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Curvature of Nonlocal Markov Generators

MICHAEL SCHMUCKENSCHLÄGER

Abstract. Bakry’s curvature-dimension condition will be extended to cer-
tain nonlocal Markov generators. In particular this gives rise to a possible
notion of curvature for graphs.

1. Definition of Curvature

Let (Ω, µ) be a probability space and L a self-adjoint negative but not neces-
sarily bounded operator on L2(µ) given by

Lf(x) :=
∫

(f(y)− f(x))K(x, y)µ(dy) (1)

where K is a non negative symmetric kernel. Obviously L remains unchanged if
we change K on the diagonal. By Pt = etL we denote the continuous contraction
semigroup on L2(µ) with generator L. We will assume that Pt is ergodic and that
there exists an algebra A ⊆ ⋂

n domLn of bounded functions which is a form core
of L. Then the Beurling–Deny condition implies that Pt is a symmetric Markov
semigroup, i.e., Pt preserves positivity and extends to a continuous contraction
semigroup on Lp(µ) for all 1 ≤ p < ∞. We will also assume that A is stable
under Pt. On A×A define

Γ(f, g) := 1
2 (L(fg)− fLg − gLf),

Γ2(f, g) := 1
2 (LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)).

Following D. Bakry and M. Emery [BE, B] we define the curvature of L at the
point x ∈ Ω by

R(L)(x) := sup
{
r ∈ R : Γ2(f, f)(x) ≥ rΓ(f, f)(x) for all f ∈ A

}
,

and say that the curvature of L is bounded from below by R if R(L)(x) ≥ R for
all x ∈ Ω, i.e., Γ2(f, f) ≥ RΓ(f, f) for all f ∈ A. By the definition of R it is clear
that R(λL) = λR(L) for any λ > 0. Let us say a a word about the motivation
for this definition. Assume L is the Laplacian on a Riemannian manifold, then
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Γ(f, f) = ‖grad f‖2 and Γ2(f, f) = Ric (grad f, grad f) + ‖Hf‖2, where Ric
denotes the Ricci curvature and Hf the Hessian of f . Thus R(L) coincides with
the biggest lower bound for the Ricci curvature.

Given Γ we can define a metric dΓ on Ω by

dΓ(x, y) := sup
{|f(x)− f(y)| : Γ(f, f) ≤ 1

}
.

If L is the Laplacian on a Riemannian manifold this is just the metric induced
by the Riemannian metric.

From now on we will assume that for all y ∈ Ω the function x 7→
√

K(x, y)
belongs to the algebra A. In case L is given by (1) we obtain, by putting
∇yf(x) := f(y)− f(x) and d(x) :=

∫
K(x, y) µ(dy),

Γ(f, g)(x) = 1
2

∫
∇yf(x)∇yg(x)K(x, y)µ(dy),

Γ2(f, f)(x) = 1
4

∫
∇yf(x)2

(∫
K(x, z)K(y, z)µ(dz)+K(x, y)(3d(y)−d(x))

)
µ(dy)

− 1
2

∫ ∫
∇yf(x)∇zf(x)K(x, y)(2K(y, z)−K(x, z))µ(dy)µ(dz)

For simplicity of notation let us write 〈f〉 for the mean
∫

f dµ and 〈f, g〉 := 〈fg〉.
Suppose that the curvature of L is bounded from below by R > 0, then

〈(Lf)2〉 = 〈Γ2(f, f)〉 ≥ R〈Γ(f, f)〉,

and by Proposition 6.3 in [B] this is equivalent to the spectral gap inequality
〈f2〉 − 〈f〉2 ≤ R−1〈Γ(f, f)〉. Thus R ≤ λ1, where λ1 is the spectral gap of −L.

Now we are going to check that Ledoux’s proof [L1] of the concentration of
measure phenomenon on compact Riemannian manifolds still works in the above
setting.

