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On the Constant in the Reverse
Brunn–Minkowski Inequality for p-Convex Balls

ALEXANDER E. LITVAK

Abstract. This note is devoted to the study of the dependence on p of the
constant in the reverse Brunn–Minkowski inequality for p-convex balls
(that is, p-convex symmetric bodies). We will show that this constant is

estimated as c1/p ≤ C(p) ≤ Cln(2/p)/p, for absolute constants c > 1 and
C > 1.

Let K ⊂ Rn and 0 < p ≤ 1. K is called a p-convex set if for any λ, µ ∈ (0, 1)
such that λp + µp = 1 and for any points x, y ∈ K the point λx + µy belongs to
K. We will call a p-convex compact centrally symmetric body a p-ball.

Recall that a p-norm on real vector space X is a map ‖·‖ : X → R+ satisfying
these conditions:

(1) ‖x‖ > 0 for all x 6= 0.
(2) ‖tx‖ = |t|‖x‖ for all t ∈ R and x ∈ X.
(3) ‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X.

Note that the unit ball of p-normed space is a p-ball and, vice versa, the gauge
of p-ball is a p-norm.

Recently, J. Bastero, J. Bernués, and A. Peña [BBP] extended the reverse
Brunn–Minkowski inequality, which was discovered by V. Milman [M], to the
class of p-convex balls. They proved the following result:

Theorem 0. Let 0 < p ≤ 1. There exists a constant C = C(p) ≥ 1 such that for
all n ≥ 1 and all p-balls A1, A2 ⊂ Rn, there exists a linear operator u : Rn → Rn

with |det(u)| = 1 and

|uA1 + A2|1/n ≤ C
(|A1|1/n + |A2|1/n

)
, (1)

where |A| denotes the volume of body A.
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Their proof yields an estimate C(p) ≤ Cln(2/p)/p2
.

We will obtain a much better estimate for C(p):

Theorem 1. There exist absolute constants c > 1 and C > 1 such that the
constant C(p) in (1) satisfies

c1/p ≤ C(p) ≤ Cln(2/p)/p.

The proof of Theorem 0 [BBP] was based on an estimate of the entropy numbers
(see also [Pi]). We use the same idea, but obtain the better dependence of the
constant on p.

Let us recall the definitions of the Kolmogorov and entropy numbers. Let
U : X → Y be an operator between two Banach spaces. Let k > 0 be an integer.
The Kolmogorov numbers are defined by the following formula

dk(U) = inf {‖QSU‖ | S ⊂ Y, dim S = k },
where QS : Y → Y/S is a quotient map. For any subsets K1, K2 of Y denote by
N(K1,K2) the smallest number N such that there are N points y1, . . . , yN in Y

such that

K1 ⊂
N⋃

i=1

(yi + K2).

Denote the unit ball of the space X (Y ) by BX (BY ) and define the entropy
numbers by

ek(U) = inf
{
ε > 0 | N(UBX , εBY ) ≤ 2k−1

}
.

For p-convex balls B1, B2 ⊂ Rn, with 0 < p ≤ 1, we will denote the identity
operator from (Rn, ‖ · ‖1) to (Rn, ‖ · ‖2) by B1 → B2, where ‖ · ‖i (i = 1, 2) is
the p-norm whose unit ball is Bi.

Theorem 2. Given α > 1/p − 1/2, there exists a constant C = C(α, p) such
that , for any n and any p-convex ball B ⊂ Rn, there exists an ellipsoid D ⊂ Rn

such that , for every 1 ≤ k ≤ n,

max{dk(D → B), ek(B → D)} ≤ C(n/k)α .

Moreover , there is an absolute constant c such that

C(α, p) ≤
(

2
p

)c/p (
1

1− δ

)8/δ

for α >
3(1− p)

2p
, δ =

3(1− p)
2pα

, p ≤ 1
2

(2)

and

C(α, p) ≤
(

2
p

)c/p2 (
1

1− ε

) 2
εp2

for α >
1
p
− 1

2
, ε =

1/p− 1/2
α

. (3)

Remark 1. In fact, in [BBP] Theorem 2 was proved with estimate (3). Using
this result we prove estimate (2).
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In the following C(α, p) will denote the best possible constant from Theorem 2.
The main point of the proof is the following lemma.

