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Abstract. As observed originally by C. Osgood, certain statements in
value distribution theory bear a strong resemblance to certain statements
in diophantine approximation, and their corollaries for holomorphic curves
likewise resemble statements for integral and rational points on algebraic
varieties. For example, if X is a compact Riemann surface of genus > 1,
then there are no non-constant holomorphic maps f : C → X; on the
other hand, if X is a smooth projective curve of genus > 1 over a number
field k, then it does not admit an infinite set of k-rational points. Thus
non-constant holomorphic maps correspond to infinite sets of k-rational
points.

This article describes the above analogy, and describes the various ex-
tensions and generalizations that have been carried out (or at least conjec-
tured) in recent years.

When looked at a certain way, certain statements in value distribution theory
bear a strong resemblance to certain statements in diophantine approximation,
and their corollaries for holomorphic curves likewise resemble statements for
integral and rational points on algebraic varieties. The first observation in this
direction is due to C. Osgood [1981]; subsequent work has been done by the
author, S. Lang, P.-M. Wong, M. Ru, and others.

To begin describing this analogy, we consider two questions. On the analytic
side, let X be a connected Riemann surface. Then we ask:

Question 1. Does there exist a non-constant holomorphic map f : C → X?

The answer, as is well known, depends only on the genus g of the compactification
X of X, and on the number of points s in X \X. See Table 1.

On the algebraic side, let k be a number field with ring of integers R, and
let X be either an affine or projective curve over k. Let S be a finite set of
places of k containing the archimedean places. For such sets S let RS denote
the localization of R away from places in S (that is, the subring of k consisting
of elements that can be written in such a way that only primes in S occur in
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the denominator). We assume again that X is nonsingular. If X is affine, then
fix an affine embedding; we then define an S-integral point of X (or just an
integral point, if it is clear from the context) to be a point whose coordinates are
elements of RS. If X is projective, then we define an integral point on X to be
any k-rational point (that is, any point that can be written with homogeneous
coordinates in k). In this case, we ask:

Question 2. Do there exist infinitely many integral points on X?

Again, let X be a nonsingular projective completion of X, let g be the genus of
X (which is the same as the genus of the corresponding Riemann surface), and
let s be the degree of the divisor X \X (the sum of the degrees of the fields of
definition of the points; over C this is just the number of points).

The answers to both of the above questions are summarized in the following
table:

g s Holo. curve? ∞ many integral points?

0 0 Yes Maybe
1 Yes Maybe
2 Yes Maybe

> 2 No No

1 0 Yes Maybe
> 0 No No

> 1 No No

Table 1

The entries “Maybe” in the right-hand column require a little explanation. In
each case there exists a curve with the given values of g and s with no integral
points; but, for any curve with the given g and s, over a large enough number
field k and with a large enough set S, there are infinitely many integral points.
In that spirit, the two columns on the right have exactly the same answers.

This table could be summarized more succinctly by noting that the answer is
“No” if and only if 2g − 2 + s > 0. This condition holds if and only if X is of
“logarithmic general type.” On the analytic side, there is a single proof of the
non-existence of these holomorphic curves, relying on a Second Main Theorem
for curves. For integral points, the corresponding finiteness statements were
proved separately for g = 0, s > 2 and g > 0, s > 0 by Siegel in 1921; and for
g > 1, s = 0 by Faltings in 1983 (the Mordell conjecture). One of the first major
applications of the analogy with Nevanlinna theory was to find a finiteness proof
that unified these various proofs. This proof consisted of proving an inequality
in diophantine approximation that closely parallels the Second Main Theorem.
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The analogy goes into more detail on how the statements of Nevanlinna the-
ory and diophantine approximation correspond; this will be described more fully
in the first section. It allows the statements of theorems such as the First and
Second Main Theorems to be translated into statements of theorems in number
theory (and vice versa), but it is not as useful for translating proofs. In partic-
ular, the proofs of the first and second main theorems do not translate in this
analogy, but some of the derivations of other results from these theorems can be
translated. Thus, the analogy is largely formal.

In addition, it is important to note that the analogue of one (non-constant)
holomorphic map is an infinite set of integral points. It is not the same anal-
ogy as one would obtain by first looking at diophantine problems over function
fields, and then treating the corresponding polynomials or algebraic functions as
holomorphic functions.

I thank William Cherry for many thoughtful comments on this paper.

1. The Dictionary

The analogy mentioned above is quite precise, at least as far as the statements
of theorems is concerned. Before describing it, though, we briefly review some
of the basics of number theory; for more details see any of the standard texts,
such as [Lang 1970].

Let k be a number field; that is, a finite field extension of the rational num-
ber field Q. Let R be its ring of integers; that is, the integral closure of the
rational integers Z in k. We have a standard set Mk of places of k; it consists
of real places, complex places, and non-archimedean places. The real places are
defined by embeddings σ : k ↪→ R; the complex places, by complex conjugate
(unordered) pairs σ, σ̄ : k ↪→ C; the non-archimedean places, by non-zero prime
ideals p ⊆ R. The real and complex places are referred to collectively as the
archimedean places.

Each place has an associated absolute value ‖ · ‖v : k → R≥0. If v is a real
or complex place, corresponding to σ : k ↪→ R or σ : k ↪→ C, respectively, then
this absolute value is defined by ‖x‖v = |σ(x)|v or ‖x‖v = |σ(x)|2, respectively.
If v is non-archimedean, corresponding to a prime ideal p ⊆ R, then we define
‖x‖v = (R : p)−ordp(x) if x 6= 0; here ordp(x) denotes the exponent of p occurring
in the prime factorization of the fractional ideal (x). We will also write ordv(x) =
ordp(x). (Of course, we also define ‖0‖v = 0.) Here we use a little abuse of
terminology when referring to “absolute values,” since ‖ · ‖v does not obey the
triangle inequality when v is a complex place.

The simplest example of all of this is k = Q; in that case we have R = Z and
Mk = {∞, 2, 3, 5, 7, . . .}. Here ‖x‖∞ is just the usual absolute value of a rational
number, and ‖x‖p = p−m if x can be written as pma/b with a and b integers not
divisible by p.
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We can now describe the most fundamental ingredients of the analogy be-
tween Nevanlinna theory and diophantine approximation. This takes the form
of a dictionary for translating various concepts between the two fields. This
dictionary starts out with just a few ideas, which seem to come from nowhere.
These ideas allow one to translate the basic definitions of Nevanlinna theory, and
consequently the statements of many of the theorems.

On the complex analytic side of this dictionary, let X be a complex projective
variety and let f : C → X be a (non-constant) holomorphic curve. On the
algebraic side, let k be a number field, let X be a projective variety over k (that
is, an irreducible projective scheme over k), and let S be a finite set of places of
k, containing all the archimedean places.

We are comparing f to an infinite set of rational points, so it is useful to split f

into infinitely many pieces, each of which can be compared to one of the rational
points. This is done as follows: for each r > 0, let fr denote the restriction
fr := f

∣∣
Dr

. Assume for the moment that X = P1, so f is a meromorphic map
and the rational points are just rational numbers (or∞).

In this dictionary, the domain Dr of fr is compared to Mk. Points on the
boundary are compared to places v ∈ S, and |fr(reiθ)| is translated into ‖x‖v (for
the rational point x being compared to fr). Interior points w ∈ Dr are compared
to places v /∈ S: we translate r/|w| to (R : p), where p is the prime ideal in R

corresponding to v. We also translate ordw(fr) = ordw(f) to ordp(x). Then
the counterpart of − log ‖x‖v is ordw(f) · log(r/|w|). Dividing by |w| requires
that we rule out w = 0 in the above translations; this is an imperfection in the
analogy, but a minor one.

Thus, the ring of meromorphic functions on Dr has something close to archi-
medean absolute values on the boundary, and non-archimedean absolute values
on the interior of the domain.

