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Localization Technique on the Sphere and the
Gromov–Milman Theorem on the Concentration

Phenomenon on Uniformly Convex Sphere

SEMYON ALESKER

Abstract. We give a simpler proof of the Gromov–Milman theorem on
concentration phenomenon on uniformly convex sphere. We also outline
Rohlin’s theory of measurable partitions used in the proof.

The purpose of this note is to present a localization technique for the sphere Sn

on an example of the Gromov–Milman theorem [Gr-M] about the concentration
phenomenon on uniformly convex spheres. This result was obtained in [Gr-M] in
a some more general setting. Our approach follows the same general reasoning,
but is simpler and more direct than the original approach. We also outline
Rohlin’s theory of measurable partitions, which is used in the proof. Note that
the terminology of “localization” was introduced for Rn by L. Lovász and M.
Simonovits [L-S1, L-S2]. [Gr-M] did not use such terminology and also did not
put the scheme of localization explicitly.

Note. K. Ball has informed us recently that he, jointly with R. Villa, found
an extremely short proof of the Gromov–Milman theorem for uniformly convex
sphere as an application of the Prekopa–Leindler inequality (see, e.g., [P]).

1. Related Definitions and Formulation of the
Gromov–Milman Theorem

Definition 1.1. Let us say that a finite dimensional normed space X =
(Rn+1, ‖·‖) has modulus of convexity at least δ(ε) > 0 for ε > 0, if for all vectors
x, y ∈ X such that ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε we have ‖x+y

2 ‖ ≤ 1− δ(ε).
We may assume δ(ε) to be a monotone increasing function of positive ε.

Denote by K(X) := {x ∈ X : ‖x‖ ≤ 1} the unit ball of X and by S(X) := {x ∈
X : ‖x‖ = 1} the unit sphere of X.
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For any subset A ⊂ S(X), let us denote Â :=
⋃

0≤t≤1 t ·A. Now define
a probability measure µ̂ on S(X) induced by the standard Lebesgue measure
voln+1 on Rn+1 : for any Borel subset A ⊂ S(X), let

µ̂(A) := voln+1(Â)/ voln+1 K(X).

We will prove the following theorem, due to Gromov and Milman [Gr-M].

Theorem 1.1. Let δ(ε) be the modulus of convexity of the normed (n + 1)-
dimensional space X and let µ̂ be the probability measure on S(X) as above.
Then, for every Borel set A ⊂ S(X) such that µ̂(A) ≥ 1

2 , and every ε > 0,

µ̂(Aε) ≥ 1− exp(−a(ε)n),

where Aε := {x ∈ S(X) : dist(x, A) ≤ ε}, dist(x,A) := infy∈A ‖x − y‖, a(ε) :=
δ((ε/8)− θn), where θn is such that δ(θn) = 1− (1/2)1/(n−1) ≈ log 2

n−1 .

2. Rohlin’s Theory

Following [Gr-M], we will use some results of Rohlin’s theory [R]. Let (M, Ων , ν)
be a complete measure space, i.e. M is a set, Ων is a σ-algebra of subsets of M ,
and ν is a complete probability measure on Ων .

Let ζ be some partition of M into pairwise disjoint subsets, whose union is
equal to M .

Definition 2.1. A partition ζ of M is called measurable, if there exists a count-
able family Σ = {Sα}∞α=1 of measurable subsets of M such that each element
C ∈ ζ has the form C =

⋂∞
α=1 Rα, where for all α either Rα = Sα or Rα = S̄α,

where S̄α denotes the complement of Sα.

Obviously, each element of a measurable partition is measurable.
Denote by Hζ the canonical homomorphism from M onto the factor set M/ζ.

Then M/ζ turns out to be a complete measure space, if we introduce a measure νζ

by setting a subset X ⊂ M/ζ to be measurable in M/ζ iff H−1
ζ (X) is measurable

in M and νζ(X) := ν(H−1
ζ (X)).

