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z-Measures on Partitions,
Robinson—Schensted—Knuth Correspondence,
and § = 2 Random Matrix Ensembles

ALEXEI BORODIN AND GRIGORI OLSHANSKI

ABSTRACT. We suggest a hierarchy of all the results known so far about the
connection of the asymptotics of combinatorial or representation theoretic
problems with “B = 2 ensembles” arising in the random matrix theory.
‘We show that all such results are, essentially, degenerations of one general
situation arising from so-called generalized regular representations of the
infinite symmetric group.

Introduction

In last few years there appeared a number of papers indicating a strong con-
nection of certain asymptotic problems of enumerative combinatorics and repre-
sentation theory of symmetric groups with the random matrix theory; see [Baik
et al. 1999a; 1999b; Baik and Rains 1999a; 1999b; Borodin 1998a; 1998b; 1999;
> 2001; Borodin and Olshanski 1998a; 1998b; 2000a; Borodin et al. 2000; Jo-
hansson 2000; 1999; Okounkov 1999b; 1999a; Olshanski 1998a; 1998b; Tracy and
Widom 1998; 1999], for a partial list. Such a connection was also anticipated in
earlier works [Regev 1981; Kerov 1993; 1994]. For other interesting connections
see also [Borodin 2000b; Borodin and Okounkov 2000; Okounkov 2001].

In this paper we suggest a hierarchy of all the results known so far about
the connection of the asymptotics of combinatorial or representation theoretic
problems with so-called “8 = 2 ensembles” arising in random matrix theory.
(These ensembles are characterized by the property that their correlation func-
tions have determinantal form with a scalar kernel; see below.) We show that all
such results are, essentially, degenerations of one general situation arising from
so-called generalized regular representations of the infinite symmetric group; see
[Kerov et al. 1993] and Section 3 below.

Olshanski was supported by the Russian Foundation for Basic Research under grant 98-01—
00303.
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72 ALEXEI BORODIN AND GRIGORI OLSHANSKI

It is worth noting that though the hierarchy provides a clear understanding
why this or that problem should have this or that asymptotics, the technical
aspects of the proof are sometimes nontrivial and should not be underestimated.

Many claims cited below were recently proved by Kurt Johansson, we would
like to thank him for keeping us informed about his work.

1. z-Measures

For n = 1,2,..., let Y,, denote the set of partitions of n, which will be
identified with Young diagrams with n boxes. We agree that Y, consists of a
single element —the zero partition or the empty diagram @.

Given X € Y,, we write |[A\| = n and denote by d = d()\) the number of
diagonal boxes in A. We shall use the Frobenius notation [Macdonald 1995]

A=(p1,---,palar,-- - 4a)-

Here p; = \; — ¢ is the number of boxes in the i-th row of A on the right of the
i-th diagonal box; likewise, ¢; = A} — 4 is the number of boxes in the i-th column
of X below the i-th diagonal box (A stands for the transposed diagram).
Note that
d
pr>>pa>0, @ >-->qa>0, Y (pi+tag+1)=]
i=1
The numbers p;, g; are called the Frobenius coordinates of the diagram A.
Let b = (i,7) be a box of A; here %,j are the row number and the column
number of b. Recall the definition of the content and the hook length of b:

cb)=j—1, hd)=N—-74)+\ -9 +1

We will consider two complex parameters z, z’ such that the numbers (2)x(2')
and (—z)g(—2")x are real and strictly positive for any k = 1,2,.... Here and
below

(a)k =ala+1)...(a+k-1), (a)o =1,
denotes the Pochhammer symbol.

The above assumption on z, z’ means that one of the following two conditions
holds:

e either 2’ =Zand z€ C\ Z

e or z,z' € R and there exists m € Z such that m < z,2’ <m + 1.

We set

t =127
and note that ¢ > 0.

For a Young diagram A let dim A denote the number of the standard Young
tableaux of shape A. Equivalently, dim A is the dimension of the irreducible
representation (of the symmetric group of degree |A|) corresponding to A; see
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[Macdonald 1995]. The well-known hook formula for dim A has the following
form (see [Macdonald 1995], for example):

!
dim \ = L

Hbe)\ h(b) .

In the Frobenius coordinates this formula takes the form

dim \ = v ! e [ ] .
Hi:l p1'Q1' Di + qdj +1

We introduce a function on the Young diagrams depending on the parameters

z,2":

[Tpen(c(b) + 2)(c(b) +2')  dim? A
M () = 225 O T
Ay (e(®) + ) (e(b) + =) )
BON blg\ h2(b) : (1-1)

We agree that M, ,/(@) = 1. Thanks to our assumption on the parameters,
M, (X) > 0 for all A.

ProposIiTION 1.1. For anyn =0,1,2,.. .,

Z Mz,z’()‘) =1,

€Y,
so that the restriction of M, . to Y, is a probability distribution on Y.

We shall denote this distribution by M ;T;), and call it the n-th level z-measure.

Proposition 1.1 is an easy corollary of Proposition 3.1 below.

Let Y = Yo U Yy U... denote the set of all Young diagrams. Consider the
negative binomial distribution on the nonnegative integers, which depends on ¢
and an additional parameter £, 0 < £ < 1:

(t)

Wt,ﬁ("):(l—ﬁ)tn—!né", n=0,1,....

