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A Note on the M ∗-Limiting Convolution Body

ANTONIS TSOLOMITIS

Abstract. We introduce the mixed convolution bodies of two convex sym-
metric bodies. We prove that if the boundary of a body K is smooth enough
then as δ tends to 1 the δ-M∗-convolution body of K with itself tends to
a multiple of the Euclidean ball after proper normalization. On the other
hand we show that the δ-M∗-convolution body of the n-dimensional cube
is homothetic to the unit ball of `n

1 .

1. Introduction

Throughout this note K and L denote convex symmetric bodies in Rn. Our
notation will be the standard notation that can be found, for example, in [2] and
[4]. For 1 ≤ m ≤ n, Vm(K) denotes the m-th mixed volume of K (i.e., mixing
m copies of K with n−m copies of the Euclidean ball Bn of radius one in Rn).
Thus if m = n then Vn(K) = voln(K) and if m = 1 then V1(K) = w(K) the
mean width of K.

For 0 < δ < 1 we define the m-th mixed δ-convolution body of the convex
symmetric bodies K and L in Rn:

Definition. The m-th mixed δ-convolution body of K and L is defined to be
the set

Cm(δ; K, L) =
{
x ∈ Rn : Vm (K ∩ (x + L)) ≥ δVm(K)

}
.

It is a consequence of the Brunn–Minkowski inequality for mixed volumes that
these bodies are convex.

If we write h(u) for the support function of K in the direction u ∈ Sn−1, we
have

w(K) = 2M∗
K = 2

∫

Sn−1
h(u) dν(u), (1.1)

where ν is the Lebesgue measure of Rn restricted on Sn−1 and normalized so
that ν(Sn−1) = 1. In this note we study the limiting behavior of C1(δ; K, K)
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(which we will abbreviate with C1(δ)) as δ tends to 1 and K has a C2
+ boundary.

For simplicity we will call C1(δ) the δ-M∗-convolution body of K.
We are looking for suitable α ∈ R so that the limit

lim
δ→1−

C1(δ)
(1− δ)α

exists (convergence in the Hausdorff distance). In this case we call the limiting
body “the limiting M∗-convolution body of K”.

We prove that for a convex symmetric body K in Rn with C2
+ boundary the

limiting M∗-convolution body of K is homothetic to the Euclidean ball. We also
get a sharp estimate (sharp with respect to the dimension n) of the rate of the
convergence of the δ-M∗-convolution body of K to its limit. By C2

+ we mean
that the boundary of K is C2 and that the principal curvatures of bd(K) at
every point are all positive.

We also show that some smoothness condition on the boundary of K is nec-
essary for this result to be true, by proving that the limiting M∗-convolution
body of the n-dimensional cube is homothetic to the unit ball of `n

1 .

2. The Case Where the Boundary of K Is a C2
+ Manifold

Theorem 2.1. Let K be a convex symmetric body in Rn so that bd(K) is a C2
+

manifold . Then for all x ∈ Sn−1 we have
∣∣∣∣‖x‖C1(δ)

1−δ

− cn

M∗
K

∣∣∣∣ ≤ C
cn

M∗
K

(M∗
Kn(1− δ))2 , (2.1)

where cn =
∫
Sn−1

∣∣〈x, u〉∣∣ dν(u) ∼ 1/
√

n and C is a constant independent of the
dimension n. In particular ,

lim
δ→1−

C1(δ)
1− δ

=
M∗

K

cn
Bn.

Moreover the estimate (2.1) is sharp with respect to the dimension n.

By “sharp” with respect to the dimension n we mean that there are examples (for
instance the n-dimensional Euclidean ball) for which the inequality (2.1) holds
true if “≤” is replaced with “≥” and the constant C changes by a (universal)
constant factor.

Before we proceed with the proof we will need to collect some standard no-
tation which can be found in [4]. We write p : bd(K) → Sn−1 for the Gauss
map p(x) = N(x) where N(x) denotes the unit normal vector of bd(K) at
x. Wx denotes the Weingarten map, that is, the differential of p at the point
x ∈ bd(K). W−1 is the reverse Weingarten map and the eigenvalues of Wx and
W−1

u are respectively the principal curvatures and principal radii of curvatures
of the manifold bd(K) at x ∈ bd(K) and u ∈ Sn−1. We write ‖W‖ and ‖W−1‖



A NOTE ON THE M∗-LIMITING CONVOLUTION BODY 233

for the quantities supx∈bd(K) ‖Wx‖ and supu∈Sn−1 ‖W−1
u ‖, respectively. These

quantities are finite since the manifold bd(K) is assumed to be C2
+.