We will need the following theorem due to Rohlin:

Theorem 2.2 [R] Let M be a metric separable complete space, ν be a complete
Borel probability measure on M and ζ be a measurable partition of M generated
by a countable family Σ = {Sα}∞α=1 (in the sense of Definition 2.1). Then there
exists a canonical family of complete Borel probability measures {νC}C∈M/ζ on
M satisfying these conditions:

(1) For νζ-a.e. element C ∈ M/ζ, νC is concentrated on C ⊂ M , i .e. νC(C) = 1
(here we denote both the element C of M/ζ and its preimage H−1

ζ (C) in M

by the same letter C).
(2) For every ν-measurable subset A ⊂ M , νC(A) is a νζ-measurable function

of C ∈ M/ζ and
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(3) ν(A) =
∫

M/ζ
νC(A ∩ C) dνζ(C).

(4) The canonical family {νC} is unique, i .e. if {ν′C} satisfies (1)–(3), then
νC = ν′C for νζ-a.e. C.

(5) Furthermore, the family Σ′, which is an image of Σ under Hζ , generates the
σ-algebra of νζ-measurable subsets of M/ζ.

Corollary 2.3. Let M, ν, ζ be as in Theorem 2.2. Let f ∈ L1(M, ν) be an
integrable function.

Then the integral
∫

M
f dνC =

∫
C

f dνC is a νζ- integrable function of C ∈ M/ζ

and ∫

M

f dν =
∫

M/ζ

(∫

C

f dνC

)
dνζ(C).

Proof (standard). This corollary is obvious for the step functions. In general,
we may assume f ≥ 0.

For k, j ∈ N ∪ {0}, define

Akj :=
{

x ∈ M :
j

2k
≤ f(x) < min

(
j + 1
2k

, k

)}

(obviously, Akj = ∅ for j ≥ k2k) and

fk :=
∞∑

j=0

j

2k
χAkj

,

where χAkj
are characteristic functions of Akj . Clearly, fk are step functions,

0 ≤ fk(x) ≤ f(x) for every x ∈ M , the sequence {fk(x)}k∈N is nondecreasing,
and fk −→ f everywhere on M and in L1(M, ν). For fk we have:

∫

M/ζ

(∫

C

fk dνC

)
dνζ(C) =

∫

M

fk dν ≤
∫

M

f dν.

Set φk(C) =
∫

C
fk dνC . It is well defined for νζ-a.e. C ∈ M/ζ. Clearly, {φk(C)}

is nondecreasing and supk

∫
M/ζ

φk(C) dνζ(C) ≤ const < ∞.
Hence by B. Levy’s theorem {φk} converges νζ-a.e. and in L1(M/ζ, νζ) to

some function φ(C) ∈ L1(M/ζ, νζ), and φk(C) ≤ φ(C). Then for νζ-a.e. C,
∫

C

f dνC = lim
k→∞

∫

C

fk dνC = φ(C)

again, by B. Levy’s theorem applied to the measure νC .
Thus we obtain

∫

M/ζ

(∫

C

f dνC

)
dνζ =

∫

M/ζ

φ(C) dνζ = lim
k→∞

∫

M/ζ

(∫

C

fk dνC

)
dνζ

= lim
k→∞

∫

M

fk dν =
∫

M

f dν. ¤
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If the partition ζ is generated by the family Σ = {Sα}∞α=1, denote by FN a finite
(σ -) algebra of sets generated by {Sα}N

α=1, and let F̄N be its image in M/ζ under
Hζ . So F̄1 ⊂ F̄2 ⊂ · · · ⊂ F̄N ⊂ · · ·. Let F̄∞ be the minimal complete σ-algebra
containing

⋃∞
n=1 F̄N . By Theorem 2.2 (5), F̄∞ coincides with the σ-algebra of

νζ-measurable subsets of M/ζ.
For every element C ∈ M/ζ and every N ∈ N, denote by Φ̄N (C) the unique

minimal element of F̄N , which contains C (clearly, Φ̄N (C) = Hζ(
⋂N

α=1 Rα),
where Rα = Sα or S̄α). Denote its preimage in M by ΦN (C).