The following table summarizes the dictionary, so far.

Nevanlinna Theory Number Theory

f meromorphic on C S ⊆ k

f
∣∣
Dr

(r > 0) x ∈ S
Dr Mk

θ v ∈ S

w ∈ D×r v /∈ S

|f(reiθ)|, 0 ≤ θ < 2π ‖x‖v, v ∈ S

ordw f ordv x
r
|w| (R : p)

ordw f · log r
|w| ordv x · log(R : p) = − log ‖x‖v

Table 2. Fundamental part of the dictionary.
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Let X now be an arbitrary projective variety over C or k, and let φ be a
rational function on X whose zero or pole set does not contain the image of f

or does not contain infinitely many of the rational points under consideration.
Then one can apply the same dictionary above to φ ◦ fr in the analytic case and
to φ(x) in the number field case.

More generally still, in the analytic case we can let s be a rational section of a
metrized line sheaf L on X. Then we again have |s(fr(reiθ))| on the boundary
of Dr and ordw(s ◦ fr) on the interior. These can be translated into the number
field case as follows. Let X be a projective variety over k, letL be a line sheaf on
X, and let s be a section ofL . For archimedean places v, let ‖·‖v be a metric on
the liftingL(v) ofL to X×σC, where σ : k ↪→ C is an embedding corresponding
to v. Then, for a rational point x ∈ X(k), ‖s(x)‖v is defined via the metric on
L(v). If v is non-archimedean, one can define something similar to a metric,
via the absolute values on the completions kv. These must be done consistently,
though, so that infinite sums in these absolute values converge. This can be
done either via Weil functions [Lang 1983, Chapter 10] or Arakelov theory. As
an example of such a consistent choice of metrics, if X = Pn, if L = O(1), if s

is the standard section of O(1) vanishing at infinity, and if x has homogeneous
coordinates [x0 : · · · : xn], then

‖s(x)‖v =
‖x0‖v

max{‖x0‖v, . . . , ‖xn‖v}
(1.1)

is one possible choice. By tensoring and pulling back, this example can be used
to construct such systems of metrics in general. One can then define ordv(s(x))
in terms of ‖s(x)‖v.

Applying these more general definitions to the dictionary in Table 2 gives the
following table translating the proximity, counting, and height (characteristic)
functions of Nevanlinna theory into the arithmetic setting. Here s is the canonical
section of O(D), for a divisor D on X.

Nevanlinna Theory Number Theory

Proximity function

m(D, r) =
∫ 2π

0

− log
∣∣s(f(reiθ))

∣∣ dθ

2π
m(D, x) =

1
[k : Q]

∑
v∈S
− log ‖s(x)‖v

Counting function

N(D, r) =
∑
w∈D×r

ordw f∗s · log
r

|w| N(D, x) =
1

[k : Q]

∑
v /∈S
− log ‖s(x)‖v

Height (characteristic function)

TD(r) = m(D, r) + N(D, r) hD(x) =
1

[k : Q]

∑
v∈Mk

− log ‖s(x)‖v

Table 3. Higher-level entries in the dictionary.
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Note that the integrals over the set (of finite measure) of values of θ translate
into sums over the finite set S.

Also note that the above functions are additive in D (up to O(1), or assuming
compatible choices of metrics). They are also functorial; for example, if φ : X →
Y is a morphism of varieties and D is a divisor on Y whose support does not
contain the image of φ, then mf (φ∗D, r) = mφ◦f (D, r) for holomorphic curves
f : C → X and m(φ∗D, x) = m(D, φ(x)) for x ∈ X(k), again assuming that the
metrics on O(D) and φ∗O(D) are compatible.

We conclude this section by considering the case of affine varieties X. Since
everything is functorial, we may assume that X = An. Regard it as embedded
into Pn, and let D be the divisor at infinity. A holomorphic curve in An does not
meet D; therefore N(D, r) = 0. Likewise, a rational point x = [1 : x1 : · · · : xn]
is an S-integral point if and only if x1, . . . , xn lie in RS . If so, then ‖xi‖v ≤ 1
for all i and all v /∈ S (corresponding to the coordinates of fr not having poles);
hence by (1.1), we have N(D, x) = 0 again.

Thus, it is also true on affine varieties that a non-constant holomorphic curve
corresponds to an infinite set of integral points. More generally, let X be any
quasi-projective variety, and write X = X \ D, where D is a divisor; then
f is a holomorphic curve in X if and only if N(D, r) = 0; likewise an infinite
collection of rational points x ∈ X(k) is a set of integral points if N(D, x) = O(1).
(The different choices of metrics may lead to N(D, x) varying by a bounded
amount; by the same token, different affine embeddings may introduce bounded
denominators. Also, the situation is more complicated in function fields, since
in that case N(D, x) may be bounded, but the denominators may come from an
infinite set of primes.)

The first indication that this dictionary is useful comes from the translation
of Jensen’s formula

log |f(0)| =
∫ 2π

0

log |f(reiθ)| dθ

2π
+ N(∞, r)−N(0, r)

into the number field case (here we assume that f does not have a zero or pole
at the origin). The right-hand side translates (up to a factor 1/[k : Q]) into∑

v∈S
log‖x‖v +

∑
v /∈S

log+ ‖x‖v −
∑
v /∈S

log+ ‖1/x‖v =
∑
v∈Mk

log ‖x‖v,

which is zero by the product formula [Lang 1970, Chapter V, § 1]. Consequently,
the First Main Theorem (which, with the above definitions, asserts that the
height TD(r) depends up to O(1) only on the linear equivalence class of D, and
hence we may write TL (r) for a line sheaf L ) translates into the same assertion
for the height hD(x), which is again a standard fact.

Likewise, consider the following weak version of the Second Main Theorem:
if X is a smooth complex projective curve, if D is an effective divisor on X with
no multiple points, if K is a canonical divisor on X, if A is an ample divisor on
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X, and if ε > 0, then any holomorphic curve f : C → X satisfies

m(D, r) + TK (r) ≤exc ε TA(r) + O(1). (1.2)

Here the subscript “exc” means that the inequality holds for all r > 0 outside a
subset of finite Lebesgue measure. This inequality implies all the “No” entries
in the middle column of Table 1.

This translates into the number field case as follows [Vojta 1992]: if X is a
smooth projective curve over a number field k, if D is an effective divisor on X

with no multiple points, if K is a canonical divisor on X, if A is an ample divisor
on X, if ε > 0, and if C is a constant, then

m(D, x) + hK(x) ≤ ε hA(x) + C (1.3)

for all but finitely many x ∈ X(k). Again, this implies all the “No” entries in
the right-hand column of Table 1.

If dimX > 1, note that the above dictionary still refers to holomorphic curves,
so that equidimensional results do not play a role here (although they motivate
conjectures for holomorphic curves). In this case one may restrict f to be a
Zariski-dense holomorphic curve, and correspondingly restrict the set of rational
points to be such that every infinite subset is Zariski-dense.

2. Holomorphic Curves in Varieties of Dimension Greater
Than 1

In arbitrary dimension, non-existence results for non-constant holomorphic
curves mainly concern subvarieties of semiabelian varieties, and quotients of
bounded symmetric domains. We first consider the former.

Recall that a semiabelian variety over C is a complex group variety A such
that there exists an exact sequence of group varieties,

0→ Gµm → A→ A0 → 0,

where A0 is an abelian variety. A semiabelian variety over a number field is a
group variety over that number field that becomes a semiabelian variety over C
after base change. In the context of this section, it is useful to regard semiabelian
varieties as the generalization of Albanese varieties to the case of quasi-projective
varieties; hence it is also common to refer to them as quasi-abelian varieties.

The main theorem for holomorphic curves in semiabelian varieties is the fol-
lowing.

