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A Note on Gowers’ Dichotomy Theorem

BERNARD MAUREY

ABSTRACT. We present a direct proof, slightly different from the original,
for an important special case of Gowers’ general dichotomy result: If X is an
arbitrary infinite dimensional Banach space, either X has a subspace with
unconditional basis, or X contains a hereditarily indecomposable subspace.

The first example of dichotomy related to the topic discussed in this note is
the classical combinatorial result of Ramsey: for every set A of pairs of integers,
there exists an infinite subset M of N such that, either every pair {m;, ma} from
M isin A, or no pair from M is in the set A. There exist various generalizations
to “infinite Ramsey theorems” for sets of finite or infinite sequences of integers,
beginning with the result of Nash-Williams [NW]: for any set A of finite increas-
ing sequences of integers, there exists an infinite subset M of N such that either
no finite sequence from M is in A, or every infinite increasing sequence from M
has some initial segment in A (although it does not look so at the first glance,
notice that the result is symmetric in A and A€, the complementary set of A; for
further developments, see also [GP], [E]). The first naive attempt to generalize
this result to a vector space setting would be to ask the following question: given
a normed space X with a basis, and a set A of finite sequences of blocks in X
(i.e., finite sequences of vectors (z1,...,xy) where x1,...,x € X are successive
linear combinations from the given basis), does there exist a vector subspace ¥
of X spanned by a block basis, such that either every infinite sequence of blocks
from Y has some initial segment in A, or no finite sequence of blocks from Y
belongs to A, up to some obviously necessary perturbation involving the norm
of X. It turns out that the answer to this question is negative, as a consequence
of the existence of distortable spaces, like Tsirelson’s space [T]. A correct vector
generalization requires a more delicate statement, which in particular is not sym-
metric in A and A°. Gowers’ dichotomy theorem is such a result; in its first form
[G1], this theorem is about sets of finite sequences of blocks in a normed space,
and it was later extended in [G2] to analytic sets of infinite sequences of blocks.
We will not state these general results here, in particular we will not describe
the very interesting “vector game” that seems necessary for expressing Gowers’
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theorem. The first striking application of this result (probably the one for which
the combinatorial result was proved) is an application to the unconditional basic
sequence problem. This problem asks whether it is possible to find in a given
Banach space X an infinite unconditional basic sequence (z,,), or, in equivalent
terms, an infinite dimensional subspace Y of X with an unconditional basis.
The answer is negative for some spaces X, as was shown in [GM1]. Further-
more, the example in [GM1] has a property which seems rather extreme in the
direction opposite to an unconditional behaviour: this space X is Hereditarily
Indecomposable, or H.I. for short. This means that no vector subspace of X is
the topological direct sum of two infinite dimensional subspaces (and of course
X is infinite dimensional).

It was natural to investigate more closely the connection between the failure
of the unconditional basic sequence property and the H.I. property. Was it just
accidental if the first example of a space not containing any infinite uncondi-
tional sequence was actually a H.I. space? Gowers’ result completely clarifies
the situation.

THEOREM 1 (SPECIAL CASE OF GOWERS’ DICHOTOMY THEOREM). Let X be
an arbitrary infinite dimensional Banach space. Either X has a subspace with
unconditional basis, or X contains a H.I. subspace.

Let us mention that there exist non trivial examples of non H.I. spaces not
containing any infinite unconditional basic sequence (see [GM2]; on the other
hand, trivial examples of this situation are simply obtained by considering spaces
of the form X @ X, with an H.I. space X ). Recall that Theorem 1 above, together
with the results by Komorowski and Tomczak [KT] gave a positive solution to the
homogeneous Banach space problem, which appeared in Banach’s book [B] sixty
years before: if a Banach space X is isomorphic to all its infinite dimensional
closed subspaces, then X is isomorphic to the Hilbert space #5.

The purpose of this note is to present a variant for a direct proof of this
important special case of Gowers’ general dichotomy result. It is of course not
essentially different from the original argument in [G1], and the attentive reader
will easily detect several steps here that are very similar to some parts of [G1],
for example our Lemma 2 below and its Corollary. Our main intention is to
give a more geometric exposition. We shall try to gather all the easy geometric
information that we need before embarking for the central part of the argument,
which is the combinatorial part.

