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Threshold Intervals under Group Symmetries

JEAN BOURGAIN AND GIL KALAI

Abstract. This article contains a brief description of new results on thresh-
old phenomena for monotone properties of random systems. These results
sharpen recent estimates of Talagrand, Russo and Margulis. In particular,
for isomorphism invariant properties of random graphs, we get a threshold
whose length is only of order 1/(log n)2−ε, instead of previous estimates
of the order 1/log n. The new ingredients are delicate inequalities in the
spirit of harmonic analysis on the Cantor group.

A subset A of {0, 1}n is called monotone if the conditions x ∈ A, x′ ∈ {0, 1}n

and xi ≤ x′i for i = 1, . . . , n imply x′ ∈ A. For 0 ≤ p ≤ 1, define µp the product
measure on {0, 1}n with weights 1− p at 0 and p at 1. Thus

µp({x}) = (1− p)n−jpj where j = #{i = 1, . . . , n | xi = 1}. (1)

If A is monotone, then µp(A) is clearly an increasing function of p. Considering
A as a “property”, one observes in many cases a threshold phenomenon, in the
sense that µp(A) jumps from near 0 to near 1 in a short interval when n →∞.
Well known examples of these phase transitions appear for instance in the theory
of random graphs. A general understanding of such threshold effects has been
pursued by various authors (see for instance Margulis [M] and Russo [R]). It turns
out that this phenomenon occurs as soon as A depends little on each individual
coordinate (Russo’s zero-one law). A precise statement was given by Talagrand
[T] in the form of the following inequality.

Define for i = 1, . . . , n

Ai = {x ∈ {0, 1}n | x ∈ A, Uix 6∈ A} (2)

where Ui(x) is obtained by replacement of the i-th coordinate xi by 1− xi and
leaving the other coordinates unchanged. The number µp(Ai) is the influence of
the i-th coordinate (with respect to µp). Let

γ = sup
i=1,...,n

µp(Ai). (3)
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Then
dµp(A)

dp
≥ c

log(1/γ)
p(1− p) log

(
2/p(1− p)

) µp(A)
(
1− µp(A)

)
, (4)

where c > 0 is some constant.
A simple relation due to Margulis and Russo is

dµp

dp
= 2/p

n∑

i=1

µp(Ai). (5)

As the right side of (5) represents the sum of the influences it follows that a
small threshold interval corresponds to a large sum of influences. In [T], (4) is
deduced from an inequality of the form

µp(A)
(
1− µp(A)

) ≤ C(p)
n∑

i=1

µp(Ai)
log

(
1/µp(Ai)

) . (6)

The proof of this last inequality relies on the paper by Kahn, Kalai and Linial
[KKL], where it is shown that always

sup
1≤i≤n

µ1/2(Ai) ≥ c
log n

n
. (7)

Friedgut and Kalai [FK] used an extension of (7) given in [BKKKL] to show that
for properties which are invariant under the action of a transitive permutation
group the threshold interval is O(1/ log n) and proposed some conjectures on the
dependence of the threshold interval on the group.

Our aim here is to obtain a refinement and strengthening of the preceding in
the context of “G-invariant” properties. Let f be a 0, 1-valued function on {0, 1}n

and G a subgroup of the permutation group on n elements n = {1, 2, . . . , n}. Say
that f is G-invariant provided

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for all x ∈ {0, 1}n, π ∈ G.

Given G, define for 1 ≤ t ≤ n

φ(t) = φG(t) = min
S⊂n,|S|=t

log(#{π(S) | π ∈ G})

and for all τ > 0
aτ (G) = sup{φ(t) | φ(t) > t1+τ}.

Observe that since φ(t) ≤ log
(

n
t

)
, necessarily aτ (G) . (log n)1/τ .

Theorem 1. Assume G transitive and A a monotone G-invariant property .
Then for all τ > 0

dµp(A)
dp

> cτaτ (G)µp(A)
(
1− µp(A)

)
,

provided p(1− p) stays away from zero in a weak sense, say

log
(
p(1− p)

)−1 . log log n.
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It follows that in particular the threshold interval is at most

Cτaτ (G)−1 for all τ > 0.

