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ABSTRACT. This article is concerned with random holomorphic polynomi-
als and their generalizations to algebraic and symplectic geometry. A natu-
ral algebro-geometric generalization involves random holomorphic sections
HO(M, LN) of the powers of any positive line bundle L — M over any
complex manifold. Our main interest is in the statistics of zeros of k in-
dependent sections (generalized polynomials) of degree N as N — co. We
fix a point P and focus on the ball of radius 1/+/N about P. Magnifying
the ball by the factor v/N, we found in a prior work that the statistics
of the configurations of simultaneous zeros of random k-tuples of sections
tend to a universal limit independent of P, M, L. We review this result and
generalize it further to the case of pre-quantum line bundles over almost-
complex symplectic manifolds (M, J,w). Following earlier work of Shiffman
and Zelditch, we replace H°(M, L) in the complex case with the “asymp-
totically holomorphic” sections defined by Boutet de Monvel and Guillemin
and (from another point of view) by Donaldson and Auroux. We then give
a generalization to an m-dimensional setting of the Kac—Rice formula for
zero correlations, which we use together with earlier results to prove that
the scaling limits of the n-point correlation functions for zeros of random
k-tuples of asymptotically holomorphic sections belong to the same uni-
versality class as in the complex case. In our prior work, we showed that
the limit correlations are short range; here we show further that the limit
“connected correlations” decay exponentially with respect to the square of
the maximum distance between points.

1. Introduction

A well-known theme in random matrix theory (RMT), zeta functions, quan-
tum chaos, and statistical mechanics, is the universality of scaling limits of cor-
relation functions. In RMT, the relevant correlation functions are for eigen-
values of random matrices (see [De; TW; BZ; BK; So] and their references).
In the case of zeta functions, the correlations are between the zeros [KS]. In
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quantum dynamics, they are between eigenvalues of ‘typical’ quantum maps
whose underlying classical maps have a specified dynamics. In the ‘chaotic case’
it is conjectured that the correlations should belong to the universality class
of RMT, while in integrable cases they should belong to that of Poisson pro-
cesses. The latter has been confirmed for certain families of integrable quantum
maps, scattering matrices and Hamiltonians (see [Ze2; RS; Sa; ZZ] and their
references). In statistical mechanics, there is a large literature on universality
of critical exponents [Car]; other rigorous results include analysis of universal
scaling limits of Gibbs measures at critical points [Sin]. In this article we are
concerned with a somewhat new arena for scaling and universality, namely that
of RPT (random polynomial theory) and its algebro-geometric generalizations
[Han; Hal; BBL; BD; BSZ1; BSZ2; SZ1; NV]. The focus of these articles is on the
configurations and correlations of zeros of random polynomials and their gen-
eralizations, which we discuss below. Random polynomials can also be used to
define random holomorphic maps to projective space, but we leave that for the
future. Our purpose here is partly to review the results of [SZ1; BSZ1; BSZ2]
on universality of scaling limits of correlations between zeros of random holo-
morphic sections on complex manifolds. More significantly, we give an improved
version of our formula from [BSZ2] for determining zero correlations from joint
probability distributions, and we apply this formula together with results in
[SZ2] to extend our limit zero correlation formulas to the case of almost-complex
symplectic manifolds.

Notions of universality depend on context. In RMT, one fixes a set of matrices
(for example, a group U(N) or a symmetric space such as Sym(N), the N x N real
symmetric matrices) and endows it with certain kinds of probability measures
pn- These measures bias towards certain types of matrices and away from others,
and one may ask how the eigenvalue correlations depend on the {ux} in the large
N limit. In RPT one could similarly endow spaces of polynomials of degree N
with a variety of measures, and ask how correlations between zeros depend on
them in the large N limit. However, the version of universality which concerns us
in this article and in [BSZ1; BSZ2] lies in another direction. We are interested
in very general notions of polynomial that arise in geometry, and in how the
statistics of zeros depends on the geometric setting in which these polynomials
live. We will always endow our generalized polynomials with Gaussian measures
(or with essentially equivalent spherical measures).

The generalized polynomials studied in [SZ1; BSZ1; BSZ2] were holomorphic
sections HO(M, L") of powers of a positive line bundle L — M over a com-
pact Kahler manifold (M,w) of a given dimension m. Such sections form the
Hilbert space of quantum wave functions which quantize (M,w) in the sense of
geometric quantization [At; Wo]. Recall that geometric quantization begins with
a symplectic manifold (M,w) such that L[w] € H%(M,Z). There then exists a
complex Hermitian line bundle (L, h) — M and a Hermitian connection V with
curvature w. To obtain a Hilbert space of sections, one needs additionally to
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fix a polarization of M, i.e. a Lagrangian sub-bundle L of TM, and we define
polarized sections to be those satisfying V,s = 0 when v is tangent to L. In the
Kihler case, one takes L = T1°M, the holomorphic sub-bundle. Thus, polar-
ized sections are holomorphic sections. The power N plays the role of the inverse
Planck constant, so that the high power N — oo limit is the semiclassical limit.

When M = CP™ and L = O(1) (the hyperplane section line bundle), holo-
morphic sections of LY = O(N) are just homogeneous holomorphic polynomials
of degree N. (In general, one may embed M C CP? for some d, and then
holomorphic sections s € H°(M, L") may be identified with restrictions of poly-
nomials on CP? to M, for N > 0 by the Kodaira vanishing theorem.) We equip
L with a Hermitian metric A and endow M with the volume form dV induced
by the curvature w of L. The pair (h,dV) determine an £2 norm on H°(M, L)
and hence a Gaussian probability measure p. All probabilistic notions such as
expectations or correlations are with reference to this measure. The basic theme
of the results of [BSZ1; BSZ2] was that in a certain scaling limit, the correlations
between zeros are universal in the sense of being independent of M, L,w, and
other details of the setting.

The geometric setting was extended even further by two of the authors in
[SZ2] by allowing (M,w) to be any compact symplectic manifold with integral
symplectic form, i.e. 1[w] € H?(M,Z). Complex line bundles with c;(L) =
1[w] are known in this context as ‘pre-quantum line bundles’ (cf. [Wo]). It has
been known for some time [BG] that there are good analogues of holomorphic
sections of powers of such line bundles in this context. Interest in symplectic
analogues of holomorphic line bundles and their holomorphic sections has grown
recently because of Donaldson’s [Dol] use of asymptotically holomorphic sections
of powers of pre-quantum line bundles over symplectic manifolds in constructing
embedded symplectic submanifolds, Lefschetz pencils and other constructions of
an algebro-geometric nature [Dol; Do2; Aul; Au2; AK; BU1; BU2; Sik]. Given
an almost complex structure J on M which is compatible with w, we follow
Boutet de Monvel and Guillemin [BG] (see also [GU] and [BU1; BU2]) in defining
spaces H(M, LN) of almost holomorphic sections of the pre-quantum line bundle
L — M with curvature w. A Hermitian metric h on L and w determine an L2
norm and hence a Gaussian measure puy on H(M, L").

Our main concern is with the zeros Z; of k-tuples s = (s1, ..., sx) of holomor-
phic or almost-holomorphic sections. We let |Z;| denote Riemannian (2m — 2k)-
volume on Z;, regarded as a measure on M:

(1Zs], ) :/ pdVolap, oy .

s

As in [BSZ1; BSZ2], we introduce the punctured product

M, ={(z',...,2") EM x -+ X M : 2P # 27 forp# q} (1-1)
—_————

n
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and consider the product measures on M,,

|Zs|™ == (| Zs| % -+ x |Zs]) .
—_—
n

The expectation E |Z4|™ is called the n-point zero correlation measure. We write
E|Z,|" = K}.(2%,...,2")dz,

where dz denotes the product volume form on M,. The generalized function
Kﬁc (21, ...,2") is called the n-point zero correlation function.

The main points are first to express these correlation measures in terms of
the joint probability distribution

]Ajé\il’.“’zn) = INDN(xl, ez N €M 2 dade

of the random variables s(z!),...,s(z"),Vs(z!),...,Vs(z™), and secondly to
prove that the latter has a universal scaling limit. Here dx denotes volume
measure on Li\g @® - @ LY., and d¢ is volume measure on (Ty; @ LN) 1 @ ... ®
(Tr; ® LN) ;». For more details and precise definitions, see §4.1. As for the first
point, we have the following formula for the correlation measures in terms of the
joint probability distribution:

THEOREM 1.1. The n-point zero correlation function for random almost holo-
morphic sections of LN — M s given by
n
KN@) = [ e DY 0,6, ] Vaer(erer).
p=1

One of our main results is Theorem 4.3, which gives a general form of Theorem 1.1
with H(M, L) replaced by a finite dimensional space of sections of an arbitrary
vector bundle over a Riemannian manifold. Theorem 4.3 is a generalization of the
Kac—Rice formula [Kac; Ri] (see also [BD; EK; Hal; SSm]) to higher dimensions.
A special case of Theorem 4.3 was given by J. Neuheisel [Ne] in a parallel study
of correlations of nodal sets (zero sets of eigenfunctions of the Laplacian) on
spheres.

The correlations of course depend heavily on the geometry of the bundle. For
instance, it was shown in [SZ1] that Z,,, — w for almost every sequence {sy} of
holomorphic sections of L. That is, zeros tend almost surely to congregate in
highly (positively) curved regions. To find universal quantities, we scale around
a point zg € M. The most vivid case is where k¥ = m so that almost surely the
simultaneous zeros of the k-tuple of sections form a discrete set. The density of
zeros in a unit ball By (zp) around zo then grows like N™, so we rescale the zeros
in the 1/v/N ball B, / v (20) by a factor of VN to get configurations of zeros
with a constant density as N — oco. Our problem is whether the statistics of
these configurations tend to a limit and whether the limit is universal. In [BSZ2,
Th. 3.4] (see also [BSZ1]), it was shown that when L is a positive holomorphic
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line bundle over a complex manifold M, the scaled n-point correlation functions

KTJXC(ZT;V, e, \j—%) converge in the high power limit to a universal correlation
function K5, (2%,...,z") on the punctured product (C™),, depending only on

the dimension m of the manifold and the codimension & of the zero set. Our main
application of Theorem 1.1 is that this universality law for the scaling limits of
the zero correlation functions extends to the general symplectic case:

THEOREM 1.2. Let L be the pre-quantum line bundle over a 2m-dimensional
compact integral symplectic manifold (M,w). Let zo € M and choose complex
local coordinates {z;} centered at zo so thatw|., = £ 3" dz;Adz; and (8/0z;)|., €
TYOM (1 < j <m). Let § = HY(M,LN)* (k > 1), and give 8 the standard
Gaussian measure p. Then

1 2t z" oo n
WK% <—N”\/_N> = Kpgm (2,0 2")
(weakly in D'((C™),,)), where K23, (21,...,2") is the universal scaling limit in
the Kdahler setting.