Corollary 2.4. Let M, ν, ζ, f be as in Corollary 2.3. Then, for νζ-a.e. C ∈
M/ζ, ∫

C

f dνC = lim
N→∞

1
ν(ΦN (C))

∫

ΦN (C)

f dν.

Proof. The function φ(C) =
∫

C
f dνC is F̄∞-measurable by Corollary 2.3.

Then, by the classical P. Levy martingale convergence theorem (see, e.g., [L-
Sh]),

φ
νζ−a.e.

= lim
N→∞

E (φ | F̄N ).

But

E (φ | F̄N )(C) =
1

νζ(Φ̄N (C))

∫

Φ̄N (C)

φ(C1) dνζ(C1).

By the definition of νζ , νζ(Φ̄N (C)) = ν(ΦN (C)). Using Corollary 2.3, we easily
check that ∫

Φ̄N (C)

φ(C1) dνζ(C1) =
∫

ΦN (C)

f dν.

So E (φ | F̄N )(C) = 1
ν(ΦN (C))

∫
ΦN (C)

f dν and the corollary is proved. ¤

3. Convex Restrictions of Measures

Let K be a convex bounded (not necessarily compact) subset of RN .

Definition 3.1. A function γ : K −→ R+ is called α-concave (α > 0), if γ1/α

is concave.

Assume that K ⊂ Rk ⊂ RN and dim K = k. Let µ be a nonnegative Borel
measure on RN , which is absolutely continuous with respect to the standard
Lebesgue measure mN , and let g := dµ

dmN
.

Definition 3.2. A measure ν on K is called a convex restriction of the measure
µ, if there exists an (n − k)-concave function γ on K such that dν = g ·γ ·dmk,
where mk is the Lebesgue measure on Rk.

Remark. Our definition of the convex restriction of measures is different from
that given in [Gr-M], but both definitions are equivalent.
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Lemma 3.3. Assume that K2 ⊂ K1 ⊂ RN and dim Ki = ki. Let a measure
ν1 on K1 be a convex restriction of a measure µ. Let a measure ν2 on K2 be a
convex restriction of ν1.

Then ν2 is a convex restriction of µ.

Proof. If dµ = g dmN , then dν1 = g γ1 dmk1 and dν2 = g γ1 γ2 dmk2 , where
γ1 is an (N − k1)-concave function on K1, γ2 is a (k1 − k2)-concave on K2. Set
α = N − k1 and β = k1 − k2.

It is sufficient to show that γ1 ·γ2 is an (α+β)-concave on K2 [Gr-M, Appendix,
Lemma 1]. Indeed, using the Hölder inequality with p = (α + β)/α and q =
(α + β)/β, we obtain for every x, y ∈ K2 and every 0 < θ < 1,

θ ·[γ1(x) γ2(x)]1/(α+β)+(1−θ)·[γ1(y) γ2(y)]1/(α+β)

≤ [θ ·γ1(x)1/α+(1−θ)·γ1(y)1/α]α/(α+β) ·[θ·γ2(x)1/β +(1−θ)·γ2(y)1/β ]β/(α+β)

≤ γ1(θ x+(1−θ) y)1/(α+β) ·γ2(θ x+(1−θ) y)1/(α+β). ¤

Later we will need the following result:

Lemma 3.4. Let a measure µ on RN is such that dµ = f ·dmN , where f is
continuous, f > 0 mN -a.e., and suppose we are given a decreasing sequence
of convex compact sets K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ · · · of full dimension N . Let
K :=

⋂∞
n=1 Kn, k := dim K. Define a sequence of probability measures {λn} such

that for any Borel subset A ⊂ RNλn(A) := µ(A∩Kn)
µ(Kn) (note that our assumptions

imply that µ(Kn) 6= 0).
Then one can choose a subsequence {nl} such that {λnl

} converges weakly to
a measure concentrated on K, which is a convex restriction of µ.

