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An Extremal Property of the Regular Simplex

MICHAEL SCHMUCKENSCHLAGER

ABSTRACT. If C' is a convex body in R"™ such that the ellipsoid of minimal
volume containing C—the Léwner ellipsoid—is the euclidean ball B, then
the mean width of C' is no smaller than the mean width of a regular simplex
inscribed in B3.

1. Introduction and Notation

Suppose that C is a convex body in R"™ such that 0 is an interior point of C,
then the mean width w(C') is defined by

w©):= [ (supte) = inf (@.0)) oldo)

yeC

2 [ sup(wp)lolds) =26, [ sup(o.y)] 7 (do)
Sn—1 yeC Rn» yeC

where ¢, is a constant depending only on the dimension, ¢ the normalized Haar
measure on the sphere S~ ! and 7, the n-dimensional standard gaussian mea-
sure. Denoting by C* the polar of C' with respect to 0 and by |||~ the gauge of
C, we obtain the well known formula

w(C) = 2cn/n 2]

The euclidean ball BY is the Léwner ellipsoid of C' if and only if B2 is the John
ellipsoid of C* i.e., the ellipsoid of maximal volume contained in C*. Hence, in
order to prove that the regular simplex has minimal mean width, it is enough
to prove that for all convex bodies K whose John ellipsoid is the euclidean ball,
we necessarily have ¢(K) > ¢(T), i.e., the f-norm of K is bounded from below
by the ¢-norm of the regular simplex T'.

o Ynl(dx) = 2¢,0(C™).

The proof of this inequality will follows closely Keith Ball’s proof in [B1],

where it is shown that for any convex body K there exists an affine image K
of K for which the isoperimetric quotient Vol, _; (8K)/Vol,(K)"+ is no larger
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than the isoperimetric quotient of a regular simplex. Franck Barthe [B] proved a
reversed inequality: among convex bodies whose Lowner ellipsoid is the euclidean
ball the regular simplex has maximal /-norm.

2. The Proof

The first ingredient of the proof is a well-known theorem of F. John [J]:

THEOREM 2.1. Let K be a convex body in R™. Then the euclidean ball B2 is the
John ellipsoid of K if and only if there exist unit vectors u; € 0K, 1 < j<m
and positive numbers c; such that

(i) 20t cjuy @ uj = idgn and
(i) 2275 cjuy = 0.

The second is an inequality due to Brascamp and Lieb [BL]. We state this in-
equality in its normalized form, as it was introduced by Ball in [B2].

THEOREM 2.2. Let uj, 1 < j < m, be a sequence of unit vectors in R" and c;
positive numbers such that Z;nzl cjuj; @ u; = idgn. Then, for all nonnegative
integrable functions f; : R — R,

/,,Ljr:[lfj“x’uﬁ)% do Sﬁ(/fj)%-

Equality holds if , for example, the f;’s are identical gaussians or the u;’s form
an orthonormal basts.

By John’s theorem there exist unit vectors u; € 0K and positive numbers ¢;
such that

m m
E cjuj @ u; = idrn and E cju; = 0.

Jj=1 Jj=1

Putting v; := (1 [T Ui —ﬁ) € R and d; = ”T'ch it is easily checked
that

Zdj?)j X ’Uj = ian+1 and Zdjvj = —Vvn —+ 1Prn+1 (1)
j=1 j=1

The first identity implies Y d;(z,v;)? = HzHg and Y d; =n+1.
For o € R let i be the measure on R with density

\/%7 exp(aty/n + 1 — t%/2).
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Then by (1) we obtain

men(w <o) = [/ TT 2oy 0)) () V7T 5, )
j=1

= [ et hen (<43 d,G0)?)
j=1

X (\/%)n+1 exp ( -« 2; d;(z, Uj>) dz
i=

Putting f(s) = \/%6*32/2’0‘31(_0070] (s) we conclude by the Brascamp—Lieb in-
equality that

%®u<ﬂ[vj < 0]) = /f[f«z,vmdf dz
< ([s0a)™" = ([s0a)",

and equality holds if the vectors v; form an orthonormal basis in R"*! ie., if
the vectors u; span a regular simplex. Thus, denoting by ug, 1 <5< n+1,
the contact points of a regular simplex T and the euclidean ball and by v‘(j) the
corresponding unit vectors in R™*!, the above inequality states that

@y <0) <7 @ u( 05 <0). ©
On the other hand

ﬂ[vj§O]:{z:(:c,t)€R"><R:tZO, xeﬁk},

where K := ) [u; < 1] O K. Hence we get, by Fubini’s theorem,

o = 42
won{ 20 = i [ ()
0

Now, since K C K, this implies by (2),

e} oo
1 t At—t%/2 1 t At—t2/2
7”/0 o <ﬁK) e dt < 7”/0 o <ﬁT) e dt,

and therefore

oo ) 50 .
\/%/O Tn (H.IIK > ﬁ) M2 gy > \/%/0 Y <||.||T > ﬁ) M—12/2 gy

Multiplying both sides by e=*/2 and integrating over A € R we obtain, by
Fubini’s theorem,

o0

/ooo% (M > F5) a 2/0 (Il > &) dt
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from which we readily deduce that ¢(K) > ¢(T'). More generally we get, for each
non negative function ¢,

> 2
(M > ) [ olt = e dzas
/0 (x> ) R
*° 2
> Yo (Nl > &= /cp(tf:c)e*$/2dzdt.
/o ( T ‘/ﬁ) R

REMARK. If we restrict the problem to convex and symmetric bodies, then we
get an inequality for the distribution function (see [SS]): For all convex symmetric
bodies B in R™ whose John ellipsoid is the euclidean ball we have, for all ¢ > 0,

Mg > = mle > 1)
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