We begin with some notation and definitions. For any normed space X we
denote by S(X) the unit sphere of X. The notation Y, Z, or U, V will be used
for infinite dimensional vector subspaces of X, and F, F, G for finite dimensional
subspaces of X. Given a real number C' > 1, a finite or infinite sequence (e,,) of
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non zero vectors in a normed space X is called C'-unconditional if

HZEiaiei < C HZaiei

for any sequence of signs ¢; = +1 and any finitely supported sequence (a;) of

scalars. An infinite sequence (e, ) of non zero vectors is called unconditional if
it is C-unconditional for some C'. It is usual to normalize the sequence (e,) by
the condition |le,|| = 1 for each integer n, but this is unimportant here.

An infinite dimensional normed space X is called Hereditarily Indecomposable
(in short H.I.) if for any infinite dimensional vector subspaces Y and Z of X,

(1) inf{|ly —z| :y € S(Y), z€ S(Z)} = 0.

It is easy to check that this property is equivalent to the fact that no subspace of
X is the topological direct sum of two infinite dimensional subspaces Y and Z.
Property (1) says that the angle between any two infinite dimensional subspaces
of X is equal to 0. This notion of angle will be discussed with more details below.

In order to compare easily the H.I. property and the unconditionality property,
we rephrase unconditionality in terms of angle of subspaces. Saying that (e,) is
C-unconditional is of course equivalent to saying that

Hg ;€ E €;a;€;

for all signs (¢;) and all scalars (a;) (we just moved the signs to the other side).
For any finite subset K of the set of indices, let Ex denote the linear span of

<c|

(ex)rer. Consider a linear combination Y e;a;e;, let I = {i : &, = 1} and
J={i:e; =—1}. Lettingx => . _;a;e; € Er and y = >_._;a;e; € E; we may
restate the above inequality as

icl icJ

lz +yll < Clle =yl

for all x € E; and y € E;, whenever I and J are disjoint. This is again an
angle property. There are however several ways for measuring the angle between
two subspaces, and we want to introduce two of them. For any L, M finite or
infinite dimensional subspaces of X, we denote by a(L, M) the measure of the
angle between L and M given by

a(L, M) = mf{]l¢ — || : © € S(L),y € SM)}.

This expression is symmetric, decreasing in L and M, and (Lipschitz-) continuous
for the metric §(L, M) given by the Hausdorff distance between the unit spheres
S(L) and S(M),

§(L, M) = max{sup{d(z,S(M)) : x € S(L)}, sup{d(y, S(L)) : y € S(M)}}.
An equivalent expression for the angle is

b(L, M) = inf{inf{d(z, M) : & € S(L)}, inf{d(y, L) : y € S(M)}}.
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It is clear that b(L, M) < a(L,M); in the other direction we have a(L, M) <
2b(L, M). To see this, let b > b(L, M), and assume for example that b(L, M) =
inf{d(x, M) : x € S(L)}. Let x € S(L) and v € M be such that ||z — u|| < b,
hence 1—b < |Ju|| < 14b. Letting v/ = u/|ul, we have [[u—u'| = ||lul]| - 1] < b,
and d(z, S(M)) < ||l — /| < 2b.

According to the above discussion, we see that a sequence (e, )nen of non zero
vectors in X is unconditional iff there exists § > 0 such that

(2) b(span{e, : n € I}, span{e, : n € J}) > 8

whenever I and J are finite disjoint subsets of N. The relations between ( and the
unconditional constant of the sequence (e, ) are as follows: given 8 > 0 with the
above property, the sequence (e;,) is C-unconditional with C' < 2/3. Conversely,
if the sequence (e,,) is C-unconditional, then (2) is true with § > 2/(C + 1).

Let us check these two facts. Suppose first that (2) is true for some g > 0. If
I and J are disjoint, and x € Er, y € E;, we see that

2
lz+yll < 5 lle =yl

proving that (e,) is 2/F-unconditional. Indeed, suppose that ||| =1 > ||y|; we
know that || — y|| > b(Er, Ey) > 5 and ||z + y|| < 2, and the inequality above
follows by homogeneity. Conversely, if (e,) is C-unconditional, the projection
Pr: ) aje; — Y, craie; on Ep has norm < (C + 1)/2 for any subset I of the
set of indices, and this implies that [|z|| < €|z — yl|, hence we may choose

B=2/(C+1).

The following easy technical Lemma will be used in the proof of Theorem 2
below.