Proof. Let E be the affine hull of K, and put k = dim E.
Consider new convex sets

K̃n :=
{
(x, y) ∈ E ⊕ E⊥ : (x, vol(Kn)1/(N−k) ·y) ∈ Kn

}
.

By the Cavalieri principle, vol(K̃n) = 1. Replace K̃n by its (N − k)-dimensional
Schwarz symmetrization K ′

n with respect to E. Then K ′
n are also convex com-

pact bodies, vol(K ′
n) = 1 and K ′

n ⊃ K. This and their rotation invariance imply
easily that K ′

n are uniformly bounded. Hence by the Blaschke selection theorem
one can choose a subsequence {nl} such that K ′

nl
converges to some convex com-

pact set M with respect to the Hausdorff metric. Obviously, M is also invariant
with respect to rotations around E, vol(M) = 1, M ⊃ K, and M ∩ E = K,
because

⋂
l Knl

= K.
Consider a function γ on K:

γ(x) = volN−k

(
M ∩ (x + E⊥)

)
.
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Then γ is (N − k)-concave by Brunn’s theorem. We will show that for every
continuous function u on RN

1
µ(Knl

)

∫

Knl

u(x) f(x)dmN (x) −→
∫

K

u(x) f(x) γ(x) dmk(x).

This will prove the lemma.
Denote v := u·f and consider a function v′(x) := v(PrE x), where PrE is the

orthogonal projection onto E. Since v ≡ v′ on K, for any ε > 0 there exists an
open neighborhood U of K such that |v − v′| < ε on U . But Kn ⊂ U for large
n, hence

1
µ(Kn)

∫

Kn

(v − v′) dmN −→ 0, n −→∞.

By the Fubini theorem,

1
µ(Knl

)

∫

Knl

v′(x) dmN (x) =
∫

K′
nl

v′(x) dmN (x) −→
∫

M

v′(x)dmN (x) =
∫

K

v′(x) γ(x)dmk(x) =
∫

K

u(x) f(x) γ(x) dmk(x). ¤

4. Convex Partitions

Assume that M ⊂ RN is a convex compact body, dim M = N ≥ 3, M 3 0.
Let µ be a probability measure on M , which is absolutely continuous with respect
to the Lebesgue measure mN , dµ = fdmN , where f is continuous and f > 0 mN -
a.e. on M .

Fix A1, A2 disjoint closed subsets of ∂M such that Âi :=
⋃

0≤t≤1 t·Ai, i = 1, 2

have nonzero measure µ. Set λ := µ(Â1)

µ(Â2)
.

Using the idea of [Gr-M], we will construct a measurable (cf. Definition 2.1)
partition ζ of the convex set M satisfying the following properties (in the notation
of Section 2):

(4.1) Every element C ∈ ζ of this partition is a convex subset of M and has the
form C =

⋃
0≤t≤1 t·(C ∩ ∂M).

(4.2) νC is the convex restriction of µ to C for νζ-a.e. C ∈ ζ.
(4.3) νC(Â1) = λ νC(Â2) for νζ-a.e. C ∈ ζ.
(4.4) Moreover, if the measure µ is homogeneous of degree α > 0, i.e. for every

Borel subset T ⊂ M and every t ∈ [0, 1] µ(t·T ) = tα ·µ(T ), then νC is also
homogeneous of degree α for νζ-a.e. C ∈ ζ.

The construction of such partition uses the Borsuk–Ulam theorem.
Let SN−1 be the Euclidean sphere in RN . For x ∈ SN−1, denote H+

x :={
y ∈ RN : (y, x) ≥ 0

}
the closed half-space. So H−

x := RN − H+
x is an open

half-space. Then M+ := M ∩H+
x and M− := M ∩H−

x are convex sets.
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It will be more convenient to consider M− as a compact set. Namely, replace
M by a new set, where the hyperplane Hx = {y | 〈y, x〉 = 0} is considered
as a “double” set, that is, one copy of it belongs to M+ and another to M−

(this is similar to the situation where, if we consider the dyadic points of the
unit interval as “double” points, we obtain the Cantor set). In the steps that
follow, each hyperplane we construct will be considered as “double”. This will
not change M and its factor set by the partition constructed below, since these
spaces are Lebesgue spaces in the sense of [R].