Lemma 1. Let p, q, θ ∈ (0, 1) such that 1/q−1 = (1/p−1)(1−θ) and γ = α(1−θ).
Then

C(α, p) ≤ 21/p21/(1−θ)(e/(1− θ))αC
1/(1−θ)
pθ C(γ, q)1/(1−θ) ,

where

Cpθ =
Γ
(
1 + (1− p)/p

)

Γ
(
1 + θ(1− p)/p

)
Γ
(
1 + (1− θ)(1− p)/p

) , Γ is the gamma function.

For the reader’s convenience we postpone the proof of this lemma.

Proof of Theorem 2. Take q = 1/2, 1− θ = p/(1−p). Then Cpθ = (1−p)/p

and, consequently, by Lemma 1,

C(α, p) ≤ c

(
e

p

)α

22/p

(
1
p

)1/p

C

(
αp

1− p
,

1
2

)
.

Inequality (3) implies

C

(
αp

1− p
,

1
2

)
≤ c

(
1

1− δ

)8/δ

, where δ =
3(1− p)

2pα
.

Thus for α > 3(1− p)/(2p) and p ≤ 1/2 we obtain

C(α, p) ≤
(

2
p

)c/p (
1

1− δ

)8/δ

. ¤

Proof of Theorem 1. By B. Carl’s theorem ([C], or see Theorem 5.2 of [Pi])
for any operator u between Banach spaces the following inequality holds

sup
k≤n

kαek(u) ≤ ρα sup
k≤n

kαdk(u).

One can check that Carl’s proof works in the p-convex case also and gives

ρα ≤ C1/p(Cα)Cα

for some absolute constant C. Let us fix α = 2/p. Then, by Theorem 2, we have
that for any p-convex body K there exists an ellipsoid D such that

max{en(D → B), en(B → D)} ≤ Cln(2/p)/p.

The standard argument [Pi] gives the upper estimate for Cp.
To show the lower bound we use the following example. Let Bn

p be a unit ball
in the space lnp and Bn

2 be a unit ball in the space ln2 . Denote

A =
|Bn

2 |1/n

|Bn
p |1/n

=
Γ(3/2)Γ1/n(1 + n/p)

Γ1/n(1 + n/2)Γ(1 + 1/p)
≥ C0

n1/p−1/2

√
1/p

,

where C0 is an absolute constant.
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Consider a body

K = ABn
p .

We are going to estimate from below

|UBn
2 + K|1/n

|UBn
2 |1/n + |K|1/n

=
|UBn

2 + K|1/n

2|Bn
2 |1/n

for an arbitrary operator U : Rn → Rn with |det U | = 1.
To simplify the sum of bodies in the example let us use the Steiner sym-

metrization with respect to vectors from the canonical basis of Rn (see, e.g.,
[BLM], for precise definitions). Usually the Steiner symmetrization is defined
for convex bodies, but if we take the unit ball of lnp and any coordinate vec-
tor then we have the similar situation. The following properties of the Steiner
symmetrization are well-known (and can be directly checked):

(i) It preserves volume.
(ii) The symmetrization of sum of two bodies contains sum of symmetrizations

of these bodies.
(iii) Given an ellipsoid UBn

2 , a consecutive application of the Steiner sym-
metrizations with respect to all vectors from the canonical basis results in
the ellipsoid V Bn

2 , where V is a diagonal operator (depending on U).