For A\ € Y we set
Mz’z/,é‘(k) = MZ,Z’ ()\) Trtyf(l)\D'

By the construction, M, ./ ¢(-) is a probability distribution on Y, which can be

viewed as a mixture of the finite distributions M ;72,. From the formulas for M, ,.

and m; ¢ we get an explicit expression for M, . .:

Meoo (V) = (1= T LAV

h2
beA

d d
Y (e e MR O
ey pi!pilgil ¢! pitq;+1
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We shall call M, , ¢ the mized z-measure. Following a certain analogy with
models of statistical physics (compare [Vershik 1996]) one may call (Y, M, ./ ¢)
the grand canonical ensemble.

Let Z' denote the set of half-integers,

I __ 1 _ 3 1 1
Z _Z+§_{"'a_§a_§1§1

ol

yee by

and let Z'Jr and Z' be the subsets of positive and negative half-integers, re-
spectively. It will be sometimes convenient to identify both Z'Jr and Z' with
Z, ={0,1,2,...} by making use of the correspondence +(k + 3) > k, where
keZ,.

Denote by Conf(Z’) the space of all finite subsets of Z' which will be called
configurations. We define an embedding A — X of the set Y of Young diagrams
into the set Conf(Z') of configurations in Z’ as follows:

A=(p1,.-spdlqu,--yq0) » X={pr1+3%,...,pa+ 5 -0 —%,...,—qa— 3}
(1-2)

Under the identification Z' ~ Z, UZ,, the map A — X is simply associating
to A the collection of its Frobenius coordinates. The image of the map consists
exactly of the configurations X with the property |[X NZ' | = |X NZ'|. We call
such configurations balanced.

Under the embedding A +— X the probability measure M, ./ ¢ on Y turns into
a probability measure on the balanced configurations in Z’. According to the
conventional terminology [Daley and Vere-Jones 1988], we get a point process
on Z'; let us denote it as P,/ ¢.

The n-th correlation function p(nz’zl’g)(.rl, ..., &n) Of P, .1 ¢ is the probability
that the random point configuration contains the points x1,...,Zy.

In [Borodin and Olshanski 2000a] we have computed all the correlation func-
tions of P, .+ ¢. To state the result we need some notation.

Consider the following functions in u depending on z, 2/, £ as parameters
(compare [Borodin and Olshanski 2000a]):

Plu+1+z)T(u+1+2")
F1x2)r(1+2)(u+1)(u+1)’

Pi(u) = (e (w)/? F(F2, 5 5u + 1 57),

_PPE )2 F(LF 2 1F 2ut %)
Qu(u) = 1—¢ ut1

zbi(u) — t1/2 §u+1/2 (1 . é):l:(z+z')

Here F'(a,b;c;w) is the Gauss hypergeometric function.

THEOREM 1.2 [Borodin and Olshanski 2000a]. The correlation functions of
P. . ¢ have the form

pgf’z O(zy,... 1, = det[K (x4, x;)]7 i1, T1,...,0n €EZ,
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where

K(z,y) = Fi(z)G1(y) + FQ(.’E)GZ(y), (1-3)

with

2
(—as — %) for x < 0;

P_

_[Pi(z—-1)  foraz>0,
FQ(.’E)—{Q_(_Iz%) fo7‘.r<07 1 4
G _[Pi(z—3) for z >0, o

1(z) = { _Qf(—x - %) for z <0;

We call K(z,y) the hypergeometric kernel.

REMARKS 1.3. 1. The hypergeometric kernel has no singularity on the diagonal:
the numerator of (1.3) vanishes if z = y.

2. The hypergeometric kernel satisfies the relation

K(z,y) = sgn(z) sgn(y) K (y, ). (1-5)
This shows that the kernel is Hermitian with respect to the indefinite inner
product in £2(Z') = (3(Z' ) @ €*(Z") given by the operator id &(—id).
3. The restriction of the hypergeometric kernel to Z'Jr has the form
Py(z - %)Q+(ZJ - %) — Py(y - %)Q+($ - %)
r—y

Note that this kernel is symmetric. We will call it the positive part of the
hypergeometric kernel.

4. Kernels with the symmetry (1.5) appeared before in works of mathematical
physicists on solvable models of systems with positive and negative charged
particles; see [Alastuey and Forrester 1995; Cornu and Jancovici 1987; 1989;
Gaudin 1985; Forrester 1986; 1988; 1989] and references therein. The mixed z-
measure can also be interpreted as a model for positive and negative particles
on Z': positive particles may occupy locations in Z',, negative—in Z’ . The
square of the Cauchy determinant

) 1  igli = pi) (@ — 95))°
det [pi +qj + 1] L+ g5 +1)2

in the formula for M, , . above encodes the logarithmic interaction of the
charged particles.

5. The papers [Okounkov 1999a; 2001] contain another derivation of Theorem
1.2 and a generalization of the mixed z-measures M, ./ ¢.
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2. Three Versions of the Robinson—Schensted—Knuth
Correspondence

A description of the RSK algorithm can be found in [Fulton 1997; Sagan 1991].

We start with the “widest” version of the RSK correspondence due to Knuth
[1970].

Denote by By, the set of ‘bijections’ between two sets of size n, the first set
consists of (possibly repeated) numbers from 1 to k and the second set consists
of (possibly repeated) numbers from 1 to . Such bijections are in one-to-one
correspondence with matrices of size k£ x| with nonnegative integral entries, total
sum of entries equal to n: the (4, j)—entry shows how many times the element
i€ {1,...,k} is associated with the element j € {1,...,l}. Clearly,

Bl — kl+n—1\ kI(kl+1)---(kl4+n—1)
| k,l|_ n - n!

