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Geometric Inequalities in Option Pricing

CHRISTER BORELL

ABSTRACT. This paper discusses various geometric inequalities in option
pricing assuming that the underlying stock prices are governed by a joint
geometric Brownian motion. In particular, inequalities of isoperimetric
type are proved for different classes of derivative securities. Moreover, the
paper discusses the option on the minimum of several assets and, among
other things, proves a log-concavity property of its price.

1. Introduction

The purpose of this paper is to prove various geometric inequalities in option
pricing using familiar inequalities of the Brunn-Minkowski type in Gauss space.

To begin with, recall that a European (American) call [put]| option is defined
as the right to buy [sell] one share of stock at a specified price on (or before)
a specified date. The specified price is referred to as the exercise price and the
terminal date of the contract is called the expiration date or maturity date.
In fact, already the early paper [20] by Merton treats a variety of convexity
properties of puts and calls, sometimes without any distributional assumptions
on the underlying stock prices. Here, however, it will always be assumed that
the price process X(t) = (X1(¢),...,Xm(f)), t > 0, of the underlying risky
assets AX7,..., X, is governed by a so called joint geometric Brownian motion.
Furthermore, all options will be of European type and so, from now on, option
will always mean option of European type.

Now suppose f : RT* — [0, 400[ is a continuous function such that

f(x) <A<1+Zmi> for v = (x1,...,2m) € RY,
i=1
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for appropriate constants a, A > 0, and suppose a certain derivative security
L{f pays f(X(T)) at the maturity time 7. Here f is termed a payoff function.
If ¢ is a time point prior to T, set 7 = T — t, and denote by us(r, X(t)) the
(theoretic) price of L{JT at time t. If uy(7,2) = up(7,21,...,2n) is positive and
i€ {l,...,m} is fixed, the quantity

x;  Ous(r,x)

7 —
vi(ne) = up(r,z) Oy
is called the elasticity of the price us(7, z) relative to the price ;. The quantities
w} (1,2),...,9F(7,x) enter quite naturally in option pricing in connection with
so called hedging against the contingent claim Uf. Actually, we will below
occasionally consider a slightly larger class of payoff functions than stated here.
Now let the function f(z), € R, be a log-concave function of the log-price
vector Inz = (Inxy,...,Inx,,). In Section 3, we prove, among other things, that
the function 7/2
f is not identically equal to zero, then for any fixed ¢ € {1,...,m} and 7 > 0
the elasticity function 1/)}(7', x) is a non-increasing function of z; when the other
prices x1,...,%i—1,Ti+1,-- ., Ly, are held fixed. Note that these results apply to
the payoff function

ug(7, ) is a log-concave function of (7,lnx). In particular, if

f)= min a; (1)

i=1,...,m

which is of interest in connection with the cheapest to deliver option. The deriv-
ative security corresponding to the payoff function in (1) is sometimes referred
to as the quality option (see e.g. Boyle [11]).

The main concern in this paper is to prove certain inequalities of isoperimetric
type. More explicitly, consider the same risky assets as above and suppose a > 0
is given. We shall write f € C, if f : R — [0,+o00[ is a locally Lipschitz
continuous function such that

m

S

i=1

< ..
o, <a+ f(x) ae

with respect to Lebesgue measure in R™. The class C, is convex and contains
the zero payoff function. Moreover, the class C, contains the payoff functions
of all puts and calls on the X;,i = 1,...,m, with exercise prices less than or
equal to a. In addition, if f, g € C,, then max(f,g) € C, and min(f,g) € C,. In
particular, the function in (1) as well as the function
f(z) = max ay (2)
i=1,...,m
belong to the class C, for all a > 0.
In Section 4 we discuss, among other things, the Monte Carlo method for
computing the option price us(7,z) when f is as in (2). Let X,, be the most
volatile asset of the risky assets X1,..., X, and let o, be the volatility of A,,.
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The (crude) Monte Carlo method then gives us a certain unbiased estimator Z y
of the option price uy(7, ) and we prove that

o

zs]gegle, e> 0. (3)
Note that the right-hand side of (3) is independent of the option price uy (7, z).

In Section 4 we also prove the following property of the class C, for fixed a > 0.
Suppose v is the expected exercise value of a call on X, with the maturity date
T and exercise price a. Then, amongst all derivative securities Z/{}F with f € C,
and with the expected payoff v at time T, the payoff at time 7" has maximal
variance for the call on &), with the exercise price a.

Finally, in Section 5 we discuss inequalities of isoperimetric type for other
classes of payoff functions than those considered above.

2. Notation and Basic Results

Throughout this paper X;,7 =1,...,m, stand for m risky assets with a joint
price process X (t) = (X1(t),..., Xn(t)), t > 0, governed by an m-dimensional
geometric Brownian motion. Stated more explicitly, there are linearly indepen-

dent unit vectors ¢;, ¢ = 1,...,m, in R™ and a normalized Brownian motion
(W(t)) in R™ such that

dX;(t

X:((t)) = (i +02/2)dt + o dWi(t), i=1,...,m
for suitable p1,...,um € R and o1 > 0,...,0,, > 0, where

