncertainty.

Each corresponds to a version of the robust stabilisation problem; some have

elegant solutions, some are as yet unsolved. The operator-theoretic view also has

the merit of giving a lead towards generalisation of the theory to non-rational

and even nonlinear plants. I particularly recommend [Georgiou and Smith 1993]

as enjoyable reading for operator-theorists, since the paper gives a concise and

elegant account of the basic notions of stabilisation from a congenial perspective.

For control applications one has to study plants with several inputs and out-

puts, so that transfer functions are matrix-valued. This makes problems sig-

nificantly more complex and more interesting, but for the present purpose it

is enough to consider plants with a single input and output, so that transfer

functions will be scalar-valued. Consider a rational plant P . It determines a

possibly unbounded closed linear operator MP on the Hardy space H2 of the

right half-plane: MP u = Pu for u ∈ H2 such that Pu ∈ H2. Note that the

domain of MP ,

D(MP )
def
= {u ∈ H2 : Pu ∈ H2},

may be the whole of H2 (if P ∈ H∞), a proper dense subspace (e.g., P (s) = s−1),

a proper closed subspace (e.g., P (s) = (s − 1)−1), or a subspace that is neither

closed nor dense (e.g., P (s) = s−1(s− 1)−1). Define the graph of P , denoted by

GP , to be the graph of MP :

GP =

{[

u

Pu

]

: u ∈ D(MP )

}

.

GP is a closed subspace of H2 ⊕ H2, and moreover it is invariant under multi-

plication by e−as for all a > 0. By the Lax-Beurling theorem there is an inner

2 × r function θP such that GP = θP H2(Cr) for some r ∈ N. Obviously r ≤ 2,

and in fact we must have r = 1. For suppose θP =
[

M
N

]

with M,N of type 1× r

and let Mx = 0 for some x ∈ H2(Cr). Then

[

0

Nx

]

=

[

Mx

Nx

]

= θP x ∈ GP ,

and hence Nx = 0. Thus θP x = 0, and since θP is inner, x = 0. That is,

Mx = 0 implies x = 0, from which it follows that r = 1. Thus θP is a 2×1 inner

function, which is called a graph symbol for P or a normalised coprime factor

representation for P . The point of the latter terminology is that if θP =
[

M
N

]

then P = NM−1 is an expression of P as a ratio of two stable rational plants that

are coprime elements of the algebra S of stable rational functions (S = C(s)∩H∞

where C(s) denotes the field of rational functions in the variable s over C), and

that are normalised in the sense that |N |2 + |M |2 = 1 on the imaginary axis.

Consider for example the unstable plant P (s) = (s− 1)/(s− 2). For any choice
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of a in the left half plane

P (s) =
s− 1

s− a

/

s− 2

s− a

is an expression of P as a ratio of coprime elements of S. A little calculation

determines the unique a for which normalisation is achieved, and in fact

θP (s) =
1√

2s +
√

5

[

s− 1

s− 2

]

.

Of course θP is only unique up to multiplication by complex numbers of unit

modulus.

The correspondences

Plants P ←→ Closed subspaces GP of H2(C2) ←→ 2× 1 inner functions θP

provide a useful conceptual and analytic framework for the study of robust sta-

bilisation. Topologies and metrics on the family of closed subspaces of a Hilbert

space induce the corresponding objects on the set of plants and the inner func-

tions θP provide a tool for detailed analysis and computation.

The simplest metric on the set of closed subspaces of a Hilbert space is the gap

metric. This is the metric induced by the operator norm via the identification of

a closed subspace with the corresponding orthogonal projection. That is, if ΠK

denotes the orthogonal projection operator in L(H) with range K then the gap

between closed subspaces K1,K2 of H is

gap(K1,K2) = ‖ΠK1
−ΠK2

‖

Accordingly we may define a metric on rational plants by

gap(P1, P2) = gap(GP1
, GP2

)

This metric was introduced in the present context in [Zames and El-Sakkary

1980] and argued to be an appropriate measure of closeness. Computing the gap

is a (generalised) Nevanlinna-Pick interpolation problem [Georgiou 1988]:

gap(P1, P2) = max{δ1(P1, P2), δ1(P2, P1)}
where

δ1(P1, P2) = inf
Q∈H∞

‖θP1
− θP2

Q‖H∞ .