Theorem 2.1. Let A be a semiabelian variety defined over C, let X be a closed
subvariety of A, and let D be an effective divisor on X. Then the Zariski closure
of the image of any holomorphic curve f : C → X \ D is the translate of a
subgroup of A contained in X \D.

It is useful to think of two special cases of this theorem:
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(a) D = 0 (Bloch’s theorem)
(b) X = A

The general case follows from these special cases by an easy argument.

Theorem 2.2. Let k, S, and RS be as usual . Let A be a semiabelian variety
defined over k, let X be a closed subvariety of A, and let D be an effective
divisor on X. Let Y be a model for X \D over Spec RS . Then the set Y (RS)
of RS-valued points in Y is a finite union

Y (RS) =
⋃
i

Bi(RS),

where each Bi is a subscheme of Y whose generic fiber Bi is a translated sub-
group of A.

Here the idea of a model for a variety comes from Arakelov theory; see [Soulé
1992, §O.2]. This more general notion is necessary because, in general, a semi-
abelian variety is neither projective nor affine.

Another way to view Theorem 2.2 is that, if Z is the Zariski closure of the
set of integral points of X \D (defined relative to some fixed model), then any
irreducible component of Z must be the translate of a subgroup of A contained
in X \D. (In the case of holomorphic curves, the Zariski closure of the image of
the curve is already irreducible.)

In the case of holomorphic curves, the special case D = 0 was proved by Bloch
[1926] if A is an abelian variety; see also [Siu 1995] for a history of the other
contributors to this theory, including Green-Griffiths, Kawamata, and Ochiai.
The more general case when D = 0 and A is semiabelian was proved by Noguchi
[1981]. The case X = A was proved by Siu and Yeung [1996a] when A is an
abelian variety and by Noguchi [1998] when A is semiabelian. This is one of
the few cases in which something was proved in the number field case before the
complex analytic case.

In the number field case, Faltings proved the special case in which A is an
abelian variety (if X = A is an abelian variety, then D is generally assumed
to be ample, and then one obtains finiteness of integral points; this implies the
result for general D). The general case was proved by the author. See [Faltings
1991; 1994; Vojta 1996a; 1999].

Bounded symmetric domains. Let D be a bounded symmetric domain. Re-
call that the underlying real manifold can be realized as a quotient G/K, where
G is a semisimple Lie group and K is a maximal compact subgroup. The group
G can be identified with the connected component of the group of holomorphic
automorphisms of D. A subgroup H of G is called an arithmetic subgroup if
there exists a map i : G → GLn(R) of Lie groups inducing an isomorphism
of G with a closed subvariety of GLn(R) defined over Q, such that H is com-
mensurable with i−1(GLn(Z)). Here two subgroups H1 and H2 of a group G
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are commensurable if H1 ∩H2 is of finite index in H1 and H2. See [Baily and
Borel 1966, 3.3]. Finally, an arithmetic quotient of D is a quotient of D by an
arithmetic subgroup of G.

The quotient of a bounded symmetric domain D = G/K by an arithmetic
subgroup Γ of G does not contain a nontrivial holomorphic curve. Indeed, this
follows by lifting the curve to D and applying Liouville’s theorem. For a proof
in the spirit of Nevanlinna theory, see [Griffiths and King 1973, Corollary 9.22].
Also, for a slightly stronger result, see [Vojta 1987, 5.7.7], using Theorem 5.7.2
instead of Conjecture 5.7.5 of the same reference.

Of course, nothing in the above paragraph made essential use of the fact that
Γ is an arithmetic subgroup. The interest in arithmetic subgroups stems from
the result of Baily and Borel [1966], showing that an arithmetic quotient of a
bounded symmetric domain is a complex quasi-projective variety.

In general there is a wide choice of immersions i, leading to a wide choice
of commensurability classes of arithmetic subgroups. Therefore, an arithmetic
quotient is not necessarily defined over a number field. When it is, however,
the philosophy of Section 1 suggests that the set of integral points on any given
model of the quotient would be finite:

Conjecture 2.3. Let X be a quasi-projective variety over a number field k,
whose set of complex points is isomorphic to an arithmetic quotient of a bounded
symmetric domain. Then, for any S and model X for X over RS (where S and
RS are as in the introduction of this chapter), the set X (RS) of integral points
of X is finite.

This is unknown except for one special case. Let Ag,n denote the moduli space
of principally polarized abelian varieties of dimension g with level-n structure.
For n sufficiently large, Ag,n is a quasi-projective variety defined over a number
field, and its set of complex points is isomorphic to an arithmetic quotient of a
bounded symmetric domain (in fact, the Siegel upper half plane). By Conjecture
2.3, Ag,n should have only finitely many integral points over RS , for any number
field over which this variety is defined. In fact, this is true, since S-integral points
correspond to abelian varieties with good reduction outside S with given level-n
structure, and there are only finitely many such varieties for given g, n, k, and
S. This was conjectured by Shafarevich and proved by Faltings [1991]. By an
extension of the Chevalley–Weil theorem [Vojta 1987, Theorem 5.1.6], this then
extends to the quotient by any subgroup commensurable with Sp2g(Z).

Faltings’ proof of the Shafarevich conjecture, however, does not correspond to
the proof of Griffiths-King. Of course it is difficult to compare proofs between
Nevanlinna theory and number theory, especially for the fundamental results.
However, essentially all other results of Second Main Theorem type in the num-
ber field case are proved by constructing an auxiliary polynomial. Faltings’
proof, on the other hand, uses Hodge theory. Therefore a proof of the Shafare-
vich conjecture via construction of an auxiliary polynomial would be good to
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have. Indeed, the proof of this result for holomorphic curves has some moderate
differences from other proofs for holomorphic curves, so this may shed more light
on the analogy of Section 1.

Conjectures on general varieties. Concerning the qualitative question of ex-
istence of non-constant holomorphic curves or infinite sets of integral points, a
general conjecture has been formulated by S. Lang [1991, Chapter VIII, Conjec-
ture 1.4]. Let X be a variety defined over a subfield of C. We begin by describing
various special sets in X.

Definition 2.4. The algebraic special set Spalg(X) is the Zariski closure of the
union of all images of non-constant rational maps f : G→ X of group varieties
into X.

Definition 2.5. If X is defined over C, the holomorphic special set Sphol(X) is
the Zariski closure of the union of all images of non-constant holomorphic maps
f : C → X.

We have, trivially, Spalg(X) ⊆ Sphol(X).
A general conjecture for rational points on projective varieties is:

Conjecture 2.6 [Lang 1991, Chapter VIII, Conjectures 1.3 and 1.4]. Let X

be a projective variety defined over a subfield K of C finitely generated over Q.
Then

Spalg(X) ×K C = Sphol(X ×K C);

that is, the algebraic and holomorphic special sets are the same. Moreover , the
following are equivalent :

(i) X is of general type.
(ii) X is pseudo-Brody hyperbolic; that is, Sphol(X ×K C) $ X ×K C.
(iii) X is pseudo Mordellic; that is, Spalg(X) $ X and for any finitely generated

extension field K′ of K, (X \ Spalg(X))(K′) is finite.

Here we are primarily interested in the case in which K is a number field. How-
ever, the above also contains the Green–Griffiths conjecture (implicit in [Green
and Griffiths 1980]; see also [Lang 1991, Chapter VIII, § 1]), which says that if X

is a complex projective variety of general type, then the image of a holomorphic
curve cannot be Zariski dense. Indeed, if X is defined over C, then it can be
obtained from a variety X as above; then use the implication (i) =⇒ (ii).

For integral points, the case is not so clear, since the boundary may affect
things in a number of different ways. So fewer implications are conjectured here.
See [Lang 1991, Chapter IX, § 5] for explanations.