The RSK algorithm establishes a bijection of By, and the set of ordered
pairs of semi-standard Young tableaux of the same shape with n boxes, the
first tableau has entries from the set {1,..., %}, while the second —from the set
{1,...,1}. (Recall that a semi-standard Young tableau is a tableau whose entries
are weakly increasing along the rows and strictly increasing along the columns.
In a standard tableau we have strictly increasing entries in both directions.)

As is well-known, the number of semi-standard Young tableaux of shape A
with entries from {1, ..., k} is equal to the value of the Schur symmetric function
sx(1,1,...,1,0,0,...) where the number of 1’s equals k. This value can be
written in the following form (see [Macdonald 1995, 1.3, Ex. 4], for example),

c(b) + k
sA(1,1,...,1,0,0,...)=H(}L)T.
bEA

Recall also that the number of standard Young tableaux of shape A is dim A.

Hence, if we consider the uniform probability distribution on By, then, with
respect to its image on the set of Young diagrams with n boxes, the probability
of a Young diagram X € Y,, equals

n! H (e(b) + k)(e(b) + 1)
Kkl + 1) - (Kl +n—1) 12(b) ‘

beX

Comparing this with (1.1) we conclude that this distribution coincides with M Z(z),
forz =k, 2/ =1.

Note that these values of z, 2’ do not satisfy our conditions on the parameters
imposed in Section 1. The reason is that for such z, 2’ the values of M Z(’"Z), can be
zero, for example M ZEZ), (A) = 0 for all A with length (number of nonzero parts)
greater than min{k,(}. However, all values of M Z(Z), remain nonnegative. We
consider such situation as a specific degeneration of the regular picture (when

the values M, are strictly positive).
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Two other (earlier) versions of the RSK correspondence are due to Robinson
[1938] and Schensted [1961].

Denote by By, the set of words of length n built from the alphabet {1, ..., k}
(our notation will become clear soon). It is a subset of By, characterized by
the property that the numbers in the second set are all distinct (they encode
the order of letters {1,...,k} in the word). It means that in the corresponding
matrices of size k X n every column has exactly one nonzero element which is
equal to 1. Obviously, |Bg | = k™.

In this case the RSK algorithm establishes a bijection of By ., and the set of
ordered pairs of Young tableaux of the same shape with n boxes; the first tableau
is semi-standard and it is filled with numbers from 1 to k&, and the second tableau
is standard. This means that the probability of a Young diagram A € Y,, with
respect to the image of the uniform distribution on By  equals

.yt ed)+E
k H 0 dim .
beA

It is easy to see from (1.1) that this is the limit of M g;), for z = k and 2’ — co.

Finally, if we forbid for both sets in the definition of By; to have repetitions,
then we get the symmetric group S,,. It would be logical to denote the symmetric
group by BS, ; see below. In the language of matrices, it means that we consider
n X n matrices with 0’s and 1’s such that in each row and each column there is
exactly one nonzero element. Clearly, |S,| = n!.

The RSK algorithm provides a bijection of the set of permutations of n sym-
bols and the set of ordered pairs of standard Young tableaux of the same shape
with n boxes. Hence, the probability of a Young diagram A € Y,, with respect to
the distribution coming from the uniform distribution on S, equals dim? A/nl.
This distribution on the Young diagrams is called the Plancherel distribution.
The relation (1.1) easily implies that the Plancherel distribution is the limit of
Mg?, as 2,2 — oc.

For bijections from By, By ., B, ., we define a weakly increasing subse-
quence to be a sequence of pairs of associated elements, first element is from
the first set, second element is from the second set, which weakly increase in
each element. Under the RSK correspondence the length of the longest weakly
increasing subsequence of a bijection coincides with the length of the first row of
the corresponding Young diagram in all three cases described above; see [Knuth

1970; Schensted 1961].

3. Harmonic Analysis on the Infinite Symmetric Group

For more detailed discussion of the material of this section see [Kerov et al.
1993; Vershik and Kerov 1981a; Olshanski 1998a].
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We define the infinite symmetric group S(oco) as the inductive limit of the
finite symmetric groups S, with respect to natural embeddings S, — Spi1.
Equivalently, S(oc0) is the group of finite permutations of the set {1,2,...}.

By a character of S(oo) (in the sense of von Neumann) we mean any central,
positive definite function x on S(c0), normalized by the condition x(e) = 1. We
assign to x a function M(A) on the set Y = LIY,, of Young diagrams as follows:
foranyn=1,2,...,

X)\
X, = D Mg
AEY,

where x* denotes the irreducible character of S, (in the conventional sense),
indexed by A € Y,, and dimA = x*(e) is its dimension. Let M stand for
the restriction of the function M to Y, ; this is a probability distribution on
Y,,. Conversely, let M = {M™} be a function on Y such that each M™ is a
probability distribution; then M corresponds to a character x if (and only if)
the distributions M(™ obey a natural coherence relation, which comes from the
classical Young branching rule for the irreducible characters of the finite symmet-
ric groups; see [Vershik and Kerov 1981a; Olshanski 1998a]. (Equivalently, the
function p(A) = M(A)/dim A must be a harmonic function on the Young graph
Y in the sense of Vershik and Kerov; see [Vershik and Kerov 1981a; Olshanski
1998a].)

PROPOSITION 3.1. The z-measures Mé";),

coherence relation mentioned above and, consequently, define a character x, .

of S(00).

Several direct proofs of the proposition are known. A simple proof is given in
[Olshanski 1998a, §7]. About generalizations, see [Kerov 2000; Borodin and
Olshanski 2000b)].

Note that the degenerations M,EZ), M,S"O)o, and M, of the z-measures also

introduced in Section 1 satisfy the

correspond to certain characters, which will be denoted as Xxx,1, Xk,00, 80d Xoo0,00,
respectively. The character xoo,o0 is easily described: it takes value 1 at e € S(c0)
and vanishes at all other elements of the group.