A variant is the graph metric

graph(P1, P2) = max{δ2(P1, P2), δ2(P2, P1)}

where

δ2(P1, P2) = inf
‖Q‖H∞≤1

‖θP1
− θP2

Q‖H∞ .

This metric was proposed by Vidyasagar [1984], who gives examples and mo-

tivation. The graph and gap metrics generate the same topology on the space
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of rational functions. Vidyasagar calls this the graph topology, and advances

convincing arguments for the thesis that it is the appropriate one for robust

stabilisation. One is that the graph topology is the weak topology generated by

the functions H(·, C) on C(s). That is, for any P0 ∈ C(s), a neighbourhood

sub-base of P0 in the graph topology is furnished by the sets of the form

{

P ∈ C(s) : H(P,C) ∈ S and
∥

∥H(P,C)−H(P0, C)
∥

∥

H∞
< ε

}

where ε ranges over the positive reals and C ranges over the rational functions

that stabilise P0 (here the notation H(P,C) ∈ S means that each entry of the 2×2

matrix function H(P,C) belongs to S). One could express this characterisation

by saying that the graph topology is the coarsest topology for which stabilisation

by any controller is a robust property. The control community has evidently

accepted that the graph topology is indeed the relevant one for discussion of

the robust-stabilisation problem, but there are several rival metrics that induce

this topology and it is perhaps not yet finally resolved which of them is best

suited to engineering applications. There is a very strong candidate, due to G.

Vinnicombe [1993], which is comparatively easy to compute and admits some

sharp robustness results; we shall discuss this metric in the next section. By

way of preparation we need two further notions. The first is that of the L2-gap

metric δL2 . This is just like the gap metric, except that we identify a plant P

with the operator it induces on L2 (of the imaginary axis) rather than H2. More

precisely, we define the possibly unbounded operator LP on L2 by

LP u = Pu for u ∈ L2 such that Pu ∈ L2,

and we define δL2(P1, P2) to be the gap between the closed subspaces of L2⊕L2

that are the graphs of LP1
and LP2

. The L2-gap metric is much easier to compute

than the gap metric—in fact, we have [Georgiou and Smith 1990]

δL2(P1, P2) =
∥

∥(1 + P2P
∗
2 )−1/2(P2 − P1)(1 + P ∗

1 P1)
−1/2

∥

∥

L∞
. (2–1)

To see this note that if a rational plant P has graph symbol θ
def
=

[

M
N

]

then

P = NM−1 and the L2-graph of P is θL2. Since θ is inner, the orthogonal

projection on θL2 is the multiplication operator Lθθ∗ on L2, and the projection

on its orthogonal complement is L1−θθ∗ , which equals Lθ̄
c
θT

c

where θc is the

“complementary inner function”,

θc =

[

−N

M

]

,

so that [ θ θ̄c ] is unitary-valued on the imaginary axis. The directed gap

~δ(θ1L
2, θ2L

2)

between the closed subspaces θ1L
2 and θ2L

2 of L2 is defined to be the norm

of the orthogonal projection from θ1L
2 to the orthogonal complement of θ2L

2.
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Hence, if θj is the symbol of Pj ,

~δ(θ1L
2, θ2L

2) = ‖Lθ̄
2c

θT

2c

Lθ
1
θ∗

1
‖ = ‖Lθ̄

2c
θT

2c
θ
1
θ∗

1

‖ = ‖θ̄2cθ
T
2cθ1θ

∗
1‖∞ = ‖θT

2cθ1‖∞,

the last equation because θ1 and θ̄2c are isometries. Now

θT
2cθ1 = [−N2 M2 ]

[

M1

N1

]

= M2N1 −N2M1 = M2(P1 − P2)M1,

so that

~δ(θ1L
2, θ2L

2) =
∥

∥M2(P1 − P2)M1

∥

∥

∞
.