Wi(t) = (¢;, W(t)), i=1,...,m.
Here, (-,-) = (-, )r~ denotes the standard scalar product in R™.
In what follows, t < T and we set
M:VT(T) = e‘gﬂr‘”wi(ﬂ fori=1,...,m
and
My (1) = (Mg (7). ... MgYm (7)),

where 7 = T — t. Moreover, if £ = (&1,...,&m), 1= (N1,---,0m) € R™, we will
make frequent use of the following notation:

€l = (&l 1&ml)
1111 ZZ\&W
1
[€ll2 = V(& Erm

[€lloc = max ||
1=1,....m
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ef = (651, e eﬁm)
Inet =¢
and

&n = (517717 cee 7§m77m)~

Now consider a derivative security Z/lfT with the payoff f(X(T)) at time T.
Below, for technical reasons, it will be assumed that f : R — R is a continuous
function such that

E[| f(2M,"(1)|] < +00

for all z € R, 7> 0, and p > 0 and a function f satisfying these assumptions
will be called a payoff function. If r denotes the risk-free interest rate and if
us(r, X(t)) denotes the value of the derivative security U} at time ¢ € [0, T, we
have

up(r,x) = Ele™"" f(ze"™ M, ())]. (4)

A proof this equation is given e.g. in Duffie’s book [14] or in the basic paper [16]
by Harrison and Pliska. If f is a payoff function it is readily seen that wu,(r, z)
is a payoff function as a function of x for fixed 7. We now define u (7, z) for all
7 > 0 by the equation (4) and set (S;f)(z) = uy(7,z) if 7 > 0. Then the family
(S7)r>0 becomes a semi-group, the so called option semi-group of the underlying
risky assets A7,..., X,.

Throughout this paper, if £ € R, we let £+ = max(0,£) and £~ = (=¢)™T.
Moreover, given a > 0 and i € {1,...,m}, let

Caji(2) = (2 —a)"
and

Pai(z) = (i —a)” = (a—z;)".
Here the derivative security Z/lcTa , s called a call on &; with exercise price a and
maturity time 7" and the derivative security L{gﬂ . is called a put on A&; with
exercise price a and maturity time 7. From (4) we have the following famous
formula by Black and Scholes, viz.

g+ (4 %) g+ (- %)
. n -t T+ 5T J—— n -t r—5)T
uca‘i(x,r)—a:fb( ;- > ae <I>< ;- )

where

. e dn
we= [ Vo

is the distribution function of a real-valued Gaussian random variable with unit
variance and expectation zero. Moreover, by the put-call parity relation we have

Up, (T,2) = ae™"" +uc, (T,1) — ;.
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In the following X, denotes a bond with the value Xo(t) = "7 at time ¢.
Furthermore, we set

i) = P (), i=1,...m (5)

axi

and

$h(r,x) = € (ug(1,0) = Y _xigy(7, 7).
1

A portfolio consisting of gbgc(T —5,X(s)) units of & for all j =0,...,m at any
time s € [t,T'[ has the value us(7, X (t)) at time ¢ and

FOET) = g X(0)+ 3 [ 4T = 5.3,(9) aX, ).

This so called self-financing trading strategy in the X;, j = 0,...,m, is basic
to the theory of option pricing and much more details may be found in [14] and
[16]. The portfolio ¢; = (4}, ¢}, ..., ) is often called a hedge against the
contingent claim Z/lfT. If uy(7, ) is positive for all z, the corresponding relative

portfolio 1y = (4,9}, ..., ¢} is defined by
1/);}(7,1‘) = xi(béc(r,ac)/uf(ﬂx) , i=1,...,m
and

W=1- dj.
1=1

Given i € {1,...,m} the quantity 1/1;}(7', x) is called the elasticity of the price
us (7, z) relative to the price z;.
A payoff function f is said to be homogeneous if

flax) =af(x), a>0, zeRTY

and for such functions, ¢S)c = 0 and uy is independent of r. Typical examples of
homogeneous payoff functions are

fmin(z) = min z;
i=1,....,m
and
fmax(z) = max x;.
i=1,....m

Finally, for future reference recall that a real-valued random variable is said
to have a N(0; 1)-distribution if its distribution function equals P.
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3. Derivative Securities with Log-Concave Payoff Functions

Recall that a non-negative function h defined on a convex subset D of a vector
space is log-concave if

h(OS + (1= 0)n) > h(€)°h(n)'~? (6)

for all &,m € D and all § € ]0,1[. If the inequality in (6) is reversed, then h
is said to be log-convex. It is well known and simple to prove that the class of
all log-convex functions on a convex set is closed under addition. However, the
class of all log-concave functions defined on a convex set containing more than
one point is not closed under addition.

The options on the minimum and maximum of several assets have been treated
by Stulz [22], Johnson [18], Boyle and Tse [12] and others. The important
cheapest to deliver option involves the consideration of options on the minimum
of several assets i.e., the so called quality option (for more details see e.g. Boyle
[11]). In fact, options on the minimum and maximum of two assets already
appear implicitly in the Margrabe paper [19], which considers the option to
exchange one asset for another. We will comment more on the Margrabe option
below. Note that the payoff function fin(x) is a log-concave function of the
asset price vector x = (x1,...,2,;,) as well as of the asset log-price vector Inz =
(Inzy,...,Inz,,). Moreover, the payoff function fmax () is a log-convex function
of the asset log-price vector Inz. If a payoff function f is concave (convex), then
the security price uy(7,z) is a concave (convex) function of z for fixed 7 as is
readily seen from equation (4) (cf. [20]). If the payoff function f(z) is a log-
convex function of the log-price vector In z and f is not identically equal to zero,
then it follows from the equation (4) that the option price u (7, x) is a log-convex
and positive function of In x for fixed 7. In particular, for any fixed ¢ = 1,...,m,
the function

