A Note on the M^* -Limiting Convolution Body

ANTONIS TSOLOMITIS

ABSTRACT. We introduce the mixed convolution bodies of two convex symmetric bodies. We prove that if the boundary of a body K is smooth enough then as δ tends to 1 the δ - M^* -convolution body of K with itself tends to a multiple of the Euclidean ball after proper normalization. On the other hand we show that the δ - M^* -convolution body of the n-dimensional cube is homothetic to the unit ball of ℓ_1^n .

1. Introduction

Throughout this note K and L denote convex symmetric bodies in \mathbb{R}^n . Our notation will be the standard notation that can be found, for example, in [2] and [4]. For $1 \leq m \leq n$, $V_m(K)$ denotes the m-th mixed volume of K (i.e., mixing m copies of K with n-m copies of the Euclidean ball \mathcal{B}_n of radius one in \mathbb{R}^n). Thus if m=n then $V_n(K)=\operatorname{vol}_n(K)$ and if m=1 then $V_1(K)=w(K)$ the mean width of K.

For $0 < \delta < 1$ we define the *m*-th mixed δ -convolution body of the convex symmetric bodies K and L in \mathbb{R}^n :

DEFINITION. The m-th mixed δ -convolution body of K and L is defined to be the set

$$C_m(\delta; K, L) = \{ x \in \mathbb{R}^n : V_m(K \cap (x + L)) \ge \delta V_m(K) \}.$$

It is a consequence of the Brunn–Minkowski inequality for mixed volumes that these bodies are convex.

If we write h(u) for the support function of K in the direction $u \in \mathbb{S}^{n-1}$, we have

$$w(K) = 2M_K^* = 2\int_{\mathbb{S}^{n-1}} h(u) \, d\nu(u), \tag{1.1}$$

where ν is the Lebesgue measure of \mathbb{R}^n restricted on \mathbb{S}^{n-1} and normalized so that $\nu(\mathbb{S}^{n-1}) = 1$. In this note we study the limiting behavior of $C_1(\delta; K, K)$

Work partially supported by an NSF grant.

(which we will abbreviate with $C_1(\delta)$) as δ tends to 1 and K has a C_+^2 boundary. For simplicity we will call $C_1(\delta)$ the δ - M^* -convolution body of K.

We are looking for suitable $\alpha \in \mathbb{R}$ so that the limit

$$\lim_{\delta \to 1^-} \frac{C_1(\delta)}{(1-\delta)^{\alpha}}$$

exists (convergence in the Hausdorff distance). In this case we call the limiting body "the limiting M^* -convolution body of K".

We prove that for a convex symmetric body K in \mathbb{R}^n with C_+^2 boundary the limiting M^* -convolution body of K is homothetic to the Euclidean ball. We also get a sharp estimate (sharp with respect to the dimension n) of the rate of the convergence of the δ - M^* -convolution body of K to its limit. By C_+^2 we mean that the boundary of K is C^2 and that the principal curvatures of $\mathrm{bd}(K)$ at every point are all positive.

We also show that some smoothness condition on the boundary of K is necessary for this result to be true, by proving that the limiting M^* -convolution body of the n-dimensional cube is homothetic to the unit ball of ℓ_1^n .

2. The Case Where the Boundary of K Is a C^2_+ Manifold

THEOREM 2.1. Let K be a convex symmetric body in \mathbb{R}^n so that $\operatorname{bd}(K)$ is a C^2_+ manifold. Then for all $x \in \mathbb{S}^{n-1}$ we have

$$\left| \|x\|_{\frac{C_1(\delta)}{1-\delta}} - \frac{c_n}{M_K^*} \right| \le C \frac{c_n}{M_K^*} \left(M_K^* n(1-\delta) \right)^2, \tag{2.1}$$

where $c_n = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| d\nu(u) \sim 1/\sqrt{n}$ and C is a constant independent of the dimension n. In particular,

$$\lim_{\delta \to 1^{-}} \frac{C_1(\delta)}{1 - \delta} = \frac{M_K^*}{c_n} \mathcal{B}_n.$$

Moreover the estimate (2.1) is sharp with respect to the dimension n.