By the very definition of the characters of S(co), they form a convex set.
The extreme points of that set are called the indecomposable characters, and the
other points are called decomposable characters.

According to a remarkable theorem due to Thoma [1964] (see also [Vershik
and Kerov 1981a; Wassermann 1981; Kerov et al. 1998]), the indecomposable
characters of S(co) are parametrized by the points of the infinite dimensional
simplex

Q:{QIZQQZ---ZOa B1>2P2>...20

Z(ai +8;) < 1},
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which is called the Thoma simplez. Given a point w = (a, 8) € 2, we denote by
x) the corresponding indecomposable character.

The characters Xx,0o and Xoo,00 are indecomposable: the former corresponds
to the point w with oy = as = --- = ax = 1/k (all other coordinates are zero),
and the latter corresponds to the point w = (0, 0) (all coordinates are zero). The
characters x, .- (with z,z’ satisfying the conditions of Section 1) and xj,; are
decomposable.

Every character can be uniquely represented as a convex combination of the
indecomposable ones,

X:/X(“’)P(dw).
Q

Here P is a probability measure on {2, which is called the spectral measure of the
character y. Moreover, any probability measure on € is a spectral measure of a
character, so that the set of characters of S(00) is isomorphic, as a convex set, to
the set of probability measures on the Thoma simplex. Under this isomorphism,
indecomposable characters correspond to delta measures on (2.

Given a concrete decomposable character X, a natural problem is to describe
explicitly its spectral measure P. This will be referred to as the problem of
harmonic analysis.

This problem is readily solved for the degenerate characters xy ;:

PROPOSITION 3.2. Let x = xr,; with k < 1. Set a =1 —k. Then the spectral
measure is concentrated on the (k — 1)-dimensional subsimplex

al+"‘+ak:1, ak+1:ak+2:---:,81:,82...:0

of Q and has density
k
const - H (e — aj)? - Ha?
1<i<j<k i=1

with respect to the Lebesgue measure.

For the characters x, ., with nonintegral parameters the problem of harmonic
analysis is highly nontrivial and will be briefly discussed at the end of Section 8.
One of the first results in this direction is as follows (recall that two measures
are called disjoint if there exist disjoint Borel sets supporting them).

PROPOSITION 3.3. Let P, ,+ denote the spectral measure of X, .. Except the
obvious equality P, ,» = P,/ ,, the measures P, ./ are pairwise disjoint.

Notice the following general result which relates the spectral measure P of a
character x to the finite probability distributions M (™). Let us embed Y,, into
Q by:

A=(p1,---,palq1,---,qa) € Yn

1 1 1 1

1 + 1 + 35 +3

l—){p1+2,...pd 2 0,0,..; 272 % 2,0,0,---}69- (3-1)
n n n n
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PROPOSITION 3.4. As n — 0o, the push-forwards of the measures M™) under
these embeddings weakly converge to P.

This is a special case of a more general result proved in [Kerov et al. 1998].

The characters of S(co) can be related to representations in two ways.

The first way is rather evident. Each character  is a positive definite function
on S(00), so that it determines a unitary representation of 5(oc), which will be
denoted as II(x). When y is indecomposable, II() is a factor representation of
finite type in the sense of von Neumann; see [Thoma 1984].

The second way is a bit more involved. Set G = S(c0) x S(c0) and let K
denote the diagonal subgroup in G, which is isomorphic to S(c0). We interpret
X as a function on the first copy of S(c0), which is a subgroup of G, and then
extend it to the whole group G by the formula

P(g1,92) = x(9195 "), 91,92 € S(c0).

Note that 1 is the only extension of x that is a K-biinvariant function on G.
The function 1 is also positive definite, so that one can assign to it a unitary
representation in the canonical way. This representation of the group G will
be denoted by T'(x). By the very construction, it possesses a distinguished K-
invariant vector.

Note that II()x) coincides with the restriction of T'()x) to the first copy of S(c0).
If  is indecomposable, x = x“), then T'(x) = T'(x“)) is irreducible. The repre-
sentations of the form 7T'(x(“)) are exactly the irreducible unitary representations
of the group G possessing a K-invariant vector (such a vector is unique, within
a scalar factor). Thus, the Thoma simplex can be identified with the spherical
dual to (G,K). It is worth noting that the irreducible representations of the
form T'(x)) (except two trivial cases) are not tensor products of irreducible
representations of the factors S(oco). For more details about the representations
T(x“)), see [Vershik and Kerov 1981b; Wassermann 1981; Olshanski 1989)].

The representation T'(Xoo,00) is readily described: it coincides with the natural
representation of the group G realized in the Hilbert space £2(G/K). Note that
G/K is identified with the group S(oco) on which G acts by left and right shifts,
so that T'(Xco,00) may be called the regular representation of G. As for II(Xoo,00),
it provides a classical realization of the hyperfinite von Neumann factor of type
11, .

The representations T'(),.’) are called the generalized regular representations
of G. The term is motivated by the fact that each T'(),,.’) can be realized as
the inductive limit of a chain of the form

e (Regnavn) — (R'egn+1avn+l) — ey,

where Reg,, stands for the (bi)regular representation of the group S, X S, in
the space of functions on S, and v, is a certain vector in that space, depending
on the parameters z,z’ (v, is given by a certain central function on S,). When
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z! = z, the generalized regular representations admit a very nice realization in
certain L? spaces of functions defined on a compactification of the group S(co).
We refer to [Kerov et al. 1993] for the exposition of this construction.

