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Introduction

The purpose of this article is to survey recent interactions between statistical
questions and integrable theory. Two types of questions will be tackled here:

(i) Consider a random ensemble of matrices, with certain symmetry conditions
to guarantee the reality of the spectrum and subjected to a given statistics. What
is the probability that all its eigenvalues belong to a given subset E? What
happens, when the size of the matrices gets very large? The probabilities here
are functions of the boundary points ¢; of E.

(ii) What is the statistics of the length of the largest increasing sequence in
a random permutation, assuming each permutation is equally probable? Here,
one considers generating functions (over the size of the permutations) for the
probability distributions, depending on the variable x.

The main emphasis of this article is to show that integrable theory serves as a
useful tool for finding equations satisfied by these functions of z, and conversely
the probabilities point the way to new integrable systems.

These questions are all related to integrals over spaces of matrices. Such
spaces can be classical Lie groups or algebras, symmetric spaces or their tangent
spaces. In infinite-dimensional situations, the “oco-fold” integrals get replaced by
Fredholm determinants.

During the last decade, astonishing discoveries have been made in a variety
of directions. A first striking feature is that these probabilities are all related to
Painlevé equations or interesting generalizations. In this way, new and unusual
distributions have entered the statistical world.

Another feature is that each of these problems is related to some integrable
hierarchy. Indeed, by inserting an infinite set of time variables tq,¢s,%3,... in
the integrals or Fredholm determinants —e.g., by introducing appropriate expo-
nentials e27 %¥" in the integral — this probability, as a function of ¢y, s, ts, ...,
satisfies an integrable hierarchy. Korteweg-de Vries, KP, Toda lattice equations
are only a few examples of such integrable equations.

Typically integrable systems can be viewed as isospectral deformations of dif-
ferential or difference operators L. Perhaps, one of the most startling discoveries
of integrable theory is that £ can be expressed in terms of a single“r-function”
7(t1,ta,...) (or vector of T-functions), which satisfy an infinite set of nonlin-
ear equations, encapsulated in a single “bilinear identity”. The t; account for
the commuting flows of this integrable hierarchy. In this way, many interest-
ing classical functions live under the same hat: characters of representations,
O-functions of algebraic geometry, hypergeometric functions, certain integrals
over classical Lie algebras or groups, Fredholm determinants, arising in statis-
tical mechanics, in scattering and random matrix theory! They are all special
instances of “7-functions”.

The point is that the probabilities or generating functions above, as functions
of t1,t2, ... (after some minor renormalization) are precisely such 7-functions for
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the corresponding integrable hierarchy and thus automatically satisfy a large set
of equations.

These probabilities are very special 7-functions: they happen to be a solution
of yet another hierarchy of (linear) equations in the variables ¢; and the boundary
points ¢;, namely .J]](f)T(t;C) = 0, where the q]],(f) form —roughly speaking —a
Virasoro-like algebra:

1P, 1P = k-3, +---

Each integrable hierarchy has a natural “vertex operator”, which automatically
leads to a natural Virasoro algebra. Then, eliminating the partial derivatives in ¢
from the two hierarchy of equations, the integrable and the Virasoro hierarchies,
and finally setting ¢t = 0, lead to PDEs or ODEs satisfied by the probabilities.

Table 1 gives an overview of the different problems discussed in this article,
the relevant integrals in the second column and the different hierarchies satisfied
by the integrals. To fix notation, H;, 8;, J; refer to the Hermitian, symmetric
and symplectic ensembles, populated respectively by | X [ Hermitian matrices,
symmetric matrices and self-dual Hermitian matrices, with quaternionic entries.
Hi(E), 8;(E), Ti(E) are the corresponding set of matrices, with all spectral
points belonging to E. U(l) and O(l) are the unitary and orthogonal groups
respectively. In Table 1 we have V;(z) := Vy(z) + Y. t;2%, where Vy(z) stands
for the unperturbed problem; in the last integral 17}(2) is a more complicated
function of ¢1,¢5,... and z, to be specified later.

1. Matrix Integrals, Random Matrices and Permutations

1.1. Tangent Space to Symmetric Spaces and Associated Random
Matrix Ensembles. Random matrices provided a model for excitation spectra
of heavy nuclei at high excitations (Wigner [74], Dyson [27] and Mehta [49]),
based on the nuclear experimental data by Porter and Rosenzweig [56]; they
observed that the occurrence of two levels, close to each other, is a rare event
(level repulsion), showing that the spacing is not Poissonian, as one might expect
from a naive point of view.

