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A Note on the M*-Limiting Convolution Body

ANTONIS TSOLOMITIS

ABSTRACT. We introduce the mixed convolution bodies of two convex sym-
metric bodies. We prove that if the boundary of a body K is smooth enough
then as ¢ tends to 1 the §-M*-convolution body of K with itself tends to
a multiple of the Euclidean ball after proper normalization. On the other
hand we show that the §-M*-convolution body of the n-dimensional cube
is homothetic to the unit ball of 7.

1. Introduction

Throughout this note K and L denote convex symmetric bodies in R™. Our
notation will be the standard notation that can be found, for example, in [2] and
[4]. For 1 < m < n, V;,,(K) denotes the m-th mixed volume of K (i.e., mixing
m copies of K with n —m copies of the Euclidean ball B,, of radius one in R™).
Thus if m = n then V,,(K) = vol,(K) and if m = 1 then V;(K) = w(K) the
mean width of K.

For 0 < § < 1 we define the m-th mixed J-convolution body of the convex
symmetric bodies K and L in R™:

DEFINITION. The m-th mixed d-convolution body of K and L is defined to be
the set

Con(8;K,L) = {& € R™ : Vyyy (KN (z+ L)) > 6V (K) .

It is a consequence of the Brunn—Minkowski inequality for mixed volumes that
these bodies are convex.
If we write h(u) for the support function of K in the direction u € S*~!, we
have
w(K) =2Mj; = 2/ h(u) dv(u), (1.1)
Snfl
where v is the Lebesgue measure of R™ restricted on S”~! and normalized so
that ©(S"~1) = 1. In this note we study the limiting behavior of C;(6; K, K)
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(which we will abbreviate with C1(6)) as § tends to 1 and K has a C3 boundary.
For simplicity we will call C;(4) the d-M*-convolution body of K.
We are looking for suitable « € R so that the limit

) C1(6)
51_1}{17 (1—-0)

exists (convergence in the Hausdorfl distance). In this case we call the limiting
body “the limiting M *-convolution body of K”.

We prove that for a convex symmetric body K in R™ with C3 boundary the
limiting M *-convolution body of K is homothetic to the Euclidean ball. We also
get a sharp estimate (sharp with respect to the dimension n) of the rate of the
convergence of the d-M*-convolution body of K to its limit. By Ci we mean
that the boundary of K is C? and that the principal curvatures of bd(K) at
every point are all positive.

We also show that some smoothness condition on the boundary of K is nec-
essary for this result to be true, by proving that the limiting M *-convolution
body of the n-dimensional cube is homothetic to the unit ball of ¢7.

2. The Case Where the Boundary of K Is a C’i Manifold

THEOREM 2.1. Let K be a convex symmetric body in R™ so that bd(K) is a C3
manifold. Then for all x € S"~! we have

cn cn
— | <C
My

< O (Mien(1 = 9)), 21)

]l exor =
1-6

where ¢, = [qu1|(x,u)| dv(u) ~ 1/y/n and C is a constant independent of the
dimension n. In particular,

. C1(0) My
51—1}{1* 1—-6 ¢, Bu.

Moreover the estimate (2.1) is sharp with respect to the dimension n.

By “sharp” with respect to the dimension n we mean that there are examples (for
instance the n-dimensional Euclidean ball) for which the inequality (2.1) holds
true if “<” is replaced with “>" and the constant C' changes by a (universal)
constant factor.

Before we proceed with the proof we will need to collect some standard no-
tation which can be found in [4]. We write p : bd(K) — S"~! for the Gauss
map p(zx) = N(z) where N(z) denotes the unit normal vector of bd(K) at
x. W, denotes the Weingarten map, that is, the differential of p at the point
x € bd(K). W1 is the reverse Weingarten map and the eigenvalues of W, and
W1 are respectively the principal curvatures and principal radii of curvatures

u

of the manifold bd(K) at x € bd(K) and u € S*~1. We write ||W| and ||[W ||
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for the quantities sup,cpa(x) [Wall and sup,cgn-1 [W; |, respectively. These
quantities are finite since the manifold bd(K) is assumed to be C?.