Finally, note that for any decomposable character y, the decomposition of
T'(x) into irreducible representations is governed by the spectral measure P:

T(x) = / T(x*) P(dw).

4. Mixing

Theorem 1.2 computes the correlation functions of a point process obtained
from the distributions M gg, mixed together by the negative binomial distribution
with parameters (¢,&); see Section 1. In this section we consider the degenera-
tions of the mixing procedure in the cases when z and 2’ are integers, when z is
an integer and z’ — oo, and when z and 2’ both tend to infinity while £ — 1.

If 2 = k and 2’ = [ are positive integers then nothing interesting happens—
we have to mix the corresponding measures on Y,’s by the negative binomial
distribution with parameters (kl, £).

If z = k is a positive integer and z' — oo, or z = oo and z’ — oo then
t = 22’ goes to co. If we keep 6 = £ fixed (hence, £ — 0) then the negative
binomial distribution degenerates to the Poisson distribution with parameter 6.
The mixing procedure with Poisson distribution is called poissonization.

The degeneration & — 1 is a bit more delicate. Let us embed Z’ into the
punctured line R* = R\ {0} and then rescale the lattice by multiplying the co-
ordinates of its points by (1—¢). Then the coordinates of the point configuration
in R* that corresponds to A € Y,, (as defined in (1.2)) after rescaling differ from
the coordinates of the image of A in €2 (as defined in (3.1)) by the scaling factor
1 —=&)n.

The discrete distribution on the positive semiaxis with
Un om,
PrOb{(l_E)n}:(l_g)t%g ) n:0a1a2a"'a

which depends on the parameter £ € (0,1), converges, as £ — 1, to the gamma
distribution with parameter ¢

This brings us to the following construction. Consider the space Q=0x R4
with the probability measure
gt—1

I'(t)

e °ds.

ﬁz,z’ = Pz,z’ ®

Let us embed Y = Yy LIY; LI Yy LI ... into Q=0x R, by sending a Young
diagram A € Y,, to the pair consisting of its image in 2 and the number (1 —§&)n.
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ProroSITION 4.1. The push-forwards of M, ,: ¢ under the embeddings described
above converge, as £ =1, to P, ,.

Exact claims with a detailed description of this convergence will appear in
[Borodin and Olshanski > 2001al.

5. Ensembles

We introduce several terms that will be used below.

By the word ensemble throughout this paper we will mean a stochastic point
process (i.e, a probability measure on the space of point configurations) whose
correlation functions p,(z1,...,%,) are given by determinantal formulas of the
form

pn(T1,. .- xn) = det[K (x4, T5)]7 ;21
where K(z,y) is a certain kernel. We will call K(z,y) the correlation kernel.

The process P, .+ ¢ is an example; the ensemble lives on Z' and the correlation
kernel is the hypergeometric kernel; see Theorem 1.2. We will call it the discrete
z-ensemble.

In all our examples the points of the ensembles will vary in discrete or con-
tinuous subsets of the real line. Such a subset will be called the phase space of
the corresponding ensemble. For example, Z' is the phase space of Pz

There is a class of orthogonal polynomial ensembles characterized by the con-
dition of having a fixed finite number of points, say k, the joint probability
distribution of which has the density

k
const - H (z; — x;)? Hw(zl)

1<i,j<k i=1
with respect to either the Lebesgue measure, if the phase space is continuous,
or counting measure, if the phase space is discrete. A standard argument due
to Dyson [1962] (see also [Mehta 1991]) shows that the correlation kernel is the
Christoffel-Darboux kernel of order k for orthogonal polynomials on the phase
space with respect to the weight function w(z). If a,, denotes the top degree
coefficient of p,,

pn(z) = anz™ + {lower degree terms},
and h,, = ||pn||? then the kernel has the form

ar—1 Pr(@)pr—1(y) — pr—1(2)pe(y)
arhrg—1 T—y

K(z,y) = w(z)w(y).

Below we will consider the following orthogonal polynomial ensembles:

e Laguerre ensemble: phase space R, weight function w(z) = 2% %, a > —1;
e Hermite ensemble: phase space R, weight function w(z) = e_wZ;
e Charlier ensemble: phase space Z ., weight function w(z) = 6%/z!, 6 > 0;



2-MEASURES ON PARTITIONS AND RANDOM MATRIX ENSEMBLES 83

e Meizner ensemble: phase space Z, weight function w(z) = (a+ 1),£%/x!,
a>-1,£€(0,1).

Corresponding normalizing constants for the orthogonal polynomials can be
found in [Erdélyi 1953b; Koekoek and Swarttouw 1998; Nikiforov et al. 1991].
The Christoffel-Darboux kernels for these ensembles will be called Laguerre,
Hermite, Charlier, and Meizner kernels, respectively.

We will also deal with the Airy ensemble (see [Forrester 1993; Tracy and
Widom 1994al): the phase space is R, the correlation kernel is

A(z)A'(y) — A'(2)Aly)
T—y

where A(z) is the Airy function.

