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Hankel Determinants as Fredholm Determinants

ESTELLE L. BASOR, YANG CHEN, AND HAROLD WIDOM

ABSTRACT. Hankel determinants which occur in problems associated with
orthogonal polynomials, integrable systems and random matrices are com-
puted asymptotically for weights that are supported in an semi-infinite or
infinite interval. The main idea is to turn the determinant computation
into a random matrix “linear statistics” type problem where the Coulomb
fluid approach can be applied.

1. Introduction

Let w be a weight function supported on L (a subset of R) that has finite
moments of all orders

,un:/x"w(x)dx.
L

With w(z) we associate the Hankel matrix (u;4;), where ¢, =0,...,n—1. The
purpose of this paper is the determination of

Dy [w] := det(pii;)7 52,

for large n with suitable conditions on w. If L is a single interval, say [—1,1],
then the asymptotic form of such determinants was computed by Szegd [1918]
and later by Hirschmann [1966] for quite general w.

Our main result is as follows. Suppose we replace w(z) by a function given
in the form wo(z)U(z) where wg(z) is the weight e
functions w, the determinants are given asymptotically as n — oo by

7"E‘,L.V

. Then for appropriate

D, w] = exp(cln2 log n+con®+csnlog n+ecan+tesn'/?4cq log n+C7+o(1)) (1)
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where

c1 =1, co = —3/2, c3 =v, ¢y = —v + log 2m,

¢y = —/ log(U(z?)) dz, ce =v2/2—1/6,
0

s

cr =4/3log G(1/2) 4+ (1/3 +v/2)log m + (v/2 — 1/18) log 2

—log G(1 +v) — (v/2)log U(0) + % /000 zS(z)? dz,

S(z) = /0 h cos(zy) log U(y?) dy,

and G is the Barnes function (see Section 2).

In Section 2 we establish an identity relating D, [w], Dy,[wo], and a certain
Fredholm determinant and a description of the Fredholm determinant from a
“linear statistics” point of view. A computation of D,,[wp] is also included. Then
in Section 3 the Coulomb fluid approach is used to compute the asymptotics of
the Fredholm determinant. This, along with the computation of Dy [wg] allows
us to give a heuristic, Coulomb fluid derivation of the formula. A rigorous proof
based on operator theory techniques developed in [Basor 1997; Tracy and Widom
1994] will appear in a forthcoming paper. In Section 3 the Hermite case is also
included.

2. Preliminaries

Let pi(z) be polynomials orthonormal with respect to wq(z) (the reference
weight function) over L

/L pi(@)p; (2)wo(z) da = 6 5,

with strictly positive leading coefficients. For later convenience we also write
¢; = y/wop; as the orthonormal functions. Consider the determinant,

det (/L pi(z)p;(z)w(x) dm)

If pi(z) = Ej’:o c;;x?, then

det (/ Dipjw dl‘)
L

n—1

,5=0

n—1 n—1

i J
= det (/ Z Ciijl:rIH’lw dl‘)
0 L

k=01=0
2

n—1 n—1
= ( H cii) det </ /TRy d:c>
i=0 L 3,k=0

det (741) 't - (2)

= 4,7=0
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If w = wo then the left side of (2) is 1. So,

n—1 n—1
det (:U'iJr )1 — Dn w
det(/ pipjwdx) = 5 ! 7;1—10 =D [[w]]’ (3)
L ig=o  det (udy;);,  Pnlwo

)

I ::/J;%UU dz,
L

are the moments of the reference weight wg, and
1

(i)

We now express the left side of (3) as a Fredholm determinant.

(3)
[ ows) =a [ (1~ (- 2)) )

= det(ém- — Miyj),

where

Dn [wo] =

where
Mi,j = /L(bz(ﬁ](]. — w/wo) dr =: A(ﬁﬂ%Fdl‘ = /L(bzgﬁj(]. — U) dr.