That means that in our example it is enough to consider a diagonal operator U

with | detU | = 1.
Let b ∈ (0, 1) and P1 be the orthogonal projection on a coordinate subspace

of dimension n− 1. Then direct computations give for every r > 0

|UBn
2 + rBn

p | ≥ 2
∫ rbp

0

|P1UBn
2 + brP1B

n
p | dx ≥ 2rbp|P1UBn

2 + brP1B
n
p |,

where bp = (p(1− b))1/p. Since P1K = ABn−1
p , by induction arguments one has

|UBn
2 + K| ≥ (

2Ab(k−1)/2bp

)k|PkUBn
2 + bkPkK|,

where Pk is the orthogonal projection on an arbitrary (n−k)-dimensional coor-
dinate subspace of Rn. Choosing b = exp(−2/(kp)), Pk such that |PkUBn

2 | ≥
|Bn−k

2 | and k = [n/2] we get

C(p) ≥ |UBn
2 + K|1/n

2|Bn
2 |1/n

≥ 1
2

(
2Ae−1/p (2/k)1/p)k/n

(
|Bn−k

2 |
|Bn

2 |

)1/n

≥ c1

√
p1/2 (4/e)1/p

for sufficiently large n and an absolute constant c1. That gives the result for p

small enough, namely, p ≤ c2, where c2 is an absolute constant. For p ∈ (c2, 1]
the result follows from the convex case. ¤
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To prove Lemma 1 we will use the Lions–Peetre interpolation [BL, K] with
parameters (θ, 1).

Let us recall some definitions.
Let X be a quasi-normed space with an equivalent quasi-norms ‖·‖0 and ‖·‖1.

Let Xi = (X, ‖ · ‖i).
Define K(t, x) = inf{‖x0‖0 + t‖x1‖1 | x = x0 + x1} and

‖x‖θ,1 = θ(1− θ)
∫ +∞

0

K(t, x)
t1+θ

dt,

for θ ∈ (0, 1).
The interpolation space (X0, X1)θ,1 is the space (X, ‖ · ‖θ,1).

Claim 1. Let ‖ · ‖0 = ‖ · ‖1 = ‖ · ‖ be p-norms on space X. Then

1
Cpθ

‖x‖ ≤ ‖x‖θ,1 ≤ ‖x‖

for every x ∈ X, with Cpθ as in Lemma 1.

Proof. ‖x‖θ,1 ≤ ‖x‖ since

inf {‖x0‖0 + t ‖x1‖1 | x = x0 + x1} ≤ min(1, t) ‖x‖
and

‖x‖θ,1 = θ(1− θ)
∫ +∞

0

K(t, x)
t1+θ

dt ≤ θ(1− θ)
∫ +∞

0

min(1, t)
t1+θ

‖x‖dt = ‖x‖.

By p-convexity of the norm ‖ · ‖ for a = ‖y‖/‖x‖ ≤ 1 we have

‖y‖+ t‖x− y‖
‖x‖ ≥ a + t(1− ap)1/p ≥ t

(1 + ts)1/s
, where s =

p

1− p
.

Hence

K(t, x) = inf {‖x0‖0 + t ‖x1‖1 | x = x0 + x1} ≥ ‖x‖ t

(1 + ts)1/s

and

‖x‖θ,1

‖x‖ ≥ θ(1− θ)
∫ +∞

0

dt

(1 + ts)1/stθ
= B

(
1− θ

s
,
θ

s

)
θ(1− s)

s

=
(θ/s)Γ

(
θ/s

)
((1− θ)/s)Γ

(
(1− θ)/s

)

(1/s)Γ
(
1/s

) =
1

Cpθ
,

where B(x, y) is the beta function. This proves the claim. ¤

Claim 2. Let ‖ · ‖0 = ‖ · ‖1 = ‖ · ‖ be norms on X. Then ‖x‖θ,1 = ‖x‖ for every
x ∈ X.

Proof. In case of norm K(t, x) = min(1, t)‖x‖. So, ‖x‖θ,1 = ‖x‖. ¤

The next statement is standard (see [BL] or [K]).
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Claim 3. Let Xi, Yi (i = 0, 1) be quasi-normed spaces. Let T : Xi → Yi (i = 0, 1)
be a linear operator . Then

‖T : (X0, X1)θ,1 → (Y0, Y1)θ,1‖ ≤ ‖T : X0 → Y0‖1−θ‖T : X1 → Y1‖θ.