CL’i—>1[)}(7’,1’1,...,"Ei,hl'hl'iJrl,...,(L'm) (7)
is non-decreasing since
~ Olnug(r,ed)

w;}(r,x)—T, x = é€b. (8)

The main purpose of this section is to prove that the function in (7) is non-
increasing if the payoff function f(x) is a log-concave function of the log-price
vector Inx and f is not identically equal to zero. To this end we will make use
of a very nice property of log-concave functions, first proved in a general setting
by Prékopa [21] and which reads as follows:

If the function f(§,m,...,Mn) s a log-concave function of (§,m1,...,Mn) €
D x R™, where D is convez, then the integral

. f(§77]1a-~-777n)d771'-'d77n
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18 a log-concave function of £ € D.

Below, this result will be referred to as Prékopa’s theorem. Note that the
Davidovi¢, Korenbljum, and Hacet early paper [13] treats an important special
case of Prékopa’s theorem.

THEOREM 3.1. (a) If the payoff function f(z) is a log-concave function of the
log-price vector Inx, then the function Tm/2Uf(T, x) is a log-concave function
of (r,Inz). In particular, if f is not identically equal to zero, then for any
i=1,...,m and 7 > 0, the function in (7) is non-increasing.

(b) If the payoff function f(x) is homogeneous and a log-concave function of
the log-price vector Inz, then the function 7(m—1/2
function of (1,Inx).

ug(7, ) is a log-concave

To prove Theorem 3.1, we need the following result:

LemMA 3.1. If g : R — R is a homogeneous payoff function and m > 2, then

Elg(MY ()] = Elg(MY (7)., My-" (1), 1)]

oy 1
where
o = \/012 — 2(¢i, ¢)0i0m + 02,
and
Wi =(oiW; — 0, W)/ o}
fori=1,...,m—1.

In the special case m = 2, Lemma 3.1 is implicit in [20] (with a proof different
from the one below).
PrOOF. We have that

E[Q(M;/V(T))] _ ]E[g(eaﬁrcfi‘W{*(T)7 o ,eavrt—1+0:n,1WT):171(T), 1)eam+ame(7)]
for appropriate constants ai,...,a,, independent of g. By conditioning on
WH*(r) = (Wi (r),..., Wk _1(7)) the right-hand side equals

[E[g(eal-F”IWf(T)’ o etme 1T W (7)) 1)€a:n+<b/7W*(7—)>]

for appropriate a,, € R and ' € R™~L. Therefore, by translating the probability
law of W*(7), we get

Elg(MY ()] = Elg(M7 (7)., My-m = (1), 1)er W @ (g)

for suitable ¢ € R and b € R™~!. Now let C denote the covariance matrix of
W*(1) and let ey, ...,e,_1 be the standard basis in R™~!. Then by choosing
g(z) =xz; fori=1,...,m, we have

(b+ore;,Cb+ore))+2a—0>=0 fori=1,....,m—1,

(b,CbY + 2a = 0.
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From this we get (e;,Cb) = 0 for i = 1,...,m — 1, and it follows that b = 0
since C is invertible. Hence also a = 0. In view of (9), Lemma 3.1 is thereby
completely proved. (I

PrROOF OF THEOREM 3.1. We first prove Part (b). However, for the sake of
simplicity we restrict ourselves to the special case m = 2; the general case is
proved in a similar way. To prove Part (b) with m = 2 note that Lemma 3.1

yields
o 2 d(
ur(7,2) = x eiTTJr”lﬁc,:c e T 5
tra) = [ fon e

i . 2 d¢

,$7—+0-< _ ¢t
Tur(T, ) = rie” 2 16 xo)e” 27 .
VTus (7, ) /Rf(l 2) o

We next introduce the new vector variable £ = Inx and have

Jrug(r,z) = / g(r,€,0) dC

and hence

where
2

— fl‘?ﬂ'ﬁ( &2 g
9(1,6,0) = fle e )\/ﬂ'
Since the function ,
i, (eR, 7>0
i
is convex we conclude that the function g(7,&, () is a log-concave function of
(1,£,¢). The Prékopa theorem now implies that the integral

/ g(r,€.C) dC
R

is a log-concave function of (7,£). This proves Part (b) of Theorem 3.1. The
first statement in Part (a) of Theorem 3.1 is proved in a similar way as Part (b)
of Theorem 3.1. Moreover, the last statement in Part (a) of Theorem 3.1 now
follows from (8). This concludes our proof of Theorem 3.1. d

EXAMPLE 3.1. Set fo(z) = min(x1, z2) and suppose « € ]0, +oo[. Then, in view
of Theorem 3.1, the function 7%uy, (7, x) is a log-concave function of (7,Inx) if
o> % We now claim that the condition o > % is necessary for this conclusion.
To see this first note the equation