On the imaginary axis we have

1 = M∗M + N∗N = M∗(1 + P ∗P )M

and hence

|M | = (1 + P ∗P )−1/2.

Thus

~δ(θ1L
2, θ2L

2) =
∥

∥(1 + P ∗
2 P2)

−1/2(P1 − P2)(1 + P ∗
1 P1)

−1/2
∥

∥

∞
.

The gap between θ1L
2 and θ2L

2 is the maximum of the two directed gaps

~δ(θ1L
2, θ2L

2) and ~δ(θ2L
2, θ1L

2),

and the formula (2–1) for δL2(P1, P2) follows. A modification of this proof works

for matrix-valued functions.

However, δL2 does not induce the graph topology—stabilisation is not a robust

property with respect to this metric. Indeed, if P is a stable plant then it

is stabilised by the controller C = 0, and yet every δL2 -neighbourhood of P

contains unstable plants. It would appear that δL2 is no use for the study of

feedback systems, which is a pity given that it is so manageable. Vinnicombe’s

bright idea was to rescue this metric by introducing a winding number constraint.

An important notion for the study of robustness of stabilisation is the stability

margin. If a controller C stabilises a plant P it may do so with more or less to

spare, and various quantitative measures of this notion are in use. A natural one

is the stability margin bP,C :

bP,C =

{∥

∥H(P,C)
∥

∥

−1

H∞
if (P,C) is stable,

0 otherwise.

That this quantity truly deserves the name of stability margin is shown by the

following fact [Georgiou and Smith 1990].

Theorem 2.1. Let C be a controller that stabilises a plant P and let β > 0.

Then C stabilises the closed ball of radius β about C (with respect to the gap

metric) if and only if bP,C > β.
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Thus robust stabilisation of P in the gap metric is equivalent to finding a sta-

bilising controller C for which bP,C is large, or in other words,
∥

∥H(P,C)
∥

∥

H∞

is small. This turns out to be a Nehari problem. There are numerous further

striking results about this range of questions, of which we mention only two.

• For sufficiently small radii, the gap-metric ball of radius β centred at P co-

incides with the set of functions NM−1 with
∥

∥θP −
[

N
M

]∥

∥

H∞
< β. Thus

closeness in the gap metric is equivalent to smallness of perturbations of the

“numerator” and “denominator” in θP [Georgiou and Smith 1990, Theorem 4].

• The maximum stability margin supC bP,C is equal to
(

1− ‖Hθ∗

P
‖2

)1/2
, where

Hθ∗

P
is the Hankel operator with symbol θ∗P (see [McFarlane and Glover 1990,

Theorem 4.3], or [Georgiou and Smith 1990, Theorem 2]).

It is worth mentioning that bP,C has an interpretation in terms of the geometry

of H2⊕H2. For a stable system (P,C) let TP,C ∈ L(H2⊕H2) be the operation

of multiplication by
[

0 1

1 0

]

H(P,C)

[

1 0

0 −1

]

=

[

1

P

]

(1− CP )−1 [ 1 −C ] .

It is immediate that TP,C is idempotent. Its range is GP and its kernel is

G̃C
def
=

{[

Cv

v

]

: v, Cv ∈ H2

}

.

That is, TP,C is the projection on GP along G̃C . Clearly bP,C = ‖TP,C‖−1.

3. Duality and Vinnicombe’s Metric

Theorem 2.1 suggests a notion of duality between stability margins and met-

rics on plants. Let us say that a metric δ is dual to the stability margin bP,C

when the following holds:

C stabilises the closed δ–ball of radius β > 0 about P if and only if bP,C > β.

Another way of expressing this notion is to say that δ is dual to bP,C if, for

any stable pair (P,C), the supremum of the radii of the δ-balls about P that are

stabilised by C is bP,C .