Claim 4. Let Xi (i = 0, 1) be quasi-normed spaces. Then for every N ≥ 1,
(
lN1 (X0) , lN1 (X1)

)
θ,1

= lN1
(
(X0, X1)θ,1

)

with equal norms.

Proof. The conclusion of this claim follows from the equality

K(t, x = (x1, x2, . . . , xN ), lN1 (X0), lN1 (X1)) =
N∑

i=1

K(t, xi, X0, X1). ¤

Claim 5. Let Xi (i = 0, 1) be quasi-normed spaces, Y be a p-normed space. Let
T : Xi (i = 0, 1) → Y be a linear operator . Then for every k0, k1 ≥ 1

dk0+k1−1

(
T : (X0, X1)θ,1 → Y

) ≤ Cpθ d1−θ
k0

(
T : X0 → Y

)
dθ

k1

(
T : X1 → Y

)
.

Proof. As in the convex case [P], fix ε > 0. Consider a subspace Si ⊂ Y

(i = 0, 1) such that dim Si < ki and

‖QSiT : Xi → Y/Si‖ ≤ (1 + ε)dki

(
T : Xi → Y

)
.

Let S = span(S0, S1) ⊂ Y. Then dimS < k0 + k1 − 1 and

‖QST : Xi → Y/S‖ ≤ ‖QSiT : Xi → Y/Si‖.
Note that quotient space of a p-normed space is again a p-normed one. Because
of this, and by Claims 1 and 3,

‖QST : (X0, X1)θ,1 → Y/S‖ ≤Cpθ‖QST : (X0, X1)θ,1 → (Y/S, Y/S)θ,1‖
≤Cpθ‖QST : X0 → Y/S‖1−θ‖QST : X1 → Y/S‖θ

≤Cpθ‖QS0T : X0 → Y/S0‖1−θ‖QS1T : X1 → Y/S1‖θ

≤Cpθ(1 + ε)2dk0

(
T : X0 → Y

)1−θ
dk1

(
T : X1 → Y

)θ
.

This completes the proof. ¤

Proof of Lemma 1.

Step 1. Let D be an optimal ellipsoid such that

dk(D → B) ≤ C(α, p)(n/k)α and ek(B → D) ≤ C(α, p)(n/k)α

for every 1 ≤ k ≤ n.
Let λ = C(α, p)(n/k)α.
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Step 2. Now denote the body (B, D)θ,1 by Bθ. By Claim 5 (applied for k0 = 1),
for every 1 ≤ k ≤ n we have

dk(Bθ → B) ≤ Cpθ‖B → B‖1−θ(dk(D → B))θ ≤ Cpθλ
θ.

It follows from the definition of entropy numbers that B is covered by 2k−1

translates of λD with centers in Rn. Replacing λD with 2λD we can choose
these centers in B. Therefore there are 2k−1 points xi ∈ B (1 ≤ i ≤ 2k−1) such
that

B ⊂
2k−1⋃

i=1

(xi + 2λD).

This means that for any z ∈ B there is some xi ∈ B such that ‖z − xi‖D ≤ 2λ.
Also, by p-convexity, ‖z − xi‖B ≤ 21/p. By taking the operator ux : R →
X, uxt = tx for some fixed x, and applying Claim 3 (or see [BL], [BS]) it is clear
that

‖x‖Bθ
≤ ‖x‖1−θ

B ‖x‖θ
D.

Hence, for any z ∈ B there exists xi ∈ B such that

‖z − xi‖Bθ
≤ (21/p)1−θ(2λ)θ,

that is,
ek(B → Bθ) ≤ 2(1−θ)/p(2λ)θ.

Thus, we obtain

dk(Bθ → B) ≤ Cpθλ
θ and ek(B → Bθ) ≤ 2θ2(1−θ)/pλθ

for every 1 ≤ k ≤ n.