For A € R and x € S"~! we write K, for the set KN (Az+ K). py':S"~! —
bd(K)) is the reverse Gauss map, that is, the affine hyperplane py ' (u) + [u]* is
tangent to K at py ' (u). The normal cone of K at x is denoted by N(Kj,x)
and similarly for K. The normal cone is a convex set (see [4]). Finally hy will

denote the support function of K.

Proor. Without loss of generality we may assume that both the bd(X) and

S™~1 are equipped with an atlas whose charts are functions which are Lipschitz,

their inverses are Lipschitz and they all have the same Lipschitz constant ¢ > 0.
Let 2 € S"! and A = 1/|z]|¢, (5); hence Az € bd (C1(8)) and

My, = 0Mp.
We estimate now Mj; . Let u € S"~!. We need to compare hy(u) and h(u). Set
Y\ =bd(K) Nnbd(A\z + K).

Case 1. py ' (u) ¢ Y.
In this case it is easy to see that

ha(u) = h(u) — |{(Az, u)]|.

Case 2. py ' (u) € Yi.

Let yy = p) ' (u) and y} = y» — Az € bd(K). The set N (K, y,)NS™ ! defines
a curve vy which we assume to be parametrized on [0,1] with v(0) = N(K,y»)
and v(1) = N(K,y)). We use the inverse of the Gauss map p to map the curve
v to a curve 7 on bd(K) by setting ¥ = p~'v. The end points of 7 are y, (label
it with A) and y) (label it with B). Since u € v we conclude that the point
p~1(u) belongs to the curve 4 (label this point by I'). Thus we get

0 < h(u) - ha(u) = (AT, u)].

It is not difficult to see that the cosine of the angle of the vectors AT and w is
less than the largest principal curvature of bd(K) at I" times |AT'|, the length of
the vector AI'. Consequently we can write

0 < h(u) — ha(u) < [W]|JAT?,

In addition we have

1 1
|AT| < length (7]';) < length (7|5§) :/ |dfy\dt:/ |dyp~ty| dt
0 0

. 2 -
< W length(y) < —[W 1 Ip(ya) — p(3)],

where | .| is the standard Euclidean norm. Without loss of generality we can
assume that the points y) and y} belong to the same chart at yx. Let ¢ be the
chart mapping R"~! to a neighborhood of y on bd(K) and 1 the chart mapping
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R" 1 on S"~1. We assume, as we may, that the graph of ~ is contained in the
range of the chart . It is now clear from the above series of inequalities that

AT < o[ W[ 19 po(t) — & o (s)),

where ¢ and s are points in R"~! such that ¢(t) =y and ¢(s) =y} and ¢o > 0
is a universal constant. Now the mean value theorem for curves gives

AT < CIW MW [t = s| < CIW MW fys — wal = CIW WA,
where C' may denote a different constant every time it appears. Thus we have
_ 2
0 < h(u) = ha(u) < CIIWL([WHIW])™ A%
Consequently,
/ (h() — [\, w)]) do(u) + / (h(w) — CN?) dv(u)
Sn=I\pa(Ya) pa(Yx)
< M, = 0Mj; <
/ (hta) = ) ) () + [ ) dvfa),
Sn=1\pa(YX)

pa(Yx)
where C' now depends on ||[W]| and |[W 1|
Rearranging and using ¢, for the quantity [, , [(z,u)|dv(u) and the fact
that A = 1/]|z[|¢, (5) we get

Cn

M

o [ Jorovyy (@ ud] dv(u) 1 (px(Ya))
oy cptntn)

]l ey —
= Cn Cn
We observe now that for v € py(Yy),|{z,u)| < length(y)/2 < ||W]|A. Using
this in the last inequality and the fact that py(Y)) is a band around an equator
of S"~1 of width at most length(v)/2 we get

Cn

My

1_ 2
< ot < 0o (L9

T ci6) — — - Wzl 5
| ||11j M. My, ||x||2017<§)
=

Our final task is to get rid of the norm that appears on the right side of the
latter inequality. Set
T — zllc, 5)/1-6
cn/Mj;