In 22 _ 9T o2 _ 9T
— P —F 2 o —®2 2 10
uf, (T,x) =21 < = >+$2 ( T (10)
which is implicit in the Margrabe paper [19] (here o} is as in Lemma 3.1 with
m = 2). In fact, Margrabe determines uy, when fi(z) = max(0, 2 — x1) and,
since uy,(T,2) = x2 — uy, (7,2), equation (10) is an immediate consequence of
his paper. A direct derivation of (10) is also simple using Lemma 3.1. To see
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this, set a = o}+/7 and let G be a real-valued centered Gaussian random variable
with unit variance. Now using Lemma 3.1 it follows that
a2
ug, (1, 7) = E[min(zie™ T T9C 25)]
so that
o2 1 2 1 2
ug, (1,2) = 2B e T % G < = 244 +2P |G > — m2 L),
a T 2 a T 2
By applying the translation formula of Gaussian measures, we get
1 2 1 2
ugy (r,2) = 2P {G < <lnij - "2)] + 2P [G <- (1nf”1 _ “2)]

and (10) follows. In particular, we have

*

ufo(Tv (551,51/'1)) = leé(_%\ﬁ)
Now set
g(1) = alnt +In(®(—/7)), 7>0.

The claim above follows if we prove that g is not concave for any a € ]0, % [ To
this end, set o = ®’ so that

gy = P(—=V7)
T 2VTB(—/T)’
The function ¢’ is non-increasing if and only if the function

h(S):;—Z;;)((S_)s), s>0

is non-increasing. Now

, 2a S 1 S
iils) = s + 25((—)5) <1 * 2 sg((—)s)>

and, by using the Laplace-Feller inequality (see e.g. Tong [24]),

1 1 3 1
q)(_s)_(p(s)<5_53+55+0<57>>’ ass — +oo.

From this (s)

(s s

B 1o (Z-Frod) ST
and we get
©=S ey e (ran (e ) volw)
Wis) = 53 +2<I>(fs) T I+ 5 st sz st +0 56 ’

as s — +o0o. Thus

200 s) 2 1
h'(s) = -3t 2:5((—)8)84(1+0(82>)’ ass — 400,




38 CHRISTER BORELL

and, finally,

2c 1 1 1
W (s) =‘ss+1+o(g)ss(”0<sz)>v 888 — +00.

Therefore, if A'(s) < 0 for all s > 0, then necessarily a > % This proves that

,%[ and, hence, that the function

T%uy, (7, ) is not a log-concave function of (7,Inz) for any a € |0, 1 [. O

the function g is not concave for any a € ]0

THEOREM 3.2. If fo = fumin, then the functions T(m_l)/qu;}o (ryx),i=1,...,m,
are log-concave functions of (1,Inz).

Proor. Using (5) with f = fy, we have from Lemma 3.1 that

. e
7 (7, 2) = E[h(mi M2 (1), 2 1 M (7), )]

m—1

where _
hz) = { 1 Tf T < fo(x1, ..., Zm-1,1),
0 if T 2 fo(ll?l, ey T —1, 1)
Since h is a log-concave function of Inz, as in the proof of Theorem 3.1, the
Prékopa theorem implies that the function 7("~1)/ 2¢7 (1,x) is a log-concave
function of (7,lnz). In a similar way we conclude that the functions

T(m71)/2¢}0(7_7 x), i=1,....m—1,

are log-concave functions of (7,Inx). This completes the proof of Theorem 3.2.
O

4. Extremal Properties of Calls

In this section we are going to prove an inequality of the so called Berwald’s
type (cf. [3]) for a certain class of option prices. To begin with we therefore
review the Berwald inequality as well as some other closely related results due
to the author [6], [8].

A real-valued function ) is said to be convex with respect to another real-
valued function ¢ if there exists a convex continuous function x such that ¢ =
ko . We shall write ¢ € Vy(¢p) if the function v : [0, +0o[ — R is convex with
respect to the non-decreasing continuous function ¢ : [0, +00[ — R.

Now let K be a convex body in R™ with volume |K| and suppose [ : K —
10, +o0] is a given concave function. Moreover, suppose ¥ € Vy(p) and

ﬁ /K o(f(@))dz=n / (et (1 — ) dt

where ¢ is a suitable positive number. Under these premises Berwald [3] proves
that

1 ' n—1
T /K O(f(z))dz < n / P(ED (1 — 1) dt,
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In [6] the same inequality is established for so called dome functions on K ( i.e.
functions on K which are possible to represent as the supremum of a suitable
family of uniformly bounded and positive concave functions on K). Clearly,
the Berwald inequality then also remains true for all functions on K which are
equimeasurable with appropriate dome functions on K, a class of functions,
which is optimal in connection with the Berwald inequality [6]. All these results
depend on the standard Brunn-Minkowski inequality for volume measure in R™.
In our paper [8] we proved an inequality of the Berwald type for certain sublinear
functions using the so called isoperimetric inequality in Gauss space. Here, again,
we will apply the isoperimetric inequality in Gauss space but this time to a class
of functions different from the one in [8].

Throughout the remaining part of this paper we assume that G = (G1,...,Gp)
is the standard Gaussian random vector in R™ with stochastically independent
and N(0; 1)-distributed components. The isoperimetric inequality for the ran-
dom vector G = (G1,...,Gy,), independently discovered by Sudakov and Tsyrel-
son [23] and the author [7], reads as follows:

If A CR™ is a Borel set and P|G € A] = P|G,, < & for an appropriate

a € [0, +00], then P[G € A+ B(0;¢)] > P[G,, < a+¢€| for e > 0, where

B(0;e) = {£ € R™; [|€]l2 < e}
For new proofs of the isoperimetric inequality in Gauss space, see Bakry and
Ledoux [1] and Bobkov [5]. Before we apply isoperimetry in Gauss space to
option pricing we have to discuss some properties of so called Lipschitz functions.