Random matrix ideas play an increasingly prominent role in mathematics:
not only have they come up in the spacings of the zeroes of the Riemann zeta
function, but their relevance has been observed in the chaotic Sinai billiard and,
more generally, in chaotic geodesic flows. Chaos seems to lead to the “spectral
rigidity”, typical of the spectral distributions of random matrices, whereas the
spectrum of an integrable system is random (Poisson)! (e.g., see Odlyzko [53]
and Sarnak [59]).

All these problems have led to three very natural random matrix ensembles:
Hermitian, symmetric and symplectic ensembles. The purpose of this section is
to show that these three examples appear very naturally as tangent spaces to
symmetric spaces.
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Probability problem underlying ¢-perturbed corresponding
integral, T-function of — integrable
hierarchies

TV +37° tiM") dM | Toda lattice

KP hierarchy
TV N+ tMY) dM | Pfaff lattice
Pfaff-KP hierarchy

P(M € To(E)) S,y €CVADFET LMY GAL | Pfaff lattice
Pfaff-KP hierarchy

P(M € Hn(E)) s ()

P(M € 8,(E)) Js. (o)

P((My, M,) € f%%(E) dMy dM- 2d-Toda lattice
Ho(Er) x Hn(E)) o~ Tr(Ve(M1) =V (Mz)—cM; M) KP-hierarchy

P(M € Hoo(E)) det (I — K¢(y, 2)Ig<(2)) KdV equation

(Fredholm determinant)

longest increasing sequence fU(l) T T (M =i M) g p Toeplitz lattice

in random permutations 2d-Toda lattice

longest increasing sequence | [, oW T @MV (M) grp Toda lattice

in random involutions KP-hierarchy

Table 1. Overview of the article: problems discussed, relevant integrals (second
column), and the hierarchies satisfied by the integrals (last column).

A symmetric space G/ K is given by a semisimple Lie group G and a Lie group
involution o : G — G such that

K ={z €@, o(z) =z}
Then the following identification holds:
G/K = {go(g)! with g € G},
and the involution ¢ induces a map of the Lie algebra,
0« :9 — g, such that 0,2 = 1,
where
g=tdp witht={a€g|o.(a)=a}landp={a€g|o.a)=—a},

and
[t.¢ CE [EplCp, [p,p] CE.
Then K acts on p by conjugation: kpk~—! C p for all kK € K and p is the

tangent space to G/K at the identity. The action of K on p induces a root space
decomposition, with a being a maximal abelian subalgebra in p:

p=a+ Z Pa, With my = dimp,.
aEA
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Then, according to Helgason [35], the volume element on p is
av = < H a(z)m“> dzy ...dzp,
a€A+

where A is the set of positive roots; see [35; 36; 60; 61]. This will subsequently
be worked out for the three so-called A,-symmetric spaces. I like to thank
Chuu-Lian Terng for very helpful conversations on these matters.

Examples
(i) Hermitian ensemble. Consider the non-compact symmetric space'
SL(n,C)/SU(n)
with o(g) =g" . Then
SL(n,C)/SU(n) = {9g" | g € SL(n,C)}
= {positive definite matrices with det =1}
with
K ={g9€SL(n,C)|o(9) =g} ={9 € SL(n,C) | ¢ ' =7} =SU(n).

Then o.(a) = —a' and the tangent space to G/K is then given by the space
p = H,, of Hermitian matrices

slin,C) =¢dp=su(n) ®H, (e, a=a1+as with a; € su(n), az € H,).

If M € H,, then the M;;, Re M;; and Im M;; (1 < ¢ < j < n) are free variables,
so that Haar measure on M € H,, takes on the form

n
dM :=[]dM; ] (dReM;;dIm M;;). (1.1.1)
1 1<i<j<n

A maximal abelian subalgebra a C p = H,, is given by real diagonal matrices
z = diag(z1,...,2,). BEach M € p = 3, can be written as

M =¢eze74, e € K =5U(n),
with?
A= D" (amlens — ew) +ibr(ers +ew)) € E=su(n), ay=0. (1.1.2)
1<k<i<n
Notice that eg; — e, and i(ex; + eix) belong to € = su(n) and that
lexr — e, 2] = (21 — zx)(er1 + e1x) € p = Hoy,
lier + ewx), 2] = (21 — zi)i(er — ew) € p = Hy. (1.1.3)

I The corresponding compact symmetric space is (SU(n) x SU(n))/SU(n).