The proof of this result is similar to the holomorphic case [BSZ2]. Using Theorem
1.1, we reduce the scaling limit of K, (z) to that of the joint probability density
]5@];1,...,”)- It was shown in [SZ2, Theorem 5.4] that the latter has a universal
scaling limit:

Dﬁl/m,...,zn/m — D1y s (1-2)
where D?jl,...,zn)
1-jets, and {z;} are the complex local coordinates of Theorem 1.2.

Let us say a few words on the proof of (1-2). Recall that a Gaussian measure
on RP? is a measure of the form

is a universal Gaussian measure supported on the holomorphic

1,,-
67§<A 1z,z)

AN=—————dx1---dz,, 1-3
AT ampivaea (1-3)
where A is a positive definite symmetric p X p matrix. Since ]Sg 1.am) is the

push-forward of a Gaussian measure, we have ﬁg 1 am) = VAN where AV is the
covariance matrix of the random variables (s(z?), Vs(z?)). The main step in the
proof in [SZ2] was to show that the covariance matrices AV underlying DY tend
in the scaling limit to a semi-positive matrix A>°. To deal with singular measures,
we introduced a class of generalized Gaussians whose covariance matrices are only
semi-positive definite. A generalized Gaussian is simply a Gaussian supported on
the subspace corresponding to the positive eigenvalues of the covariance matrix.
It followed that the scaled distributions DY tend to a generalized Gaussian ya
‘vanishing in the O-directions.” To prove that AV — A*, we expressed AN
in terms of the Szegd kernel Iy (z,y) and its derivatives. The Szegd kernel
is essentially the orthogonal projection from L2(M,LN) — HY(M,L"N). Since
it is more convenient to deal with scalar kernels than sections, we pass from
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L — M to the associated principal S* bundle X — M. Sections s of LV are
then canonically identified with equivariant functions § on X transforming by
e*No under the S* action. The space HY(M, L™) then corresponds to a space
H?2,(X) of equivariant functions. In the holomorphic case, these functions are CR
functions; i.e., they satisfy the tangential Cauchy—Riemann equations 9,8 = 0.
In the symplectic almost-complex case they are ‘almost CR’ functions in a sense
defined by Boutet de Monvel and Guillemin. The scalar Szegd kernels are then
the orthogonal projections Iy : £L2(X) — H%(X). The main ingredient in the
proof of (1-2) was the scaling asymptotics of the Szegd kernels Iy (z,y). In
‘preferred’ local coordinates (z,6) on X (see § 3.2), the scaling asymptotics read:

L£z+L£)
\/NaNao \/N,N

. 1 1
N ez(@*‘ﬂ)eu-Uf2(|u|2+\v|2){1 n \/_Npl(u’v;zo) 4. } _

Iy (Zo +

The universal limit correlation functions K2, (z',...,2") are described in
[BSZ2] (see also [BSZ1]). They are given in terms of the level 1 Szegé kernel for
the (reduced) Heisenberg group (see §2.3),

I} (2, 0;w, ) = L goprtitmza)—glewl* _ L i)tz GOt
Tm Tm

and its first and second derivatives at the points (z,w) = (2%, 22'). Indeed, the

. . . . . . — P_.ZP
correlation functions are universal rational functions in 28,zF,e* * , and are
smooth functions on (C™),,. We let

T 1 ny .__ oo —n 1 n
Kpkm(z,...,2") = (KTpm) nkm (2. .., 2")

denote the “normalized” n-point limit correlation function, where

m!

Ky, = ——
Lem = 7% (m — k)]

is the expected volume density of the zero set. For example [BSZ1; BSZ2],
[3(m? +m)sinh®t + 2] cosht — (m + 1)tsinht¢ N (m—1)
m? sinh® ¢ 2m
21— 22|?

2

K3 (2", 2%) =

7

for t = (1-4)
Formula (1-4) with m = 1 agrees with the scaling limit pair correlation function
of Hannay [Han] (see also [BBL)]) for zeros of polynomials in one complex variable,
i.e. for M = CP' and L = O(1).

The correlations are “short range” in the sense that I?nkm(zl, c2M =14
O('r4e*T2), where 7 is the minimum distance between the points zP [BSZ2]. We
show in §5.3 that in fact the “connected m-point correlations” are o(e‘R2/ ™,
where R is the maximum distance between the points.
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2. Line Bundles on Complex Manifolds

We begin with some notation and basic properties of sections of holomorphic
line bundles, their zero sets, and Szeg6 kernels. We also provide two examples
that will serve as model cases for studying correlations of zeros of sections of line
bundles in the high power limit.

2.1. Sections of Holomorphic Line Bundles. Let L — M be a holomorphic
line bundle over a compact complex manifold. Thus, at each z € M, L, ~ C is
a complex line and locally, over a sufficiently small open set U C M, L ~ U x C.
For background on line bundles and other objects of complex geometry, we refer
to [GH].

A key notion is that of positive line bundle. By definition, this means that
there exists a smooth Hermitian metric h on L with positive curvature form

O = —90log |lez |} ,

where e, denotes a local holomorphic frame (= nonvanishing section) of L over
an open set U C M, and |le1 || = h(er,er)'/? denotes the h-norm of er,. A basic
example is the hyperplane bundle O(1) — CP™, the dual of the tautological line
bundle. When m = 1, its square is the holomorphic tangent bundle TCP". Its
positivity is equivalent to the positivity of the curvature of CP" in the usual
sense of differential geometry. Hyperbolic surfaces H? /T" have negatively curved
tangent bundles, but their cotangent bundles T*(H?2/T') are positively curved.
In the case of complex tori C/A (where A C C is a lattice), both the tangent
and cotangent bundles are flat. The positive ‘pre-quantum’ line bundle there is
the bundle whose sections are theta functions.

Intuitively speaking, positive curvature at w creates a potential well which
traps a particle near z. On the quantum level, this particle is a wave function
(holomorphic section) ITy(z,w) which is concentrated at w. This wave function is
known to mathematicians as the ‘Szeg6 kernel’, and to physicists as the ‘coherent
state’ centered at w. The simplest (but non-compact) case is where M = C™
and where ©5, = 377" | dz; A dz; (cf. [Dol]). We note that ©, = dA, where A =
1 > i1 2jdZ; — Zjdz; is a connection form on the trivial bundle L = C™ x C —
C™. The associated covariant derivative on sections is given by 94 f = 0f+A%1f,
where A%1 is the (0,1) component of A. Then dae~P/2 = 0, ie. there is a
Gaussian holomorphic section concentrated at w = 0. As will be seen in §2.3, it
is essentially the Szeg6 kernel of the Heisenberg group.

According to the above intuition, positive line bundles should have a plentiful
supply of global holomorphic sections. Indeed, the space H°(M, L") of holo-
morphic sections of LV = L ® --- ® L is a complex vector space of dimension
dny = %N ™4 ... given by the Hilbert polynomial ([KI; Na]; see [SSo, Lemma
7.6]). It is in part because the dimension dy increases so rapidly with N that
probabilities and correlations simplify so much as N — oo.
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To define the term ‘Szeg6 kernel’ we need to define a Hilbert space structure
on HO°(M,LY): We give M the Hermitian metric corresponding to the Kihler

form w = —V21 O}, and the induced Riemannian volume form

1 m
dVir = —w™ . (2-1)

Since %w is a de Rham representative of the Chern class ¢1(L) € H%(M,R), it
follows from (2-1) that Vol(M) = T ¢y (L)™.

The metric h induces Hermitian metrics A"V on LY given by ||s®V ||~ = ||s||¥.
We give H(M, LN) the Hermitian inner product

<81,52> = / hN(Sl,SQ) dVy (81,82 € HO(M,LN)). (272)
M
We first define the Szeg6 kernels as the orthogonal projections
My : L2(M, LN) — HO (M, LN).

The projections IIy can be given in terms of orthonormal bases {S JN } of sections
of H'(M, LN) by

ZS” )@ SN (w),
so that
(T s)(w) = /M B (s(2), T (2, ) dVar(2), s € L3(M, L.

Since we are studying the asymptotics of the IIy as N — oo, we find it useful
to instead view the Szeg6 kernels as projections on the same space of functions.
We show how this is accomplished below.