A real-valued function g defined on an open subset V of R™ belongs to the
Lipschitz class Lip, (V;C), if C > 0 and

19(6) =g < CllE = nlloo, &meV.

By a theorem of Rademacher (see e.g. Federer [15]), any function g of Lipschitz
class Lip, (V; C) is differentiable a.e. with respect to Lebesgue measure and

Vgl <C ae.
Furthermore, if 0 < Cy < C and
IVg(&)lli < Co ae.

then g € Lip(V;Cp). Given an open set U C R™, we will write g € Lip,,.(U),
if to any relatively compact open subset V' of U, the restriction of g to V belongs
to the class Lip, (V; C) for an appropriate C' > 0.
A function f € Lip,,.(R7?) is said to belong to the class C if f > 0, that is,
f(x) > 0,2 € RT, and
(,|Vf(@)]) < f(z) ae. (11)

Given a > 0, we define
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Stated more explicitly, a function f belongs to the class C, if and only if f €
Lipy,.(R%"), f is non-negative, and

(2, |Vf(@)]) <a+ f(z) ae.

THEOREM 4.1. Suppose f : R — [0,+o00[ and let a > 0. Then f € C if and
only if f >0 and

flzed) < f(x)elll= 2 e R™, ¢ cR™. (12)
Moreover, f € C, if and only if
a+ f(zet) < (a+ f(x))elfl=, 2 cR™, £cR™.
In particular, any f € C, is a payoff function.
PRrROOF. Suppose first that f > 0 and set

g(&) =Inf(e*), £eR™.

Clearly, the inequality (12) just means that g € Lip, (R™;1).
Now let f € C. Then g € Lip,,.(R™) and
SV f (et
Vg(§) = f(eg)) a.e. (13)
Moreover, ||[Vg(&)|l1 <1, a.e. and, hence, g € Lip, (R™;1).

Conversely, suppose g € Lip (R™;1). Then f € Lip,,.(R") and (13) holds.
Accordingly, the inequality (11) must be true. Summing up, we have proved
that f € C if and only if (12) is true. The remaining part of Theorem 4.1 is
now obvious from the very definition of the class C,. This concludes our proof
of Theorem 4.1. O

In general, the following properties are immediate consequences of either Theo-
rem 4.1 or the very definition of the class C,:

(a) C, is convex.

(b) C, CCpifa<h.

(c) cel,ifec>0.

(d) ACo =Cpra, A>0.

(e) 6C, CC,, 0<O< 1.

(f) Ca+Ch CCoyp-

(g) f,9€C,= max(f,g)€C,.

(h) f,g9 € C, = min(f,g) € C,.

(i) If T is an n by n permutation matrix or an n by n diagonal matrix with

positive entries, then f(z) € C, = f(Tz) € C,.

(j) Forany i=1,...,m, ¢; € C, if and only if b < a.
(k) Forany i =1,...,m, Acq; & Cq if A > 1.

(1) Foranyi=1,...,m, pp; € C, if and only if b < a.
(m) Forany i=1,...,m, Apg; & Cq if A > 1.
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(n) f €, if f is non-negative and concave.
(o) feCo=¢€T78f€eC,.

Here, for the sake of completeness, we indicate a proof of Property (n). To
begin with it is well known that a concave function f on R’ belongs to the class
Lipy,.(R7") and that the convex set {(z,t) € R xR;t < f(x)} has a hyperplane
of support at each point (z, f(x)),z € RT? (see e.g. Hérmander [17]). Moreover,
by the Rademacher theorem referred to above, there exists a set D C R’ such
that f is differentiable at each point of D and such that the complement of D
in R is a null set. Accordingly,

fy) < fl@)+(Vf(z),y—=), z€D, yeR}.

Thus, given x € D, we have (Vf(x),z) < f(z) as f is non-negative. But here
V f(xz) > 0 since the function h(s) = f(z + sy), s > 0, is non-decreasing for all
x,y € R7". This proves (11) so that f € C, for every a > 0.

Throughout the remaining part of this paper we assume that

max o0; = Op,.
i=1,...,m

Now given a > 0 and a continuous function f : R} — [0, 4o0[, set for fixed
T >0,

1
=g,=——+=1In(1 . 14
9=y Umﬁn(Jrf/a) (14)
We shall say that the function f belongs to the class C, y, if the function
B (Plg, (z1e7 V0D g, et VTem Gy <)) — 5 5> 0

is non-decreasing for every x € R’ and every 7 > 0. It is readily seen that
any f € Cq,m is a payoff function. The class C, ., turns out to be optimal in
connection with a certain isoperimetric inequality we prove below. However,
before stating this result we want to prove

THEOREM 4.2. For any a > 0,
Ca g Ca,m-

PROOF. Suppose f € C, and let g be as in (14), where 7 > 0 is fixed. We now
claim that i€l
&) < o
o) < g(2) + o
if z € R and £ € R™. But