Conjecture 2.7. Let R be a subring of C, finitely generated over Z, let K be
its field of fractions, and let X be a quasi-projective variety over K. Consider
the following conditions.

(i) X is of logarithmic general type.
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(ii) X is pseudo-Brody hyperbolic.
(iii) X is pseudo Mordellic; that is, Spalg(X) $ X, and for every scheme X

over Spec R with generic fiber isomorphic to X, and for any finitely generated
extension ring R′ of R, all but finitely many points of X (R′) lie in Spalg(X).

Then (i) =⇒ (ii) and (i) =⇒ (iii).

3. Conjectural Second Main Theorems

Motivated by the situation in the equidimensional case, it is generally believed
that the Second Main Theorem should hold for holomorphic curves in arbitrary
(nonsingular) varieties:

Definition. Let X be a nonsingular complex variety and let D be a divisor on
X. We say that D is a normal crossings divisor (or that D has normal crossings)
if each point P ∈ X has a open neighborhood (in the classical topology) with
local coordinates z1, . . . , zn such that D is locally equal to the principal divisor
(z1 · · ·zr) for some r ∈ {0, . . . , n}. Note that this implies that D is effective and
has no multiple components. If X is a variety over a number field k, then a
divisor D on X has normal crossings if the corresponding divisor X ×k C does,
for some embedding k ↪→ C.

Conjecture 3.1. Let X be a nonsingular complex projective variety , let D be
a normal crossings divisor on X, let K be a canonical divisor on X, let A be
an ample divisor on X, and let ε > 0. Then there exists a proper Zariski-closed
subset Z ⊆ X, depending only on X, D, A, and ε, such that for any holomorphic
curve f : C → X whose image is not contained in Z,

m(D, r) + TK (r) ≤exc ε TA(r) + O(1).

Here the notation ≤exc means that the inequality holds for all r outside a set of
finite Lebesgue measure.

The corresponding statement in the number field case is also highly conjec-
tural:

Conjecture 3.2. Let X be a nonsingular projective variety over a number field
k, let D be a normal crossings divisor on X, let K be a canonical divisor on
X, let A be an ample divisor on X, and let ε > 0. Then there exists a proper
Zariski-closed subset Z ⊆ X, depending only on X, D, A, and ε, such that for
all rational points x ∈ X(k) with x /∈ Z,

m(D, x) + TK(x) ≤ ε hA(x) + O(1).

Moreover, the set Z should be the same in both these conjectures.
Conjectures 3.1 and 3.2 give the implications (i) =⇒ (ii) and (i) =⇒ (iii) of

Conjecture 2.7, respectively.
The set Z must depend on ε: see [Vojta 1989b, Example 8.15].
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4. Approximation to Hyperplanes in Projective Space

In dimension > 1, the only case in which Conjectures 3.1 and 3.2 are known
in their full strength is when X = Pn and D is a union of hyperplanes. This was
proved for holomorphic curves by Cartan [1933] and for rational points by W.
M. Schmidt [1980, Chapter VI, Theorem 1F]. See [Vojta 1987, Chapter 2] for a
description of how to formulate Schmidt’s theorem in a form similar to Cartan’s.

We recall the statement of Cartan’s theorem; except for the stronger error
term, this is proved in [Cartan 1933]:

Theorem 4.1. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC lying in general
position (that is, so that H1 + · · · + Hq is a normal crossings divisor), and
let f : C → PnC be a holomorphic curve not lying in any hyperplane (linearly
nondegenerate). Then

q∑
i=1

m(Hi, r) ≤exc (n + 1)T (r) + O(log+ T (r)) + o(log r). (4.1.1)

This is a special case of Conjecture 3.1, except for the stronger error term and
the weaker condition concerning Z.

Actually, a straightforward translation of Theorem 4.1 into the number field
case gives something that is not quite as strong as Schmidt’s subspace theorem,
due to the fact that Schmidt’s theorem allows a different collection of hyperplanes
for each v ∈ S, so that the aggregate collection is not necessarily in general
position.

To describe this further, let x0, . . . , xn be homogeneous coordinates on Pn.
Write D = H1 + · · ·+ Hq and for each i let ai0x0 + · · · + ainxn be a nonzero
linear form vanishing on Hi. Let k be a number field and S a finite set of places
of k. Then, for v ∈ S and x ∈ Pn(k) \Hi, we define the Weil function for Hi as

λHi,v(x) = − log
‖ai0x0 + · · ·+ ainxn‖v
max{‖x0‖v, . . . , ‖xn‖v}

, (4.2)

These Weil functions depend on the choice of ai0, . . . , ain only up to O(1); the
choice of a linear form ai0x0 + · · · + ainxn amounts to choosing a section s of
O(1); the fraction in (4.2) can then be regarded as a metric of that section.
Thus, as in Table 3, we may take

m(Hi, x) =
1

[k : Q]

∑
v∈S

λHi,v(x)

Then Schmidt’s Subspace Theorem can be stated as follows.

Theorem 4.3. Let k be a number field , let S be a finite set of places of k, let
n > 0, let H1, . . . , Hq be hyperplanes in Pnk , and let ε > 0. Then

1
[k : Q]

∑
v∈S

max
L

∑
i∈L

λHi,v(x) ≤ (n + 1 + ε)h(x) + O(1) (4.3.1)
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for all x ∈ Pn(k) outside of a finite union of proper linear subspaces depending
only on k, S, H1, . . . , Hq, and ε. Here L varies over all subsets of {1, . . . , q} for
which the set {Hi}i∈L lies in general position.

Its translation into the case of holomorphic curves is also true:

Theorem 4.4 [Vojta 1997]. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC ,
and let f : C → PnC be a holomorphic curve not lying in any hyperplane (linearly
nondegenerate). Then∫ 2π

0

max
L

∑
j∈L

λHj (f(reiθ))
dθ

2π
≤exc (n+1)T (r)+O(log+ T (r))+o(log r). (4.4.1)

Note that, if H1, . . . , Hq lie in general position (that is, the divisor H1 + · · ·+Hq

has normal crossings), then we may take L = {1, . . . , q}, and the maximum
occurs up to O(1) at that value of L. Thus, the left-hand side of (4.4.1) is∫ 2π

0

q∑
j=1

λHj (f(reiθ))
dθ

2π
+ O(1) =

q∑
j=1

m(Hj , r) + O(1),

which coincides with the left-hand side of (4.1.1).
Similar comments apply to Theorem 4.3.

Exceptional sets. In [Vojta 1989b; 1997], the conditions on exceptional sets
or nondegeneracy were sharpened as follows.

Theorem 4.5. In the notation of Theorem 4.3, there exists a proper Zariski-
closed subset Z ⊆ Pnk , depending only on H1, . . . , Hq, such that (4.3.1) holds for
all x ∈ Pn(k) \ Z.

Theorem 4.6. In the notation of Theorem 4.4, there exists a proper Zariski-
closed subset Z ⊆ PnC , depending only on H1, . . . , Hq, such that (4.4.1) holds for
all holomorphic curves f whose image does not lie in Z.

Thus, for hyperplanes in projective space, the condition regarding Z is sharper
than in Conjectures 3.1 and 3.2, because it does not depend on ε.

Cartan’s conjecture. A conjecture of Cartan concerns the question of what
happens in Theorem 4.1 if the holomorphic curve is linearly degenerate. If it is
degenerate, say if the linear span of its image has codimension t, then Cartan
conjectured that the n + 1 factor in front of T (r) should increase to n + t + 1.
This was finally proved by Nochka [1982; 1983]; it was subsequently improved
by Chen, and converted to the number field case by Ru and Wong [1991]. See
also [Vojta 1997].