2.2. Lifting the Szegd Kernel. As in [BG; Zel; SZ1; BSZ2; SZ2] and else-
where, we analyze the N — oo limit by lifting the analysis of holomorphic
sections over M to a certain S! bundle X — M. We let L* denote the dual
line bundle to L, and we consider the circle bundle X = {\ € L* : ||A||p- = 1},
where h* is the norm on L* dual to h. Let 7 : X — M denote the bundle map;
if v € L, then |jv||ln = |(\,v)|, A € X, = 7 !(z). Note that X is the boundary
of the disc bundle D = {\ € L* : p(\) > 0}, where p(\) = 1 — ||A||2.. The
disc bundle D is strictly pseudoconvex in L*, since @y, is positive, and hence X
inherits the structure of a strictly pseudoconvex CR manifold. Associated to X
is the contact form o = —idp|x = i0p|x. We also give X the volume form

1
dVx = —aA(da)™ = aAm*dVy . (2-3)

The setting for our analysis of the Szegd kernel is the Hardy space H?(X) C
L2%(X) of square-integrable CR, functions on X, i.e., functions that are annihi-
lated by the Cauchy-Riemann operator 9, (see [St, pp. 592-594]) and are L2
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with respect to the inner product

1 —
(Fl,Fg) = _271'/ F]_F2dVX, Fl,F2 S Lz(X) . (2*4)
X

Equivalently, H?(X) is the space of boundary values of holomorphic functions
on D that are in £L2(X). We let 7oz = ¥z (z € X) denote the S* action on X
and denote its infinitesimal generator by %. The S' action on X commutes with
Op; hence H3(X) = DX_o H3A(X) where H%,(X) = {F € HA(X) : F(rez) =
eNPF(x)}. A section sy of LY determines an equivariant function § on L* by
the rule

sn(N) = (\®N,sn(2)), AeL;

z)

zeM,

where A®N = \®- - -®@\. We henceforth restrict 5 to X and then the equivariance
property takes the form $y(rgz) = eV%5n(z). The map s + § is a unitary
equivalence between H°(M, L") and H%(X). (This follows from (2-3)—(2-4)
and the fact that a = df along the fibers of 7 : X — M.)

We now define the (lifted) Szegé kernel to be the orthogonal projection ITy :
L2(X) = H3(X). It is defined by

MyF(z) = /X My (2, 4)F(y) Vi (y), F € L3(X). (2-5)

As above, it can be given as

dn
On(z,y) = Y S} (@)5N(y), (2-6)
=1
where S{,..., S} form an orthonormal basis of H°(M,L"). Note that al-

though the Szeg6 kernel Ily is defined on X, its absolute value is well-defined
on M. In particular, on the diagonal we have

dn
My (z,2) = Tn(2,0;2,0) = > _ (IS (2)7~ -
j=1

2.3. Model Examples. The Szeg6 kernels and their derivatives were worked
out explicitly in [BSZ2] for two model cases, namely for the hyperplane section
bundle over CP™ and for the Heisenberg bundle over C™, i.e. the trivial line
bundle with curvature equal to the standard symplectic form on C™. These cases
are important, since by universality, the scaling limits of correlation functions
for all line bundles coincide with those of the model cases.

In fact, the two models are locally equivalent in the CR sense. In the case of
CP™, the circle bundle X is the 2m + 1 sphere $2™*+1, which is the boundary of
the unit ball B2m*+2 ¢ C™*!. In the case of C™, the circle bundle is the reduced
Heisenberg group HT};, which is a discrete quotient of the simply connected
Heisenberg group C™ x R.
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We summarize here the formulas for the Szeg6 kernels from [BSZ2] in these
model cases; for further details see [BSZ2, §1.3]. For the first example (see also
[SZ1, §4.2]), M = CP™ and L is the hyperplane section bundle O(1). Sections
s € H°(CP™,0(1)) are linear functions on C™*", so that the zero divisors Z,
are projective hyperplanes. The line bundle O(1) carries a natural metric hgg
given by
|(s, w)|

jw]
for s € C™'* = HO(CP™,0(1)), where |w|?> = >oio lwil? and [w] € CP™
denotes the complex line through w. The Kéhler form on CP™ is the Fubini-
Study form

w = (wp, . ..,wy) € C™

[[8llaes ([w]) =

V—1 V=1 __
WFs = T(“)hFS = T@@log |’LU|2 .
The dual bundle L* = O(—1) is the affine space C™*! with the origin blown up,
and X = §?™*1 ¢ C™"'. The N-th tensor power of O(1) is denoted O(N). An
orthonormal basis for the space H?(CP™, O(N)) of homogeneous polynomials

on C™"! of degree N is the set of monomials:

o — [ (N +m)!

2 ) ,
L I R '] ZJ’ zJ:zéol..z’IJTT7 J = (jos- -1 Jm), [J[=N
! !

Hence the Szegd kernel for O(N) is given by

(N +m)! _ (N +m)!
On(z,y) =) e 070 = o ™
7 Jo: Jm: .

Note that

(r,y) = 3 Uxlay) = (1 — (o)~
N=1

which is the classical Szeg6 kernel for the (m + 1)-ball.

The second example is the linear model C™ x C — C™ for positive line
bundles L — M over K&hler manifolds and their associated Szeg6 kernels. Its
associated principal S! bundle C™ x S' — C™, which may be identified with
the boundary of the disc bundle D C L* in the dual line bundle, is the reduced
Heisenberg group HT ;. Let us summarize its definition and properties. We start
with the usual (simply connected) Heisenberg group H™ = C™ x R with group
law

(Cvt) ' ("773) = (C +n,t+s +Im(< "7))
The identity element is (0,0) and (¢,t)~! = (—(, —t). The Lie algebra of H,, is

spanned by elements Z1, ..., Zmy, Z1, ..., Zm, T satisfying the canonical commu-
tation relations [Z;, Zx] = —id;;T (all other brackets are zero). Below we will

select such a basis of left invariant vector fields.
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We can regard H™ as a strictly convex CR manifold which may be embedded
in C™"! as the boundary of a strictly pseudoconvex domain, namely the upper
half space U™ := {z € C™"" : Imzp > 2 >oimq 23’} H™ acts simply
transitively on QU™ (cf. [St], XII), and we get an identification of H™ with oU™
by:

[¢, 8] = (¢t +1d[¢[?) € oU™.

The linear model for the principal S! bundle is the reduced Heisenberg group
H™, =H™/{(0,27k) : k € Z} = C™ x S! with group law

(G 6) - (1,€°) = (¢ + T HImC),

It is the principal S* bundle over C™ associated to the line bundle Ly = C™ x C.
The metric on Ly with curvature © = )" dz, A dZ, is given by setting hu(z) =
e~ fe., |flre = |f|e“z|2/2. The reduced group H[7; may be viewed as the
boundary of the dual disc bundle D C Lj; and hence is a strictly pseudoconvex
CR manifold.

We then define the Hardy space H*(H™;) of CR holomorphic functions to be
the functions in L?(HT,) satisfying the left-invariant Cauchy—Riemann equa-
tions Z'f = 0 (1 < ¢ < m) on HZ;. Here, {Z'} denotes a basis of the left-
invariant anti-holomorphic vector fields on H%;. Let us recall their definition:
we first equip Hy?; with its left-invariant connection form o = (3, (uqdv, —
vgdug) + df) ({ = u + iv), whose curvature equals the symplectic form w =
>_q Qug A dvg. The left-invariant (CR-) holomorphic vector fields Zk and anti-
holomorphic vector fields Zq[‘ are the horizontal lifts of the vector fields a%q and

0
924
of HY7; and are given by

respectively, with respect to a”. They span the left-invariant CR structure

o i_98 ., 8 i 0
L_ 0 i_0 L_ 9 _t O
2= 5. TaMaer 24T 5z, " 200"

The vector fields {2, ZF, ZE} span the Lie algebra of HT; and satisfy the
canonical commutation relations above.

For N = 1,2,..., we define H% C H?*(H",) as the (infinite-dimensional)
Hilbert space of square-integrable CR functions f such that fory = eN0f as
before. The Szegd kernel I1E(x,y) is the orthogonal projection to H%. It is
given by

1 ) =1 1
Hﬁ(x,y) _ 7r_mNmeu\r(t—s)eN(c-nf2|C|2,2\n|2) , z=(Ct), y=(n,s).
The Szegé kernels ITE are Heisenberg dilates of the level 1 kernel ITH:
where the Heisenberg dilations (or scalings) d, are the automorphisms of H™

8,(2,0) = (rz,7%0), reR".
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(The dilation ¢ /5 descends to a homomorphism of H[7,.)

REMARK. The group H; acts by left translation on H%. The generators of
this representation are the right-invariant vector fields Zf,Zf together with
%. They are horizontal with respect to the right-invariant contact form a® =
> q(Ugdvg — vqdug) — df) and are given by:

0 i_ 0 sr__ O i 0

2l S ZR= 2
9z, 27700° 7 T 9z, 27700

9
1
2
R _
Zy =

In physics terminology, ZqR is known as an annihilation operator and Zf is a
creation operator.

The representation H? is irreducible and may be identified with the Bargmann—
Fock space of entire holomorphic functions on C™ which are square integrable
relative to e 1*I°. The identification goes as follows: the function ©o(2,0) :=
eife1217/2 ig CR-holomorphic and is also the ground state for the right invariant

annihilation operator; i.e., it satisfies
Zqcho(z, 0)=0= ng@o(z, 0).

In the physics terminology, the level 1 Szegé kernel I3, which is the left translate
of ¢, by (—w,—¢), is the coherent state associated to the phase space point w.
Any element F(z,0) of H? may be written in the form F(z,0) = f(z)¢,. Then
ZqLF = (% f)¥o, so that F' is CR if and only if f is holomorphic. Moreover,

F € L2(H™,) if and only if f is square integrable relative to e 12,

3. Almost-Complex Symplectic Manifolds

In [SZ2], the study of the Szegd kernel was extended to almost-complex sym-
plectic manifolds, and parametrices and resulting off-diagonal asymptotics for
the Szegd kernel were obtained in this general setting. We now summarize the
basic geometric and analytic constructions of [SZ2] for the almost-complex sym-
plectic case.

We denote by (M,w) a compact symplectic manifold such that [1w] is an
integral cohomology class. We also fix a compatible almost complex structure J
satisfying w(v, Jv) > 0. We denote by T19M, respectively T7°! M, the holomor-
phic (respectively anti-holomorphic) sub-bundles of the complex tangent bundle,
ie. J=ion T4 and J = —i on T, It is well known (see [Wo, Prop. 8.3.1])
that there exists a Hermitian line bundle (L,h) — M and a metric connection
V on L whose curvature O, satisfies 20, = w. The ‘quantization’ of (M,w) at
Planck constant 1/N should be a Hilbert space of polarized sections of the N-th
tensor power LY of L ([GS, p. 266]). In the complex case, polarized sections
are simply holomorphic sections. The notion of polarized sections is problematic
in the non-complex symplectic setting, since the Lagrangian subspaces T1%M
defining the complex polarization are not integrable and there usually are no
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‘holomorphic’ sections. A subtle but compelling replacement for the notion of
polarized section has been proposed by Boutet de Monvel and Guillemin [BG],
and it is this notion which was used in [SZ2].