1. (Bakry) If f ∈ A and if the curvature of L is bounded from below by R > 0,
then by differentiation of the function F (s) := PsΓ(Pt−sf, Pt−sf) it is easy to
see that F ′ ≥ 2RF and hence, for all f satisfying Γ(f, f) ≤ 1,

Γ(Ptf, Ptf) ≤ e−2RtPtΓ(f, f) ≤ e−2Rt. (2)

2. For f ∈ A and λ ≥ 0 we have

〈Γ(f, eλf )〉 ≤ λ〈eλf ,Γ(f, f)〉. (3)

This follows from the elementary inequality (ey − ex)/(y − x) ≤ 1
2 (ey + ex).

3. (Ledoux) For λ > 0, f ∈ A such that Γ(f, f) ≤ 1 and 〈f〉 = 0 define
F (t) := 〈eλPtf 〉, then

−F ′(t) = −λ〈LPtf, eλPtf 〉 = λ〈Γ(Ptf, eλPtf )〉
≤ λ〈λePtf , Γ(Ptf, Ptf)〉 ≤ λ2e−2Rt〈eλPtf 〉 = λ2e−2RtF (t),
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where we first used (3) and then (2). Thus (log F )′(t) ≤ −λ2e−2Rt and since
F (∞) = 1 we conclude that F (0) ≤ eλ2/2R, which implies the deviation inequal-
ity

µ(f > ε) ≤ e−
1
2 Rε2

. (4)

If Ω is a finite graph with counting measure µ we define

Lf(x) :=
∑
y∼x

(f(y)− f(x)).

y ∼ x meaning that y and x are connected by an edge. Suppose that f is 1-
Lipschitz with respect to the graph distance, then Γ(f, f)(x) ≤ d(x)/2, where
d(x) is the degree of the vertex x. Also, in this case Γ2(f, f)(x) only depends on
points whose graph distance to x is at most 2. In this respect the curvature is a
local quantity.

Suppose L1 and L2 are generators of type (1) on L2(Ω1, µ1) and L2(Ω1, µ1)
respectively. Let P 1

t and P 2
t be the corresponding contraction semigroups on

L2(Ω1, µ1) and L2(Ω1, µ1). Then L := L1 ⊗ 1 + 1 ⊗ L2 is the generator of
Pt(f ⊗ g) := P 1

t f ⊗ P 2
t g and

ΓL(f ⊗ g, f ⊗ g) = f2 ⊗ ΓL2(g, g) + ΓL1(f, f)⊗ g2,

ΓL
2 (f ⊗ g, f ⊗ g) = f2 ⊗ ΓL2

2 (g, g) + ΓL1
2 (f, f)⊗ g2 + 2ΓL1(f, f)⊗ ΓL2(g, g).

For simplicity we assume L1 = · · · = Ln; we will also drop the superscripts. By
induction we obtain, for F =

⊗n
j=1 fj ,

Γ(F, F ) =
∑

j

f2
1 ⊗· · ·⊗f2

j−1⊗Γ(fj , fj)⊗f2
j+1⊗· · ·⊗f2

n

Γ2(F, F ) =
∑

j

f2
1 ⊗· · ·⊗f2

j−1⊗Γ2(fj , fj)⊗f2
j+1⊗· · ·⊗f2

n

+2
∑

i<j

f2
1 ⊗· · ·⊗f2

i−1⊗Γ(fi, fi)⊗f2
i+1⊗· · ·⊗f2

j−1

⊗Γ(fj , fj)⊗f2
j+1⊗· · ·⊗f2

n.

Let x = (x1, . . . , xn) ∈ Ωn; put x̂j = (x1, . . . , xj−1, xj+1, . . . , xn) and define
Fbxj

: Ω → R by Fbxj
(xj) = F (x), then the terms involving Γ in the second sum

can be written as
∫ ∫

(Fbxi
(yi)− Fbxi

(xi))2(Fbxj
(yj)− Fbxj

(xj))2K(xi, yi)K(xj , yj) µ(dyi) µ(dyj).