‘We have shown that

T|T - 1| < CMKn(l —0)%
@

n
If T > 1 then we can just drop the factor T? and we are done. If T < 1 we write
T2|T —1|as (1 — (1 —T))*(1 = T) and we consider the function

f(@)=(1-2)z:(—00,%) > R.
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This function is strictly increasing thus invertible on its range, that is, f~! is

well defined and increasing in (—oo, 2%) Consequently, if

Mic n(l—6)% < 4 (2.2)

C
Cn 27’

we conclude that

M, M}
0<1-T<f! (CKn(l — 5)2> < C—En(1-6)2
Cn Cn
The last inequality is true since the derivative of f~! at zero is 1. Observe also
that the convergence is “essentially realized” after (2.2) is satisfied. O

We now proceed to show that some smoothness conditions on the boundary of
K are necessary, by proving that the limiting M*-convolution body of the n-
dimensional cube is homothetic to the unit ball of ¢7. In fact we show that the
0-M*-convolution body of the cube is already homothetic to the unit ball of ¢7.

EXAMPLE 2.2. Let P = [—1,1]". Then for 0 < § < 1 we have

i PP
Ci(P) = % =n*?vol,,_1(S" ™) Byy.

PROOF. Let z = Z?=1 xje; where x; > 0 for all j = 1,2,...,n and e; is the

standard basis of R™. Let A > 0 be such that Az € bd (C1(d)). Then

Pﬂ(Ax—FP)—{yER":y—Zyiei,—l—l—)\xiSyigl}.

j=1

The vertices of Py = PN (A\x + P) are the points 2?21 aje; where oy is either 1
or —1+ Az for all j. Without loss of generality we can assume that —1+Az; <0
for all the indices j. Put signa; = a;/|a;| when o # 0 and sign0 = 0. Fix a

sequence of «;’s so that the point v = Z;Zl aje; is a vertex of Py. Clearly,
n
N (Py,v) = N(P, (sign ozj)ej).

j=1

If w € S"1 N N(Py,v) then

<Z(O‘J‘ — signa)e;, u> :

J=1

If sign; = 1 then a; — signa; = 0 otherwise o; — signa; = Ax.
Let AC{1,2,...,n}. Consider the “A-orthant”

O4={yeR":(y,e;) <0, if j € Aand (y,e;) > 0if j ¢ A}.
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Then O4 = N (P, Z;L:l(sign aj)ej) if and only if signa;; = 1 exactly for every
j ¢ A. Thus we get

ha(u) = h(u) —

)

<Z ijej,u>

JjEA

for all u € O4 NS"~!. Hence using the facts Mp = dMp and A = 1/[z ¢, (s)
we get

1
oy =3 > Yo [ (Gaudw,
P oAcq1,2,..n}jeAa JOansm!

which gives the result since

1
/ (ej,u) dv(u) = F/ |{e1,u)| dv(u). O
O anSn—1 sn-1
Acknowledgement

We want to thank Professor V. D. Milman for his encouragement and his

guidance in this research and for suggesting the study of mixed convolution
bodies.

References

[1] K. Kiener, “Extremalitdt von Ellipsoiden und die Faltungsungleichung von
Sobolev”, Arch. Math. 46 (1986), 162-168.

[2] V. Milman and G. Schechtmann, Asymptotic theory of finite dimensional normed
spaces, Lecture Notes in Math. 1200, Springer, 1986.

[3] M. Schmuckenschlager, “The distribution function of the convolution square of a
convex symmetric body in R™”, Israel Journal of Mathematics 78 (1992), 309-334.

[4] R. Schneider, Convezr bodies: The Brunn—Minkowski theory, Encyclopedia of
Mathematics and its Applications 44, Cambridge University Press, 1993.

[5] A. Tsolomitis, Convolution bodies and their limiting behavior, Duke Math. J. 87:1
(1997), 181-203.

ANTONIS T'SOLOMITIS
THE OHIO STATE UNIVERSITY
DEPARTMENT OF MATHEMATICS
231 W.18TH AVENUE
CorLumBus, OH 43210
UNITED STATES OF AMERICA
atsol@eexi.gr
Current address: University of Crete, Department of Mathematics, 71409 Heraklion,
Crete, Greece



