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On the Stability of the Volume Radius

EFIM D. GLUSKIN

ABSTRACT. The volume radius of a given n-dimensional body is the radius
of a euclidean ball having the same volume as this body. We prove that
the volume radius of a given convex symmetric n-dimensional body with
diameter at most y/n is almost equal to the volume radius of a body ob-
tained by the intersection of this body with n other bodies whose polars
are bounded by 1 mean width.

In the last decade, interest in the problem of bounds for volumes of convex
bodies was renewed mainly because of its applications to Banach Space Geometry
and related topics. At the end of the 80’s sharp bounds for volume radius
of convex polytopes with given distance between antipodal faces were found
independently by several authors: Carl and Pajor [1], Bourgain, Lindenstrauss
and Milman [2], Gluskin [3]. Closely related results were obtained by Vaaler [4],
Dilworth and Szarek [5] and Barany and Furedi [6]. See also Ball and Pajor [7]
where, following Kashin’s conjecture, the problem was considered as a limiting
case of a series of Vaaler-type results. Moreover in [3] it was observed that the
volume radius of a unit cube has a certain stability property with respect to
cutting the cube by a sequence of bands (see Proposition 1 below for the exact
formulation). Some of Kashin’s ideas enabled us to use this property for an
alternative proof of Spencer’s theorem [8] on a lacunary analogue of the Rudin—
Shapiro polynomials (see [3]). Later Kashin [9] used the same approach for finite
dimensional analogues of Menshov’s correction theorem.

Here we continue to study this property. We show that it holds not only for
cubes but also for a wide class of bodies. It is then observed that the condition
on the width of the bands which appeared in [3] is very close to Talagrand’s
[10] description of bounded Gaussian processes. This observation permits us to
restate the result in an invariant form which is more convenient for application.
Moreover the result of [3] is extended to the intersection of a given body with a
sequence of cylinders. This is made possible by a suitable generalization of the
Khatri-Sidak theorem [11, 12].
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We denote by |z| the standard Euclidean norm of x € R™. The unit ball of
R™ is denoted by D,,, where

D,={zeR":|z| <1}.

We say that a convex body V C R” is absolutely convex if V = —V. For such a
body and x € R™ one defines ||z||y by setting

|zlv =inf{A e Ry : z € AV}

A linear operator S : R" — RF is called a partial isometry if |Sz| = |z| for
any x orthogonal to ker S. For such an S and positive r we denote W (S,r) =
{zx € R™: Sz € rDy}. Note that for k = 1 a partial isometry is just some norm
one linear functional and the corresponding set W (S,r) is a band of width 2r.
As usual, vol or vol, is the standard Lebesgue measure on R™. The canonical
Gaussian measure on R" is denoted by ~,; it is a probability measure with
density (2m)~™/2 exp(—|z|?/2).

As usual, we denote by Xy the indicator function of the set V, such that
Xy(x)=1ifx eV and Xy(z)=0ifx & V.

THEOREM. For any e > 0 there exists a positive constant C = C(g) < oo such
that the following assertion holds. For a given n, let K C R™ be an absolutely
convez body such that K C \/nD,. Then, for any n absolutely convexr bodies
Vi,..., Vi, CR"™ satisfying

/ v, dyn(a) <1 fori=1,2,....m,

the following inequality holds:

<1.

1/n
(KNC(VinVen---NV,
(1—e) < vo ( V1 2 ))
vol K
Talagrand [10, Theorem 2] proved that for any n and any absolutely convex body
V C R” satisfying

/ el dyn () < 1

there exists a sequence of norm one linear functionals f; € (R™)* possessing the
property that

oo

(YW (fi,V/log(2 + 1)) € CrV,

i=1
where C'r < oo is a universal constant. By Talagrand’s result, the theorem is
equivalent to the following proposition:
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PROPOSITION 1. For a given n let K C R™ be an absolutely convexr body sat-
isfying K C /nD,. Then, for any sequence of norm one linear functionals
fie R™)* i=1,2,..., with some constant C = C(e) depending on € only, we
have

<1

— 9

vol(K N (52, W(firr))) \ "
1-e)< ( vol K )

where r; > C'y/log(2 + i/n).

PrOOF. It is clear that, for any body V C AD,,

1 n yolV 2
1< (7) <M/
V27T 7n(V)

In particular, for K as in the Proposition, with C; = C (¢),

1/n

C’n/%('yn(CLIK)) > m(volK)l/".

On the other hand,

(vol(Kﬂ(ﬁW(fi7ri)))>l// >Clrvn( Kﬂc%(ﬂ (fun)))

By the Khatri-Sidak theorem,

(g (Y w0en)) 2 3 K) vt

The elementary bound v, (W (f,r)) = v1((—=r,7)) > 1 — e~""/2 implies that

1/n
(H% (firifC) 2 VI=e ®
for r; = C/log(2 + i/n) with C = C(e), and the proposition follows. O

REMARK 1. The particular case of the cube instead of the general convex body
K was considered in [3]. In the first version of the paper the proof of Proposition
1 followed the same scheme as that of [3]. A significant simplification of the proof
was found by the referee. I wish to express my gratitude to him for his suggestion
to publish his proof here.