2ey; is the n X n matrix with all zeroes, except for 1 at the (k,[)-th entry.
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Incidentally, this implies that ex; + e and i(ex; + e) are two-dimensional
eigenspaces of (ad z)? (where ad is defined by ad z(y) := [z, y]) with eigenvalue
(21 — 2x)?. From (1.1.2) and (1.1.3) it follows that

[4,2] = (=1 — z1) Z (ari(ers + ew) +ibpi(ers —e)) €p=H,,  (1.1.4)
1<k<i<n

and thus, for small A, we have3

dM

d(z+[A, 2] +-+)

)=
H ((z1 — zg)ag) d((z1 — 2x)brr) using (1.1.4) and (1.1.1)
k<l

I/\

H::]: H:]: 2

zzAi(z) H dakl dbkl. (1.1.5)

1<k<i<n

Therefore A?(2) is also the Jacobian determinant of the map M — (z,U), such
that M = UzU "' € H,,, and thus dM admits the decomposition in polar coor-
dinates:

dM = A%(2)dz ...dz, dU, U € SU(n). (1.1.6)
In random matrix theory, H, is endowed with the following probability,

P(M € dM) = coe ™V M dM,  p(dz) = eV dz, (1.1.7)

where dM is Haar measure (1.1.6) on 3, and ¢, is the normalizing factor. Since
dM as in (1.1.6) contains dU and since the probability measure (1.1.7) only
depends on the trace of V(M), dU completely integrates out. Given E C R,
define

H,(E) := {M € H,with all spectral points € E C R} C H,,. (1.1.8)

Then

_ e e~ TV M) _fE" 2(2) 1} p(dz)
P(M € H,(E)) [}C(E) M = S gy (9

As explained in the excellent book by Mehta [49], V (z) is quadratic (Gaussian
ensemble) if the probability P(M € dM) satisfies

(i) invariance under conjugation by unitary transformations M ~ UMU !, and
(ii) the condition that the random variables M;;, Re M;;, and Im M;;, for 1 <
i < j < n, be independent.

3AL(2) = H (2 — z;) is the Vandermonde determinant.
1<i<j<n
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(ii) Symmetric ensemble. Here we consider the non-compact symmetric space*
SL(n,R)/ SO(n) with o(g) = g" ! . Then

SL(n,R)/SO(n) = {gg" | g € SL(n,R)}
= {positive definite matrices with det = 1}
with

K ={g € SL(n,R) | o(g) = g} = {g € SL(n,R) | g =g~} = SO(n).

Then o0.(a) = —a' and the tangent space to G/K is then given by the space
p = 8, of symmetric matrices appearing in the decomposition of sl(n,R),

si(n,R) =tdp=so(n)®S, (i.e,a=ai+ az with a; € so(n), az € 8,),

with Haar measure dM = H dM;; on §,.

1<i<j<n
A maximal abelian subalgebra a C p = §,, is given by real traceless diagonal
matrices z = diag(z1,...,2n). Each M € p = 8, conjugates to a diagonal

matrix z:
M =etze™®, e € K=50(n), Ac€so(n).
A calculation analogous to example (1.1.5)(i) leads to
dM = |An(z)|dz1 ... dzn dU, U € SO(n).
Random matrix theory deals with the following probability on §8,,:
P(M € dM) = coe ™V M dM,  p(dz) = eV dz, (1.1.10)

with normalizing factor ¢,. Setting as in (1.1.8): §,(F) C 8, is the subset of
matrices with spectrum € E. Then

P(M € $,(E)) :/ cne” VD gar = Jpn 18Iy p(dz) (1.1.11)

$.(E) Jrn 1AGTY pldze)”
As in the Hermitian case, P(M € dM) is Gaussian, if P(M € dM) satisfies

(i) invariance under conjugation by orthogonal conjugation M — OMO™!, and
(ii) the condition that M;;, M;; (¢ < j) be independent random variables.