By "sharp" with respect to the dimension n we mean that there are examples (for instance the n-dimensional Euclidean ball) for which the inequality (2.1) holds true if " \leq " is replaced with " \geq " and the constant C changes by a (universal) constant factor.

Before we proceed with the proof we will need to collect some standard notation which can be found in [4]. We write $p: \mathrm{bd}(K) \to \mathbb{S}^{n-1}$ for the Gauss map p(x) = N(x) where N(x) denotes the unit normal vector of $\mathrm{bd}(K)$ at x. W_x denotes the Weingarten map, that is, the differential of p at the point $x \in \mathrm{bd}(K)$. W^{-1} is the reverse Weingarten map and the eigenvalues of W_x and W_u^{-1} are respectively the principal curvatures and principal radii of curvatures of the manifold $\mathrm{bd}(K)$ at $x \in \mathrm{bd}(K)$ and $u \in \mathbb{S}^{n-1}$. We write ||W|| and $||W^{-1}||$

for the quantities $\sup_{x \in \mathrm{bd}(K)} \|W_x\|$ and $\sup_{u \in \mathbb{S}^{n-1}} \|W_u^{-1}\|$, respectively. These quantities are finite since the manifold $\mathrm{bd}(K)$ is assumed to be C^2_+ .

For $\lambda \in \mathbb{R}$ and $x \in \mathbb{S}^{n-1}$ we write K_{λ} for the set $K \cap (\lambda x + K)$. $p_{\lambda}^{-1} : \mathbb{S}^{n-1} \to \mathrm{bd}(K_{\lambda})$ is the reverse Gauss map, that is, the affine hyperplane $p_{\lambda}^{-1}(u) + [u]^{\perp}$ is tangent to K_{λ} at $p_{\lambda}^{-1}(u)$. The normal cone of K_{λ} at x is denoted by $N(K_{\lambda}, x)$ and similarly for K. The normal cone is a convex set (see [4]). Finally h_{λ} will denote the support function of K_{λ} .

PROOF. Without loss of generality we may assume that both the bd(K) and \mathbb{S}^{n-1} are equipped with an atlas whose charts are functions which are Lipschitz, their inverses are Lipschitz and they all have the same Lipschitz constant c > 0.

Let $x \in \mathbb{S}^{n-1}$ and $\lambda = 1/\|x\|_{C_1(\delta)}$; hence $\lambda x \in \mathrm{bd}(C_1(\delta))$ and

$$M_{K_{\lambda}}^* = \delta M_K^*$$
.

We estimate now $M_{K_{\lambda}}^*$. Let $u \in \mathbb{S}^{n-1}$. We need to compare $h_{\lambda}(u)$ and h(u). Set $Y_{\lambda} = \mathrm{bd}(K) \cap \mathrm{bd}(\lambda x + K)$.

Case 1. $p_{\lambda}^{-1}(u) \notin Y_{\lambda}$.

In this case it is easy to see that

$$h_{\lambda}(u) = h(u) - |\langle \lambda x, u \rangle|.$$

Case 2. $p_{\lambda}^{-1}(u) \in Y_{\lambda}$.