1

9zef) = — 7

and since f € C,, Theorem 4.1 yields
1

om\/T

In((a + f(z¢%))/a)

g(zet) < In((a + f(2))el€= /a)
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and the claim above follows at once.
To complete the proof of Theorem 4.2 we represent the standard Gaussian
random vector G in R™ as the identity mapping in R™ and put for any fixed

z € R? and s > 0,
A(s) = [g(wle‘”ﬁ(”’G), . 7.Z.meam\E(Cm,G)) < S]

Then, if € > 0,
A(s) + B(0;e) C A(s +¢)

and the isoperimetric inequality for G gives
OHP[A(s +¢)]) > @71 (P[A(s)]) +e.
Since z € R and 7 > 0 are arbitrary, f € Cq,,, and Theorem 4.2 is proved. U
In what follows we shall write ¥ € V() if ¥ € Vy(¢) and
lim, 057 (0 (s)] + [1h(s)]) < +o0
for an appropriate p > 0.
THEOREM 4.3. Suppose € V(p). Then, if f € Cq.m and
Ugo (T, %) = Ugoc, . (T Y)
where x,y € R and 7 > 0 are fized,
Ugof (T, %) < Ugoc, ., (T,9)-

PROOF. In the proof, without loss of generality, we assume that ©(0) = ¢(0) = 0.
We have
Camye ™MW (7)) = (e Tm/DTHEmWn() _ g)+

and hence
ca,m(ye”M;/V(T)) _ a(eam+ame(7) _ 1)+

for a suitable constant a,,. Setting B, = W,,,(7)/+/T, we get
Caum (e MY (7)) = afe V7B =b) 1)+
for a suitable constant b,,. Thus
Cam (ye" MY (7)) = a(e7m VT Br—bn) 1),

Now define
j(s) = a(e?™VT —1), $>0

and set o = ¢(7) so that
(cam(ye’™M;" (1)) = 0o((Bm = bm) ™)
and

+oo
E[p(cam (ye MY (7)))] = / P(Bon — bn)* > 8] dipo(s)
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since p(0) = 0.
In the next step we introduce the function g = g, by the equation (14) and
have f = j(g) and ¢(f) = ¢o(g). Thus

e(f(xe'™ M (1)) = pol(g(ze™ MY (1))
and
“+o0
Elp(f(ze™ My (1)))] = /O Plg(ae™ M, (1)) > s]dipo(s).
Further, we define
h(s) = Plg(ae™ MY (7)) < 5], 520

and have

h(s) = ]P’[g(zle‘”ﬁm’@, e zme”’”ﬁ@m’@) <s], s>0

for appropriate z1,...,2, € Ry.
Now suppose sg > 0 and

h(sg) > P[(Bp — b))t < s0]. (15)
We then have
h(so+¢€) > P[(By — b))t <so+¢], >0

because f € Cq and By, is a N(0; 1)-distributed random variable. To complete
the proof of Theorem 4.3, first set 1o = ¥(j) so that

+oo
B (com (ye"™ MY (7)))] = / P((Bun — bu)* > ] dibo(s)
and
+oo
E[(f (ze MY (1)))] = / Plg(ze” MY (1) > 5] dio(s)

since 1p(0) = 0. Moreover, let diyg = Adpg, where the function X is non-
decreasing, and let s, denote the infimum over all sy > 0 such that (15) holds.
Here, by convention, the infimum over the empty set equals +00. The extreme
cases s, = 0 and s, = +oo are simple and so we concentrate on the case 0 <
8« < 400. Then, for any S € ]s., +o0],

S S
/0 Plg(ze™ MY (7)) > 5] dii(s) — / P(Ban — b)* > 5 dio(s)
-/ " (Blg(ae MY (7)) > 5] — BBy — b) > sDA(s) dipofs)

S
n / (Blg(ae™ MY (1)) > 5] — P[(Bm — bu)* > sDA(s) digols).
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Here the right-hand side does not exceed
M) [ Blotae™MY (7)) > ] = Pl(Bn — bu)* > s)) dia(s)
0

S
+/\(8*)/ (Plg(xe"™ MY (1)) > 8] = P[(Bm — b)) > s]) dipo(s),

*

which is equal to

S
A(s*)/o (Plg(ze™™ MY (1)) > 8] = P[(Bm — bn) ™ > 5]) dipo(s)-

By letting S tend to plus infinity it is immediate that

+oo +oo
| Blateerm MY () > s dbnls) < [ BB~ b)* > 5] ()
0 0
and Theorem 4.3 follows at once. O

If X is a non-negative random variable with positive expectation, we set

Dol = VI P

Moreover, if f is a payoff function, we use the notation

Z(roa; f) = e f(ae" MY (7).

Note that
uy (7, x) = B[Z(7, z; f)]
by (4).
COROLLARY 4.1. Suppose z,y € R"". If f € Cq,m and
up(r, @) = e, ,, (1,9) (16)
then

Drel[Z(Ta X, f)} S Drel[Z(Tv Y3 ca,m)]~

Proor. If there is equality in (16) the conclusion in Corollary 4.1 follows from
Theorem 4.3. To prove the general case it therefore suffices to show that the
function )
F(y,a) — E[Z (T,y,cmm)]?