For λ ∈ R and x ∈ Sn−1 we write Kλ for the set K ∩ (λx+K). p−1
λ : Sn−1 →

bd(Kλ) is the reverse Gauss map, that is, the affine hyperplane p−1
λ (u) + [u]⊥ is

tangent to Kλ at p−1
λ (u). The normal cone of Kλ at x is denoted by N(Kλ, x)

and similarly for K. The normal cone is a convex set (see [4]). Finally hλ will
denote the support function of Kλ.

Proof. Without loss of generality we may assume that both the bd(K) and
Sn−1 are equipped with an atlas whose charts are functions which are Lipschitz,
their inverses are Lipschitz and they all have the same Lipschitz constant c > 0.

Let x ∈ Sn−1 and λ = 1/‖x‖C1(δ); hence λx ∈ bd (C1(δ)) and

M∗
Kλ

= δM∗
K .

We estimate now M∗
Kλ

. Let u ∈ Sn−1. We need to compare hλ(u) and h(u). Set
Yλ = bd(K) ∩ bd(λx + K).

Case 1. p−1
λ (u) /∈ Yλ.

In this case it is easy to see that

hλ(u) = h(u)− |〈λx, u〉|.
Case 2. p−1

λ (u) ∈ Yλ.
Let yλ = p−1

λ (u) and y′λ = yλ−λx ∈ bd(K). The set N(Kλ, yλ)∩Sn−1 defines
a curve γ which we assume to be parametrized on [0, 1] with γ(0) = N(K, yλ)
and γ(1) = N(K, y′λ). We use the inverse of the Gauss map p to map the curve
γ to a curve γ̃ on bd(K) by setting γ̃ = p−1γ. The end points of γ̃ are yλ (label
it with A) and y′λ (label it with B). Since u ∈ γ we conclude that the point
p−1(u) belongs to the curve γ̃ (label this point by Γ). Thus we get

0 ≤ h(u)− hλ(u) = |〈 ~AΓ, u〉|.
It is not difficult to see that the cosine of the angle of the vectors ~AΓ and u is
less than the largest principal curvature of bd(K) at Γ times | ~AΓ|, the length of
the vector ~AΓ. Consequently we can write

0 ≤ h(u)− hλ(u) ≤ ‖W‖ | ~AΓ|2.
In addition we have

| ~AΓ| ≤ length
(
γ̃|ΓA

) ≤ length
(
γ̃|BA

)
=

∫ 1

0

|dtγ̃| dt =
∫ 1

0

|dtp
−1γ| dt

≤ ‖W−1‖length(γ) ≤ 2
π
‖W−1‖ |p(yλ)− p(y′λ)|,

where | ¦ | is the standard Euclidean norm. Without loss of generality we can
assume that the points yλ and y′λ belong to the same chart at yλ. Let ϕ be the
chart mapping Rn−1 to a neighborhood of yλ on bd(K) and ψ the chart mapping
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Rn−1 on Sn−1. We assume, as we may, that the graph of γ is contained in the
range of the chart ψ. It is now clear from the above series of inequalities that

| ~AΓ| ≤ c0‖W−1‖ |ψ−1pϕ(t)− ψ−1pϕ(s)|,
where t and s are points in Rn−1 such that ϕ(t) = yλ and ϕ(s) = y′λ and c0 > 0
is a universal constant. Now the mean value theorem for curves gives

| ~AΓ| ≤ C‖W−1‖‖W‖ |t− s| ≤ C‖W−1‖‖W‖ |yλ − y′λ| = C‖W−1‖‖W‖λ,

where C may denote a different constant every time it appears. Thus we have

0 ≤ h(u)− hλ(u) ≤ C‖W‖ (‖W−1‖‖W‖)2
λ2.

Consequently,
∫

Sn−1\pλ(Yλ)

(h(u)− |〈λx, u〉|) dν(u) +
∫

pλ(Yλ)

(
h(u)− Cλ2

)
dν(u)

≤ M∗
Kλ

= δM∗
K ≤

∫

Sn−1\pλ(Yλ)

(h(u)− |〈λx, u〉|) dν(u) +
∫

pλ(Yλ)

h(u) dν(u),

where C now depends on ‖W‖ and ‖W−1‖.
Rearranging and using cn for the quantity

∫
Sn−1 |〈x, u〉| dν(u) and the fact

that λ = 1/‖x‖C1(δ) we get
∣∣∣∣‖x‖C1(δ)

1−δ

− cn

M∗
K

∣∣∣∣ ≤
cn

M∗
K

(∫
pλ(Yλ)

|〈x, u〉| dν(u)

cn
+ Cλ

µ (pλ(Yλ))
cn

)
.