Two other ensembles that we will need are the ensemble arising from pois-
sonized Plancherel distributions for symmetric groups (see [Borodin et al. 2000]
and Section 6 below) with the phase space Z' and the kernel of the form (1.3),
(1.4) where

Pi(z) = 071,(2V0), Qi(z)=07J,1(2V0), (5-1)
0 > 0 is a parameter, J,(z) is the Bessel function; and the ensemble arising from
the problem of harmonic analysis on S(co) described in Section 3 (see [Borodin

and Olshanski 1998a] and Section 6 below) with the phase space R* and the
kernel of the form (1.3) where

—Q4(z) forz>0,
—z) for z < 0;

Fole) = {g(x_)x) iﬁi e 8
@ ={"3" 4 ez
G ={ (7 na s
where we have defined
Ps(w) = (1 £ 5?(211/) )12 Wiesanen ooe (@),
Qx(e) = T+ 5?812/) 2)1/2 Wiz e (2),

z, 2 satisfy the assumptions stated in Section 1, and Wy ,(x) is the Whittaker
function; see [Erdélyi 1953a]. We will call these ensembles the Plancherel en-
semble and the continuous z-ensemble, respectively. The kernel for the first one
will be called the Plancherel kernel, for the second one —the Whittaker kernel.

When an ensemble lives on R* or Z’, one may single out its positive part —
the restriction to R, C R* or Z'+ C Z', respectively. The correlation kernel
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of the positive part is the corresponding restriction of the correlation kernel of
the initial ensemble. We will use the term “positive part of the kernel” for such
restrictions.

The positive part of the Plancherel kernel has been independently found in
[Johansson 1999] where it was called the discrete Bessel kernel; see Section 9.

The random point configurations of the discrete z-ensemble and of the Plan-
cherel ensemble are finite with probability 1. The random point configura-
tion of the Airy ensemble is, with probability 1, infinite, bounded from above,
unbounded from below, and has no finite accumulation points. The random
point configuration of the continuous z-ensemble is, with probability 1, infinite,
bounded from above and below, and has zero (which is not in the phase space)
as its only accumulation point.

6. Correlations After Mixing

In accordance with the notation of Section 2, it is natural to denote the
measures on Young diagrams with n boxes coming from B, By ., BZ ., as

M, 15,1;)7 M, ,g?o)o, Még}oo, respectively, and the corresponding mixtures (i.e., measures
on the set of all Young diagrams) as Mg 16, Mg oo,0, Moo,00,0- We want to see
how the hypergeometric kernel will behave in these degenerate cases.

We start with the case when z,2’ are positive integers, say, z = k, 2’ = [,

k<Il. Seta=1—-k.

PRrROPOSITION 6.1 [Borodin and Olshanski 2000a], [Johansson 2000]. Let A =
(P1y-.-»pala1,-..,q4) €Y be distributed according to My ¢. Then the distribu-
tion of points {k + p1,...,k + pa} coincides with the restriction of the k-point
Meizner ensemble with parameters (a,§) to the set {k,k+1,...}.

This claim corresponds to the fact that the hypergeometric functions entering
the hypergeometric kernel become Meixner polynomials if z or 2’ is integral; see
[Borodin and Olshanski 2000a]. Furthermore, the positive part of the hypergeo-
metric kernel becomes the Christoffel-Darboux kernel for Meixner polynomials
(shifted by k).

Now we pass to Mg oo,0-

PROPOSITION 6.2 [Johansson 1999]. Let A\ = (p1,..-,P4|q1,---,494) € Y be
distributed according to My 9. Then the distribution of points {k+p1,...,k+
pa} coincides with the restriction of the k-point Charlier ensemble with parameter
0 to the set {k,k+1,...}.

The easiest way to see this is to examine the degeneration of Meixner polynomials
with parameters (a,¢) to Charlier polynomials with parameter § when a — oo,
0 = k(k + a)¢ is fixed.

Next, consider the situation when z and z’ both go to oco.
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PRroPOSITION 6.3 [Borodin et al. 2000]. Let A = (p1,...,Pd|q1,---,94) € Y be
distributed according to Moo o0,0- Then the random point configuration

{p1+ %7"'7pd+ %7_q1 - %,---7_(](1_ %}
forms the Plancherel ensemble with parameter 6.

This claim corresponds to the degeneration of the hypergeometric function to

the Bessel J-function when first two parameters go to infinity and the argument

goes to zero so that the product of these three numbers is fixed (and equals 6).
As for the representation theoretic picture, we have the following claim.

PROPOSITION 6.4 [Borodin and Olshanski 1998a; Borodin > 2001]. Let
((a,8),5) e A=A xR,
be distributed according to 132,2/. Then the random point configuration
(sa1,s8a2,...,—8B1,—802,...)
forms the continuous z-ensemble.

REMARK 6.5. When one of the parameters z,z’ becomes integral, say, z =
ke {1,2,...}, and 2’ = z + a, a > —1, the Whittaker kernel degenerates to
the Laguerre kernel of order k£ with parameter a. Then Proposition 6.4 implies
that the measure 152,21 gets concentrated on the finite-dimensional subset of
Q=0 x R where a1 = agyo =+ =1 = B2 = --- =0, and on this subset,
in the new coordinates x; = sa; (s is the coordinate on R, ), it equals

k
const - H (z; — z;)? Hac?e*“dxi.
1<i<j<k i=1
See [Borodin and Olshanski 1998b, Remark 2.4]. This agrees with Proposition
3.2.

7. Asymptotics When Mixing Parameters Tend to a Limit

We start with My ;¢. Assume that a =1 — k > 0. Then Proposition 3.4, the
degeneration of the hypergeometric kernel to the Whittaker kernel (Proposition
6.4) and the coincidence of the Whittaker kernel with the Laguerre kernel when
at least one parameter is integral (Remark 6.5) imply the following claim.

PROPOSITION 7.1. Let A € Y be distributed according to My;¢. Then the
random point configuration {(1 — &)A1,...,(1 — €)Ax} converges, as € — 1, to
the Laguerre ensemble.