For x ∈ Ωn and y ∈ Ω, we define ∇j
yF (x) := Fbxj

(y)−Fbxj
(xj); then the preceding

expression equals
∫ ∫ (

∇i
yi
∇j

yj
F (x)

)2

K(xi, yi)K(xj , yj) µ(dyi)µ(dyj).
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Hence, for all F ∈ ⊗n
j=1 A,

Γ(F, F )(x) =
∑

j

Γ(Fbxj
, Fbxj

)(xj),

Γ2(F, F )(x) =
∑

j

Γ2(Fbxj
, Fbxj

)(xj)

+ 2
∑

i<j

∫ ∫ (
∇i

yi
∇j

yj
F (x)

)2

K(xi, yi)K(xj , yj)µ(dyi) µ(dyj).

We thus have the following analogue to manifolds:

Theorem 1.1. Suppose the curvatures of L1, . . . , Ln are bounded from below by
R1, . . . , Rn. Then the curvature of

L1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ Ln.

is bounded from below by minj Rj .

Finally let us note a somewhat more convenient formula for Γ2: For each y ∈ Ω
define Xy : A → A by Xyf(x) =

√
K(x, y)(f(y)− f(x)).

Proposition 1.2. For all f, g ∈ A we have

Γ(f, g) = 1
2

∫
XyfXyg µ(dy),

Γ2(f, f) = 1
2

∫
Γ(Xyf, Xyf) + Xyf [L, Xy]f µ(dy),

where [L,X] denotes the commutator LX −XL.

Proof. The first formula is just the definition of Xy. As for the second we note
that

1
2LΓ(f, f) = 1

4

∫
L(Xyf)2 µ(dy) = 1

2

∫
Γ(Xyf,Xyf) + XyfLXyf µ(dy)

and thus the formula follows by the definition of Γ2. ¤

2. Curvature of Graphs

Let us consider the trivial example K(x, y) = 1. In this case

Γ(f, f)(x) = 1
2

∫
∇yf(x)2 µ(dy),

Γ2(f, f)(x) = 1
4

(
3

∫
∇yf(x)2 µ(dy)− 2

(∫
∇yf(x)µ(dy)

)2)
.

Choosing R = 1
2 the inequality Γ2(f, f) ≥ RΓ(f, f) is thus equivalent to

∫
∇yf(x)2 µ(dy) ≥

( ∫
∇yf(x)2 µ(dy)

)2

,
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i.e., the curvature of L is bounded from below by 1
2 . If Ω is a complete graph

of order n then we obtain a slightly larger lower bound for the curvature: R =
1/2+1/n. In this case the deviation inequality can be obtained much more easily:
following M. Ledoux [L2] and using the elementary inequality (ex−ey)/(x−y) ≤
1
2 (ex + ey), we get, for all f ∈ A,

〈fef 〉 − 〈ef 〉 log〈ef 〉 ≤ 1
2

∫ ∫
(f(x)− f(y))(ef(x) − ef(y))µ(dx) µ(dy)

≤ 1
4

∫ ∫
(f(x)− f(y))2(ef(x) + ef(y))µ(dx) µ(dy)

= 〈ef ,Γ(f, f)〉, (5)

which implies (see [L2]) that µ(f − 〈f〉 > ε) ≤ e−ε2/4 provided Γ(f, f) ≤ 1. The
latter condition implies that f is bounded: if 〈f〉 = 0, then |f | ≤

√
2− 〈f2〉.

Ledoux’s point is not this deviation inequality but rather the fact that (5) ten-
sorizes easily. In our context this is reflected by the fact that if the curvature of
L is bounded from below by R, then so is the curvature of L⊗ 1 + 1⊗L. In the
particular case of the cube Ω = {−1,+1} and the normalized Haar measure µ1

we get by 4 and Theorem 1.1:

Corollary 2.1. Let f : ΩN → R be a 1-Lipschitz function with respect to the
graph distance. If 〈f〉 = 0, then µN (f > ε) ≤ e−2ε2/N , where µN is the product
probability .