4The compact version is given by SU(n)/SO(n).
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(iii) Symplectic ensemble. Consider the non-compact symmetric space®

SU*(2n)/ USp(n)

with o(g) = Jg" ~1J~ 1, where J is the 2n x 2n matrix

01
-10 O
01
01
O -10

and

G =SU*(2n) = {g € SL(2n,C) | g = JgJ '},

K ={g €SU*(2n) | o(g9) = g} :=Sp(n,C) N U(2n)
={g€eSL(2n,C) | g"Jg=J}N{g€SL2n,C)|g " =g"}
={g€SL(2n,C)|g '=g" and g=JgJ '}
=:USp(n).

Then o,(a) = —Ja'J ! and
t = {a € su*(2n) | 0.(a) = a} = sp(n,C) Nu(2n)

= {a c C*X" |a" =-a,a=JaJ '},

p = {a €su*(2n) | 0u(a) = —a} = su*(2n) Niu(2n)
={aecC™?® |a" =a,a=JaJ '}
(0) (1)
My" My

= M = (Mkl)lﬁk,lSTHMkl = with Mlk = M];E S C2X2

(1) 47 (0)
—My," My
= {self-dual n x n Hermitian matrices, with quaternionic entries}
= ‘Ign.
The condition on the 2 X 2 matrices My; implies that My, = My I, with M € R

and the 2 x 2 identity I. Notice that USp(n) acts naturally by conjugation on
the tangent space p to G/K. Haar measure on Ja, is given by

dM = T dm; dM Y anr® am( anr'y, (1.1.13)
kl kl kl kl
1 1<k<I<n

5The corresponding compact symmetric space is SU(2n)/ Sp(n).
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since these M;; are the only free variables in the matrix M € T3, A max-
imal abelian subalgebra in p is given by real diagonal matrices of the form
z = diag(z1, 21, 22, 22, - « - y Zn, 2n). Bach M € p = Ty, can be written as

M =etze ™, e € K = USp(n), (1.1.14)
with (axi, bri, cri, drr € R)

A=Y anlel)) —e)) +bulel) +ef)) +on(el) — i) +dulely +efy) €t
1<k<I<n
(1.1.15)

in terms of the four 2 x 2 matrices®

10 i 0 01 0 i
©0) — W _ @ — @) —
0=(or) =l 2) @=(a0) =(75)

Since
[egl)) - 6;2), ] (21 — Zk)(ekl) + 6(0)) €p,
1 1 1 1
[egcl) ;k)7 ] (21— zk)(eil) el(k)) €p,
2 2 2 2
e — egk)7 2 = (u—2)(e) +ei) €,
3 3
[egcl) lk ) ] (21— Zk)(ekz - el(k)) €p, (1.1.16)

[A, 2] € p has 2 x 2 zero blocks along the diagonal, and from (1.1.16) and (1.1.15),

((k,1)-th block in [A, 2]) = (2 — 2) < Gkt + ibry Cry A+ idi ) k<l

—C1 +idg agr — i
(1.1.17)
Therefore, using (1.1.17), Haar measure dM on T, equals

dM =d(e"ze™ ) =d(I + A+ )z(I - A+---) =dz+ [A 2] + )
H de H d((Zl — Zk)(akl + zbkl))d((zl — zk)(akl — Zbkl))

1<k<n 1<k<I<n
x d((21 — 2zx)(crr + idpa))d((z1 — 21)(—crar + idg))
= A4 (Z) dz1 R dzn H 4dakl dbkl dckl ddkl.
1<k<Ii<n

As before, define Ty, (E) C T2, as the subset of matrices with spectrum € E
and define the probability

_ e e TV (M) _fEn )H1P( k)
P(M € Ton(E)) /T . A = S T o)

REMARK. Ts, is called the symplectic ensemble, although the matrices in p =
Tap are not at all symplectic; rather, it’s the matrices in £ that are.

(1.1.18)

6The notation egfl) in (1.1.15) refers to putting the 2 x 2 matrix e(?) at place (k, ).
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1.2. Infinite Hermitian Matrix Ensembles. Now consider the limit of the
probability

o %) I} pld2)
Jer A2 I pldor)

Dyson [27] (see also Mehta [49]) used the following trick to circumvent the prob-
lem of dealing with co-fold integrals. Using the orthogonality of the monic
orthogonal polynomials pr = pr(z) for the weight p(dz) on R, and the L2-norms
hi = g pi(2)p(dz) of the py’s, one finds, using (det A)? = det(4AT),