One might incline to think that Theorem 2.1 would be the last word on metrics

dual to bP,C and that one needs to look no further than the gap metric. However,

Vinnicombe argues that we can do better in two ways by the use of his metric δV ,

which is also dual to bP,C . Firstly δV is simpler to calculate and to analyse than

the gap metric. Secondly, δV is smaller than the gap metric, so that it enables us

to establish a larger “uncertainty ball” of plants about a nominal plant P0 that

are all stabilised by a single controller. Indeed, δV is the best possible metric

in this sense: it is the smallest metric that is dual to bP,C . It enjoys a property

converse to that of duality to bP,C . For small enough β > 0 the closed δV ball

of radius β about P is the largest set of linear time–invariant plants that can
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be guaranteed to be stabilised by a controller C if all we know about C is that

bP,C > β.

For a rational function f without zeros on the imaginary axis iR we define

the winding number of f on the imaginary axis (denoted by wno(f)) to be the

winding number of f about 0 along the anticlockwise-oriented contour

{Reiθ : −π/2 ≤ θ ≤ π/2} ∪ {iy : R ≥ y ≥ −R}

indented round any pole of f on iR, with R chosen so that all zeros and poles

of f in the closed right half-plane lie inside the contour.

Definition 3.1. For rational plants P1 and P2, we have

δV (P1, P2) =

{

δL2(P1, P2) if θ∗P2
θP1

has no zero on iR and wno(θ∗P2
θP1

) = 0,

1 otherwise.

Here θ∗P denotes the unique rational function satisfying θ∗
P (iy) = θP (iy)∗ for all

y ∈ R (so that θ∗P (s) = θP (−s̄)∗).

Thus, in view of (2–1), we have

δV (P1, P2) =

{
∥

∥(1+P2P
∗
2 )−1/2(P2−P1)(1+P ∗

1 P1)
−1/2

∥

∥

∞
if wno(θ∗P2

θP1
) = 0,

1 otherwise.

Vinnicombe shows that δV is a metric—indeed, he proves the stronger assertion

that sin−1 δV is a metric. The proof of the triangle inequality requires some

calculation. He also shows that δV induces the graph topology on C(s). (An

exercise for the reader: show that the metric sin−1 δV is dual to the stability

margin sin−1 bP,C .) The chief virtue of δV is its tight duality relationship with the

stability margin bP,C , which is in fact even further–reaching than is stated above.

The metric δV gives precise information as to how adversely a perturbation of P

can affect the stability margin bP,C , as witness the following result [Vinnicombe

1993, Theorems 4.2 and 4.5].

Theorem 3.2. Let (P0, C0) be a rational stable pair and let 0 < β ≤ α <

supC bP0,C . Then these two conditions are equivalent :

(i) bP0,C0
> α.

(ii) bP,C0
> sin(sin−1 α− sin−1 β) for all P in the δV -ball of radius β about P0.

The next two conditions are also equivalent :

(iii) bP,C > sin(sin−1 α− sin−1 β) for all C satisfying bP0,C > α.

(iv) δV (P0, P ) ≤ β.

Hence a perturbation of P0 of (sin−1 δV )-magnitude ε reduces the stability mar-

gin sin−1 b.,C0
by at most ε, and moreover this estimate is sharp.

The foregoing results about rational functions are so elegant that one can

hardly resist the temptation to try to generalise them to non-rational functions.
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But to what class of functions? Much attention has been devoted in the engineer-

ing literature to the identification of a class that is wide enough to encompass all

functions of physical interest and yet enjoys the structural properties that allow

analysis of the robust stabilisation problem. Not every measurable function on

the imaginary axis can be stabilised: there exist P such that H(P,C) 6∈ H∞

for every function C. A necessary and sufficient condition that P be stabilisable

is that its graph GP be closed and have a left-invertible symbol [Georgiou and

Smith 1993, Proposition 3]. However there are also conditions of an algebraic

character that are desirable. In the rational case one often uses the fact that the

ring S of stable rational functions has the Bézout property; that is, if f and g

are coprime elements of S, there exist a and b ∈ S such that af + bg = 1. This

property fails in many natural classes of functions.