Theorem 4.7. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC in general
position, let f : C → PnC be a holomorphic curve, and let t be the codimension
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of the linear span of f . Then
q∑
i=1

m(Hi, r) ≤exc (n + t + 1)T (r) + O(log+ T (r)) + o(log r).

This was proved by assigning a Nochka weight ωi to each hyperplane Hi. Shiff-
man observed that one of the conditions on these weights can be interpreted as
the Q-divisor ω1H1 + · · ·+ ωqHq being log canonical; see [Shiffman 1996].

Additional refinements. The fact that one is working with hyperplanes in
projective space means that one can work largely in linear algebra. The proof
of Cartan’s conjecture, for example, is largely a question of some (very difficult)
linear algebra. Some other, simpler results of this nature have also been known.

Theorem 4.8 [Dufresnoy 1944, Theorem XVI]. Let n > 0 and k > 0, let
H1, . . . , Hn+k be hyperplanes in PnC in general position, and let f : C → PnC
be a holomorphic curve that does not meet H1, . . . , Hn+k. Then the image of f

is contained in a linear subspace of dimension ≤ [n/k], where the brackets denote
greatest integer .

This result has also been independently rediscovered by other authors.

Corollary 4.9. A holomorphic curve that misses 2n+1 hyperplanes in general
position must be constant .

Consequently, the complement of those hyperplanes is Brody hyperbolic.
These results hold also in the number field case; see [Ru and Wong 1991].

A diophantine inequality and semistability. Faltings and Wüstholz prove
a finiteness result involving the notion of semistability of a filtration on a vector
space. This requires a few definitions to state.

Let K be a number field, let L be a finite extension of K, and let S be a finite
set of places of K. For each w ∈ S let Iw be a finite index set. For each α ∈ Iw
let sw,α be a nonzero section of Γ(PnK ,O(1)); that is, a nonzero linear form in
X0, . . . , Xn. Also choose a real number cw,α ≥ 0 for each w and α.

Let V = Γ(PnK ,O(1)) and VL = V ⊗K L. For each w ∈ S the choices of sw,α
and cw,α define a filtration

VL = W 0
w ⊇W 1

w ⊇ · · · ⊇W e+1
w = 0

Indeed, for p ∈ R let Ww,p be the subspace spanned by {sw,α : cw,α ≥ p}. For
j = 0, . . . , e let pw,e be the smallest value of p for which W j

w = Ww,p, and let
pw,e+1 = pw,e + 1.

Definition 4.10. With the above notation, and for all nonzero linear subspaces
W of VL, let

µw(W ) =
1

dimW

e∑
j=1

pj dim((W ∩W j
w)/(W ∩W j+1

w )).
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Definition 4.11. With the above notation, we say that the data sw,α and cw,α
define a jointly semistable fibration on VL if, for all nonzero linear subspaces
W ⊆ VL, we have ∑

w∈S
µw(W ) ≤

∑
w∈S

µw(VL).

The main theorem of Faltings and Wüstholz is then the following:

Theorem 4.12 [Faltings and Wüstholz 1994, Theorem 8.1]. With the notation
above, assume that the data sw,α and cw,α define a jointly semistable fibration
on VL. Assume furthermore that∑

w∈S
µw(VL) > [L : K].

Then the set of all points x ∈ Pn(K) satisfying

‖sw,α(x)‖w ≤ HK(x)−cw,α for all w ∈ S, α ∈ Iw

is finite.

We remark that this result proves finiteness, not just that the set of points x

lies in a finite union of proper linear subspaces. M. McQuillan and R. Ferretti
(unpublished) have translated it into a statement for holomorphic curves.

Approximation to other divisors on Pn. Approximation to divisors of higher
degree on Pn is a trickier question. At present, no results approaching the bounds
of Conjecture 3.1 are known, but weaker bounds can be obtained either from the
methods of Faltings and Wüstholz [1994] (over number fields), or by using a
d-uple embedding as noted in [Shiffman 1979] (for holomorphic curves, but the
translation to number fields is immediate).

5. The Complement of Curves in P2

Conjecture 3.1 implies that, if D is a normal crossings divisor on P2 of degree
at least 4, then any holomorphic curve in P2 \ D must lie in a fixed divisor E

depending only on D. Moreover, it is conjectured that if deg D ≥ 5, then we may
take E = 0 for a suitably generic choice of D. More specifically, let d1, . . . , dk be
positive integers with d1 + · · ·+dk ≥ 5. Then it is conjectured that there exists a
dense Zariski-open subset of the space of all divisors with irreducible components
of degrees d1, . . . , dk, respectively, such that if D is a divisor corresponding to a
point in that open subset, then we may take E = 0. Partial results for the latter
conjecture are as follows:

If D consists of five or more lines in general position, then the conjecture
follows from Corollary 4.9. If D consists of any five components such that no
three intersect, the conjecture was proved by Babets [1984] and by Eremenko
and Sodin [1991]; more generally, their proof applies to any divisor D on Pn with
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at least 2n + 1 irreducible components, such that any n + 1 of them have empty
intersection.

The case of a quadric and four lines was proved by M. Green [1975]. If D is
composed of at least three irreducible components, none of which is a line, then
the conjecture was proved by Grauert [1989] and by Dethloff, Schumacher and
Wong [Dethloff et al. 1995a; 1995b].

The case in which D is irreducible and smooth is much harder; in this case
the only known general results are due Zăıdenberg and to Siu and Yeung:

Theorem 5.1. For positive integers d, let Σd denote the set of complex curves
in P2 of degree d.

(a) [Zăıdenberg 1988] If d ≥ 5 then the set of points in Σd corresponding to
smooth curves whose complement is (Kobayashi) hyperbolic and hyperbolically
embedded , is nonempty and open in the classical topology .

(b) [Siu and Yeung 1996b] If d ≥ 5×1013 then there exists a Zariski-dense open
subset of Σd such that , if C is a curve corresponding to a point in that subset ,
then P2 \ C is Brody hyperbolic.

Recall that Kobayashi hyperbolicity implies Brody hyperbolicity, but that the
converse holds only on compact manifolds. Thus the above theorem provides
partial answers to a question posed by S. Kobayashi [1970, p. 132]: Is the com-
plement in Pn of a generic hypersurface of high degree hyperbolic?

See also [Masuda and Noguchi 1996], for hypersurfaces defined by polynomials
with few terms.

Of these results, only those relying on the Borel lemma translate to the number
field case. See [Ru and Wong 1991] for the result concerning five lines in general
position, and [Ru 1993] for the result of Babets and Eremenko and Sodin.

In addition, Ru [1995] has shown that the complement of a collection of hy-
perplanes in Pn has no nontrivial holomorphic curves if and only if it has only
finitely many integral points.

6. Refinements of the Error Term

Motivated by Khinchin’s theorem on approximation to arbitrary real numbers
by rational numbers, Lang [1971] conjectured that the error term in Roth’s
theorem could be strengthened considerably. See also [Lang and Cherry 1990,
page 10, including the footnote], for references to earlier, weaker conjectures.

No progress has been made on this, but corresponding questions in Nevanlinna
theory have been solved; these questions were motivated by the conjecture in
number theory and the dictionary with Nevanlinna theory. For example, the
lemma on the logarithmic derivative has been strengthened by Miles as follows:

Theorem 6.1 [Miles 1992]. Let f be a meromorphic function on C, and let
φ : [1,∞)→ [1,∞) be a continuous function such that φ(x)/x is nondecreasing
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and ∫ ∞
1

dx

φ(x)
<∞.

Then

m(r, f ′/f) <exc log+

(
φ(Tf (r))

r

)
+ O(1),

where in this case the notation <exc means that the inequality holds for all r

outside a set E with ∫
E

dt

t
<∞.

Corresponding versions of the Second Main Theorem for meromorphic functions
and for hyperplanes in Pn were proved by Hinkkanen [1992] and by Ye [1995],
respectively (although the details of the error terms vary somewhat).