Lemma 2. Let B ⊂ Rn be a p-convex ball and D ⊂ Rn be a convex body . Let
0 < θ < 1 and Bθ = (B, D)θ,1. Then there exists a q-convex body Bq such that
Bθ ⊂ Bq ⊂ 21/qBθ, where 1/q − 1 = (1/p− 1)(1− θ).

Proof. Take the operator U : l21(Rn) → Rn defined by U((x, y)) = x+ y. Since

‖x + y‖B ≤ 21/p−1 (‖x‖B + ‖y‖B) and ‖x + y‖D ≤ (‖x‖D + ‖y‖D)

and by Claims 3, 4 we have

‖x + y‖Bθ
≤ 2(1−θ)(1/p−1)

(‖x‖Bθ
+ ‖y‖Bθ

)
.

But by the Aoki–Rolewicz theorem for every quasi-norm ‖·‖ with the constant
C in the quasi-triangle inequality there exists a q-norm

‖ · ‖q = inf

{( n∑

i=1

‖xi‖q

)1/q ∣∣∣∣ n > 0, x =
n∑

i=1

xi

}

such that ‖x‖q ≤ ‖x‖ ≤ 2C‖x‖q with q satisfying 21/q−1 = C ([KPR, R]; see
also [K], p.47).

Thus, Bθ ⊂ Bq ⊂ 21/qBθ, where Bq is a unit ball of q-norm ‖ · ‖q. ¤
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Remark 2. Essentially, Lemma 2 goes back to Theorem 5.6.2 of [BL]. However,
the particular case that we need is simpler and we are able to estimate the
constant of equivalence.

Note that Lemma 2 can be easily extended to the more general case:

Lemma 2′. Let Bi ⊂ Rn be a pi-convex bodies for i = 0, 1 and Bθ = (B0, B1)θ,1.
Then there exists a q-convex body Bq such that Bθ ⊂ Bq ⊂ 21/qBθ, where

1
q

=
1− θ

p0
+

θ

p1
.

Remark 3. N. Kalton pointed out to us that the interpolation body (B,D)θ,1

between a p-convex B and an ellipsoid D is equivalent to some q-convex body
for any q ∈ (0, 1] satisfying

1/q − 1/2 > (1/p− 1/2)(1− θ).

To prove this result one have to use methods of [Kal] and [KT]. Certainly, with
growing q the constant of equivalence becomes worse.

Step 3. By definition of C(α, p) for Bq from Lemma 2 and γ = α(1 − θ) there
exists an ellipsoid D1 such that for every 1 ≤ k ≤ n

dk(D1 → Bq) ≤ C(γ, q)(n/k)γ and ek(Bq → D1) ≤ C(γ, q)(n/k)γ .

By the ideal property of the numbers dk, ek and because of the inclusion Bθ ⊂
Bq ⊂ 21/qBθ, for every 1 ≤ k ≤ n

dk(D1 → Bθ) ≤ 21/qC(γ, q)(n/k)γ and ek(Bθ → D1) ≤ C(γ, q)(n/k)γ .

Step 4. Let a = 1 + [k(1 − θ)]. Using multiplicative properties of the numbers
dk, ek we get

dk(D1 → B) ≤ dk+1−a(D1 → Bθ)da(Bθ → B)

≤ Cpθλ
θ21/qC(γ, q)(n/k)γ

(
1

(1− θ)1−θθθ

)α

≤ C(α, p)θ
(

e

1− θ

)α(1−θ)

Cpθ21/qC(γ, q)(n/k)α

and

ek(B → D1) ≤ ek+1−a(B → Bθ)ea(Bθ → D1)

≤ 2θ2(1−θ)/pλθC(γ, q)(n/k)γ

(
1

(1− θ)1−θθθ

)α

≤ C(α, p)θ
(

e

1− θ

)α(1−θ)

2θ2(1−θ)/pC(γ, q)(n/k)α.

By the minimality of C(α, p) and since 1/q ≤ 1 + (1− θ)/p we have

C(α, p) ≤ C(α, p)θ
(

e

1− θ

)α(1−θ)

Cpθ21−θ/p2C(γ, q)(n/k)α.
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That proves Lemma 1. ¤
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