We observe now that for u ∈ pλ(Yλ), |〈x, u〉| ≤ length(γ)/2 ≤ ‖W‖λ. Using
this in the last inequality and the fact that pλ(Yλ) is a band around an equator
of Sn−1 of width at most length(γ)/2 we get

∣∣∣∣‖x‖C1(δ)
1−δ

− cn

M∗
K

∣∣∣∣ ≤
cn

M∗
K

Cnλ2 ≤ cn

M∗
K

Cn
(1− δ)2

‖x‖2C1(δ)
1−δ

.

Our final task is to get rid of the norm that appears on the right side of the
latter inequality. Set

T =
‖x‖C1(δ)/1−δ

cn/M∗
K

.

We have shown that

T 2|T − 1| ≤ C
M∗

K

cn
n(1− δ)2.

If T ≥ 1 then we can just drop the factor T 2 and we are done. If T < 1 we write
T 2 |T − 1| as (1− (1− T ))2 (1− T ) and we consider the function

f(x) = (1− x)2x : (−∞, 1
3 ) → R.
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This function is strictly increasing thus invertible on its range, that is, f−1 is
well defined and increasing in (−∞, 4

27 ). Consequently, if

C
M∗

K

cn
n(1− δ)2 ≤ 4

27
, (2.2)

we conclude that

0 ≤ 1− T ≤ f−1

(
C

M∗
K

cn
n(1− δ)2

)
≤ C

M∗
K

cn
n(1− δ)2.

The last inequality is true since the derivative of f−1 at zero is 1. Observe also
that the convergence is “essentially realized” after (2.2) is satisfied. ¤

We now proceed to show that some smoothness conditions on the boundary of
K are necessary, by proving that the limiting M∗-convolution body of the n-
dimensional cube is homothetic to the unit ball of `n

1 . In fact we show that the
δ-M∗-convolution body of the cube is already homothetic to the unit ball of `n

1 .

Example 2.2. Let P = [−1, 1]n. Then for 0 < δ < 1 we have

C1(P ) =
C1(δ; P, P )

1− δ
= n3/2 voln−1(Sn−1)B`n

1
.

Proof. Let x =
∑n

j=1 xjej where xj ≥ 0 for all j = 1, 2, . . . , n and ej is the
standard basis of Rn. Let λ > 0 be such that λx ∈ bd (C1(δ)). Then

P ∩ (λx + P ) =

{
y ∈ Rn : y =

n∑

j=1

yiei,−1 + λxi ≤ yi ≤ 1

}
.

The vertices of Pλ = P ∩ (λx+P ) are the points
∑n

j=1 αjej where αj is either 1
or −1+λx for all j. Without loss of generality we can assume that −1+λxj < 0
for all the indices j. Put signαj = αj/|αj | when αj 6= 0 and sign 0 = 0. Fix a
sequence of αj ’s so that the point v =

∑n
j=1 αjej is a vertex of Pλ. Clearly,

N (Pλ, v) = N

(
P,

n∑

j=1

(signαj)ej

)
.

If u ∈ Sn−1 ∩N(Pλ, v) then

hλ(u) = h(u)−
∣∣∣∣
〈 n∑

j=1

(αj − sign αj)ej , u

〉∣∣∣∣.

If sign αj = 1 then αj − sign αj = 0 otherwise αj − sign αj = λx.

Let A ⊆ {1, 2, . . . , n}. Consider the “A-orthant”

OA = {y ∈ Rn : 〈y, ej〉 < 0, if j ∈ A and 〈y, ej〉 ≥ 0 if j /∈ A}.
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Then OA = N
(
P,

∑n
j=1(signαj)ej

)
if and only if sign αj = 1 exactly for every

j /∈ A. Thus we get

hλ(u) = h(u)−
∣∣∣∣
〈∑

j∈A
λxjej , u

〉∣∣∣∣,

for all u ∈ OA ∩ Sn−1. Hence using the facts M∗
Pλ

= δM∗
P and λ = 1/‖x‖C1(δ)

we get

‖x‖C1(δ)
1−δ

= − 1
M∗

P

∑

A⊆{1,2,...,n}

∑

j∈A
xj

∫

OA∩Sn−1
〈ej , u〉 dν(u),

which gives the result since
∫

OA∩Sn−1
〈ej , u〉 dν(u) =

1
2n−1

∫

Sn−1
|〈e1, u〉| dν(u). ¤
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