Consider a map φ : SN−1 −→ R2 such that

φ(x) =
(
µ(Â1 ∩H+

x ), µ(Â2 ∩H+
x )

)
.

Since φ is continuous and N ≥ 3, we can apply the Borsuk–Ulam theorem and
find x ∈ SN−1 such that µ(Âi∩H±

x ) = 1
2µ(Âi), for i = 1, 2. Now apply the same

argument to M+ and M− separately, replacing Ai by A+
i := Ai ∩ H+

x ⊂ M+

and setting A−i := Ai ∩H−
x ⊂ M− correspondingly. So after the second use of

the Borsuk–Ulam theorem we obtain a partition of M into four disjoint convex
subsets M++, M+−, M−+, M−−. By construction µ(Â1 ∩ M++) = λµ(Â2 ∩
M++), and this holds for all the other elements of the partition.

Repeating this procedure infinitely, we obtain a partition ζ of M , which is
obviously measurable and satisfies (4.1) by construction. The property (4.2)
follows immediately from Corollary 2.4 and Lemma 3.4. Corollary 2.4 implies
also (4.3).

In order to prove (4.4), recall that the Borel σ-algebra of subsets of RN is
generated by a countable number of sets {Tj}∞j=1. Since for νζ-a.e. C νC is the
convex restriction of µ, νC is absolutely continuous with respect to the Lebesgue
measure on C; hence it is sufficient to check (4.4) only for t ∈ Q. So we have to
prove (4.4) for fixed T and t. And this again follows from Corollary 2.4.

By Theorem 2.1, µ(Â1) =
∫

M/ζ
νC(Â1) dνζ(C). Hence we can choose C such

that νC(Â1 ∩ C) = νC(Â1) ≥ µ(Â1), and C satisfies (4.1)-(4.4). Let us show
that dim C < N . Indeed, C =

⋂∞
k=1 Vk, where Vk denotes the unique element of

the partition of M constructed on the k-th step as above, which contains C. All
Vk are convex, hence if dimC = N , then dim Vk = N . By Corollary 2.4 and the
construction,

νC(Â1) = lim
k→∞

1
µ(Vk)

µ(Â1 ∩ Vk) = lim
k→∞

1
µ(Vk)

· 1
2k

µ(Â1).

Since we have assumed that dµ
dmN

> 0 mN -a.e., µ(Vk) ≥ µ(C) > 0. So the right
hand limit is equal to 0, contradicting the choice of C.

Let us fix such a C and denote it by M1. Denote also νC by µ1. Now we come
back to the situation where M = K(X) is the unit ball of X = (Rn+1, ‖·‖),
µ is the normalized Lebesgue measure on M , and A1, A2 ⊂ ∂M = S(X) are
compact and disjoint. Thus µ1 is a convex restriction of the Lebesgue measure,
and it satisfies (4.4) with α = n + 1.
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Since µ1(Â1 ∩M1) = λµ1(Â2 ∩M1) > 0
(
recall that λ = µ(Â1)

µ(Â2)
= mn+1(Â1)

mn+1(Â2)

)
,

we have dim M1 ≥ 2. Obviously, M1 is convex and compact.
If dim M1 ≥ 3, the use of the Borsuk–Ulam theorem is possible and by the

same procedure we construct a convex compact subset M2 ⊂ M1 and a convex
restriction µ2 of the measure µ1 satisfying (4.1)-(4.4) with α = n+1 and λµ2(Â2∩
M2) = µ2(Â1 ∩M2) ≥ µ1(Â1 ∩M1) ≥ µ(Â1) = mn+1(Â1).