Proof. Since
∫

(∇yf(x))2 µ1(dy) ≤ 1/2 we get Γ(f, f) ≤ N/4. ¤

More generally:

Corollary 2.2. Let Ω be a complete graph of order n with normalized counting
measure µ1 and ΩN the product graph with the product measure µN . Suppose
f : ΩN → R is a 1-Lipschitz function with respect to the graph distance such that
〈f〉 = 0, then

µN (f > ε) ≤ exp
(
− n + 2

2N(n− 1)
ε2

)
.

Now suppose Ω = {0, 1, . . . , n − 1} is a finite graph of order n. Any function
f : Ω → R can be thought of as a vector f = (f0, . . . , fn−1) ∈ Rn. By µ we
denote the counting measure on Ω and by µ0 the normalized counting measure.
For any function f : Ω → R we will also write 〈f〉 for the mean of f with respect
to µ0. Define (Lf)j =

∑
i(fi − fj)Ki,j , where Ki,j is 1 if and only if i ∼ j and

put xi := fi − f0 and di :=
∑

l Ki,l, the degree of the vertex i. Then we obtain

Γ(f, f)0 = 1
2

n−1∑

i=1

x2
i Ki,0
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and

Γ2(f, f)0 = 1
4

n−1∑

i=1

x2
i

(∑

l

Kl,0Ki,l + Ki,0(3di − d0 + 2)
)

−
∑

1≤i<j≤n−1

xixj(Ki,j(Ki,0 + Kj,0)−Ki,0Kj,0).

Define symmetric matrices A = (ai,j) and G = (gi,j), 1 ≤ i, j ≤ n− 1 by

ai,j =

{
1
2 (

∑
l Kl,0Kl,i) + 1

2Ki,0(3di − d0 + 2) if i = j,

−Ki,j(Ki,0 + Kj,0) + Ki,0K0,j if i 6= j,

and gi,i = Ki,0 and 0 off the diagonal. Then the curvature R0 at 0 is bounded
from below by

sup{r ∈ R : A− rG ≥ 0}.
In this case we conclude by (4) that for all 1-Lipschitz functions f : Ω → R

µ0(f − 〈f〉 > ε) ≤ e−(R/d)ε2
(6)

where R = inf Ri and d = max di.

The off-diagonal entries of A can take on the values 0, 1 or −1 only:

ai,j =




−1 if i ∼ j and (i ∼ 0 or j ∼ 0),

1 if i 6∼ j and j ∼ 0 and i ∼ 0,
0 otherwise.

For ε > 0 let Bε(i) be the ball {j ∈ Ω : d(i, j) ≤ ε}. Let I = B1(0) \ {0} be the
set of vertices, which are connected with 0 and put J = B2(0) \ B1(0). Then,
for i, j ∈ I with i 6= j, we get

ai,i = 1
2 (c(3)

i,0 + 3di − d0 + 2) and ai,j =
{−1 if i ∼ j,

+1 if i 6∼ j,

where c
(3)
i,0 is the number of 3-cycles containing both 0 and i. If i 6= j, i, j ∈ J ,

then
ai,i = 1

2p
(2)
i,0 and ai,j = 0

where p
(2)
i,0 is the number of paths of length 2 joining 0 and i. Finally, if i ∈ I

and j ∈ J , then

ai,j =
{−1 if i ∼ j,

0 if i 6∼ j.

By restricting the vertices to I×I, J×J , I×J and J×I, we get four submatrices
AII , AJJ , AIJ and AJI = At

IJ :

A =
(

AII AIJ

AJI AJJ

)
.
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Thus the smallest eigenvalue of AII is a lower bound for the curvature at 0.
Since c

(3)
i,0 ≤ di, we conclude that

R0 ≤ inf {2dj − d0/2 + 1 : j ∼ 0}.