Let $y_{\lambda} = p_{\lambda}^{-1}(u)$ and $y_{\lambda}' = y_{\lambda} - \lambda x \in \text{bd}(K)$. The set $N(K_{\lambda}, y_{\lambda}) \cap \mathbb{S}^{n-1}$ defines a curve γ which we assume to be parametrized on [0, 1] with $\gamma(0) = N(K, y_{\lambda})$ and $\gamma(1) = N(K, y_{\lambda}')$. We use the inverse of the Gauss map p to map the curve γ to a curve $\tilde{\gamma}$ on bd(K) by setting $\tilde{\gamma} = p^{-1}\gamma$. The end points of $\tilde{\gamma}$ are y_{λ} (label it with A) and y_{λ}' (label it with B). Since $u \in \gamma$ we conclude that the point $p^{-1}(u)$ belongs to the curve $\tilde{\gamma}$ (label this point by Γ). Thus we get

$$0 \le h(u) - h_{\lambda}(u) = |\langle \vec{A\Gamma}, u \rangle|.$$

It is not difficult to see that the cosine of the angle of the vectors $\vec{A\Gamma}$ and u is less than the largest principal curvature of $\mathrm{bd}(K)$ at Γ times $|\vec{A\Gamma}|$, the length of the vector $\vec{A\Gamma}$. Consequently we can write

$$0 \le h(u) - h_{\lambda}(u) \le ||W|| |\vec{A\Gamma}|^2.$$

In addition we have

$$|\vec{A}\Gamma| \leq \operatorname{length}\left(\tilde{\gamma}|_{A}^{\Gamma}\right) \leq \operatorname{length}\left(\tilde{\gamma}|_{A}^{B}\right) = \int_{0}^{1} |d_{t}\tilde{\gamma}| dt = \int_{0}^{1} |d_{t}p^{-1}\gamma| dt$$
$$\leq ||W^{-1}|| \operatorname{length}(\gamma) \leq \frac{2}{\pi} ||W^{-1}|| |p(y_{\lambda}) - p(y_{\lambda}')|,$$

where $|\cdot|$ is the standard Euclidean norm. Without loss of generality we can assume that the points y_{λ} and y'_{λ} belong to the same chart at y_{λ} . Let φ be the chart mapping \mathbb{R}^{n-1} to a neighborhood of y_{λ} on $\mathrm{bd}(K)$ and ψ the chart mapping

 \mathbb{R}^{n-1} on \mathbb{S}^{n-1} . We assume, as we may, that the graph of γ is contained in the range of the chart ψ . It is now clear from the above series of inequalities that

$$|\vec{A}\Gamma| \le c_0 ||W^{-1}|| |\psi^{-1}p\varphi(t) - \psi^{-1}p\varphi(s)|,$$

where t and s are points in \mathbb{R}^{n-1} such that $\varphi(t) = y_{\lambda}$ and $\varphi(s) = y'_{\lambda}$ and $c_0 > 0$ is a universal constant. Now the mean value theorem for curves gives

$$|\vec{A}\Gamma| \le C||W^{-1}|| ||W|| |t - s| \le C||W^{-1}|| ||W|| |y_{\lambda} - y_{\lambda}'| = C||W^{-1}|| ||W|| \lambda,$$

where C may denote a different constant every time it appears. Thus we have

$$0 \le h(u) - h_{\lambda}(u) \le C \|W\| (\|W^{-1}\| \|W\|)^2 \lambda^2.$$

Consequently,

$$\int_{\mathbb{S}^{n-1}\backslash p_{\lambda}(Y_{\lambda})} (h(u) - |\langle \lambda x, u \rangle|) \ d\nu(u) + \int_{p_{\lambda}(Y_{\lambda})} (h(u) - C\lambda^{2}) \ d\nu(u)$$

$$\leq M_{K_{\lambda}}^{*} = \delta M_{K}^{*} \leq$$

$$\int_{\mathbb{S}^{n-1}\backslash p_{\lambda}(Y_{\lambda})} (h(u) - |\langle \lambda x, u \rangle|) \ d\nu(u) + \int_{p_{\lambda}(Y_{\lambda})} h(u) \ d\nu(u),$$

where C now depends on ||W|| and $||W^{-1}||$.