LEMMA 1. Assume that E, E' are finite dimensional subspaces of X, M any
subspace of X and Z an infinite dimensional subspace of X. We have

sup a(E'+ U, M) < sup a(E+ U, M)+ 25(E', E),
vucz ucz

where the supremum above runs over all infinite dimensional subspaces U of Z.

PROOF. Let

s>supa(E+V, M), §=6F, FE),
vcz
t > 1 and let U be any infinite dimensional subspace of Z. By a standard
argument, we may find an infinite dimensional subspace U’ C U such that t||e +
u'|| > |le|| for every e € E and v’ € U’ (we intersect U with the kernels of a
finite set of functionals forming a ¢t~!-norming set for E). By assumption we
have a(FE + U’, M) < s, hence we can find e+ v € S(E+U’) and y € S(M)
such that ||(e + «) — y|| < s. We know then that |le|| < ¢, thus there exists
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e’ € E' such that ||¢/ —e|]| <td. Now 1 — ¢ < ||/ + /|| < 1+ td and we can find
x € S(E'+ U’) such that ||z — (¢/ + u)|| < ¢0. Finally,

a(E'+U, M) < a(E' +U', M) < ||z —y|| < s+ 24,
ending the proof. (I

So far we did not say if our normed spaces are real or complex, and everything
above applies to both cases. In the complex case however, it is customary to
define the complex unconditional constant by replacing in the definition above
the signs ¢; = £1 by arbitrary complex numbers of modulus one. This makes
no essential difference, because a sequence of vectors in a complex normed space
is complex-unconditional iff it is real-unconditional, except that the complex
unconditional constant may differ from the real constant by some factor (less
than 3 say). We shall therefore work with the real definition of the unconditional
constant.

We introduce the intermediate notion of a HI(e) space. Given ¢ > 0, an
infinite dimensional normed space X will be called a HI(e) space if for every
infinite dimensional subspaces Y and Z of X we have

a(Y,Z) <e.
Obviously, a normed space X is H.I. iff it is HI(g) for every € > 0.

THEOREM 2. Let X be an infinite dimensional normed space. For each € > 0,
either X contains an infinite sequence with unconditional constant < 4/e, or X
contains a HI(e) subspace Z.

Of course, when X does not contain any infinite sequence with unconditional
constant < 4/e, this implies that every infinite dimensional subspace Y of X
contains a HI(e) subspace. Theorem 2 implies Theorem 1 by a simple diag-
onalization procedure that already appears in [G1]: assume that X does not
contain any infinite unconditional sequence; by Theorem 2, every subspace Y
of X contains for each £ > 0 a subspace Z which is HI(e). Taking succes-
sively € = 27", we construct a decreasing sequence (Z,,), where Z,, isa HI(2™")
subspace of X. Let Z be a subspace obtained from the sequence (Z,) by the
diagonal procedure. For every n, this space Z is contained in Z,, up to finitely
many dimensions, therefore Z is HI(¢) for every € > 0, so Z is H.I.

PrROOF OF THEOREM 2. We may clearly restrict our attention to separable
spaces X. Let (E, F') be a couple of finite dimensional subspaces of X and let Z
be an infinite dimensional subspace of X. We set

A(E,F,Z)= sup a(E+U, F+V),
vvcz

where the supremum is taken over all infinite dimensional subspaces U and V'
of Z. Tt follows from Lemma 1 that A(E',F',Z) < A(E,F,Z) + 25(E',E) +
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20(F',F) for all finite dimensional subspaces E’ and F’. We will keep € > 0
fixed throughout the proof.

We introduce a convenient terminology, inspired by [GP]. We say that the
couple (E, F) accepts the subspace Z if

A(E,F,7) < e.

This perhaps unnatural strict inequality is necessary for approximation reasons.
Indeed, we get from Lemma 1 that when (E, F') accepts a subspace Z of X, then
(E', F") also accepts Z provided §(E’, E) and §(F’, F') are small enough. When
(E, F) accepts Z, we know that a(E+ U, F4+ V) < ¢ for all infinite dimensional
subspaces U and V of Z, and except for the small technicality just mentioned,
this is exactly the idea that the reader should keep in mind. Before going any
further, let us notice that when the couple ({0}, {0}) accepts a subspace Z, then
Z is HI(e) (actually, Z is then HI(¢') for some &’ < ¢). Acceptance is clearly
symmetric: (F, E) accepts Z iff (E,F) accepts Z. If (E,F) accepts Z, it also
accepts every Z' C Z (obvious) and every Z + G, when dim G < +o0; this last
fact is easy: given two infinite dimensional subspaces U,V of Z + G, we may
consider the two infinite dimensional subspaces U/ = U NZ and V! =V N Z of
Z; since (E, F) accepts Z, we have

W(E+U, F+V)<a(E+U', F+V') < A(E,F,Z) <.