Now we pass to M, oo,9. The fact that the character of S(co0) corresponding to
M,SLO)O is indecomposable and corresponds to the point a3 = --- = ag = 1/k in
Q2 (see Section 3) leads to the following statement.
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Consider the embedding of the set of Young diagrams with length at most &
into Ri defined by dividing the lengths of rows of a Young diagram by 6.

PROPOSITION 7.2. Under the embeddings described above My o 9 weakly con-
verges to the delta measure at the point (1/k,...,1/k) as § — cc.

One can also ask about fluctuations of My, o6 around the limit delta measure.
Johansson proved the following statement.

PROPOSITION 7.3 [Johansson 1999]. Let A € Y be distributed according to
My, 00,6- Then the random point configuration

{AI—Q/k Ak—é)/k}

converges, as 8 — oo, to the k-point Hermite ensemble.

The convergence of distribution of the first point of the random configuration
from Proposition 7.3 was proved by Tracy and Widom, [Tracy and Widom 1999].

Propositions 7.2 and 7.3 correspond to a certain degeneration of Charlier
polynomials to Hermite polynomials which follows from a more general degen-
eration of Laguerre polynomials with large argument and parameter to Hermite
polynomials; see [Temme 1990].

The most interesting case is Moo, 0,9 The reason is simple: the number of
points (rows of Young diagrams) is unbounded in this case. One can look at at
least two different regimes when 6 — oco: “in the bulk of spectrum” or “at the
edge of spectrum”.

PROPOSITION 7.4 [Borodin et al. 2000], [Johansson 1999]. Let A € Y be dis-

tributed according to Mo, ,9. Then the random point configuration

{)\1—2\/5)\2—2\/5 }
Tl

converges, as 0 — +oo, to the Airy ensemble.

The convergence of distributions of the first and the second points of the ran-
dom configuration from Proposition 7.4 was proved earlier in [Baik et al. 1999a;
1999b].

Proposition 7.4 is the result of degeneration of the Bessel functions (5.1) to
the Airy function and its derivative.

For the results on the asymptotics “in the bulk of spectrum”, see [Borodin
et al. 2000]. These results correspond to the degeneration of the Plancherel
kernel to the discrete sine kernel

sina(e — y))

™
) ) EZa 0< <.
m(x — y) Y )
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It was also mentioned in [Johansson 1999] that under a certain limit proce-
dure the Plancherel kernel degenerates to the conventional sine kernel sin(m(z —

y))/(m(z —y)) on R.
One can also consider “double limits” of My ;¢ and My, 0,9 (oOr, equivalently,

Meixner and Charlier ensembles) when at least two parameters tend to critical
values. Then the scaling procedure must involve at least two large parameters.
For My ¢ the asymptotics looks as follows.

PROPOSITION 7.5 [Johansson 1999]. Let A € Y be distributed according to
My, 00,6- Then the random point configuration

{Al_a/k_wa A2 —0/k — 20 }
(1+vVO/R)3605 (1+vo/k)30s

converges, as k — oo and 6 — oo, to the Airy ensemble.

The result corresponds to a degeneration of Charlier polynomials to the Airy
function [Johansson 1999].
For My ;¢ a similar result was proved for k,I — 400 in [Johansson 2000].

8. Asymptotics of Nonmixed Measures for Large n

As we have seen above, after mixing the study of our measures is not very
difficult — we just need to look at the corresponding degenerations of the hyper-
geometric kernel. The picture before mixing is more subtle.

For M ,53) and M, ,5’720 the asymptotics before and after mixing are different. In
comparison to the mixed cases, there appear restrictions on the supports of the
limit measures. These restrictions come from the trivial condition that the sum
of lengths of rows of a Young diagram with n boxes is equal to n.

Consider the embedding of the set of Young diagrams with n boxes and length
at most k into Ri defined by normalizing the lengths of rows of a Young diagram
by n.

Proposition 3.2 and Proposition 3.4 lead to the following result.

PROPOSITION 8.1. As n — oo, the images of the measures M,E’T;) under the
embeddings defined above converge to a measure concentrated on the set

k
{(-Tlv---al'k)ERi|‘TIZ$2Z---Z-’Eka Z%Zl}-
i=1

The density of the limit measure with respect to the Lebesgue measure equals

k
const - H (z; — z)? H x¢
1<i<j<k i=1

(recall that a =1 —k > 0).

As in Proposition 7.2, we have:
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PROPOSITION 8.2. Asn — oo, the images of the measures M,E?o)o under the em-
beddings defined above converge to the delta measure at the point (1/k,...,1/k).

Again, the fluctuations around the limit delta measure were determined by Jo-
hansson [1999].

Define an embedding of the set of Young diagrams with n boxes and length
< k into RF setting the i-th coordinate of the image of A € Y,, equal to

>\i —n/k
2n/k

(compare Proposition 7.3).

PROPOSITION 8.3 [Johansson 1999]. As n — oo, the images of the measures
M,g?o)o under the embeddings defined above converge to a measure concentrated
on the set

k
{(xl,...,xk)ERk|m1 >xy> ... > 3y, Zmi=0}.
i=1

The density of the limit measure with respect to the Lebesgue measure equals

22
const - H (z; —zj)* e ™ Tk,
1<i<j<k

For the values of M ,E"O)O on functions depending only on A; the claim was proved
by Tracy and Widom [1999].

In a sense, Még,)oo is the most pleasant measure. In this case the asymptotics
of M&,Lo in the bulk of spectrum and at the edge of spectrum as n — oo is
exactly the same as the asymptotics of Mus 0,9 as @ = co. We can say that the
asymptotics admits depoissonization; see [Borodin et al. 2000; Johansson 1999].