To define these polarized sections, we work as above on the associated princi-
pal S! bundle X — M with X = {v € L* : |v|, = 1}. We let a be the connection
1-form on X given by V; we then have %da = m*w, and thus « is a contact form
on X, i.e., a A (da)™ is a volume form on X. In the complex case, X was a
CR manifold. In the general almost-complex symplectic case it is an almost CR
manifold. The almost CR structure is defined as follows: The kernel of o defines
a horizontal hyperplane bundle H C T'X. Using the projection m : X — M,
we may pull back J to an almost complex structure on H. We denote by H'?,
respectively H%! the eigenspaces of eigenvalue 4, respectively —i, of J. The
splitting TX = H'® @ H>' @ CZ defines the almost CR structure on TX. We
also define local orthonormal frames Z1, ..., Z, of H"9, respectively Z1,..., Zm
of H%! and dual orthonormal coframes 91, . .., ¥, respectively 91, ...,9,. On
the manifold X we have d = 9 + Oy + % ® a, where 0 = Z;"Zl ¥; ® Z; and
Op = Z;"Zl J; ® Z;. Note that for an L2 section sV of LV, we have

(Vins) =ds",
where d"* = 8 + 0 is the horizontal derivative on X.

3.1. The D Complex and Szegé Kernels. In the complex case, a holo-
morphic section s of LV lifts to a function § € £%;(X) satisfying 0,8 = 0. The
operator 0, extends to a complex satisfying ('_93 = 0, which is a necessary and
sufficient condition for having a maximal family of CR holomorphic coordinates.
In the non-integrable case 55 # 0, and there may be no solutions of Opf = 0.
To define polarized sections and their equivariant lifts, Boutet de Monvel and
Guillemin [Bou; BG] defined a complex D;, which is a good replacement for 8,
in the non-integrable case. Their main result is:

THEOREM 3.1 [BG, Lemma 14.11 and Theorem A 5.9]. There exists an S'-
invariant complex of first order pseudodifferential operators D]- over X

0= C=(AL0) 2o goo(alty 22 . Prsr oo A0y 0,
where AY? = AI(H%' X)*, such that:
(i) o(D;) = o(0s) to second order along ¥ := {(z,ra,) : x € X,r >0} C T*X;
(ii) The orthogonal projector TI : L2(X) — H2(X) onto the kernel of Dy is
a complex Fourier integral operator which is microlocally equivalent to the
Cauchy—-Szegd projector of the holomorphic case;
(iii) (Do, %) is jointly elliptic.
We refer to the kernel H?(X) = ker Dy N L2(X) as the Hardy space of square-
integrable ‘almost CR functions’ on X. The £2 norm is with respect to the inner
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product (2-4) as in the holomorphic case. Since the S' action on X commutes
with Do, we have as before the decomposition H*(X) = @N_, H% (X), where
H%(X) denotes the almost CR functions on X that transform by the factor
¢*N? under the action ry. By property (iii) above, they are smooth functions.
We denote by H}(M, LY) the space of sections corresponding to H%,(X) under
the map s +— 3. Elements of H}(M, L") are the ‘almost holomorphic sections’
of L. (Note that products of almost holomorphic sections are not necessarily
almost holomorphic.) We henceforth identify H%(M, L") with H%(X). By the
Riemann-Roch formula of [BG, Lemma 14.14], the dimension of HY(M, LV) (or
H2(X)) is given by dy = %—I;)Nm + -+ (for N sufficiently large), as before.
(The estimate dy ~ %N’” also follows from [SZ2, §4.2].)

As before, we let Iy : L2(X) — H3(X) denote the orthogonal projection.
The level N Szegd kernel Iy (z,y) is given as in the holomorphic case by (2-5)
or (2-6), using an orthonormal basis S7¥, ..., S5 of HY(N,LN) = H3/(X).

3.2. Scaling Limit of the Szegd Kernel. Our analysis is based on the near-
diagonal scaling asymptotics of the Szegd kernel from [SZ2]. These asymptotics
are given in terms of the Heisenberg dilations d, 7, using local ‘Heisenberg co-
ordinates’ at a point g € X. These coordinates are given in terms of preferred
coordinates at Py = m(zg) and a preferred frame at Py. A coordinate system
(21, ..., 2m) on a neighborhood U of P, is said to be preferred if

m
(9 —w)|p, = Zdzj ®d2j|0.
j=1

Here g denotes the Riemannian metric g(v,w) := w(v, Jw) induced by the sym-
plectic form w. Preferred coordinates satisfy the following three (redundant)
conditions:

@)  8/0z]|p, € TVO(M), for 1 < j < m,
(11) u)(Pg) = wp,
(iii))  g(Po) = go,

where wy is the standard symplectic form and gg is the Euclidean metric:

m

i m m
wo = 5 Zdzj/\dzj = Z(dxj@)dyj—dyj@dxj), go = Z(dxj®dxj+dyj®dy]) .
i=1

=1 =1

A preferred frame for L — M at Py is a local frame (=nonvanishing section) ey,
on U such that

©)  llecllr =1;
(i) Verlp, =0;
(iii) V?erlp, =—(g+iw)Qerlp, € Th ® Ti; ® L.
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A preferred frame can be constructed by multiplying an arbitrary frame by a
function with specified 2-jet at Py; any two such frames necessarily agree to third
order at .

DEFINITION. A Heisenberg coordinate chart at a point zg in the principal bundle
X is a coordinate chart p: U V with0 e U CC™ xR and p(0) =z €V C X
of the form

P21, - 2m,0) = €9 (2) V265, (2),
where ey, is a preferred local frame for L — M at Py = w(z¢), and (21,---,2m)

are preferred coordinates centered at Py. We require that Py have coordinates
(0,...,0) and e} (Pp) = xo.

The following near-diagonal asymptotics of the Szeg6 kernel is the key analytical
result on which our analysis of the scaling limit for correlations of zeros is based.

THEOREM 3.2 [SZ2, Theorem 2.3]. Let Py € M and choose a Heisenberg coor-
dinate chart about Py. Then

u 0 v <p)
W’N,W,N

K
=1 (u, 0; v, p) [1 + Y N b (Po,u,0) + N EHDP2 R (Py,u,0,N) |

r=1

NﬁmHN<

where ||Rx (20, %, v, N)|lei({|ul<p, jv|<p} < Ckjp forj >0, p >0 and Ck j, is
independent of the point zg and choice of coordinates.

This asymptotic formula has several applications to symplectic geometry, in
addition to our result on zero correlations. For example, Theorem 3.2 is used in
[SZ2] to obtain symplectic versions of the following results in complex geometry:

(i) the asymptotic expansion theorem of [Zel],
(ii) the Tian almost isometry theorem [Ti],
(iii) the Kodaira embedding theorem (see [GH] or [SSo]).

The symplectic forms of these theorems are based on the symplectic Kodaira
maps ®n : M — PHY(M,LN)*, which are defined as in the holomorphic case
by ®n(z) = {sV : sN¥(2) = 0}. Equivalently, we choose an orthonormal basis
SN, ..., 80 of Hy(M, L") and write

Sy :M—CPW 1 Bn(z)=(SP(2):...: ST (2)).
We now state the symplectic generalizations of the above three theorems:

THEOREM 3.3 [SZ2, Theorems 3.1-3.2]. Let L — (M, w) be the pre-quantum line
bundle over a 2m-dimensional symplectic manifold, and let {®yx} be its Kodaira
maps. Then:
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(i) There exists a complete asymptotic expansion:
Oy (2,2) = aoN™ +a1(2)N™ * +az(z)N™ 2 + ...

for certain smooth coefficients a;(z) with ag = n~™. Hence, the maps ®n are
well-defined for N > 0.
(ii) Let wrs denote the Fubini-Study form on CP¥ 1. Then

1 1
N
ck
for any k.

H N(I)}(V(wFS) - w
(iii) For N sufficiently large, ®n is an embedding.

For proofs we refer to [SZ2]. (See also [BU2| for a proof of a similar Kodaira
embedding theorem.)

4. Correlations of Zeros

In §5, we shall use Theorem 3.2 and the methods of [BSZ2] to extend the
results of [BSZ1; BSZ2] on the universality of the scaling limit of the n-point
zero correlations to the case of almost complex symplectic manifolds. The basis
for our argument is Theorem 2.2 from [BSZ2], which generalizes a formula of
Kac [Kac] and Rice [Ri] for zeros of functions on R', and of [Hal] for zeros of
(real) Gaussian vector fields (see also [BD; EK; Ne; SSm]). However, we shall
need to consider the case where the joint probability distributions are singular,
and hence we give below a complete proof of a more general result (Theorem
4.3) on the correlations of zeros of sections of € vector bundles.

4.1. General Formula for Zero Correlations. For our general setting,
we let (V,h) be a € (real) vector bundle over an oriented € Riemannian
manifold (M,g). (Here, h denotes a € metric on V.) Suppose that § is a
finite dimensional subspace of the space C*°(M, V) of global C* sections of V,
and let du be a probability measure on § given by a semi-positive C° ‘rapidly
decaying’ volume form. We say that a €° volume form tdz; A ---dzgq on R?
is rapidly decaying if ¢(z) = o(||z||~) for all N € Z". (In this paper, we are
primarily interested in the case where dy is a Gaussian measure.) The purpose
of this section is to study the zero set Z; of a random section s € 8§ and to obtain
formulas for the expected value and n-point correlations of the volume measure
|Zs|. We shall later apply our results to the case where V. = LY @ --- @ LV,
for a complex line bundle L over a compact almost complex symplectic manifold
M and where 8§ = H%, & --- @ H%. (Recall that H% is the space of almost
holomorphic sections of LV.) Then the zero sets Z are the simultaneous zeros
of (random) k-tuples of almost holomorphic sections.