(E[Z(7,y, cam)])
is a non-increasing function of y,,. To this end, first choose 0 < b < a and note
that Ocp ., € C, for all 0 < @ < 1. Since ¢y > Cq,m there is a 6 €]0, 1] such that

Ubcy, m, (7_7 y) = Ucy 1, (Tv y)

Accordingly, in view of Theorem 4.3,

UBcp,m)? (T7 y) < ucﬁym (7-7 y)
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and hence
F(y;b) < F(y;a).
Now since
F(%y a) = F(y;b)
we are done. This completes our proof of Corollary 4.1. O

EXAMPLE 4.1. The use of the Monte Carlo method in computing option prices
goes back to Boyle [10]. It is especially attractive for options depending on several
assets (see, for example, Barraquand [2]). To estimate the price function us(7, x)
in this way, let Z1,...,Zn be stochastically independent copies of Z(7,z; f).
Then the arithmetic mean

_ 1
Iv= >z
1
is an unbiased estimator of u(r,z). The variance of Zy equals 1/N times
the variance of Z(7,z; f) and, assuming u¢(7,z) > 0, the Chebychev inequality
yields
p H Zyn —uy(1,7)
ug(T, )
Therefore, it is interesting to have an explicit upper bound of D [Z (7, z; f)].
As an example, consider the special case f = fiax. If f = fmax, clearly f € C,
for all @ > 0. Now, if a > 0, (16) is true with y = z and Corollary 4.1 yields

> ¢| < S Dulzras P, e >0

Dl [Z(T, Z; fmax)] < 11%1+ Drel[Z(Ta €Z; Ca,m)]~

Thus
Drel[Z(Tax;fmax)] S 6072”7— — 1.

A completely different approximate method for computing the value of the option
on the maximum (or minimum) of several assets is treated by Boyle and Tse [12].
O

The next theorem shows that the class C,,,, in Theorem 4.3 is the best possible.
Indeed, we have

THEOREM 4.4. Let f be a payoff function in R'? and suppose a > 0. Further-
more, suppose

uwof(T’ 'r) S ul/)OCa,m (7—7 y)
for all z,y € R, all 7 > 0, and all ¥ and bounded ¢ such that ¢ € V() and
Ugpof (T, T) = Ugocy.  (T:Y)-

Then f € Cqm.-
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PrOOF. To begin with, given 0 < b < ¢, define ¢, (s) = (s —a)™, a > 0, and
©b.c(5) = pp(s) — @e(s) so that
¢b.c(s) = min((s — b)*,c —b).
First we assume that x € R and 7 > 0 are fixed and
0 < Elpp,o(f(ze ™M, (1)) < c—b. (17)
Now let 6 > 0 be such that
E[p.c(f(ze"™ M (7)) = Elpp,c(Cam (e’ My (7)))]. (18)

We next choose h > 0 so small that b < b+ h < ¢ and define k(s) = — min(s, h).
Then —@p p4h = K0 @p . and thus

Elpypn(f(2e’™ M, (7)))] 2 Elpbprn(Cam(0ze™ MY (1)))].

In the following, if A C R, the function x4 defined on R equals one in A and
zero off A. Using this notation,

hXb,+00[(S) = Pb,b+h (19)
and hence
hP[f(ze"™ MY (7)) > b] = E[@b b4 h(Cam (e MY (7)))].
Thus
RP[f(xe"™ MY (1)) > b]
> E[((0zpme ™ MY (1) —a)T —b) ] —E[(0zme ™ M) (1) —a)T —b—h)"].

From this we get

PLi (e MY (1) > b > — L BI(Oae™ M (r) — a)* — 1))
where the right-hand side equals
P{(0zme ™ MY (T) —a)" —b > 0] = Pl0zme " M) ™ (1) —a — b > 0]

and, accordingly,

1 O, (=027

P[f(xze"™ MY (1)) > b] > ® <0mﬁ1n P

Now suppose b < ¢ —h < ¢ and observe that ¢c_p.c = Qe—n—p © ¥p,c. Remem-
bering (18), we have

Elpe—n.c(f(we" ™My (7))] < E[pe-n.c(cam(Bze’™M," (1)))].

Furthermore, since
hX]c,Jroo[(s) < 3067/%0(5) (21)
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it follows that
hP[f(ze’™ MY (1)) > €] < Elpen,c(Ca,m(ze™ M) (1)))]

and as above we conclude that

(22)

1 (r—o2,/2)T
Mﬂm”MYu»>qg¢< p 2Zme ).

O \T . a+c
Comparing (20) and (22) it follows that
(a + b)60'7n\/77—cb71(P[f(ZE€TTM:V(T))>b]) > (a + C)eamﬁ<1>71(IP[f(mer"M:V(T))>c]).

Clearly, this inequality also holds if (17) is violated and we conclude that the
function

O VTO N (P[f(ze™™ MY (7)) < s]) —In(a +5), s>0

is non-decreasing. Since this is true for all z € R’ and all 7 > 0 we conclude that
the function f belongs to the class Cg v, which completes our proof of Theorem
4.4. O

Suppose now that f is a general payoff function. The expectation at time ¢ of the
value of the derivative security Z/lfT at the maturity date T equals vy (7, X (¢);0),
where

vy (r,2;0) = B[f (wet™ oW )],
Here we employ the vector notation p = (p1,...,4m),0 = (01,...,0m), and
W(r) = (Wi(7),...,Wpn(7)). Thus

vi(T,2;0) = e Tug(T, xe(”*r+”2/2)7).