Notice that what we just did was proving the equality A(E, F,Z) = A(E, F, Z+
(), which is one of the main ingredients for the proof: we are dealing here with
a function of Z that does not depend upon changing finitely many dimensions.

We say that a couple 7 = (E, F') rejects Z if no subspace Z' C Z is accepted
by 7. Rejection is also symmetric, and saying that (E, F') rejects some subspace
Z (or simply: does not accept Z) implies that

a(E,F) >«

because a(E,F) > a(E+U, F+V) for all U, V, hence a(E, F) > A(E, F, Z) for
every Z. This yields b(E, F) > 1a(E,F) > /2 and will be used in connection
with the property (2) for § = /2, in order to produce an upper bound 4/¢ for
the unconditional constant. This notion of rejection will therefore be the tool
for constructing inductively subspaces with an angle bounded away from 0; the
strength of the rejection hypothesis will allow the induction to run. Observe that
when a couple 7 rejects a subspace Z, it is clearly true by definition that 7 rejects
every subspace Z’ of Z, and T also rejects “supspaces” of Z of the form Z + G,
when G is finite dimensional (otherwise, 7 would accept some Z' C Z+ G, hence
also accept Z" = Z' N Z, contradicting the fact that T rejects Z); combining
the above observations, we see that when 7 accepts or rejects Z, the same is
true for every Z’ such that Z’ € Z + GG, when G is any finite dimensional
subspace of X. This simple remark is the basis for our first step. Since X was
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assumed separable, we may select a countable family €, dense in the set of finite
dimensional subspaces of X (for the Hausdorff metric of spheres).

CrLamM 1. There exists an infinite dimensional subspace Zy of X such that
for every couple (E,F) with E,F € & and every rational « in (0,¢), either
A(E,F,Zy) < « or, for every infinite dimensional subspace Z' of Zy, we have
A(E,F,Z") > a.

PrROOF. We use a very usual diagonal argument. Let (0,)n>1, with o, =
(En, F, an) be a listing of all triples (E, F,«) such that E,F € & and « is
a rational number in (0,e). We construct a decreasing sequence (X,)n>0 of
subspaces of X in the following way: Xo = X, and if A(E,,+1, Fut1,2’) > apt1
for every subspace Z’ of X,,, we simply let X,,11 = X,,. Otherwise, there exists
a subspace of X,,, which we call X,, 11, such that A(E, 11, Friqy1, Xnt1) < apt1.
We consider then a diagonal infinite dimensional subspace Z; which is the linear
span of a sequence (2y),>1 built by picking inductively z,4; in X, 41 and not in
the linear span of z1, 29, . . ., z,. For each integer n > 1, we see that Zy C X,,+G,,
for some finite dimensional subspace G,,, and either

A(E,, Fn, Zy) < A(En, Fn, X0+ Gp) = A(E,, F, X,) < g,
or for every subspace Z’ of Zy, A(E,, F,,Z") = A(E,, F,,, Z’NX,) > a, O

By an easy approximation argument, we can state a version of Claim 1 above
that will apply to any couple 7, and not only to those from the dense subset €.
Let (E, F') be an arbitrary couple. If (E, F') does not reject Zy, it accepts some
Z' C Zy and we may choose a rational « in (0, ) such that A(E, F,Z’) < «; let
8 be rational and 0 < 3 < (¢ — «)/8; let E', F' € € be such that 6(E', E) < 3
and §(F',F) < (. This implies by Lemma 1 that A(E',F',Z') < a + 48 < e.
But then by Claim 1 it follows that A(E’, F', Zy) < a + 4/3; by approximation
again (F, F') accepts Zy. Finally:

CramM 2. For each couple (E,F) of finite dimensional subspaces of X, either
(E, F) rejects Zy or (E,F) accepts Zy.