7. Slowly Moving Targets

Early on, Nevanlinna conjectured that the Second Main Theorem should
remain valid if the constants ai being approximated were replaced by mero-
morphic functions ai(z), provided that these functions move slowly; that is,
Tai(r) = o(Tf (r)), where f is the meromorphic function that is doing the ap-
proximating.

Theorem 7.1. Let f be a meromorphic function and let a1, . . . , aq be meromor-
phic functions with Taj (r) = o(Tf (r)) for all j. Then, for all ε > 0,

q∑
j=1

mf (aj, r) ≤exc (2 + ε)Tf (r).

Nevanlinna proved this when q ≤ 3. The general case was proved by Osgood
[1981] (motivated, surprisingly, by the proof of Roth’s theorem, and Osgood’s
own analogy with Nevanlinna theory). Soon after that, Steinmetz [1986] found
a simple, elegant proof. It was generalized to the case of moving hyperplanes
in Pn by Ru and Stoll [1991a]. In that case, extra care is necessary: since the
hyperplanes are moving, the diagonal hyperplanes are also moving, and one needs
to make sure that the holomorphic curve does not stay within such a diagonal (or
other linear subspace, as in Theorem 4.6), because then the inequality would no
longer hold. Therefore a stronger condition than linear nondegeneracy is needed.

Describing this stronger condition requires some additional notation. Let
n > 0 and let H1, . . . , Hq : C → (Pn)∗ be moving hyperplanes. For each j choose
holomorphic functions aj0, . . . , ajn such that Hj is the hyperplane determined
by the vanishing of the linear form aj0x0 + · · · + ajnxn. For such a collection
H := {H1, . . . , Hq}, letRH denote the field of meromorphic functions generated
over C by all ratios ajk/ajl such that ajl 6= 0, where j = 1, . . . , q, k = 0, . . . , n,
l = 0, . . . , n.
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Definition 7.2. Let f : C → Pn be a holomorphic curve, written in homo-
geneous coordinates as f = [f0 : · · · : fn], where f0, . . . , fn are holomorphic
functions with no common zero. Then we say that f is linearly nondegenerate

over RH if the functions f0, . . . , fn are linearly independent over the field RH .

Theorem 7.3 [Ru and Stoll 1991a]. Let n, H1, . . . , Hq and f be as above.
Assume that :

(i) for at least one value of z (and hence for almost all z), H1(z), . . . , Hq(z) are
in general position;

(ii) THj (r) = o(Tf (r)) for all j (where THj (r) is defined via the isomorphism
(Pn)∗ ∼= Pn); and

(iii) f is linearly nondegenerate over RH .

Then, for all ε > 0,
q∑
j=1

mf (Hj, r) ≤exc (n + 1 + ε)Tf (r).

In [Ru and Stoll 1991b] this theorem was generalized to the case of Cartan’s
conjecture (Theorem 4.7).

These results were carried over to the number field case by Bombieri and van
der Poorten [1988] and by the author [Vojta 1996b] for Roth’s theorem; by Ru
and Vojta [1997] for Schmidt’s theorem and Cartan’s conjecture; and by Tucker
[1997] for approximation to moving divisors on an elliptic curve.

A representative sample of such a statement is that of Schmidt’s theorem with
moving targets. We begin with some definitions.

Definition 7.4. Let I be an infinite index set.

(i) A moving hyperplane indexed by I is a function H : I → (Pn)∗(k), denoted
i 7→ H(i).

(ii) Let H1, . . . , Hq be moving hyperplanes. For each j = 1, . . . , q and each i ∈ I

choose aj,0(i), . . . , aj,n(i) ∈ k such that Hj(i) is cut out by the linear form
aj,0(i)X0 + · · ·+ aj,n(i)Xn. Then a subset J ⊆ I is coherent with respect to
H1, . . . , Hq if, for every polynomial

P ∈ k[X1,0, . . . , X1,n, . . . , Xq,0, . . . , Xq,n]

that is homogeneous in Xj,0, . . . , Xj,n for each j = 1, . . . , q, either

P (a1,0(i), . . . , a1,n(i), . . . , aq,0(i), . . . , aq,n(i))

vanishes for all i ∈ J , or it vanishes for only finitely many i ∈ J .
(iii) We define R0

I to be the set of equivalence classes of pairs (J, a), where J ⊆ I

is a subset with finite complement; a : J → k is a map; and the equivalence
relation is defined by (J, a) ∼ (J ′, a′) if there exists J ′′ ⊆ J ∩ J ′ such that J ′′

has finite complement in I and a
∣∣
J′′

= a′
∣∣
J′′

. This is a ring containing k as a
subring.
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(iv) Let H1, . . . , Hq be moving hyperplanes, denoted collectively by H . If J

is coherent with respect to H , and if aj,α(i) 6= 0 for some i ∈ J , then
aj,β/aj,α defines an element of R0

J . Moreover, by coherence, the subring of
R

0
J generated by all such elements is entire. We define RJ,H to be the field

of fractions of that entire ring.

Thus, a little additional work is needed in order to define something having a
property that comes automatically with meromorphic functions: that is, a mero-
morphic function either vanishes identically, or it is nonzero almost everywhere.

Given a hyperplane H defined by the linear form a0X0 + · · ·+ anXn and a
point x /∈ H with homogeneous coordinates [x0 : · · · : xn], we define a more
precise Weil function at a place v ∈Mk by

λH,v(x) = − log
‖a0x0 + · · ·+ anxn‖v

max0≤α≤n ‖aα‖v ·max0≤α≤n ‖xα‖v
. (7.5)

The extra term max0≤α≤n ‖aα‖v ensures that λH,v(x) depends only on H and x,
and not on a0, . . . , an or on the choice of homogeneous coordinates [x0 : · · · : xn].

Schmidt’s subspace theorem with moving targets can now be stated as follows.

Theorem 7.6. Let k be a number field , let S be a finite set of places of k, let
n > 0, let I be an index set , and let H1, . . . , Hq be moving hyperplanes in Pnk ,
denoted collectively by H . Also let x : I → Pn(k) be a sequence of points, and
let [x0 : · · · : xn] be homogeneous coordinates for x. Suppose that

(i) for all i ∈ I, the hyperplanes H1(i), . . . , Hq(i) are in general position;
(ii) for each infinite coherent subset J ⊆ I, x0

∣∣
J
, . . . , xn

∣∣
J

are linearly indepen-
dent over RJ,H ; and

(iii) hk(Hj(i)) = o(hk(x(i))) for all j = 1, . . . , q (that is, for all δ > 0,

hk(Hj(i)) ≤ δhk(x(i))

for all but finitely many i ∈ I).

Then for all ε > 0 and all C ∈ R,

1
[k : Q]

∑
v∈S

q∑
j=1

λHj(i),v(x) ≤ (n + 1 + ε)h(x(i)) + C

for all but finitely many i ∈ I.

Theorem 7.6 is proved using an extension of Steinmetz’s method; in the end
it reduces to reducing the problem to Schmidt’s subspace theorem with fixed
targets, but in a space of much higher dimension. As M. Ru points out [1997],
it is more convenient to use the variant Theorems 4.3 and 4.4 instead of the
formulation of Theorem 4.1. By the same token, it would be better to phrase
Theorem 7.6 in these terms as well; in fact, the proof of [Ru and Vojta 1997]
actually gives the following stronger result.
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Theorem 7.7. Let k, S, I, H , H1, . . . , Hq, x, and [x0 : · · · : xn] be as in
the first two sentences of Theorem 7.6. Also let L be a collection of subsets of
{1, . . . , q}. Suppose that

(i) for all i ∈ I and all L ∈ L , the hyperplanes Hj(i), j ∈ L are in general
position;

(ii) for each infinite coherent subset J ⊆ I, x0

∣∣
J
, . . . , xn

∣∣
J

are linearly indepen-
dent over RJ,H ; and

(iii) hk(Hj(i)) = o(hk(x(i))) for all j = 1, . . . , q.