P(M € H,(E)) when n 7 co. (1.2.1)

n n

A*(2) [ od=) =/ det(pi-1(27))1<i.i<n det(pe-1(20))1<ri<n [ ] p(d2e)
R» 1 " k=1
= Z (—1)”+”I H/p,r(k)q(Zk)pw/(k)—l(zk)ﬂ(dzk)
T, Cop, k=1"R

=nl! lj[ /Rpi(z)p(dz) = n! lj[ hy. (1.2.2)

For the integral over an arbitrary subset £ C R, one stops at the second equality,
since the p,,’s are not necessarily orthogonal over E. This leads to the probability
(1.2.1),

P €368 = oz [ (3 maGnat) ot

1<j<n 1<k,l<n 1
n
=— | det(Kn(zk,2))1<ki<n | | p(dz:), (1.2.3)
: 1

in terms of the kernel

~—

Kn(y, 2) = ip pia(z (1.2.4)

i—1(y)
Vhi—1 \/h;
The orthonormality relations of the pk(y)/v/hi lead to the reproducing property
for the kernel K, (y, z):

:

/RKn(y, 2)Kn(z,u)p(dz) = K, (y,u), /RKn(z,z)p(dz) =n. (1.2.5)

Upon replacing E™ by H’f dz; xR"* in (1.2.3), integrating out all the remaining
variables 21, ..., 2, and using the reproducing property (1.2.5), one finds the
n-point correlation function

P(one eigenvalue in each [z;, z; + dz;], for i =1,...,k) .

= codet(Kn(2i2)) o5 < L[ P(d20)- (1:2.6)
1
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Finally, by Poincaré’s formula for the probability P(UEZ-), the probability that
no spectral point of M belongs to E is given by a Fredholm determinant

P(M € H,(E°)) = det(I — A\KE)
k

oo
= 1—}—2(—)\)’“/ det(Kf(zi,zj))1<i’j<kHp(dzi),
b1 2150 <2k Ty

for the kernel KZ(y, z) = K, (y, 2)Ir(z).

e Wigner’s semicircle law: For this ensemble (defined by a large class of p’s, in
particular for the Gaussian ensemble) and for very large n, the density of eigen-
values tends to Wigner’s semicircle distribution on the interval [—v/2n,/2n]:

l\/ 2n —22dz  for |z| < V/2n,
™
0 for |z| > v2n

e Bulk scaling limit: From the formula above, it follows that the average number
of eigenvalues per unit length near z = 0 (“the bulk”) is given by v/2n/n and
thus the average distance between two consecutive eigenvalues is given by 7/ Von.
Upon using this rescaling, one shows (see [43; 48; 52; 55; 39]) that

density of eigenvalues =

s

lim K, (

T Y ) __sinw(z —y)

Von' V2n m(z —y)

(sine kernel)

n/'00 \/2n

and

. : (=1)% 7 9 \*
P(exactly k eigenvalues in [0,qa]) = (8_)\) det(I — AK Iy q))

with
™ fz; A)

0 x

det(I — AK I 4)) = exp dz, (1.2.7)

where f(z, ) is a solution to the following differential equation (where the prime
stands for differentiation with respect to x), due to the pioneering work of Jimbo,
Miwa, Mori, and Sato [39]:

@f"V = A(ef' = [)(~1" — o + ), with (@)=~ for £ 0,
(Painlevé V) (1.2.8)

o Soft edge scaling limit: Near the edge v/2n of the Wigner semicircle, the scaling
is v/2n'/® and thus the scaling is more subtle (see [21; 30; 51; 49; 63]):

y=Von+ —— (1.2.9)

\/§ /9,1/6’

and so for the kernel K, as in (1.2.4), with the p,’s being Hermite polynomials,

lim —— <\/_+ Van +

n oo \/_nl/(i \/_ /on1/6’ \/_nl/(i) - K(u,v),
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where

K(u,v) = / Az +u)A(z +v)dz, Alu) = / e /3 4y,
0 —o0
Relating y and u by (1.2.9), the statistics of the largest eigenvalue for very large
n is governed by the function

A
P(Amax <y) =P <2n2/3<ﬂ - 1) <ul, forn 7 oo,
V2n

= det(] = K ) oesie) =50 (= [ (@ = u)gP()dr).

with g(z) a solution of

9" =g +2¢°
_e*(2/3)$3/2 for ¢ Moo (Painlevé II) (1.2.10)
2/mal/4 '