Rearranging and using c_n for the quantity $\int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| d\nu(u)$ and the fact that $\lambda = 1/\|x\|_{C_1(\delta)}$ we get

$$\left|\|x\|_{\frac{C_{1}(\delta)}{1-\delta}}-\frac{c_{n}}{M_{K}^{*}}\right|\leq\frac{c_{n}}{M_{K}^{*}}\left(\frac{\int_{p_{\lambda}(Y_{\lambda})}\left|\langle x,u\rangle\right|d\nu(u)}{c_{n}}+C\lambda\frac{\mu\left(p_{\lambda}(Y_{\lambda})\right)}{c_{n}}\right).$$

We observe now that for $u \in p_{\lambda}(Y_{\lambda}), |\langle x, u \rangle| \leq \operatorname{length}(\gamma)/2 \leq ||W||\lambda$. Using this in the last inequality and the fact that $p_{\lambda}(Y_{\lambda})$ is a band around an equator of \mathbb{S}^{n-1} of width at most $\operatorname{length}(\gamma)/2$ we get

$$\left| \|x\|_{\frac{C_1(\delta)}{1-\delta}} - \frac{c_n}{M_K^*} \right| \le \frac{c_n}{M_K^*} C n \lambda^2 \le \frac{c_n}{M_K^*} C n \frac{(1-\delta)^2}{\|x\|_{\frac{C_1(\delta)}{1-\delta}}^2}.$$

Our final task is to get rid of the norm that appears on the right side of the latter inequality. Set

$$T = \frac{\|x\|_{C_1(\delta)/1-\delta}}{c_n/M_K^*}.$$

We have shown that

$$|T^2|T-1| \le C \frac{M_K^*}{c_n} n(1-\delta)^2.$$

If $T \ge 1$ then we can just drop the factor T^2 and we are done. If T < 1 we write $T^2 |T-1|$ as $(1-(1-T))^2 (1-T)$ and we consider the function

$$f(x) = (1-x)^2 x : (-\infty, \frac{1}{3}) \to \mathbb{R}.$$

This function is strictly increasing thus invertible on its range, that is, f^{-1} is well defined and increasing in $(-\infty, \frac{4}{27})$. Consequently, if

$$C\frac{M_K^*}{c_n}n(1-\delta)^2 \le \frac{4}{27},$$
 (2.2)

we conclude that

$$0 \le 1 - T \le f^{-1} \left(C \frac{M_K^*}{c_n} n (1 - \delta)^2 \right) \le C \frac{M_K^*}{c_n} n (1 - \delta)^2.$$

The last inequality is true since the derivative of f^{-1} at zero is 1. Observe also that the convergence is "essentially realized" after (2.2) is satisfied.

We now proceed to show that some smoothness conditions on the boundary of K are necessary, by proving that the limiting M^* -convolution body of the n-dimensional cube is homothetic to the unit ball of ℓ_1^n . In fact we show that the δ - M^* -convolution body of the cube is already homothetic to the unit ball of ℓ_1^n .

Example 2.2. Let $P = [-1,1]^n$. Then for $0 < \delta < 1$ we have

$$C_1(P) = \frac{C_1(\delta; P, P)}{1 - \delta} = n^{3/2} \operatorname{vol}_{n-1}(\mathbb{S}^{n-1}) B_{\ell_1^n}.$$

PROOF. Let $x = \sum_{j=1}^n x_j e_j$ where $x_j \ge 0$ for all j = 1, 2, ..., n and e_j is the standard basis of \mathbb{R}^n . Let $\lambda > 0$ be such that $\lambda x \in \mathrm{bd}(C_1(\delta))$. Then

$$P \cap (\lambda x + P) = \left\{ y \in \mathbb{R}^n : y = \sum_{j=1}^n y_i e_i, -1 + \lambda x_i \le y_i \le 1 \right\}.$$