Our formulation involving general vector bundles also allows us to reduce
the study of n-point correlations to the case n = 1, i.e., to expected densities
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(or volumes) of zero sets. We first describe the formula (Theorem 4.2) for this

expected zero density. This formula is given in terms of the ‘joint probability

density,” which is a measure on the space J!(M,V) of 1-jets of sections of V.
Recall that we have the exact sequence of vector bundles

0 —=THeV - J'(MV) %LV 0. (4-1)

We let
E-Mx8—-V, &z =s(z)

denote the evaluation map, and we say that § spans V if € is surjective, i.e., if
{s(z) : s € 8} spans V, for all z € M. We are mainly interested in the jet map

J:Mx8— J' (M, V), J(z,8)=Js= the 1-jet of s at z.

Note that & = my 0 J.

Note that a measure on an N-dimensional manifold Y is a current v €
DoY) = D'N(Y) of order 0. We can write v = fd Voly, where f € D'O(Y).
(Recall that DP(Y") denotes the space of compactly supported € p-forms on Y,
and D'?(Y) = DV P(Y)".) Some authors refer to f as a measure, but to keep
the distinction, we shall call elements of D'°(Y) generalized functions.

To describe the induced volume forms on the total spaces of the bundles in
(4-1), we write g(z) = ) gqq' (2) dug ® dugr, hjjr = h(ej,ejr), where {uq,...,un}
are local coordinates in M and {ei,...,er} is a local frame in V (here m =
dim M, k = rankV). We let G = det(gqq’), H = det(h;;;). We further let
dz = /Gdui A -+ A du,, denote Riemannian volume in M, and we write

x:ijej(z) €V,, dx=+/H(z)dz1 N --Ndzy,
J

£€= &gdug®ejl. € (Ty @V)., dé=G(2) ¥ ?H(2)™*[] d&jq -
Jq Ja
The induced volume measures on V and T3, ® V are given by dx dz and dédz
respectively. We give V a connection that preserves h; its covariant derivative
provides a splitting V : J1(M, V) — T3;®V of (4-1), and hence dz d¢ dz provides
a volume form on J*(M,V).

DEFINITION. The 1-jet density of p is the measure
D:=7.(dz x p)
on the space J(M, V) of 1-jets. We write

D = D(x,&,2)dzdédz  D(z,€¢,2) € D'O(JH(M,V)).
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We let p. denote a C*° ‘approximate identity’ on V' of the form

k

pe(v) =€ " p(e™Mv),

with

pee°°<V),/p<x,z)dx=1, p>0, p(v)=0for o] >1.
VZ

We let p. € C=°(J(M,V)) be given by
ﬁs(mvé.vz) = pe(maz) .
or formally, p. = pe o my.

LEMMA 4.1. Suppose that € spans V. Then there exists a unique positive mea-
sure D on T}, ® V' such that

t,D° = lim 5. D.
e—0

Moreover, D° is independent of the choice of local frame {e;}, connection V,
and approzimate identity p..

PROOF. The surjectivity of € = my o J guarantees that the normal bundle N, is
disjoint from the wave front set of D(z, £, z) and hence t* D(z, £, 2) is well-defined
(see [H6, Th. 8.2.4]). Thus we can define

D :=.*D(z,&,2) dédz. (4-2)

To verify the equation of the lemma, it suffices by the continuity of .* to consider
the case where D(z,£,2) € €. In this case, D° = D(0, £, z) d¢ dz, and hence

peD — 80(z)D(0,£, 2) dz dé dz = 1, (D(0,€, 2) d€ dz) = 1, DY,

Since dz and d¢ are intrinsic volume forms, it follows that DP is independent of
the choice of local frame {e;} (and local coordinates). To show that D(0,¢, z)
does not depend on the choice of connection on V, write s = > zje;, Vs =
> &iqdzg ®e€j, €jg = g—z + >, zx0%,. Then if we consider the flat connection

ox;
V's =3 &gdzq @ €5, §jy = 5,7, we have

0(&iar %) _ 4
6( ;'q"r.j)
Hence, dz d¢' = dx d€ so that D'(0,&,2) = D(0,&, z). O

We note that
(J)eh = D(2,€,20) da de,
so that D(z,&, zp) dz d€ is the joint probability distribution of the random vari-
ables X°, =20 on § given by

X3°(s) = xj(20), E(s) =&jg(20) (1<j<k 1<g<m).
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This is a special case of the n-point joint probability distribution defined below.

For a vector-valued 1-form £ € T, , ® V, = Hom(Twm,z, V2), we let & €
Hom(V,,Twm,,) denote the adjoint to & (i.e., (§*v,t) = (v,&t)). We consider the
endomorphism ££* € Hom(V,,V,), and we write

€Nl = +/det(€€*) .

(Note that ||| - ||| is not a norm.) In terms of a local frame {e;},

el = VE & A A&l =D & ®e;. (4-3)
j

To verify (4-3), write
m
£ = Z €jqdug ;
g=1

then
* * 0 * *
£ = Zgjan ®e;, §ig = Z hjiYaabira

Ja 1 i'q’

—1
where (74¢') = (9qq) ; hence we have

£ = Z hjjr€iqVa a€irar €5 @ €5 -
53":3" 0,4

Its determinant is given by

det(§€*) = Hdet(ijqVq’qéfq’) = Hdet(&;, &) = H[[& A A& |12,
a,q’ 1<5,5'<k
which gives (4-3).
Let us assume that 8§ spans V. Then the incidence set [ := {(2,s) € M x 8 :
s(z) = 0} is a smooth submanifold and hence by Sard’s theorem applied to the
projection I — 8, the zero set

Zs={z€ M : z(s) =0}

is a smooth (m — k)-dimensional submanifold of M for almost all s. (In the holo-
morphic case, this is called Bertini’s Theorem.) We let |Z,| denote Riemannian
(m — k)-volume on Z;, regarded as a measure on M:

(1Zs], ) = / ©d Vol g fora.a. s€8§.

Zs

Its expected value is the positive measure E |Z;| given by

(B|Z.],0) = E(1Zs], ¢) = / dy(s) / dVolp_y, < 400,
S Z,
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for ¢ € C%(M) and ¢ > 0. (Recall that E denotes expectation.) In fact the fol-
lowing general density formula tells us that (E|Z;|, ¢) < 400 if the test function
¢ has compact support.

THEOREM 4.2. Let M,V,8,du be as above, and suppose that 8 spans V. Then

E|Z| = m.(y/det(¢6*) D°) € D™ (M), (4-4)
where m: Ty @ V. — M s the projection.

Note that although D° depends on the metric h on V, the measure 1/det(££*)DO
is independent of h. In the case where D(z,£,z) € €°, (4-4) becomes

E|Z,| = Ki(2)dz, Ki(2) = / D(0,¢,2)y/det(@)de.  (45)

Before proceeding further, we first give a heuristic explanation of (4-5). Sup-
pose that D € C° and fix a point z9p € M. Let us consider the case where
rankV = dim M = m so that the zeros are discrete. Then the probability of
finding a zero in a small ball B, = B,(zg) of radius r about zg is approximately
K1(z0) Vol(B,.). If the radius r is very small, we can suppose that the sections
s € 8§ are approximately linear:

s(z) m X*0 + 2% - (2 — 20), (4-6)

where we have written s in terms of a local frame for V' and local coordinates
in M. Here, X* = X*(s) = (X;°(s)), respectively 2% = 2% (s) = (23%(s)),
is a vector-valued, respectively matrix-valued, random variable on §. Then the
probability that the linearized section s given by (4-6) has a zero in B, is given

by

p{s € 8: X* € £*(B,)} =/ D(z,&,20) dx d€
m* Je(B,)

~ [ Vol(€(®)D(0,€,20) de.
Since Vol(¢(B,)) = |||¢]]]| Vol(B,.), we have

;},{SESZXZO € 570

K (z0) ~ Vol(B,) B / D(0, &, zo)Il€ll e -

The linear approximation (4-6) leads to a similar explanation in the case where
rank V < dim M; we leave this to the reader.

Before embarking on the proof of Theorem 4.2, we show how the theorem
provides a generalization of Theorem 1.1 on the correlations between zeros. Let
us first review the definition of these correlations.
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DEFINITION. Let M,V,§,du be as above, and suppose that 8§ spans V. Let M,
denote the punctured product (1-1). The n-point zero correlation measure is
the expectation E |Z4|™, where

|Zs|n=(|Zs|X"'X|ZS|)7

which is a well-defined measure on M, for almost all s € §. We write
E|Z,|" = K,(z%,...,2")dz.

The generalized function K,(2%,...,2") is called the n-point zero correlation
function.

‘We suppose n > 2 and write

5(2) = (s(2Y),...,s(z™))

for (z1,...,2™) € M,, regarded as a section of the vector bundle

Vp i= é?‘(’;V — M,

p=1

where 7, : M,, = M denotes the projection onto the p-th factor. We then have
the evaluation map

En M, x8—=V, E&u(zs) =3(z),
and the jet map
In: My, x 8 = J' (M, Vy), d(z,8) = J 5= (Jhs,...,Jns).
We also write
z=(z"...,2") €Vp,
E=( )T @V)a @ (T3 @ V) C (Thy, ®Va),
de=dzt---dz", dé=de'---de", dz=dz'---d2".

DEFINITION. The n-point density at (2,...,2") € M, is the probability mea-
sure

D, :=D,(z,& 2)drdé dz = Jn+(dz X p)
on the space J'(M,,V,,). Note that this measure is supported on the sub-bundle
(T @V)®...0n,(Tyy V) CTy, @Vy.