The latter is essentially the asymptotics of the Airy function. In Section 5, I shall
derive, via Virasoro constraints, not only this result, due to Tracy and Widom
[63], but also a PDE for the probability that the eigenvalues belong to several
intervals, due to Adler, Shiota, and van Moerbeke [11; 12].

o~

g(z)

e Hard edge scaling limit: Consider the ensemble of n X n random matrices for
the Laguerre probability distribution, thus corresponding to (1.1.9) with p(dz) =
2¥/2¢=%/2 dz. One shows the density of eigenvalues near z = 0 is given by 4n for
very large n. At this edge, one computes for the kernel (1.2.4) with Laguerre
polynomials p, [52; 30]:

u v

_) = K (u,v), (1.2.11)

1
lim —K® (
T 4n’ 4n

where K(*)(u,v) is the Bessel kernel, with Bessel functions J,,:

1 1
K® (u,v) = 5/ xJ, (zu)J, (zv) de
0

_ L(w)vad(v) = I (Vo) T, (V) (1.2.12)
2(u —v) . -

Then
P(no eigenvalues in [0, z]) = exp <—/ @ du) ,
0
with f satisfying
(zf" —4(zf — )+ ((—v*)f - f)f =0. (Painlevé V) (1.2.13)

This result of Tracy and Widom [64] and a more general statement from [11; 12]
will be shown using Virasoro constraints in Section 5.
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1.3. Integrals over Classical Groups. Integration on a compact, semisimple,
simply connected Lie group G is given by the formula

- sin a(if)
/Gf(M)dM_ IWI/T a];[A2 5

dt/ flutu Y du, t=e" (1.3.1)
U

(see Helgason [36]), where A C G is a maximal subgroup, du and dt are Haar
measures on G and A respectively, satisfying [, dt = [, du = 1, the symbol A
denotes the set of roots of g with respect to a (g and a being the Lie algebras of
G and A), and |W]| is the order of the Weyl group of G.

Integration formula (1.3.1) will be applied to integrals of f = et over
the groups SO(2n), SO(2n+1) and Sp(n). Their Lie algebras (over C) are given
respectively by 0, by, ¢, with the following sets of roots (see [20], for example):

t; Tr M*

A, ={£ee; |1 < i <k}U{x(eite;), £(e;—e;) |1 < i< j<n},

where
0 for 9, =so(2n),
e=<¢1 forb, =s0(2n+1),
2 for ¢, =sp(n).

Setting H = i, we have, in view of formula (1.3.1),

H
H 2sin o(iH) ‘dt

a€A 2
2 n
0, —0 0;:+0
Cn( H sin J 2 kSil’l J—; k) HdGJ foran
_ 1<j<k<n , ]
0; — 0 . 0;+0,\ 0.
c"< H sin -2 5 * sin J—; k) HsinQ%de for by, ¢,
1<j<k<n 1
(1T ; for o,
1<j<n
1—cos@;
=d, H (cos 0; — cos O,)? H <TJ) dg;  for b,
1<j<k'<n 1<j<n
I (t—cos®6;)ds; for ¢,
\ 1<j<n
(.020) T 2 for 0,
dz;
=GN 2) [ - 2)——L= for b,
1<j<n V1-2Z
dz;
c A%(z) H (1- z?)ij for ¢,
1<j<n V122
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o= /8 = —% for Dn
= a?e) JT (1-2)°+2) ds with Sa=3, 6=-} fort,
1<j<n o= /8 = % for Cn

For M € SO(2n), Sp(n), the eigenvalues are given by €% and e %% for
1 < j < n; therefore, setting f = exp(>_ txtrM*) in formula (1.3.1) leads to

n
k ik6,; —ik6,;
ez;x’tk Tr M —¢ 7tk 2;7”:1(6’ i e R0 — H 622:’30:1 ty cos k6;

n Jj=1
— HeQZtka(zj), (1.3.2)

=1

where T),(z) are the Chebyshev polynomials, defined by T, (cos ) := cosnf; in
particular T} (z) = z.

For M € SO(2n + 1), the eigenvalues are given by 1, €% and e~
1 < j < n, which is responsible for the extra-exponential eX* appearing in
(1.3.2).