Since stabilisation is defined by the condition H(P,C) ∈ H∞ a plausible

class of functions to analyse is the field of fractions of the integral domain H∞.

However this class does not have all the properties needed for the generalisation

of the strong results obtained for rational functions. In particular, it does not

have the Bézout property. It is in any case unnecessarily large. It includes

functions that can hardly be held to represent any physical system, such as e1/s.

Georgiou and Smith [1992] obtained good results for plants belonging to the field

of fractions of the algebra of functions analytic in the open right half-plane and

continuous on its closure (in the Riemann sphere). However, they observe that

an example of S. Treil shows that plants in this class do not necessarily have

normalised coprime factor representations in the class. The same authors, in

collaboration with C. Foiaş, have extended their geometric approach to time-

varying systems [Foiaş et al. 1993]—but that ceases to be function theory.

A class that has been much studied in the present context is the Callier–

Desoer class B̂(β) for suitable β ∈ R. A concise and accessible account of the

properties of this class and the reasons for introducing it is given in [Curtain

and Zwart 1995, Sec 7.1]. It is defined as follows. Denote by A(β) the space

of measures µ on [0,∞) having trivial singular part with respect to Lebesgue

measure and satisfying
∫

[0,∞)

e−βt|µ| dt <∞.

Let Â(β) be the space of Laplace-Stieltjes transforms of elements of A(β). Let

Â−(β) =
⋃

α<β

Â(α);

thus Â−(β) is an algebra of functions analytic on the closed half-plane {Re s ≥ β}
under pointwise operations. Let Â∞(β) be the subset of Â−(β) consisting of

those members that are bounded away from 0 at infinity. Then B̂(β) is defined

to be the field of fractions of Â−(β) by the multiplicative subset Â∞(β).
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The class B̂(β) has numerous good properties. It is a commutative algebra

with identity. If P ∈ B̂(β) then P is meromorphic in {Re s ≥ α} for some

α < β. It is not true that B̂(β) has the Bézout property, because one can easily

find coprime elements that both tend to zero along the same sequence of points

of {Re s ≥ β}, whence the ideal they generate cannot contain 1. (Caveat: in the

engineering literature two elements of an algebra are often defined to be coprime

if and only if the ideal they generate is the whole algebra; in this article I have

stuck to the usual mathematical definition, according to which two elements are

coprime if and only if their only common factors are units of the algebra.)

There is, however, a good replacement for the Bézout property. Any P ∈ B̂(β)

has a factorisation P = NM−1 where N ∈ Â−(β), M ∈ Â∞(β) and the ideal

of B̂(β) generated by N and M is the whole of B̂(β). This fact permits the

extension to B̂(β) of numerous techniques from the rational case.

Another approach to identifying a suitable class of functions is to start from a

state space description of a system, or evolution equation, and see what functions

arise as the corresponding transfer functions. Some very subtle questions arise

in this way. G. Weiss [1994] has characterised the transfer functions of “regular

systems”, a class that probably includes all linear time-invariant state-space

systems of practical interest; they are analytic in a half-plane {Re s > β} for

some β > 0 and have a limit as s→∞ along the real axis. It will be interesting if

this line of investigation leads eventually to the same conclusions as the function-

theoretic viewpoint of Georgiou and Smith. So far, though, the description of

the ideal holomorphic space for the analysis of robust stabilisation awaits the

final word.

References

[Curtain and Zwart 1995] R. F. Curtain and H. Zwart, An introduction to infinite-

dimensional linear systems theory, Texts in Applied Mathematics, Springer, New
York, 1995.

[Doyle et al. 1992] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control

theory, Macmillan Publishing Company, New York, 1992.
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