Now, suppose t < t, < T and set 7, =T —t,. If 7, > 0, the expectation at time
t of the value of U}F at time ¢, equals vy (7, X (t); 7)), where

vp(T, ;7)) = Blug(re, welt —D)+oWO (L. )

and where WV is a stochastically independent copy of W. Hence
vp(r, @) = ]E[e_”*f(a:e"(t*_t)+”W0(t*_t)e”* MZV(T*)H
Since t, —t =7 — Ty, we get
vp(r, @ 7) = E[e‘”*f(me(“+”2/2)(7_7*)e”* M(‘,}V(T))]

Thus

r(T—74) #77‘4’0’2/2)(7'77'*)).

ve(T,z;m) =€ Uf(T,J?G(

Alternatively, it is simple to derive the same formula using the semi-group prop-
erty of the family (S;),>0.
Theorem 4.3 thus has the following consequence:
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COROLLARY 4.2. Let ¢ € V(p). Then, if f € Cqm and
Vo (T, 3 T4) = Vo, (T, Y3 Tx)
where x,y € R and 7 > 7. > 0 are fized,

Vypo £ (T, @5 i) < Vyocy (T3 Y3 i)

5. Extremal Properties of Puts

Given a > 0, we define
P,=(a—0C)* .

Stated more explicitly, a function f € P, if and only if f € Lip;,.(RT"),0< f <a
and

(2, |Vf(@)]) + f(z) < a, ae.
In view of Theorem 4.1 we now have
THEOREM 5.1. Suppose a >0 and let f : R — [0,a[. Then f € P, if and only if
1 ollél
< )
a— f(zet) ~ a— f(z)

In general, the following properties are immediate consequences of either Theo-
rem 5.1 or the very definition of the class P,:

z e R}, £ € RY.

(a) P, is convex.

(b) P, CPyifa<b.

(c) cePif0<ec<a.

(d) APy =Pra, A>0.

(e) P, CP,, 0<0<1.

(f) Po+ Py C Poto.

(g) f,9 € Po=max(f,g) € P,.

(h) f,g € P, = min(f,g) € P,.

(i) If T is an n by n permutation matrix or an n by n diagonal matrix with

positive entries, then f(z) € P, = f(Tx) € P,.

(j) Forany i =1,...,m, pp; € P, if and only if b < a.
(k) Forany i =1,...,m, Apgi ¢ Pa if A > 1.

(1) feP,if0< f <ais convex.
(m) feP,= €75, fE€P,.

We are now going to introduce slightly larger classes of payoff functions than
the classes P,, a > 0. To this end, let a > 0 be given and suppose f : R — [0, a
is a continuous function and set for fixed 7 > 0,

1

g:gT:—mln(l—f/a). (23)
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We shall say that the the function f belongs to the class P, y, if the function
O (P[gy (w1e7 VTG g et VTEmG)) <) — s s> 0

is non-decreasing for every x € R* and 7 > 0. Here, again, G = (G1,...,Gp)
denotes the standard Gaussian random vector in R™ with stochastically inde-
pendent N (0;1)-distributed components.

We now set, for any f € Py m,

and have
(1= f/a)A+ Ia(f)/a) = 1.

THEOREM 5.2. (a) The map I, is a bijection of Py onto Cqm.
(b) The restriction map of I, to P, is a bijection of P, onto C,.

PrOOF. Part (a) follows at once from the equations (14) and (23). Moreover
Part (b) is an immediate consequence of Theorems 4.1 and 5.1. g

THEOREM 5.3. Suppose ¥ € V(p). Then, if f € Pym and
Ugpo f (Tv .23) = u‘POPa,m (T’ Z/)
where x,y € R and 7 > 0 are fized,
o (T, &) < Uop, ,,. (T,Y)-
PROOF. Set f* = I,(f) and p}, ,,, = Lo(pa,m). Then

af*

f= ”

a+ f

and .
po — P
Y at

Moreover, we define

as
* = >O-
©*(s) w(aJrS), s>

Then
Ugo f (T, ) = tUgrop=(T, )
and
Ugpopy , (T:Y) = Up*opr ., (7, )-
From the definition of the map I, it follows that

(12

+
p:,nL(U) = (7 - a) , VE RT

Um

and using (4) we conclude that

uga*op;’m <T7 y) = utp*oca,m (T7 Z)
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where z € R’ and
a2672r‘r+0'fn‘r

Zm =

Ym
The result is now an immediate consequence of Theorem 4.3. This completes
our proof of Theorem 5.3. (|

THEOREM 5.4. Suppose a > 0 and let f : RT — [0,a[ be a payoff function.
Furthermore, suppose

Uypo f (Tv 33) < Urpopy m (Ta y)
for all z,y € R, all 7 > 0, and all ¥ and bounded ¢ such that ¢ € V() and

uwof(77 x) = u‘POpa,m (T7 y)
Then f € Pgm.

PRrROOF. By exploiting the map I, as in the proof of Theorem 5.3 the result
follows at once from Theorem 4.4. O

The next result follows from Theorem 5.3 in the same way as Corollary 4.2
follows from Theorem 4.3.

COROLLARY 5.1. Let ¢ € V(p). Then, if f € Py m and

Vo (T: T3 o) = Vgpopy o (T3 Y5 T)

where x,y € R and 7 > 7, > 0 are fized,

U"/)Of (7—7 €T T*) S Uwopa,m, (T7 Y3 T*)'
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