Then for all ε > 0 and all C ∈ R,

1
[k : Q]

∑
v∈S

max
L∈L

∑
j∈L

λHj(i),v(x) ≤ (n + 1 + ε)h(x(i)) + C

for all but finitely many i ∈ I.

Similarly, we can define a more precise Weil function in the context of holomor-
phic curves as

λH(x) = − log
|a0x0 + · · ·+ anxn|

max0≤α≤n |aα| ·max0≤α≤n |xα|

(using the notation of (7.5)). Then the methods of [Ru and Stoll 1991a] imme-
diately give:

Theorem 7.8. Let n > 0 be an integer , let H1, . . . , Hq be moving hyperplanes
in Pn, and let f be a holomorphic curve in Pn. Assume that :

(i) THj (r) = o(Tf (r)) for all j (where THj (r) is defined via the isomorphism
(Pn)∗ ∼= Pn); and

(ii) f is linearly nondegenerate over RH .

Then, for all ε > 0,∫ 2π

0

max
L

∑
j∈L

λHj (f(reiθ))
dθ

2π
≤exc (n + 1 + ε)Tf (r),

where L varies over all subsets of {1, . . . , q} for which (Hj)j∈L lie in general
position (for at least one value of z).

8. Discriminant Terms

Instead of working with rational points in inequalities such as (1.3) and Con-
jecture 3.2, one may conjecture more generally that the inequalities hold for
algebraic points, provided that the inequalities are modified appropriately. This
modification involves the discriminant of the number field generated by the al-
gebraic point in question. To justify this suggestion, we begin with Nevanlinna
theory.
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Inequality (1.2) may be rewritten, via the definition TD(r) = m(D, r) +
N(D, r), as

N(D, r) ≥exc TK+D(r)− ε TA(r) −O(1).

This may be sharpened to

N (1)(D, r) ≥exc TK+D(r)− ε TA(r) −O(1), (8.1)

where the counting function is replaced by the truncated counting function,
which is defined for effective divisors D by

N (1)(D, r) :=
∑
w∈D×r

min{1, ordw f∗s} · log
r

|w|.

Of course, one can make the same definition in the context of number fields:

N (1)(D, x) =
1

[k : Q]

∑
v /∈S

min{1, ordv s(x)} · log(R : p) (8.2)

where as usual p is the prime ideal in R corresponding to the non-archimedean
place v. One may then conjecture that (1.3) can be replaced by the stronger
inequality

N (1)(D, x) ≥ hK+D(x) − ε hA(x) −C. (8.3)

In Nevanlinna theory there is a stronger statement than (8.1):

m(D, r) + TK(r) + NRam(r) ≤exc ε TA(r) + O(1), (8.4)

Here NRam is the ramification term: it counts the ramification of the holomorphic
curve f ; that is, it counts the zeroes of f ′ (in local coordinates) in the same way
that Nf (∞, r) counts the poles of a meromorphic function f . It is well known
that (8.4) implies (8.1).

We claim that, in the notation of (1.3), if x ∈ X(Q), then the analogue of
NRam(r) should be −d(x), where d(x) is the discriminant term

d(x) :=
1

[k : Q]
log |DK(x)|.

Thus the arithmetic equivalent of (8.4) is the following:

Conjecture 8.5. Let X be a smooth projective curve over a number field k,
let D be an effective divisor on X with no multiple points, let K be a canonical
divisor on X, let A be an ample divisor on X, let r be a positive integer , let
ε > 0, and let C be a constant . Then the inequality

m(D, x) + hK(x) ≤ d(x) + ε hA(x) + C (8.5.1)

holds for all but finitely many x ∈ X(Q) with [K(x) : k] ≤ r.

Because of the sign change, it may seem unusual to suggest that −d(x) is an
analogue of NRam(r). To support this assertion, however, we point out that
(8.5.1) implies (8.3), corresponding to the fact that (8.4) implies (8.1):
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Proposition 8.6. If Conjecture 8.5 holds, then (8.3) holds as well .

This has not been proved elsewhere, so a proof appears in Appendix A.
In higher dimensions, there is likewise a modification of Conjecture 3.2:

Conjecture 8.7. Let X, D, K, A, and ε be as in Conjecture 3.2, and let r

be a positive integer . Then there exists a proper Zariski-closed subset Z ⊆ X,
depending only on X, D, A, and ε, such that for all algebraic points x ∈ X(k̄)
with x /∈ Z and [K(x) : k] ≤ r,

m(D, x) + TK(x) ≤ d(x) + ε hA(x) + O(1).

To conclude this section, we mention the “abc conjecture” of Masser and Oes-
terlé. As was first observed by J. Noguchi [1996, (9.5)], it is the number-theoretic
counterpart to Nevanlinna’s Second Main Theorem with truncated counting
functions, applied to the divisor [0] + [1] + [∞] on P1. In its simplest form
it reads as follows.

Conjecture 8.8. Let ε > 0. Then there exists a constant C, depending only
on ε, such that for all relatively prime integers a, b, c ∈ Z with a + b + c = 0,

max{|a|, |b|, |c|} ≤ C
∏
p|abc

p1+ε.

This conjecture, if proved, would have far-reaching consequences; for example,
it would imply a weak form of Fermat’s Last Theorem (now proved by Wiles).

In [Vojta 1987, pp. 71–72] it is shown that Conjecture 8.5 implies the abc
conjecture.

It is also possible, via the variety X ⊆ P2×P2 defined by ux4+vy4 +wz4 = 0,
to obtain from Conjecture 3.2 a weak form of the abc conjecture, for ε > 26.
Here X is a rational three-fold. Thus, versions of the Second Main Theorem,
applied even to rational varieties, would give highly nontrivial consequences.

Appendix A: Proof of Proposition 8.6

This appendix gives a proof of Proposition 8.6, because a proof has not ap-
peared elsewhere. It will necessarily be more technical than the rest of the paper.

Recall that we are proving that the inequality

m(D, x) + hK(x) ≤ d(x) + ε hA(x) + O(1) (A.1)

for algebraic points of bounded degree on a curve implies the inequality

N (1)(D, x) ≥ hK+D(x)− ε hA(x)−O(1). (A.2)

for rational points on a curve.
This implication is proved by taking a cover X′ of X, highly ramified over D

but unramified elsewhere, and applying (A.1) to the pull-back of everything to
X′. The counting functions end up being truncated because of the fact that the
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ramification of a number field is limited over any given place. The details of this
construction are as follows.

First, we define a slightly different truncated counting function.

Definition A.3. If D is a divisor on a curve, then the modified truncated

counting function is the function N [(D, x), defined for prime divisors D by (8.2)
and for arbitrary D by linearity. (We will not define N [(D, x) on varieties of
higher dimension, because the support of D may be singular in that case.)

Next, we give an improved lemma of Chevalley-Weil type; compare [Vojta 1987,
Thm. 5.1.6].

Lemma A.4. Let π : X′ → X be a finite morphism of smooth projective curves
over a global field k of characteristic zero, let R be the ramification divisor of π,
and let r be a positive integer . Then

d(y) − d(π(y)) ≤ N [(R, y) + O(1) (A.4.1)

for all y ∈ X′(k̄) with [K(y) : k] ≤ r; here the constant in O(1) depends on π, r,
and the model used in defining N [, but not on y.

Moreover , if for all y ∈ X′ the ramification index of π at y depends only on
π(y), so that R = π∗B for some Q-divisor B on X, then

d(y) − d(π(y)) ≤ N [(B, π(y)) + O(1) (A.4.2)

for all y as before.