From now on the whole construction will be performed inside our “stabilizing”
subspace Zy. Here is where the dichotomy really starts. There are two possi-
bilities: either the couple ({0}, {0}) accepts Zy, or it rejects. As was mentioned
before, saying that ({0}, {0}) accepts Zy implies that Zy is HI(g). Suppose now
that ({0}, {0}) rejects Zy; we will find in Z a sequence (ey)r>1 with uncondi-
tional constant C' < 4/e. This will be done in the following manner: we will
choose the sequence (ey) of non zero vectors in such a way that for each n > 1
and for all disjoint sets I,J C {1,...,n}, the couple (E, Ey) rejects Zy (as be-
fore, we denote by Fk the linear span of {e;, : k € K}). The next Lemma and its
Corollary give the tool for constructing the next vector e, 1 of our unconditional
sequence, when eq,...,e, are already selected.
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LEMMA 2. If (E, F) rejects Zy, then for every infinite dimensional subspace Z'
of Zy there exists a further infinite dimensional subspace U' C Z' such that for
every finite dimensional subspace E' of U’, the couple (E + F’', F) rejects Zy.

ProOF. Otherwise, there exists Z’ C Z; such that, for every subspace U’ C Z’,
there exists E' C U’ such that (F + E’, F) does not reject Zy. We know that
(E + E', F) accepts Zy by Claim 2; for every subspace V' C Z' we have, since
E+U =E+FE +U,

a(E4+U,F+V')=aE+E +U ,F+V')<AE+E'|F, Zy) <e,

which implies that (F, F) accepts Z’, therefore (E, F') accepts Zy by Claim 2,
contrary to the initial hypothesis. (I

COROLLARY 1. Suppose that (Ey, Fo)aca s a finite family of couples, and that
(Ew, Fy) rejects Zy for each o € A. For every infinite dimensional subspace Z"
of Zy there exists a further infinite dimensional subspace U" C Z" such that for
every finite dimensional subspace E' of U", the couple (E, + E', F,,) rejects Zy
for each a € A.

PrOOF. We set A = {a1,...,0,}. Let Z” = Z| be a subspace of Zy. By
Lemma 2, there exists U’ = Z] C Z{ such that for every E' C Z}, (Eo, +E’, Fy,)
rejects Zy. We apply again Lemma 2, this time to the couple (FE,,, F,,), with
Z'=Zj,and soon until U" = Z), C Z,, | C ... C Z' is reached. O

The Corollary will be applied in the following weakened form; the notation [z]
stands for the line Rz or Cz generated by a non zero vector z:

Suppose that (Eq, Fo)aca 18 a finite family of couples, and that (Ey, F,) rejects
Zqy for each o € A. For every infinite dimensional subspace Z' of Zy there exists
a non zero vector z € Z' such that the couple (E, + [2], Fy) rejects Zy for each
a € A.

Let us finish the proof of the Theorem. Recall that Ex denotes the linear
span of (er)rex. Assuming that ({0}, {0}) rejects Zy, we build by induction a
sequence (ex)32, of non zero vectors in Zy, such that for every integer n > 1 and
every partition (I,J) of {1,...,n}, the couple (Ey, Ej) rejects Zy. Assuming
that eq,...,e, are already selected, let us call partition of length n any couple
of the form (E;, E), for some partition (I, J) of {1,...,n}. Consider the finite
list A,, of all partitions (E,, F,) of length n, where o € A,,. Our induction
hypothesis is that for every o € A,,, the couple (E,, F,) rejects Zy; let Z’' be an
infinite dimensional subspace of Zy such that Z’ Nspan{es,...,e,} = {0}. By
the Corollary, we can find a non zero vector z € Z’ such that for every o € A,
the couple (E, + [z], F,) rejects Zy; observe that (F,, E,) also belongs to the
list, hence (F, + [2], E4) also rejects Zy. We choose now e, = z. It is clear
that with this choice, (Er, Ey) rejects Zy for every partition of length n+1. This
implies that the infinite sequence (ex)r>1 satisfies property (2) with the constant
B = €/2, thus this sequence is 4/e-unconditional. O
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REMARK. It is possible to obtain directly a H.I. space, without passing through
the intermediate stage of HI(e) spaces, by replacing the study of couples by
that of triples (E, F, ¢), for € varying. The first version of this paper was indeed
written in this way, but the referee said (and was probably right about it) that
the earlier version in [M] gave a clearer view of the combinatorics, by dealing
first with a countable situation (a countable vector space over Q) and treating
the boring approximation afterwards. This version is a sort of midpoint between
the two, which perhaps only adds the disadvantages of both. ..
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