By Lemma 3.3, µ2 is a convex restriction of mn+1. Repeating this argument,
after at most n− 1 steps we obtain a 2-dimensional convex compact set N ⊂ M

and a measure ν on N such that:

(4.5) N =
⋃

0≤t≤1 t · (N ∩ S(X)) and N is contained in some half-plane (by
construction).

(4.6) There exists an (n − 1)-concave function γ on N such that dν = γ dm2

(where m2 is the Lebesgue measure on R2 ).

(4.7) λ ν(Â2 ∩N) = ν(Â1 ∩N) ≥ mn+1(Â1) (= µ̂(A1)), where λ = mn+1(Â1)

mn+1(Â2)
as

above.
(4.8) ν is homogeneous of degree n + 1, i.e. for every Borel subset T ⊂ R2 and

every t ∈ [0, 1],
ν(t·T ) = tn+1 ·ν(T ).

Note that (4.6) and (4.8) immediately imply

(4.9) γ is homogeneous of degree n − 1, i.e. γ(t·x) = tn−1 γ(x) for every x ∈
N, t ∈ [0, 1].

Clearly, by (4.5) N ∩S(X) is a spherical segment. Denote it by I = [a, b]. Since
the Banach–Mazur distance between any 2-dimensional normed space and the
Euclidean ball is at most

√
2, we can find a Euclidean norm |·| on spanN such

that

(4.10)
1√
2
|x| ≤ ‖x‖ ≤ |x|, ∀x ∈ spanN.

For every two points x, y ∈ I, denote by ρ(x, y) the length of the segment
[x, y] ⊂ I with respect to ‖·‖, i.e. if [x, y] is parameterized by some parameter
τ ∈ [0, 1], then

ρ(x, y) := sup
0≤τ1<···<τk≤1

k−1∑

j=1

‖τj+1 − τj‖.

Similarly, denote by d(x, y) the length of [x, y] with respect to |·|.
By a result of [S],

‖x− y‖ ≤ ρ(x, y) ≤ 2 ‖x− y‖.
Thus we obtain

(4.11) |x− y| ≤ d(x, y) ≤
√

2ρ(x, y) ≤ 2
√

2 ‖x− y‖ ≤ 2
√

2 |x− y|.
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On I we have a measure ν̂ such that ν̂(A) := ν(Â), where A ⊂ I is any Borel
subset and Â =

⋃
0≤t≤1 t·A. Then dν̂ = fν dt, where dt is an element of the

Euclidean length and fν is a continuous function. By (4.6) and (4.9),

ν(Â) =
∫

Â

γ dm2 =
1

n + 1

∫

A

γ(t) dt.

So fν = 1
n+1γ. The rest of the paper closely follows [Gr-M].

For x, y ∈ I, (4.6) implies

(4.12) γ1/(n−1)
(

x + y

2

)
≥ γ1/(n−1)(x) + γ1/(n−1)(y)

2
.

Set z = x+y
2 /‖x+y

2 ‖ ∈ [x, y]. By (4.9) and the inequality

‖x + y

2
‖ ≤ 1− δ(‖x− y‖),

we have

(4.13) γ
(

x + y

2

)
≤ (1− δ(‖x− y‖))n−1

γ(z).

It easily follows from the inequality (4.11) that for some absolute constant
α ∈ (

0, 1
2

)
,

(4.14) d(z, x) ≥ α d(x, y), and d(z, y) ≥ α d(x, y).

Let us parameterize the segment I = [a, b] by the Euclidean length of the
segment [a, x], namely if x corresponds to t1, it means d(x, a) = t1. Let y

corresponds to t2 > t1, then d(x, y) = t2 − t1. Clearly, (4.12)–(4.14) imply

(4.15)
f

1/(n−1)
ν (t1) + f

1/(n−1)
ν (t2)

2
≤ (1− δ(‖x− y‖)) · max

z∈[t1+α (t2−t1), t2−α (t2−t1)]
fν(z)1/(n−1).

Then easily fν has no local minima and at most one local maximum inside
I (this local maximum must be global). Denote the global maximum of fν

by t0 ∈ [0, l] (where l = d(a, b) ). Then obviously fν increases on [0, t0] and
decreases on [t0, l].