Thus the lower bound of the curvature cannot be positive if there exist two
connected points i and j such that di ≥ 4dj + 2. Another more or less obvious
upper bound for R involves the diameter D of Ω:

D := sup
{|fi − fj | : i, j ∈ Ω, f ∈ Lip1(Ω)

}
.

Since for all ε > 0 there exists f ∈ Lip1(Ω) such that µ0(|f − c| > (D/2− ε)) ≥
1/n for all c ∈ [0, D], we obtain, by (6), R ≤ 4d log(2n)/D2 .

Now we turn to a more homogeneous situation: we will assume that for all
i, j ∈ Ω there exists an isomorphism hi,j from B2(i) onto B2(j) such that hi,j(i) =
j. If follows that each vertex has the same degree d and a lower bound R

for the curvature at any point is also a lower bound for the curvature of L.
Therefore we will call these graphs, graphs of constant curvature. This situation
in particular occurs if there is an underlying group structure that determines
the graph: Let I = {g1, . . . , gd} ⊆ G \ {e} be a symmetric subset of a finite
group G with neutral element e. Suppose further that B1(e) = I ∪{e} generates
G, i.e.,

⋃
n B1(e)n = G. Two points x, y ∈ G are connected if there exists a

gj ∈ I such that y = gjx. Obviously the map hx,y : B2(x) → B2(y) defined by
hx,y(z) := zx−1y is an isomorphism.

Proposition 2.3. Let ∇j be the operator ∇jf(x) := f(gjx) − f(x). Then the
following statements are equivalent .

1. The graph distance is a bi-invariant metric.
2. For all g, h ∈ I, ghg−1 ∈ I.
3. For all j the operator ∇j commutes with L.

The Ricci curvature of a Lie group with bi-invariant Riemannian metric is always
non negative. The following proposition is the analogue of this fact for finite
discrete groups.

Proposition 2.4. Let G be a finite group, I = {g1, . . . , gd} a symmetric subset
of G \ {e} such that condition 2 of Proposition 2.3 holds. Then R is a lower
bound for the curvature of G if and only if , for all f : G → R,

∑

j,k

(∇j∇kf)2 ≥ 2R
∑

j

(∇jf)2.

In particular the curvature of such groups is always non negative.

Proof. By Proposition 2.3 the commutators vanish and thus the assertion
follows from Proposition 1.2. ¤
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A bi-invariant metric on a finite group need not necessarily evolve from a
graph structure: The Hilbert–Schmidt metric

dHS(π1, π2) :=
1
2

√
(π1 − π2)(π1 − π2)∗

is a bi-invariant metric on the symmetric group Πn and B1(e) \ {e} is the set of
all transpositions, but the metric d determined by B1(e) \ {e} is different from
dHS .

It’s very likely that the curvature of (Πn, d) is bounded from below by 2.
However, this is too small to recover Maurey’s deviation inequality for Πn; see
[M] or [MS].

For n ≥ 2 let Ω = {e1, e2, . . . , en,−en, . . . ,−e1} be the set of extreme points
of the unit ball of `n

1 . Two points are connected if they are connected by a 1
dimensional face of the unit ball. In this case A is a (2n−1) × (2n−1) matrix
whose diagonal is given by {3(n−1), . . . , 3(n−1), (n−1)}. The off diagonal en-
tries ai,j are 1 if i + j = 2n−1 and −1 otherwise. The curvature of this graph is
bounded from below by n.

The curvature of the icosahedron is bounded from below by (11− 3
√

5)/2.
The curvature of the dodecahedron is bounded from below by 0.
For n ≥ 5 the curvature of the additive group Zn with I = {1, n−1} is

bounded from below by 0.
Let ({1, . . . , n}, d) be a finite metric space. Putting K(i, j) := 1/d(i, j)2, then

dΓ = d. Thus the curvature can be defined for any finite metric space.
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