Before listing various integrals, define the Jacobi weight

Wi for

pap(2)dz := (1 — 2)*(1 + z)Pdz, (1.3.3)

and the formal sum

The arguments above lead to the following integrals, originally due to H. Weyl
[73], and in its present form, due to Johansson [40]; besides the integrals over
SO(k) = O (k), the integrals over O_(k) and U(n) will also be of interest in the
theory of random permutations:

n

/O et t;trae dM = /[ An(z)2 H eg(zk)p(_%,_%)(zk) dzy,

(2n)+ -1 k=1
n
/ (SE UM g (ST / An()? [T e ng, -y (k) da,
o(2n+1)+ [—1,1]" k=1
/ et t;tr M dM = / An(Z)2 H eg(z’“)p(%,%)(zk)dzk,
Sp(n) (-1~ k=1
n—1
/ ez;’o t;trmt dM = ez;’o 2t2i/ _Anfl(z)2 H eg(zk)p(%ié)(zk) dzk,
o(2n)_ [-1,1~~t k=1
/ X LMY gp — T / An(2)? ] by 3 (2x) da,
O(2n+1)_ [—1,1]~ k=1
S tr(t; Mt —s; M) 1 2 - S (tizh—siz ) dzy,
eXt dM=— | |An(2)] [ e Cesimee o (134)
U(n) (S1) k=1 k
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1.4. Permutations and Integrals over Groups. Let S, be the group of
permutations 7 and S3,, the subset of fixed-point free involutions 7° (this means
that (79)2 = I and 7°(k) # k for 1 < k < 2n). Put the uniform distribution
on S, and Sgn—that is, give all permutations 7w, € S, and all involutions
9, € S35, equal probability:

2"n!
P(r,) =1/n! and P(73,) = n)l (1.4.1)
An increasing subsequence of T € Sy, or S% isasequence 1 < j; < -+ < jp < m
such that 7(j1) < --- < 7(jx). Define
L(rmy,) = length of the longest increasing subsequence of 7, . (1.4.2)

Example: for 7 = (3,1,4,2,6,7,5), we have L(m7) = 4.
Around 1960 and based on Monte Carlo methods, Ulam [68] conjectured that

. E(Ln)

R

An argument of Erdds and Szekeres [28], dating back from 1935 showed that

E(L,) > 2v/n—1, and thus ¢ > 1. In 1972, Hammersley [33] showed rigorously

that the limit exists. Logan and Shepp [46] showed the limit ¢ > 2, and finally

Vershik and Kerov [72] that ¢ = 2. In 1990, I. Gessel [31] showed that the
following generating function is the determinant of a Toeplitz matrix:

= c exists.

>t o oy
> = P(Lyp <1) = det (/ g2 Vicosbgi(k—m)0 d0) (1.4.3)
o v 0 0<k,m<l—1

The next major contribution was due to Johansson [41] and Baik, Deift, and
Johansson [17], who prove that for arbitrary = € R, we have a “law of large
numbers” and a “central limit theorem”, where F(z) is the statistics (1.2.10),

lim = — 1 and P<7Ln_2\/ﬁ g.r) — F(z) for n — oo.
n—oo 24/ nl/6
The next set of ideas is due to Diaconis and Shashahani [26], Rains [57; 58],
and Baik and Rains [18]. For a nice state-of-the-art account, see Aldous and
Diaconis [14]. An illustration is contained in the following proposition; the first
part is essentially Gessel’s and the second can be found in [26; 58; 18].

ProrosITION 1.1.

oo

. A _
(i) ZHP(L(wn)gz): - eV (M+M) g r (1.4.4)

. . doy,
— ezG,v _ esz 2 62\/25050k_.
/[0,27r]l H | | H 2m

1<j<k<I 1<k<l

n=0
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ii 3 t2/2 _ et Tr M
(ii) Z 72.) < 1) _/O(l) dM. (1.4.5)

The proof of this statement will be sketched later. The connection with integrable
systems goes via this chain of ideas:

Combinatorics

!

Robinson—-Schensted-Knuth correspondence

1

Theory of symmetric polynomials

1

Integrals over classical groups

1

Integrable systems

All arrows but the last will be explained in this section; the last arrow will
be discussed in Sections 7 and 8. We briefly sketch a few of the basic well
known facts going into these arguments. They can be found in MacDonald [47],
Knuth [45], and Aldous and Diaconis [14]. Useful facts on symmetric functions,
applicable to integrable theory, can be found in the appendix to [1]. To mention
a few:

e A Young diagram ) is a finite sequence of non-increasing, non-negative integers
A1 > Ag > --- > N > 0; also called a partition of n = |\ := A1 +--- + Ay,
with |\| being the weight. It can be represented by a diagram, having \;
boxes in the first row, A\ boxes in the second row, etc., all aligned to the
left. A dual Young diagram X\ = (A\; > Ay > ---) is the diagram obtained by
flipping the diagram A about its diagonal.

