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An Extremal Property of the Regular Simplex

MICHAEL SCHMUCKENSCHLÄGER

Abstract. If C is a convex body in Rn such that the ellipsoid of minimal
volume containing C—the Löwner ellipsoid—is the euclidean ball Bn

2 , then
the mean width of C is no smaller than the mean width of a regular simplex
inscribed in Bn

2 .

1. Introduction and Notation

Suppose that C is a convex body in Rn such that 0 is an interior point of C,
then the mean width w(C) is defined by

w(C) : =
∫

Sn−1

(
sup
y∈C

〈x, y〉 − inf
y∈C

〈x, y〉
)

σ(dx)

= 2
∫

Sn−1
sup
y∈C

|〈x, y〉|σ(dx) = 2cn

∫

Rn

sup
y∈C

|〈x, y〉| γn(dx)

where cn is a constant depending only on the dimension, σ the normalized Haar
measure on the sphere Sn−1 and γn the n-dimensional standard gaussian mea-
sure. Denoting by C∗ the polar of C with respect to 0 and by ‖.‖C the gauge of
C, we obtain the well known formula

w(C) = 2cn

∫

Rn

‖x‖C∗ γn(dx) =: 2cn`(C∗).

The euclidean ball Bn
2 is the Löwner ellipsoid of C if and only if B2

n is the John
ellipsoid of C∗ i.e., the ellipsoid of maximal volume contained in C∗. Hence, in
order to prove that the regular simplex has minimal mean width, it is enough
to prove that for all convex bodies K whose John ellipsoid is the euclidean ball,
we necessarily have `(K) ≥ `(T ), i.e., the `-norm of K is bounded from below
by the `-norm of the regular simplex T .

The proof of this inequality will follows closely Keith Ball’s proof in [B1],
where it is shown that for any convex body K there exists an affine image K̃

of K for which the isoperimetric quotient Voln−1(∂K̃)/Voln(K̃)
n−1

n is no larger
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than the isoperimetric quotient of a regular simplex. Franck Barthe [B] proved a
reversed inequality: among convex bodies whose Löwner ellipsoid is the euclidean
ball the regular simplex has maximal `-norm.

2. The Proof

The first ingredient of the proof is a well-known theorem of F. John [J]:

Theorem 2.1. Let K be a convex body in Rn. Then the euclidean ball B2
n is the

John ellipsoid of K if and only if there exist unit vectors uj ∈ ∂K, 1 ≤ j ≤ m

and positive numbers cj such that

(i)
∑m

j=1 cjuj ⊗ uj = idRn and
(ii)

∑m
j=1 cjuj = 0.

The second is an inequality due to Brascamp and Lieb [BL]. We state this in-
equality in its normalized form, as it was introduced by Ball in [B2].

Theorem 2.2. Let uj , 1 ≤ j ≤ m, be a sequence of unit vectors in Rn and cj

positive numbers such that
∑m

j=1 cjuj ⊗ uj = idRn . Then, for all nonnegative
integrable functions fj : R → R,

∫

Rn

m∏

j=1

fj(〈x, uj〉)cj dx ≤
m∏

j=1

(∫
fj

)cj

.

Equality holds if , for example, the fj’s are identical gaussians or the uj’s form
an orthonormal basis.

By John’s theorem there exist unit vectors uj ∈ ∂K and positive numbers cj

such that
m∑

j=1

cjuj ⊗ uj = idRn and
m∑

j=1

cjuj = 0.

Putting vj :=
(√

n
n+1 uj ,− 1√

n+1

) ∈ Rn+1 and dj = n+1
n cj it is easily checked

that
m∑

j=1

djvj ⊗ vj = idRn+1 and
m∑

j=1

djvj = −√n + 1 Prn+1 (1)

The first identity implies
∑

dj〈z, vj〉2 = ‖z‖22 and
∑

dj = n + 1.
For α ∈ R let µ be the measure on R with density

1√
2π

exp(αt
√

n + 1− t2/2).
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Then by (1) we obtain

γn ⊗ µ
(⋂

[vj ≤ 0]
)

=
∫ ∫ m∏

j=1

I(−∞,0](〈z, vj〉) γn(dx) eαt
√

n+1 γ1(dt)

=
∫

Rn+1
I(−∞,0](〈z, vj〉)dj exp

(
− 1

2

m∑

j=1

dj〈z, vj〉2
)

×
(

1√
2π

)n+1

exp
(
− α

m∑

j=1

dj〈z, vj〉
)

dz

Putting f(s) = 1√
2π

e−s2/2−αsI(−∞,0](s) we conclude by the Brascamp–Lieb in-
equality that

γn ⊗ µ
(⋂

[vj ≤ 0]
)

=
∫ m∏

j=1

f(〈z, vj〉)dj dz

≤
(∫

f(s) ds
)P dj

=
(∫

f(s) ds
)n+1

,

and equality holds if the vectors vj form an orthonormal basis in Rn+1 i.e., if
the vectors uj span a regular simplex. Thus, denoting by u0

j , 1 ≤ j ≤ n + 1,
the contact points of a regular simplex T and the euclidean ball and by v0

j the
corresponding unit vectors in Rn+1, the above inequality states that

γn ⊗ µ
(⋂

[vj ≤ 0]
)
≤ γn ⊗ µ

(⋂
[v0

j ≤ 0]
)
. (2)

On the other hand
⋂

[vj ≤ 0] =
{

z = (x, t) ∈ Rn × R : t ≥ 0, x ∈ t√
n
K̃

}
,

where K̃ :=
⋂

[uj ≤ 1] ⊇ K. Hence we get, by Fubini’s theorem,

γn ⊗ µ
(⋂

[vj ≤ 0]
)

= 1√
2π

∫ ∞

0

γn

(
t√
n
K̃

)
eαt

√
n+1−t2/2 dt.

Now, since K ⊆ K̃, this implies by (2),

1√
2π

∫ ∞

0

γn

(
t√
n
K

)
eλt−t2/2 dt ≤ 1√

2π

∫ ∞

0

γn

(
t√
n
T

)
eλt−t2/2 dt,

and therefore

1√
2π

∫ ∞

0

γn

(
‖.‖K > t√

n

)
eλt−t2/2 dt ≥ 1√

2π

∫ ∞

0

γn

(
‖.‖T > t√

n

)
eλt−t2/2 dt.

Multiplying both sides by e−λ2/2 and integrating over λ ∈ R we obtain, by
Fubini’s theorem,

∫ ∞

0

γn

(
‖.‖K > t√

n

)
dt ≥

∫ ∞

0

γn

(
‖.‖T > t√

n

)
dt
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from which we readily deduce that `(K) ≥ `(T ). More generally we get, for each
non negative function ϕ,
∫ ∞

0

γn

(
‖.‖K > t√

n

) ∫

R
ϕ(t− x)e−x2/2 dx dt

≥
∫ ∞

0

γn

(
‖.‖T > t√

n

) ∫

R
ϕ(t− x)e−x2/2 dx dt.

Remark. If we restrict the problem to convex and symmetric bodies, then we
get an inequality for the distribution function (see [SS]): For all convex symmetric
bodies B in Rn whose John ellipsoid is the euclidean ball we have, for all t > 0,

γn(‖.‖B > t) ≥ γn(‖.‖∞ > t).
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