‘We have the standard expansion

oo

tr MP
_logdet(éid — Mi,j) = Z rp ,

p=1
where the matrix M has elements M; ;. To compute tr MP, we first look at the
simpler case of p = 3. We see that tr M® equals

E M; ; M . My
1,5,k=0

- [ax S i)y ) ()b a2)n(0) F(a) b (0)dls) )

1,5,k=0

/dXF(ml)F F(z3 Z@ z3)¢i(x1 Z@ z1)d;(x2 Z¢k z2)Pr(z3)

=0 7=0 k=0
= /dX Kn(.’El, Ig)Kn(.’Ifg, Ig)Kn($3, .’El)F(ml)F($2)F(.’L‘3),
where [dX stands for [ --- [, dzy dzs dzs and where

=Y 0i@)0i(y) = 0, 22D = l0)0na(®) gy
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The last equality of (4) is the Christoffel-Darboux formula [Szegd 1975] and a,,
are the off diagonal recurrence coefficients of p;. The generalization to integer p
is obvious and we find,

tr MP = tr( K, F)?P

where the operator K, F has kernel K, (z,y)F(y). So

det(éi,j — Miyj) = det([ — KHF), (5)
and I in (5) has kernel §(z — y). We now come to the linear statistics.
If z;, for i =1,...,n, are random variables with the joint probability density
function

n

p(xl,...,xn)O(ng(a:i) H |a:j—xk|2, x; € L, (6)

i=1 1<j,k<n
then @ = )_7 , f(z;) (the linear statistics) is also a random variable. Consider
the generating function of Q, (exp(—Q)) where

_ Jr o [ Cp(, . n) day L day
= Ir- fLPﬂh, --,mn)dml...dxn )

Recall the Heine formula [Szeg6 1975] for Hankel determinants:

det(it4); ;= 1= n'/ /dml dmnHw x;) H lz; —zi]?,  (7)

1<j,k<n

and the analogous one with p;; replaced by pu +; and w replaced by wo. If we
write w = exp(—v), wo = exp(—vg) and v = vy + f then

Dy[w] = det(uf, ;)77 0 (exp(~Q)) = Da[wo](exp(—Q))- (8)

In this notation f(z) = —log U(z). So our strategy is to choose a suitable wy for
which there is exact result for D, [wo], and compute (exp(—@Q)) as a Fredholm
determinant for n large. In the next section we will use a heuristic method to give
an indication how the results for (exp(—@Q)) for large n can be found. If we take
wo(z) = z¥ exp(—z), v > —1 and L = [0,00) then p;(x) are the orthonormal
Laguerre polynomials. It is well known [Szegé 1975] that

9 1

% TA+i+ )DL +i)

So
Dufwo] = [ T(1+i+»)P(1+4) = G(g(j:r)l) G(g(ir)l), ©

where the Barnes function G [Barnes 1900; Whittaker and Watson 1962] satisfies
the functional equation G(z+1) = I'(2)G(z), with the initial condition G(1) = 1.
The asymptotics of the Barnes function are computed in [Whittaker and Watson
1962] and since G(1 + a + n) is asymptotic to

n(n+a)2/2—1/12e—3/4n2—an(27T)(n+a)/2 G2/3(1/2)ﬂ.1/62—1/36
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we can directly apply this formula with ¢ = 0 and ¢ = v to obtain asymptotically
Dy [wo] = exp {din”log n+dan® +dsnlog n+dsn+dslogn+ds+o(1)}  (10)
where
di=1, dy=-3/2, ds=v, dy=-v+log2n, ds=1%/2-1/6,
de = (4/3)1log G(1/2) + (1/3 +v/2)logm + (v/2 — 1/18)log 2 — log G(1 + v).

3. The Coulomb Fluid Method

For suitably chosen f, (exp(—Q)) for large n was computed in [Chen and
Lawrence 1998] starting from the Heine formula. An alternative and shorter
derivation is given here. Now if @ is in some sense “small” then by expanding
up to @2, we have, (exp(—Q)) ~ 1 — (Q) + 2(Q?). This can be reproduced by

expanding , )
w10 - (L),

up to (QQ) and (Q>2 With the introduction of the microscopic density o(z) :=
>or 1 6(z — x;), one finds

Q) = / f(@) () de,
Q) — (@) = / / £(2) (le(@))e(®)) — {e(2)e))) f(y) dz dy.