Proof. To simplify the notation, we will assume that k is a number field. Let
A be its ring of integers.

Let X ′ and X be regular models for X′ and X, over Spec A, such that
π extends to a morphism X

′ → X , also denoted π. Let R also denote the
ramification divisor of X ′ over X . Let S be the set of places of k containing:

(i) all archimedean places;
(ii) all places of bad reduction of X ′ and X ;
(iii) all places where π(Supp R) is not étale over Spec A;
(iv) all places where π−1(π(Supp R)) is not étale over Spec A; and
(v) all places where π fails to be a finite morphism.

This is a finite set. For places v ∈ S the contribution to d(y) is bounded; hence
it suffices to show that the contribution to each side of (A.4.1) from places not
in S obeys the inequality. This will be done place by place, without any O(1)
term.

By making a base change, we may assume that π(y) is rational over k.
Let v be a place of k not in S, and let w be a place of K(y) lying over v. Let

v also denote the point of Spec A corresponding to v; similarly let C be the ring
of integers of K(y) and let w also denote the point of Spec C corresponding to
w. Let σ be the section of the map X → Spec A corresponding to π(y), and
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let τ : Spec C → X
′ be the map corresponding to y. If τ(w) does not meet

R, then the contribution at w to the right-hand side of (A.4.1) is zero, but the
contribution to the left-hand side is also zero, by [Vojta 1987, Lemma 5.1.8].
Thus we may assume that τ(w) ∈ SuppR.

Write ξ = σ(v) and η = τ(w), so that ξ = π(η). Let n be the degree of π.
After base change of π : X ′ → X to Spec Ôξ,X , we have a finite morphism
π′ : Spec C ′ → Spec Ôξ,X , where C ′ is a semilocal ring. Let m be the maximal
ideal of Ôξ,X and m1, . . . , mr the maximal ideals of C ′. For sufficiently large e,
we have

(m1 · · ·mr)e ⊆ m ⊆ m1 · · ·mr;

therefore C ′ is m1 · · ·mr-adically complete, and by [Matsumura 1986, Theo-
rem 8.15] it follows that C ′ is the product of the completions of its local rings
at the maximal ideals. Thus

C ′ =
∏

α∈π−1(ξ)

Ôα,X ′ .

Let e be the degree of Spec Ôη,X ′ over Spec Ôξ,X . There is a unique branch
of π(SuppR) passing through ξ and a unique branch of π−1(π(Supp R)) passing
through η. Therefore the multiplicity of that latter branch in π−1(π(SuppR))
(pulling back π(Supp R) as a divisor), must also equal e. If e > 1 then R has a
component with multiplicity e− 1 passing through η; otherwise, e− 1 = 0 and
R does not pass through η. Then the contribution at w to the right-hand side
of (A.4.1) is (e − 1)(log qw)/[K(y) : Q], where qw is the number of elements of
the residue field at w. But Spec Ôη,X ′ has degree e over Spec Ôξ,X , so the local
field K(η)w has degree at most e over kv. Thus the contribution at η to the
left-hand side is also at most (e− 1)(log qw)/[K(y) : Q] (since wild ramification
cannot occur). This is sufficient to imply (A.4.1).

Next we show (A.4.2). Again, we prove the inequality place by place, for
places v /∈ S, without the O(1) term. We again assume that π(y) is rational over
k. Pick v ∈ Mk \ S. As before, we may assume that σ(v) meets SuppB. Then
the contribution at v to the right-hand side of (A.4.2) is

1
[k : Q]

· e− 1
e

log qv.

For a place w of K(y) over v, let ew/v and fw/v denote the ramification index
and residue field degree, respectively. Then the contribution at v to the left-hand
side of (A.4.2) is

1
[K(y) : Q]

∑
w|v

(ew/v − 1) log qw.

Thus it will suffice to show that
1

[K(y) : k]

∑
w|v

(ew/v − 1) log qw ≤
e− 1

e
log qv.
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But this follows from the easy facts∑
w|v

ew/vfw/v = [K(y) : k] and log qw = fv/w log qv,

and from the inequality ev/w ≤ e proved earlier. �

We may now continue with the proof of Proposition 8.6.
If X has genus 0 and if deg D < 2, the right-hand side of (A.2) is negative,

and the result is trivial. Hence we may assume that 2g(X)− 2 + deg D ≥ 0. Let
e be an integer, chosen large enough so that

h0(X, n([eε]A−D)) > 0 (A.5)

for some n > 0, where [eε] denotes the greatest integer function. By [Vojta
1989a, Lemma 3.1], there is a cover π : X′ → X, where X′ is also nonsingular,
which is unramified outside π−1(D) and ramified exactly to order e at all points
of X′ lying over D.

The Q-divisor

D′ :=
1
e
π∗D

is an integral divisor on X′ with no multiple points. The ramification divisor R

of π is given by

R = (e− 1)D′ =
e− 1

e
π∗D . (A.6)

Thus the canonical divisor on X′ satisfies the linear equivalence

KX′ ∼ π∗KX +
e− 1

e
π∗D ,

so that
KX′ + D′ ∼ π∗(KX + D) . (A.7)

Lemma A.8. In this situation, points y ∈ X′(k̄) of bounded degree over k satisfy

N(D′, y) + d(y) ≤ N (1)(D, π(y)) + d(π(y)) + εhπ∗A(y) + O(1) , (A.8.1)

where the constant in O(1) depends on X, X′, π, the models used to define the
counting functions, and the bound on the degree, but not on y.

Proof. By (A.6), we may apply (A.4.2) to X′ with

B =
e− 1

e
D

to obtain the inequality

d(y) ≤ d(π(y)) + N [(B, π(y)) + O(1) . (A.8.2)

By (A.5) we have h0(X′, n([eε]π∗A− π∗D)) > 0 for some n > 0, so

ε hπ∗A(y) ≥ hD′(y) + O(1)
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and therefore
N(D′, y) ≤ hD′(y) + O(1)

≤ ε hπ∗A(y) + O(1) .

By definition of N [ we then have

N [(B, π(y)) =
e− 1

e
N [(D, π(y))

=
e− 1

e
N (1)(D, π(y)) + O(1)

≤ N (1)(D, π(y)) + O(1)

≤ N (1)(D, π(y)) −N(D′, y) + εhπ∗A(y) + O(1) .

Combining this with (A.8.2) then gives (A.8.1). �

Since π is a finite map and A is ample, π∗A is ample on X′. Thus, (A.1) applies
to points y on X′ lying over rational points on X, relative to the divisor D′,
giving

m(D′, y) + hKX′(y) ≤ d(y) + εhπ∗A(y) + O(1) .

By the First Main Theorem, this is equivalent to

N(D′, y) + d(y) ≥ hKX′+D′(y) − ε hπ∗A(y) − O(1) . (A.9)

By (A.8.1), (A.9), and (A.7), we then have

N (1)(D, π(y)) + d(π(y)) ≥ N(D′, y) + d(y) − ε hπ∗A(y) − O(1)

≥ hKX′+D′(y) − 2ε hπ∗A(y) − O(1)

≥ hKX+D(π(y)) − 2ε hA(π(y)) − O(1) .

Since π(y) is rational, d(π(y)) is bounded; hence (A.2) follows after adjusting ε.
Thus, Proposition 8.6 is proved.

References

[Babets 1984] V. A. Babets, “Theorems of Picard type for holomorphic mappings”,
Sibirsk. Mat. Zh. 25:2 (1984), 35–41. In Russian; translated in Siberian Math. J. 25
(1984), 195–200.

[Baily and Borel 1966] J. Baily, W. L. and A. Borel, “Compactification of arithmetic
quotients of bounded symmetric domains”, Ann. of Math. (2) 84 (1966), 442–528.
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