The (n-point) joint probability distribution at (21, ...,2") is the joint probability
distribution D,,(z, £, 2) dz d¢ = (J}).p of the (complex) random variables

XZ,(8) =w;(2P), EZ,.(s) :=&q(2F) (1<j<k 1<p<n,1<g<m).
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If the evaluation map &, is surjective, we also write as before

DY = .*D(z,¢, 2) dé dz,

so that
1, DY = lim gD, .
e—0
Thus, Theorem 4.2 applied to V,, — M, yields our general formula for the n-

point correlations of zeros:

THEOREM 4.3. Let V — M be a C>° vector bundle over an oriented Riemannian
manifold. Consider the ensemble (8, u), where 8 is a finite-dimensional subspace
of C®(M,V) and p is given by a C° rapidly decaying volume form on 8. Suppose
that 8§ spans V,,, where n is a positive integer. Then

B|Z," = m. (/TT;_, det(erer) D°) . (4-7)

In the case where D, (z,£,z) € €°, (4-7) becomes
E|Z,|" = Kn(z)dz, Kn(z)= /ngn(o,g,z) [] VaetEre™).
p=1

Our proof of Theorem 4.2 uses the following coarea formula of Federer:

LEMMA 4.4 [Fe, 3.2.12]. Let f : Y — R* be a € map, where Y is an oriented
m-dimensional Riemannian manifold. For v € LY(Y'), we have

[ doreedon [ qdVolni = [ ylldfiaeendfill dvoly
R¥ (=) Y

Recall that by Sard’s theorem, f~1(z) is an (m — k)-dimensional submanifold
for almost all z € R".
As a consequence of Lemma 4.4, for ¢ € C°(R¥) we have

/ W(@)f (@) e - dzy = (o F)|dfy A+ Adfil| dVoly € D'™(Y), (4-8)
Rk

where |f~!(z)| denotes (m — k)-dimensional volume measure on f~!(z).

REMARK. Federer’s coarea formula, which is actually valid for Lipschitz maps,
can be regarded as in integrated form of the Leray formula

dVoly

-1 - ek S
|f (@) = lldfy A~ A dfie] dfi A Adfx

f=1(=)

PROOF OF THEOREM 4.2. We restrict to a neighborhood U of an arbitrary
point zg € M. Since 8§ spans V, we can choose U so that there exist sections
e1,-..,ex € 8 that form a local frame for V over U. Since D° is independent
of the connection, we can further assume that V|y is the flat connection Vs =

Zde ® 6]'.
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k

For a section s € 8, we write s(z) = 3 ;_;

§=(s1,...,8:): U = R*. Then

sj(z)ej(z) (z € U) and we let

Vsl = VH ||dsi A--- Adsg]| .
Thus by (4-8),

/Rk pe(2)|57 (@)l dz = (pe 0 ) ||| V3|l dz € D™ (U), (4-9)

where we write, as before, dz = \/H(z)dz1 - - - dxg.
Let my, 7’ denote the projections given in the commutative diagram:

Uxs—9 UV <—Tsev

~

U ™

U
Integrating (4-9) over 8, we obtain

/Rk pe(2)E |5 (2)| dz = my.(pe 0 s [Vl dz x ) = 7} (p(2) [||€]]| D)
=, (1€l e«D°%) = m ([l D). (4-10)
To complete the proof of Theorem 4.2, it suffices to show that the map
TR - D™U), U(z)=E|5 )|

is continuous; i.e., for all test functions ¢ € D(U), the map = — E (|37 1(z)|, »)
is continuous. Indeed, if ¥ is continuous, then

( /. pa(x)Ewl(x)mm,so) = [B(5 @l (o) da
LB ) = B(1Zdhe),

and (4-4) follows from (4-10).
To verify the continuity of ¥, we extend {e1, ..., ex} to a basis {e1,...,ex, ...,
eq} of 8, and we write

d
du(s)zw(cla"';cd)dca szzciei-
=1

‘We note that
'§71(l‘la ceey ilfk) = Z[sfz’f zjej] )

and therefore

U(z1,...,2k) :/|Zs|1/1(cl +x1,...,Ck + Tk, Cht1,---,Cq) dC.
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Write ¢+ = = (¢1 + 21, .+, Ck + Tk, Ckt15---,¢d). Welet 7: 1 — R? denote the
projection given by
T(Z,Zciei) =(c1y...,¢4) -
For a test function ¢ € D(U), we have
(ve)o) = [ (Zdehbte+ayde= [ (ir@el2) e+ o)de

= /(p(z)w(c + z)||der A --- Adeg||rd Volg(z,¢) , (4-11)
I

where the last equality is by the coarea formula (4-8) applied to .
Suppose that ¥ — z° € R¥. In order to use (4-11) to show that (¥ (z), ) —
(T(z°), ¢), we note that ||dcy A --- Adcg|lr <1 and hence

o(2)¢(c +)llder A -+ - Adeallr < o(2)y(llell = R),

where
y(r) = sup ¢(c),  R=suplz”].
llell=r v
We let I(r) = {(z,Y_cie;) € I : ||c| = r} denote the sphere bundle of radius r

in the vector bundle I — M. Then

+oo
Aﬂ@MMPMd%uzdzl dwm=mlmw@d%mﬂ

—+oo
< C/ dr W(T—R)rdfl
0

Since by hypothesis v(r) = o(r % 1), we conclude that the integral is finite and

thus the Lebesgue dominated convergence theorem implies that (¥(z¥),p) —
(T(z°), ¢). 0

4.2. Zero Correlations on Complex Manifolds. We now describe the
jet density D in the case where (V,h) is a complex Hermitian vector bundle.
In this case, we choose a complex local frame {ej,...,ex} and we let He =
det(hjj/), hjjl = h(ej,ej/). We write

.T—ZJ}J@J, &= ijqduq@)e] Zgﬂ'@ei’
J

Jq

where {;q, T; are complex. We then have
D = D(z,&,z) dz d€ dz,
where this time
dr = He(z) [[dRea;dIma;, df = G(2) *?Hc(2)™ [[ dRe&jq dTm§j, .
J Jq

We also have

NEN = Helléa A ANee A& A A&l
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We can now specialize Theorems 4.2-4.3 to the case where V is a holomorphic
line bundle over a complex manifold M and the sections in § are holomorphic.
If we now let {z,} denote complex local coordinates, we can write

E=¢ ¢ = Z(g;q dzy + f}'qdiq) Rej.

Jq

Since 0s = 0 for all s € §, the support of the measure D is contained in V @
(Tih @ V), ie., those (z,&) with €}, = 0 (using a holomorphic frame {e;} and a
connection V of type (1,0)). Hence on the support of D, we have &; € T, and
hence

NN = H|[éx A -+ A&|)* = det(£€")c,

where (£€*)c € Home (V,,V,) denotes the complex endomorphism. Hence as a
special case of Theorem 4.3, we obtain:

THEOREM 4.5. Let V — M be a holomorphic line bundle over a compler man-
ifold M and let 8 be a finite dimensional complex subspace of HO(M,V). We
give 8 a semi-positive rapidly decaying volume form p. If 8§ spans V,,, then

E|Z,|" = . (ng1 det(6€%)c DO) . (4-12)

In the case where the image of J,, contains all the holomorphic 1-jets, we can write
D,, = D,(z,¢,2)dz d¢ dz, Dy(z,&,2) € €% Then (4-12) yields the following
result from [BSZ2, Th. 2.1]:

E|Z." = Ko(2)dz, Kn(z)= / de D, (0,€,2) [ det(€P€P)c.  (4-13)

p=1

5. Universality of the Scaling Limit of the Correlations

We return to our complex Hermitian line bundle (L, h) on a compact almost
complex 2m-dimensional symplectic manifold M with symplectic form w = %@ Ly
where ©p, is the curvature of L with respect to a connection V. Theorem 1.1
follows from Theorem 4.3 applied to the vector bundle

N
k

and the (finite-dimensional) space of sections

8§ = HY(M,LN)* c e=(M,V).
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5.1. Gaussian Measures. Recalling (2-2), we consider the Hermitian inner
product on HY(M, LN):

1
(51, 5) = /M WV (s1,80) ™ (1,52 € HO(M,ZV) ).

We give 8§ the Gaussian probability measure uy = vy X --- X vy, where vy is
the ‘normalized’ complex Gaussian measure on H}(M, LV):

dnv \ 2 o
vn(s) = <—> e el de, s = chSjV.
j=1

s

Here {SNV} is an orthonormal basis for HG(M,LY) (with respect to the Her-
mitian inner product (2-2)) and dc is 2dn-dimensional Lebesgue measure. The
normalization is chosen so that E (s,s) = 1. This Gaussian is characterized by
the property that the 2dy real variables Rec;,Imc¢; (j = 1,...,dn) are indepen-
dent identically distributed (i.i.d.) random variables with mean 0 and variance
ﬁ; ie.,

1
dy
Picking a random element of § means picking k sections of H}(M, L") indepen-
dently and at random.

Ecj =0, ECjCk =0, Ecjék = ij .

REMARK. Since we are interested in the zero sets Z,;, which do not depend
on constant factors, we could just as well suppose our sections lie in the unit
sphere SHY(M, L") with respect to the Hermitian inner product (2-2), and
pick random sections with respect to the spherical measure. This gives the same
expectations for |Zs|™ as the Gaussian measure on H9(M, LY).

We now review the concept of ‘generalized Gaussian measures’ from [SZ2], which
is one of the ingredients in obtaining the (universal) scaling limit of the joint
probability distribution, which in turn yields the universality of the scaling limit
of the correlation of zeros on symplectic manifolds. (For further details and
related results, see [SZ2, §5.1].) To begin, a (non-singular) Gaussian measure
va on R? given by (1-3) has second moments

(jTr)ya = Ajk -

The measure vy is characterized by its Fourier transform
1
Fa(t1, ... tp) = e 2 2 Birtite (5-1)

The push-forward of a Gaussian measure by a surjective linear map is also
Gaussian. Since we need to push forward Gaussian measures (on the spaces
HY(M, LN)) by linear maps that are sometimes not surjective, we shall consider
the case where A is positive semi-definite. In this case, we can still use (5-1)
to define a measure ya, which we call a generalized Gaussian. If A has null
eigenvalues, then ya is a Gaussian measure on the subspace A, C R? spanned by
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the positive eigenvectors. If 7 is a generalized Gaussian on R? and L : R? — R?
is a (not necessarily surjective) linear map, then L, is a generalized Gaussian on
RY. By studying the Fourier transform, it is easy to see that the map A — A is
a continuous map from the positive semi-definite matrices to the space of positive
measures on R? (with the weak topology).