In the Coulomb fluid approach, expected to be valid for large n, we replace (g(x))
by the equilibrium density o(z), which is supposed to be supported in a single
interval (a,b). It is then a simple exercise to show that the correlation function

(e(z)){e(v)) — (o(x)o(y))

is replaced by

! 0 [(VO-y)(y—a)
212,/(b — z)(z — a) Oy zT—y )
Therefore,
(exp(—Q)) ~ exp(=S51 — 52), (11)
where
N Y A f(z) 0 (Vb-y)(y—a)
5’1_471-2/a /a (b—x)(m—a)3y< z—y )f(y)dxdy,
b
Sy = / o(z)f(z) dz.

The end points of the interval, a and b, are determined by the normalization con-

dition fab o(z)dxr = n and a supplementary condition [Chen and Lawrence 1998].
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So the constants ¢;, ¢ = 1,...,6 and part of ¢y are obtained from the asymptotic
expansion of D, [wg] while ¢5 and the last two terms of ¢7 are obtained from the
large n behaviour of Sy and S; respectively. For wo(z) = z¥ exp(—z), z > 0 it
is known that a = 0, b = 4n + 2v and

1 /b
a(:c)z—u(5+(x)+2— ac’ 0<z<b.
s

x
So,
Szz—zf(o)‘l‘i/bf(x) b_mdx
2 2m Jo T
— glogU(O) - 2n’/? /Ooolog U(z?)dz, as n — oo. (12)

As n — oo, S1 tends to

B ey e () VAN RV I
47r2/0 /0 ) O dedy,

2

Changing the integration variables z = 52, y = #2 and noting

1 [ 1
—5/ |z| exp[—izt] dx = 2

— 00

we find
2

51— —#/0 T </0 log U(s2)c0s(xs)ds) dz
1 ot 9
=53 ; zS(x)” dz. (13)
Therefore (1) follows from (10), (12) and (13).

We can also make use of the above information to determine the recur-
rence coefficients of the monic polynomials P;(z), orthogonal with respect to
z” exp(—tz)U(z). The parameter ¢ is introduced for later convenience. The
recurrence relations reads

2Py (z) = Puy1(z) + an(t) Pu(z) + Bn(t) Po-1(2).

From the basic properties of the Hankel determinant generated by the weight
w(z,t) = x¥ exp(—tz)U(x), one finds

4, Dunld)
an(t) - _a n D:(t) )
ﬂn(t) — Dn+1(t)Dn—1(t)

(Dn(t))’
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where D,,(t) = D,[w(-,t)]. With the asymptotics, we find, as n — oo, that
1 oo
an(l)=2n+v+1-— <— / log U(z?) dm) n"1/2 4 o(1)
T Jo

Bn(1) =n? +uvn — (% /000 log U (z?) dx>n1/2 + o(1),

are the recurrence coefficients of those monic polynomials orthogonal with re-
spect to w(z) = z¥ exp(—x)U(z). As a further application of the asymptotic
formula, we study the short noise generating function of an n-channel disordered
conductor [Muttalib and Chen 1996] where the f of the linear statistics is

T+ z
f(z):=MIn a1’ |z| = 1.

As n — oo, S1 tends to

2 VEH]
—-M lOgW,

while S, tends to
M
VT log z + 2v/nM (1 — V/Z).

This generalises the results of [Muttalib and Chen 1996] to v # 0.
Now suppose w is supported in (—oo0,00). We adopt the same strategy to
determine the large n behaviour of the associated Hankel determinant:

Dy, [w]

Dn[w] = Dn[wo] Dn[w0]7

where the “reference” Hankel determinant is generated by the Hermite weight
wo(z) = exp(—z?), where z € (—00,0). Now a = —b = —/2n and o(z) =

1Vz? — b2, Thus, as n — oo,

Dn[u]
Dy, [wo]

~ eXp(—Sl - S2)a

where

S1=-5 [ " kI F(—k)F(R) di

8n2 )
52:@/_00 f(z) dz.

Here f(k) = [ > _exp(ikz) f(z) dz. Equations (14) are essentially those found by
Kac and by Akhiezer [Akhiezer 1964]. Therefore the large n behaviour of D,,[w]
follows from

(14)

Dyfwo] = (2m)™?27 " /2G(n + 1),

the asymptotics of the Barnes function, and Equation (14).
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