For any t ∈ [0, t0] and any θ such that 0 ≤ t − θ < t ≤ t0, (4.15) and the
monotonicity of fν on [0, t0] imply

fν(t− θ) ≤ (1− δ(‖x− y‖))n−1
fν(t),

where x corresponds to t− θ, and y corresponds to t. But by (4.11) ‖x− y‖ ≥
1

2
√

2
d(x, y) = θ

2
√

2
, and we obtain

(4.16) fν(t− θ) ≤
(

1− δ
(

θ

2
√

2

))n−1

fν(t).
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Similarly, if t0 ≤ t < t + θ ≤ l, then

(4.17) fν(t + θ) ≤
(

1− δ
(

θ√
2

))n−1

fν(t).

Hence, for t0 − 2 θ ≥ 0,

ν̂([0, t0 − 2 θ]) =
∫ t0−2 θ

0

fν(t) dt ≤
(

1− δ
(

θ

2
√

2

))n−1 ∫ t0−θ

θ

fν(t) dt

≤
(

1− δ
(

θ

2
√

2

))n−1

(ν̂([0, t0 − 2 θ]) + ν̂([t0 − 2 θ, t0 − θ])) .

Thus

(4.18) ν̂([0, t0 − 2 θ]) ≤

(
1− δ( θ

2
√

2
)
)n−1

1−
(
1− δ

(
θ

2
√

2

))n−1 ν̂([t0 − 2 θ, t0]).

In the same way, for t0 + 2 θ ≤ l we have

(4.19) ν̂([t0 + 2 θ, l]) ≤

(
1− δ( θ

2
√

2
)
)n−1

1−
(
1− δ

(
θ

2
√

2

))n−1 ν̂([t0, t0 + 2θ]).

Adding (4.18) and (4.19) and using ν̂([0, l]) = 1, we obtain:

Lemma 4.20. ν̂(I − [t0 − 2 θ, t0 + 2 θ]) ≤
(
1− δ

(
θ

2
√

2

))n−1

≈ e
−δ( θ

2
√

2
(n−1))

.

5. Proof of Theorem 1.1

(We repeat the argument of [Gr-M].)
Let A ⊂ S(X), µ̂(A) ≥ 1

2 (the measure µ̂ was defined in Section 1). Fix
ε ∈ (0, 1). Set A1 := A, A2 := S(X)−Aε. Hence we can find a compact convex
2-dimensional set N with a probability measure ν satisfying (4.5)–(4.9). Let c

be the point on I with the maximal density of ν̂.
If θn is such that δ(θn) = 1 − ( 1

2 )1/(n−1) ≈ log 2
n−1 , then ν̂{x ∈ I : d(x, c) ≤

4
√

2 θn} ≥ 1
2 . By (4.7), ν̂(A1 ∩ I) ≥ 1

2 ; hence there exists x′ ∈ A1 ∩ I such that
‖x′ − c‖ ≤ d(x′, c) ≤ 4

√
2θn. Now let us take θ such that ε = 4

√
2 (θ + θn).

For an ε - neighborhood of {x′} (with respect to the original norm ‖·‖ ), we
have {x′}ε ⊃ {c}4√2 θ and {x′}ε∩A2 = ∅. Therefore, again by Lemma 4.20 and
(4.11)

ν̂(A2 ∩ I) ≤ ν̂(I − {x : d(x, c) ≤ 4
√

2θ}) ≤ (1− δ(θ))n−1

≈ exp(−δ(θ) (n− 1)) = exp
(
−δ

(
ε

4
√

2
− θn

)
(n− 1)

)
.
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By (4.7),

µ(A2) =
ν̂(A2 ∩ I)
ν̂(A1 ∩ I)

µ(A1) ≤ ν̂(A2 ∩ I) ≤ exp
(
−δ

(
ε

4
√

2
− θn

)
(n− 1)

)
. ¤
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