5.2. Densities and the Szegd Kernel. We now consider the n-point joint
probability distribution of a (Gaussian) random almost holomorphic section
s € HY(M, L") having prescribed values s(2P) = zP and prescribed derivatives
Vs(zP) = &P (for 1 < p < n). We denote this density by DY (z,,z) dz d¢ as in
[SZ2], where z = (2!,...,2™). Having equipped H$(M, L") with the Gaussian
measure vy, and recalling that the joint probability distribution

DY := DY (z,¢,2)dz df = (J})wvw

is the push-forward of v by a linear map, we conclude that the joint probability
distribution is a generalized Gaussian measure on the complex vector space of
1-jets of sections:

]55 = VAN(2) -
To be more precise, we consider the n(2m + 1) complex-valued random vari-
ables X,, Zp, (1<p<n, 1<q<2m)on H3(X) = HYM, L") given by

Xp(s) = 8(27,0), Epg(s) = (Vg)s(z*,0),

where

1 9" 1 9"
Vq:ﬁa?’ vm-i-q:ﬁa_z (1<g<m),

q q
for s € H%(X). Here, 8"/9z, denotes the horizontal lift to X of the tangent

vector 8/8z, on M. The covariance matrix AN (z) is given by the Szegé kernel
and its covariant derivatives, as follows:

AN BN
(AN)Z, =E (X, Xp) = dLHN(z”,O; z”I,O),
N

r'q’

(BN,  =E(XpEpq) = %VE'HN('ZP’ 0;27',0),

(CN)ZIq, E (EpEprg) = %v;vj,njv(zp,o;zp’,()),
forp,p’=1,...,nand ¢,¢ =1,...,2m. Here, V, and V7 denote the differential
operator on X X X given by applying V, to the first and second factors, respec-
tively. (We note that AN, BN, CN are n x n, n x 2mn, 2mn x 2mn matrices,
respectively; p, g index the rows, and p’, ¢’ index the columns.) In [BSZ2] we
proved that the joint probability density has a universal scaling limit, and in
[SZ1] this result was extended to the symplectic case:
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THEOREM 5.1 [SZ2, Theorem 5.4]. Let L be a pre-quantum line bundle over a
2m-dimensional compact integral symplectic manifold (M,w). Choose Heisenberg
coordinates {z;} about a point Py € M. Then

N —
D(zl/\/ﬁ,...,z"/\/ﬁ) - D((fl,--.,n") = YA (z)

where D‘(’:l o) is a universal Gaussian measure supported on the holomorphic
1-jets, and AN(z/v/N) — A®(z).

Theorem 1.2 then follows immediately from Theorems 1.1 and 5.1. In fact, we
have the error estimate

1 2! z" 1
(), = et 9 <0 (L)
( Nk kR N ) P (K ), ©) TN
for all ¢ € D™™((C™),,).
A technically interesting novelty in the proof of Theorem 5.1 is the role of the
0 operator. In the }iolomorphic case, Dgl,..., ) is supported on the subspace of
sections satisfying 0s = 0. In the almost complex case, sections do not satisfy

this equation, so Dg 1 is a measure on a higher-dimensional space of jets.

YA
However, Theorem 5.1 says) that the mass in the ‘O-directions’ shrinks to zero as
N — oo.

An alternate statement of Theorem 5.1 involves equipping the unit spheres
H°(M, LN) with Haar probability measure, and letting Dj\i Lam) be the corre-
sponding joint probability distribution on SH$(M, LY). In [SZ1, Theorem 0.2,
it was shown that these non-Gaussian measures DV also have the same scaling
limit D°.

The matrix A* is given in terms of the Szegé kernel for the Heisenberg group:

o/ m! A™>(z) B>(z) B
AT =S <B°°<z)*c°°<z))’ (5-2)

where
Aoo(z)g, = H{_I(ZP,O;ZPI,O) ,
B™®(2)? {(2” — 2D (27, 0,27 ,0) for 1< g<m,

Py T ¢

0 for m+1< g < 2m,
C® ()P, = { (qq + (28 — 2B)(25 — 25))IE(27,0;2',0) for 1 < q,¢ <m,
P 0 otherwise.

For details, see [SZ2].

Equation (5-2) says that the variances in the anti-holomorphic directions
vanish. If we remove the rows and columns of the matrices corresponding to
m+ 1< g < 2m, then we get the covariance matrix

o B m! A>®(2) B°(z2)
ATE = e <Bz°(z)*c§°<z)) 53
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for the joint probability distribution in the holomorphic case. (Here A, B;°,
and Cp° are n X n, n X mn, and mn X mn matrices, respectively.) In [BSZ2], we
used (4-13) and (5-3) to obtain formulas for the scaling limit zero correlations

K?25...- We briefly summarize here how it was done: Let us write

D(O,?l,...,z") = Dzo = Doo(m, ga Z) dz d§ .
The function D*°(0, €, z) is Gaussian in £, but is not normalized as a probability
density. It is given by

Doo(O,g,z) d§ = (574)

1
7™ det A% (z) A=)
where
A®(z) = OR°(2) — B2 (2)" A= (2) ' B°(2) - (5-5)

We first consider the &k = 1 case of the limit correlation function for the zero
divisor (complex hypersurface) of one random section. By (4-13), (5-4), and the
identity det A?° = det A>° det A, we obtain

1 n m
KX (2", ...2") = 7 det A% (2) [Emn H( |f§|2> dya=(2)(€) - (5-6)

p=1 Ng=1

The integral in (5-6) is a sum of (2n)-th moments of the Gaussian measure
YA (z), and can be evaluated using the Wick formula. Indeed, in the pair corre-
lation case n = 2, (5-6) yields the explicit formula (1-4).

For the case of random k-tuples s = (s!,...,s*) € § = HY(M,LN)* (where
the zero sets are of codimension k), the 1-jets J13&!,..., J13* are i.i.d. random
vectors, and we have
KX, (2Y...,2")

nkm
m

— 1 - P ¢P _
= [ det A% (2 /Cm Hlﬁ(ji,?’tSk<Z£jq§j’q) ner=) (), (5-7)
p=1 q=1

where I, denotes the k X k identity matrix; i.e.,

Jprq j
(Ik ® Aoo(z))j’p’q’ = 6§’Aoo(z)£?q’ :
For further details and explicit formulas, see [BSZ2] for the case k = n = 2, and
see [BSZ3] for the point pair correlation case n = 2, k = m. Indeed, we show in
[BSZ3] that for small values of r := |z' — 22|, we have

1
m+ pA-2m

I?Qmm(zlazz) = 4

+0(r® ), m=1,2,3,....
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5.3. Decay of Correlations. Let us define the normalized n-point scaling
limit zero correlation function

k
oo oo n proo T (m — k)' oo
Ritn(2) = (570 53300 = (T ) ) 69
In [BSZ2], we showed that the limit correlations are “short range” in the following

sense:

THEOREM 5.2 [BSZ2, Theorem 4.1]. The correlation functions satisfy the esti-
mate

K’?L?cm( ,---,Zn)=1+0(r4e_’2) as r — oo, r—ngém|zp_zp|
p#p’

PRrROOF. We review here the proof of this estimate. Writing
A=71mA*®, B=x"B;°, C=a"Cp°, A=7n"A",
we have:
A7, = (itm(m ) =gl =

This implies that
A=T+0(e7?, Ar=1,
B= O(re_’"2/2) (5-9)
C—I+0(2_T/2) asr — 00, Chl=1.
Recalling (5-5), we have
A=T+0(2 /%), AM=140(2"), asr—oco. (510)

We now use the Wick formula to evaluate the integral in (5-7). (Formula (5-7) is
homogeneous of order 0 in the matrix entries, so is not affected when A>°, A are
multiplied by 7™.) Note that the Wick formula involves terms that are products
of diagonal elements of A, and products that contain at least two off-diagonal
elements of A. The former terms are of the form 1 + O(T2677‘2), and the latter
are O(r4e*T2). Similarly, det A =1+ O(e*TQ), and the estimate follows. O

The theorem can be extended to estimates of the connected correlation functions
(called also truncated correlation functions, cluster functions, or cumulants), as
follows. The n-point connected correlation function is defined as (see, e.g., [GJ,
p. 286])

1
(21,2 =Y ()T H ngkm (277, 2P0, (5-11)

G
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where the sum is taken over all partitions G = (G, ..., G;) of the set (1,...,n)
and G; = (pj1,...,Pjn;). In particular, recalling that K7}, =1,

TRom(2") = Kifm(=') =1,
Tsgm (2", 2%) = K5 (21, 2%) = K (2 KR (27) = Ksp(21,2%) - 1,
f;,jm(zl,z2,z3) =I?§§m(z1,z2,z3) Ké’gm(z z )Kf,‘c’m( %)
— K33 (21,2 K3 (2%) = K52 (22, 2°) KR (27)
+ 2K 330 (21 K (2°) K (2°)
= I?é’zm(zl,z2,z3) - I?é’zm(zl,f)
- I?gzm(zl,f) - f{;;;m(ﬁf) +2,

and so on. The inverse of (5-11) is

1
Kosm(2hy 2" =) [ Tkm (2P . 2P0 (5-12)
G j=1
(M&bius theorem). The advantage of the connected correlation functions is that
they go to zero if at least one of the distances |2* — 27| goes to infinity (see
Corollary 5.8 below). In our case the connected correlation functions can be
estimated as follows. Define
d(zl, o ,Zn) — IIISa.X H |zi(l) _ Zf(l)|26_‘Zi(l)_zf(l)|2/2. (5713)
leL
where the maximum is taken over all oriented connected graphs § = (V, L) “with
zero boundary” such that V = (21,...,2"). Here V denotes the set of vertices
of G, L the set of edges, and 4(I) and f(I) stand for the initial and final vertices
of the edge [, respectively. The graph G is said to be have zero boundary if
>l :1 € L} is a 1-cycle; i.e., for each vertex zP € V, the number of edges
beginning at 2P equals the number ending at zP. (There must be at least one
edge beginning at each vertex, since §G is assumed to be connected. Graphs may
have any number of edges connecting the same two vertices.) Observe that the
maximum in (5-13) is achieved at some graph G, because te™*/2 < 2/e < 1 and
therefore the product in (5-13) is at most (2/e)!Ll.