REMARK 2. We say that a body V satisfies the positive correlation property
(PCP) if for any absolutely convex body W and for any positive constant A
one has v,(AVNW) > v, (AV) 7, (W). The proof of Proposition 1 shows the
following fact:
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For any € > 0 there exists a constant C > 0 such that for any absolutely
convex body K C /nD,, and for any sequence of bodies V; satisfying the PCP

one has
s} 1/n
e vol(K N (N2, Vi) \ Y
o vol K
providing (TT;2, 7 (V;/C)) > (1 —¢/2)".

The Gaussian Correlation Conjecture states that any absolutely convex body
satisfies the PCP. In these terms the Khatri-Sidak theorem states that any band
satisfies the PCP. A slight modification of its proof leads to this result:

<1

f— )

LEMMA. Let V C R™ be an absolutely convex body and S : R™ — R* be a partial
isometry of rank S = k. Then, for any positive r, we have

'yn(V n W(S7T)> > %(V)Vn(W(Sv T)) = 'Vn(v)'Yk(TDk)'

In other words, any cylinder satisfies the PCP. Certainly one can use the lemma
to obtain analogues of Proposition 1 for the case of the intersection with a se-
quence of cylinders. We omit the precise statement, which is rather complicated.
For the reader’s convenience, we outline a proof of the lemma.

Let us fix some partial isometry S from R™ onto R¥. It is well known that its
conjugate S* is a partial isometry from R¥ to R™, which is right inverse to S,
and Q = Idg» — S* S is an orthogonal projection on ker S. For « € [0, 7/2] let
the operator T'() : R"*% — R"** be defined by

T(a)(z,y) = (Qx 4 cosaS* Sz — sin aS™y, sinaSx + cos ay)

for (z,y) € R™ x R¥ = R"™*_ For a given absolutely convex V; C R™ and
V, € R* we denote

Vi(a) = T(a)(Vi x RF) and Va(a) = T(a)(R" x V3).
Consider the function
v v (@) = vol{Vi(a) N V2(0) N Dy g1},

or equivalently

fvi v (a) = /~ le(o)(T_l(a)z) dz.
VQ(O)HD”+]C

It is easy to see that fy, v, is absolutely continuous and one has the following
equality for a.e. a € [0,7/2]:

d _ ~ ~

et = [ Xou o) (T~ (0)2) {7(2), J2) dii(2),
da O(V2(0)N D)

where Ji is the Lebesgue measure on d(Va(0) N Dyyx), 7 is outer normal to
9(V2(0)NDy41) and operator J is given by J = T(a)-L T~ (). Straightforward
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computation shows that J(z,y) = (S*y,—Sz) for (x,y) € R™ x R*. Since
(z,J2) = 0 for any z € R"** one can rewrite the previous equality as

d
%fvh‘/z = -

du(y) /W (n(y), Sz) de, @)

Ve y

where p is the Lebesgue measure on 9Va, n(y) is outer normal to 9V, at point y
and

Wy ={z e (1 —|yl?)+ Dy : Qr+cosaS*Sx € Vi —sinaS*y} .

PROPOSITION 2. Let p: Ri_ — Ri_ be some nonincreasing positive function and
v be an absolutely continuous measure on R"** with density p(|z|). Then, for
any absolutely convex body Vi, C R™ and any positive r the function

h(a) = v{Vi(a) Nr(R™ x Dy)}

is nondecreasing on [0,7/2].

SKETCH OF THE PROOF. It is clear that without loss of generality, we can
consider the case p = Xjo 1) only. In this case h(a) = fy,p,(a). By Lemma 2
from [3] one has

/ (S*y,z)dz <0 . 3)
\%%

Yy

Taking into account that n(y) = r~'y for y € (rDy) = rS*~1 we get Propo-
sition 2 from (2) and (3). O

The inequality h(0) < h(r/2) with p(t) = (27)~"/2¢=*"/2 proves the lemma. [J

NOTE. When this paper was almost complete, we learned from S. Bobkov that
Schechtman, Schlumprecht and Zinn [13] had found a very short proof of the
Khatri-Sidak theorem, based on the Borel-Prékopa—Leindler characterization of
log-concave measures. A simple modification of the method of [13] leads to an
alternative proof of the lemma.

REMARK 3. It is fairly simple to see that the conditions of Proposition 1 on r;
are optimal for ¢ > n; see [3, 14]. For ¢ < n this is not so. In fact the proof
of Proposition 1 shows that it holds under better conditions on r;, ¢ < n than
those stated. To see this one has to take into account that we only need to
estimate the product in (1) and to use for example the inequality v ((—r,r)) >
2(2m) "1/ 2re= "2,

The same remark holds in the case of the cylinders’ intersection.
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