Let us explicitly state the analog of Proposition 7.4.

PROPOSITION 8.4 [Borodin et al. 2000; Johansson 1999]. Let XA € Y,, be dis-
tributed according to Még,)oo. Then the random point configuration

{A1—2ﬁ A — 2/ }

1 1
ne ne

converges, as n — +00, to the Airy ensemble.

Again, the convergence of distributions of first two points was proved in [Baik
et al. 1999a; 1999b)].

Depoissonization of the result in the bulk of spectrum requires different ideas
from those used in the proof of Proposition 8.4. For the discussion of this case
see [Borodin et al. 2000].

Proposition 7.5 also admits depoissonization.
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PRrROPOSITION 8.5 [Johansson 1999]. Let A\ € Y, be distributed according to
M,gjlo)o Then the random point configuration

e L,
(1+\/ﬁ/k)%né,(1+\/’ﬁ/k‘)%né’”'

converges, as k — oo, n — 0o so that (lnn)%/k — 0, to the Airy ensemble.

The structure of spectral z-measures P, , defined in Section 3 for general z and
2z’ is fairly complicated. Note that P, s is the limit of the n-th level z-measures
M;TQ,; see Proposition 3.4.

Every probability measure on § (definition in Section 3) can be viewed as a
point process on R*, if we associate to every point (a,3) € € the point con-
figuration (a1, aq,...,—B1,—B2,...) (compare Proposition 6.4). The correlation
functions of the process corresponding to P, . were all explicitly computed in
[Borodin 1998a]. They do not have determinantal form and can be expressed
through multivariate hypergeometric functions.

The situation after mixing is substantially simpler: the process associated to
ﬁz, 2 is the Whittaker ensemble (Proposition 6.4).

We refer to [Borodin 1998a; 1998b; 2000a; > 2001; Borodin and Olshanski
1998a; 1998b; Olshanski 1998a; 1998b] for a detailed discussion of measures P, ./,

P, ., and associated point processes.

9. Limit Transitions

The fact that numerous kernels and ensembles described above originated from
the same hypergeometric kernel suggests a number of different limit transitions
between them.

On the top of the hierarchy we have the hypergeometric kernel which degen-
erates to all ensembles described above. This corresponds to the fact that the
hypergeometric function is on the top of the hierarchy of classical special func-
tions in one variable. The kernel depends on three parameters z, 2, £, and lives
on the lattice Z'.

The Meixner kernel is the specialization of the positive part of the hyperge-
ometric kernel when one of the parameters z, 2’ is integral. To be concrete, we
will assume below that z € {1,2,...}.

The Charlier kernel and the Whittaker kernel are one step below —they both
depend on two parameters, (z,0) and (z,2'), respectively. The Charlier kernel
is obtained from the Meixner kernel by taking the limit z’ — 2 — +oo with
0 = 22'¢ fixed, the Whittaker kernel is obtained from the hypergeometric kernel
via a scaling limit when £ — 1. The Charlier kernel lives on Z , the Whittaker
kernel lives on R*.

The Laguerre kernel is a particular case of the positive part of the Whittaker
kernel when one of parameters (z, z’) is integral. It can be also obtained from
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the Meixner kernel by taking the limit £ — 1 (Proposition 7.1). The Laguerre
kernel depends on two parameters (z,a = 2z’ — z) and lives on R .

The Plancherel kernel is one more step below —it lives on Z’, depends on
one parameter § and can be obtained from the hypergeometric kernel via the
limit 2,2’ — oo, £ = 0, 0 = 22'¢ fixed. Its positive part can be obtained either
from the Meixner kernel by letting z, 2’ — oo with § = z2’¢ fixed, or from the
Charlier kernel by taking the limit z — co. These two transitions are thoroughly
discussed in [Johansson 1999].

The Hermite kernel also depending on one integral parameter z can be ob-
tained from the Charlier kernel via the limit 6 — co (Proposition 7.3).

The Airy kernel is at the bottom —it has no parameters. It can be obtained
in a number of different ways. For example, one can obtain the Airy kernel in the
limit # — +o00 of the Plancherel kernel at the edge of spectrum (Proposition 7.4),
or as the limit at the edge of spectrum of the Hermite kernel and the Laguerre
kernel with parameter a fixed when the order z of these polynomial ensembles
goes to infinity [Forrester 1993; Tracy and Widom 1994a]. It can also be obtained
as a double limit of Charlier or Meixner kernels; see the end of Section 7, as well
as [Johansson 2000; 1999].

Of course, this is not the end of the story. The discrete sine kernel and the
conventional sine kernel can be obtained from the Plancherel kernel as 6 — oc;
see Section 7. The so-called Bessel kernel can be extracted from the Laguerre
kernel “at the hard edge of spectrum” [Forrester 1993; Nagao and Wadati 1993;
Tracy and Widom 1994b]. The sine kernel can be obtained from the Laguerre
and Hermite kernels in the bulk of spectrum; see [Nagao and Wadati 1991], for
example. A number of new kernels can be obtained from the Whittaker kernel;
see [Olshanski 1998b]. Presumably, all these kernels can also be obtained as
double or triple limits of the hypergeometric kernel.

Thus, a variety of kernels known so far can be obtained from the hypergeo-
metric kernel, often in several different ways. As we tried to demonstrate above,
sometimes such degenerations also carry information about the asymptotic be-
havior of certain combinatorial objects.

Addendum

Recent developments in the harmonic analysis on the infinite unitary group
led to a substantial expansion of the hierarchy of correlation kernels described
above. See [Borodin and Olshanski > 2001b].
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