THEOREM 5.3. The connected correlation functions satisfy the estimate

T (21,...,2") = O(d(zL,. .., 2™)),

nkm
provided that minyq 2P — 29] > ¢ > 0.

To prove the theorem, let us introduce the n-point functions

Kn(2',...,2") = det Appm (2, ..., 2™) K5, (2%, ..., 2") (5-14)

nkm

= [(m — k)!/m!]" /H 1<, (Z )d’YIk®A(z)(£)
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where Aprm = Iy ® A, an nk x nk matrix. (Note that det Apzm, = (det A)*. It
was shown in [BSZ2, Lemma 3.3] that det A > 0 at distinct points zP.) We also
consider the corresponding “connected functions”

l

Tn(zl,...,zn) =Z( 1 H S(ZP L 2P (5-15)

G j=1

and we note that the Mobius inversion formula applies to I?n, Tn

Observe that we can rewrite K, (2!, ...,z") as a sum over Feynman diagrams.
Namely, each term in the Wick sum for the integral in (5-14) corresponds to a
graph F = (V, L) (Feynman diagram) such that V = (z1,...,2") and the edges
I € L connect the paired variables fz(l) §f M
that

in the given chk term. We have

Kn(z',...,2") = [(m = k)/m]™ Y Ws(2t,...,2"), (5-16)
F

where the function Wy (2!,...,2") is the sum over all terms in the Wick sum
corresponding to the Feynman diagram F. (In other words, to get Wy (z1,...,2")
we fix the indices p,p’ of the pairings (gfq,fﬁ?;,) prescribed by F and sum up in
the Wick formula over all indices j,q at every zP.) Note that each graph F in
the sum (5-16), having arisen from a term in the Wick sum, has zero boundary.

A remarkable property of the “connected functions” is that they are repre-
sented by the sum over connected Feynman diagrams (see, e.g., [GJ]):

T2y, 2™ = [(m = R)Yml)"> " W2, 2").
F

We conclude from (5-10) that for all connected Feynman diagrams F,

Wa(2',...,2") = 0(d(z*,...,2")), provided that Irgn |2P — 29 > ¢> 0.
p#q

Summing over F, we obtain the following estimate:

LEMMA 5.4. T,,(2%,...,2") = O(d(z,. .., 2")), provided that ming, |2P — 29| >
c>0.

It remains to relate ’frﬁm(zl, oo, 2™) to Ty (21, ..., 2™). To do this, we introduce
the functions

l

Qn(zla s ’Zn) = Z(_l)H_l(l - 1)' H det Anjkm(zpjla s azpjnj)a

G j=1
which are the connected functions for det Apgm (2!, ..,2"), and

!
1
1 ny __ l+1 _
Bn(z%,-02 )_Z( (=1t I;IdetAnkm 2Pt ... 2Pin )]
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which are the connected functions for 1 . Recall the Mobius
det Apgm(21,...,2")

inversion formula

1
1 , -
det Apim (21, ...,2") = Z HRW (2P, ..., 2Pima) . (5-17)
) ) G j=1
We have the following relation between i‘jgm (z%,...,2") and fn(zl, 2.
LEMMA 5.5.
m (210 2™)

l
:Z anj(zpjl,... ZPim HR (2P, ... p”"j), (5-18)
GH  j=1

where the sum is taken over all pairs {G = (G1,...,G;), H = (Hy,...,Hy)}
of partitions of the set (1,...,n) which are “mutually connected” in the sense
that there is no proper subset S of the set (1,...,n) such that S is a union
of some subsets G; and is also a union of some subsets H;. In (5-18), G; =
(Pj1s- -+ sPjn;) and Hj = (ply, ... ,pjmj).

PRrROOF. The proof is by induction on n. From (5-12),

1
Tszm( R ) Kz?cm( " Z H zpjl "’zpjnj) (5719)
F j=1
where the summation goes over all partitions F' = (Fy,..., F}) with at least two
elements in the partition (i.e., I > 2). From (5-15) and (5-17), we have
~ 1
oo 1 n 1 n
=K -2
nkm(z ) y % ) n(z )y 2 )detAnkm( 1,‘”,211) (5 0)

1
7
E H (2Pt L, 2P HR zpﬂl...,zp’mj),
G,H j=1

where the sum is taken over all pairs {G = (Gy,...,Gi), H = (H1,...,Hyp)} of
partitions of the set (1,...,n). If we use the inductive assumption that (5-18)
holds when the number of points is less than n and apply that assumption to
if;’km (zPit,...,zPi"i) in (5-19), we obtain that

l
’ ~
E e Pj1 Pjn;
H njkm(z] IREERE ]n])
F

j=1
l
_ deconn H ij1, .. gPin, H R, Zpgl ... me ) ) (5*21)
G.H j=1

where the sum on the right is taken over all partitions G = (G4, ..., G) of the
set (1,...,n) and all partitions H = (Hy, ..., Hp) of the set (1,...,n) which are
“mutually disconnected” in the sense that there is a proper subset S of the set
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(1,...,n) that is simultaneously a union of some subsets G; and a union of some
subsets H;. When we substitute (5-20) and (5-21) into (5-19) and take the
difference on the right of (5-19), disconnected pairs {G, H} will be cancelled out
and we will be left with mutually connected {G, H}. This proves the lemma. [

LEMMA 5.6. The functions Qn (21, ...,2") satisfy the estimate
Qu(y. 2™ = O(d(H,...,2"), (5-22)
provided that min,, |2P — 29] > ¢ > 0.
PRrROOF. By the determinant formula,
k n
det Angm(2',...,2") = (det A)F = (1) [T [] 457,
™ j=1p=1

where the sum is over all k-tuples m = (1, ..., ) of permutations of (1,...,n).
We claim that

k n
Qn(zh 2 =Y ()T T I AR @, (5-23)

™ j=1p=1
where the summation on the right goes over the set of k-tuples m = (my,...,7g)
such that no proper subset of (1,...,n) is invariant under the group generated

by the m;. (Each such 7 corresponds to a connected graph consisting of edges
beginning at p and ending at 7;(p), for all p, j.) Indeed,

1
Qn(zl,...,z"):detAnkm(zl,...,z”)—Z H S(2P, L 2P,
Foj=1

where the summation on the right goes over all partitions F' = (Fi,..., F;) with
I > 2. Using this equation, we prove (5-23) by induction (cf. the proof of Lemma
5.5). The estimate (5-22) now follows from (5-23) and (5-9). O
LEMMA 5.7. The functions R,(z,...,2™) satisfy the estimate

R.(z',...,2") = 0(d(z',...,2")), (5-24)

provided that ming, 4 |2P — 29| > ¢ > 0.

PrOOF. We have the identity

l
0=> " JlQn G, 2" HR (#Fh,...,2"%m5), n>2. (5-25)
j=1

The proof of this identity is the same as that of Lemma 5.5. Indeed, the con-

nected functions of

1
A — =1
det nkm det Ankm
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are equal to 0 (except that the 1-point connected function equals 1); hence (5-25)
follows.
The identity (5-25) can be rewritten as

det Apgm(2',...,2") Ru(2',...,2")
;1 v ,
e S T Qo 2Py P70 ) [ By (2P, P5), (5-26)
G,H j=1 j=1

where the summation on the right goes over all mutually connected pairs of
partitions {G, H} with at least two elements in H (i.e., I’ > 2). Now the estimate
(5-24) follows by induction from Lemma 5.6 and identity (5-26). O

Theorem 5.3 follows from Lemmas 5.4, 5.5 and 5.7. The theorem yields the
following more explicit estimate:

COROLLARY 5.8. The connected correlation functions satisfy the estimate

Toim(zs- 0 2") = 0(e™™/") R =max|z? 21,
,

provided that min,, |2P — 29] > ¢ > 0.
ProOOF. We must show that

d(z',...,2") < o(e_R2/") . (5-27)

Assume without loss of generality that |z — 27| = R. Let § = (V,L) be an
oriented connected graph with zero boundary as in the definition of d(2?,. .., 2").
Since 2!
sets of edges L', L"” C L such that L’ forms a path starting at 2! and ending at
2", and L” forms a path starting at 2™ and ending at z'. This means that there

is a sequence 2! = 2% 2% ... zi = 2™ such that L' = {ly,...,l,y_1}, where

and 2™ are connected by a chain of loops in G, we can choose disjoint

l; begins at 2% and ends at z%+!. By removing any loops in L/, we can assume
that the 2% are distinct and thus n’ < n. A similar description holds for L".
Let r; = |2% — z%+1|. We note that

1/2
R<Yns (0 -0¥n),
where the second inequality is by Cauchy—Schwarz. We then have

n'—1
[[ 170 — 2/ ® e === C1/2 — T 426773/
ler’ j=1

< R2n'7267%21‘? < R2n'7267R2/(2n’72),

and hence

H |zi(l) _ Zf(l)|2e—\zi<”—zf<”|2/z < R2n—2,—R?/(2n~2) . R>1.
lel/
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The same inequality also holds for the product over the path L”. Since each
term of the product in (5-13) is less than 1, we then have

R ARz 0=2TOP/2 o I 1= - ORI OP )2

leL leL'UL"
< 0(67R2/ ") .
Taking the supremum over all graphs, we obtain (5-27). O

REMARK. The preceding proof gives the bound
d(zl, o ’zn) < R4n_46_R2/(n_1) , R>1.
Hence we actually have the estimate

T, (21,...,2") = O(R4"*467R2/(”*1)) , provided that ngn [2P—27] > ¢>0.
p#q

This implies Theorem 5.2 because of the inversion formula (5-12).
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