The vertices of $P_{\lambda} = P \cap (\lambda x + P)$ are the points $\sum_{j=1}^{n} \alpha_{j} e_{j}$ where α_{j} is either 1 or $-1 + \lambda x$ for all j. Without loss of generality we can assume that $-1 + \lambda x_{j} < 0$ for all the indices j. Put sign $\alpha_{j} = \alpha_{j}/|\alpha_{j}|$ when $\alpha_{j} \neq 0$ and sign 0 = 0. Fix a sequence of α_{j} 's so that the point $v = \sum_{j=1}^{n} \alpha_{j} e_{j}$ is a vertex of P_{λ} . Clearly,

$$N(P_{\lambda}, v) = N\left(P, \sum_{j=1}^{n} (\operatorname{sign} \alpha_{j})e_{j}\right).$$

If $u \in \mathbb{S}^{n-1} \cap N(P_{\lambda}, v)$ then

$$h_{\lambda}(u) = h(u) - \left| \left\langle \sum_{j=1}^{n} (\alpha_j - \operatorname{sign} \alpha_j) e_j, u \right\rangle \right|.$$

If $\operatorname{sign} \alpha_j = 1$ then $\alpha_j - \operatorname{sign} \alpha_j = 0$ otherwise $\alpha_j - \operatorname{sign} \alpha_j = \lambda x$. Let $\mathcal{A} \subseteq \{1, 2, \dots, n\}$. Consider the " \mathcal{A} -orthant"

$$\mathcal{O}_{\mathcal{A}} = \{ y \in \mathbb{R}^n : \langle y, e_j \rangle < 0, \text{ if } j \in \mathcal{A} \text{ and } \langle y, e_j \rangle \geq 0 \text{ if } j \notin \mathcal{A} \}.$$

Then $\mathcal{O}_{\mathcal{A}} = N\left(P, \sum_{j=1}^{n} (\operatorname{sign} \alpha_j) e_j\right)$ if and only if $\operatorname{sign} \alpha_j = 1$ exactly for every $j \notin \mathcal{A}$. Thus we get

$$h_{\lambda}(u) = h(u) - \left| \left\langle \sum_{j \in \mathcal{A}} \lambda x_j e_j, u \right\rangle \right|,$$

for all $u \in \mathcal{O}_{\mathcal{A}} \cap \mathbb{S}^{n-1}$. Hence using the facts $M_{P_{\lambda}}^* = \delta M_P^*$ and $\lambda = 1/\|x\|_{C_1(\delta)}$ we get

$$||x||_{\frac{C_1(\delta)}{1-\delta}} = -\frac{1}{M_P^*} \sum_{A \subset \{1,2,\dots,n\}} \sum_{j \in \mathcal{A}} x_j \int_{\mathcal{O}_{\mathcal{A}} \cap \mathbb{S}^{n-1}} \langle e_j, u \rangle \, d\nu(u),$$

which gives the result since

$$\int_{\mathcal{O}_{\mathcal{A}} \cap \mathbb{S}^{n-1}} \langle e_j, u \rangle \, d\nu(u) = \frac{1}{2^{n-1}} \int_{\mathbb{S}^{n-1}} |\langle e_1, u \rangle| \, d\nu(u).$$

Acknowledgement

We want to thank Professor V. D. Milman for his encouragement and his guidance in this research and for suggesting the study of mixed convolution bodies.

References

- [1] K. Kiener, "Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev", Arch. Math. 46 (1986), 162–168.
- [2] V. Milman and G. Schechtmann, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer, 1986.
- [3] M. Schmuckenschläger, "The distribution function of the convolution square of a convex symmetric body in \mathbb{R}^n ", Israel Journal of Mathematics 78 (1992), 309–334.
- [4] R. Schneider, Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, 1993.
- [5] A. Tsolomitis, Convolution bodies and their limiting behavior, Duke Math. J. 87:1 (1997), 181–203.

Antonis Tsolomitis
The Ohio State University
Department of Mathematics
231 W.18th Avenue
Columbus, OH 43210
United States of America
atsol@eexi.gr

Current address: University of Crete, Department of Mathematics, 71409 Heraklion, Crete, Greece