Previous results as mentioned above only yield estimates of the form (log n)−1

and the main point of this work is to provide a method going beyond this. For
crossing the (log n)−1 bar we need a complicated harmonic analysis argument.
This may be useful in related combinatorial problems.

Theorem 1 is deduced from (5) and the following fact, independent of mono-
tonicity assumptions.

Theorem 2. Assume that A is G-invariant and (12) holds. Then for all τ > 0
∑

µp(Ai) > cτaτ (G)µp(A)
(
1− µp(A)

)
.

For primitive permutation groups Theorem 1 and the excellent knowledge of
primitive permutation groups [C, KL] (based on the classification theorem for
finite simple groups) imply a close to complete description of the possible thresh-
old interval of a G-invariant property, depending on the structure of G. (Recall
that a permutation group G ⊂ Sn is primitive if it is impossible to partition n

to blocks B1, . . . Bt, t > 1 so that every element in G permute the blocks among
themselves.) It turns out that there are some gaps in the possible behaviors of
the largest threshold intervals. This interval is proportional to n−1/2 for Sn and
An but at least log−2 n for any other group. The worst threshold interval can be
proportional to log−c n for c belonging to arbitrary small intervals around the
following values: 2, 3

2 , 4
3 , 5

4 , . . . , or for c which tends to zero as a function of n

in an arbitrary way. This (and more) is summarized in the next theorem. First
we need a few definitions. For a permutation group G ⊂ Sn let

TG(ε) = sup{q − p : µp(A) = ε, µq(A) = 1− ε},
where the supremum is taken over all monotone subsets of {0, 1}n which are
invariant under G. A composition factor of group G is a quotient group H/H ′

where H is a normal subgroup of G and H ′ is a normal subgroup of H. A
section of G is a quotient H/H ′ where H is an arbitrary subgroup of G and H ′

is a normal subgroup of H.

Theorem 3. Let G ⊂ Sn be a primitive permutation group.

1. If G = Sn or G = An then TG(ε) = log(1/ε)/n1/2.
2. If G 6= Sn, An, TG(ε) ≥ c1 log(1/ε)/ log2 n.
3. For every integer r > 0 and real numbers δ > 0 and ε > 0, if TG(ε) ≤

c2 log(1/ε)/(log n)(1+1/(r+1)) then already

TG(ε) ≤ c3(δ) log(1/ε)/(log n)(1+1/r−δ).

4. If G does not involve as composition factors alternating groups of high order
then TG(ε) ≥ log(1/ε)/ log n log log n.
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5. Let n =
(
m
r

)
and G is Sm acting on r-subsets of [m]. Then for every δ > 0

(log(1/ε)/ log(1+1/(r−1)) n) ≤ TG(ε) ≤ c(δ)(log(1/ε)/ log(1+1/(r−1)−δ) n)

6. For G = PSL(m, q) acting on the projective space over Fq, for fixed q,

TG(ε) = O(log(1/ε)/ log n log log n)

7. For every function w(n) such that log w(n)/ log log n → 0 there are primitive
group Gn ⊂ Sn such that TGn

(ε) behaves like log(1/ε)/ log n · w(n).
8. For every w(n) > 1 such that w(n) = O(log log n) there are primitive group

Gn ⊂ Sn which do not involve alternating groups of high order as composition
factors such that TGn

(ε) behaves like log(1/ε)/(log n · w(n)).
9. If G does not involve as sections alternating groups of high order then TG(ε) ≥

O(log(1/ε)/ log n).

The preceding yields a particularly satisfying result on the size of the maximal
threshold for monotone graph properties. In the particular case of monotone
graph properties on N vertices, we get n =

(
N
2

)
and G is induced by permuting

the vertices. One gets essentially

φ(t) ∼ log
(

N√
t

)

in this situation and the conclusion of Theorem 1 is that any threshold interval
is at most Cτ (log N)−2+τ , with τ > 0. This is essentially the sharp result, since,
fixing M ∼ log N , the property for a graph on N vertices to contain a clique of
size M yields a threshold interval ∼ (log N)−2.

More details and the proofs appear in [BK].
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