o A Young tableau of shape X is an array of positive integers a;; (at place (¢, 7) in
the Young diagram) placed in the Young diagram A, which are non-decreasing
from left to right and strictly increasing from top to bottom.

e A standard Young tableau of shape \ is an array of integers 1,...,n placed in
the Young diagram, which are strictly increasing from left to right and from
top to bottom. There are several formulae for the number of Young tableaux
of a given shape A = (A1 > -+ > Ay):

f* = #{standard tableaux of shape \}

= coeflicient of z123 ...z, in the Schur polynomial s)(z) (see next entry)

_
[Lan 1,5 73
= |A|! det < pY— )'> (with h)‘ =\ +5\j —14—j 41 =hook length)
m 1 . R
= I (—m)]] A (with h; := \j — i +m, m = Xp). (1.4.6)
1<i<j<m 1
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e The Schur polynomial sy associated with a Young diagram A is a symmetric
function in the variables z1,z2,... (finite or infinite), defined by

sx(z1,22,...) 1= Z Haca“.. (1.4.7)

{a;;} tableaux of XA 1j

e The linear space A, of symmetric polynomials in x1,...,x, with rational
coefficients comes equipped with the inner product

<f,g>=l/( Feye o z)gaez) [ o - al? ] ot
1

n 2miz
51) 1<k<i<n k

_ / F(M)g(MT) dM. (1.4.8)
U(n)

e An orthonormal basis of the space A, is given by the Schur polynomials
sx(x1,...,&y), in which the numbers a;; are restricted to 1,...,n. There-
fore, each symmetric function admits a “Fourier series”

flz,...,zn) = Z (fysa) sa(x1,-..,zp), with (sx,sx) =daw. (1.4.9)

A with

)\15”

In particular, one proves (see (1.4.6) for the definition of f*)

(-’Lll_l_"'_}_‘rn)k = Z f/\SA7 (1.4.10)
Kien

IFA= (A >--- >\ >0), with” \; =1 > n, then obviously s, = 0.
e Robinson—Schensted—Knuth correspondence: There is a 1-1 correspondence

(P, @), two standard Young
Sn — ¢ tableaux from 1,...,n, where
P and @ have the same shape

Given a permutation ¢1, .. ., ¢, the correspondence constructs two standard
Young tableaux P, ) having the same shape A. This construction is inductive.
Namely, having obtained two equally shaped Young diagrams P, Qr from
1,y ...,%k, with the numbers (i1, ...,4) in the boxes of P and the numbers
(1,...,k) in the boxes of Qy, one creates a new diagram Q. 1, by putting the
next number i1 in the first row of P, according to the following rule:

(i) if ig41 > all numbers appearing in the first row of Py, then one creates a
new box with i1 in that box to the right of the first column,

“Remember from the definition of the dual Young diagram that A1 is the length of the first
column of A.
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(ii) if not, place igx41 in the box (of the first row) with the smallest higher
number. That number then gets pushed down to the second row of P
according to the rule (i) or (ii), as if the first row had been removed.

The diagram @ is a bookkeeping device; namely, add a box (with the number
k41 in it) to Q exactly at the place, where the new box has been added to
Py. This produces a new diagram Q1 of same shape as Pj1.

The inverse of this map is constructed essentially by reversing the steps
above.

ExAMPLE. We take m = (5,1,4,3,2) € S5 and follow the construction rules for
P and Q:

5 1 14 13 12 1 1 13 13 13
5 5 4 3 2 2 2
5 4 4 4
5 5
12 13
3 2
Hence m — (P(7),Q(w)) = 4 1 ls and so Ls(w) = 2 = number
of columns of P or Q. 5 5

The Robinson—Schensted—Knuth correspondence has these properties:

o if 1 (P,Q), then 71 — (Q, P);

e length (longest increasing subsequence of ) = # (columns in P);

e length (longest decreasing subsequence of w) = # (rows in P);

o if 72 =], then 7 — (P, P);

e if 72 = I with k fixed points, then P has exactly k columns of odd length.
(1.4.11)

From representation theory (see Weyl [73] and especially Rains [57]), one proves:

LEMMA 1.2. The following perpendicularity relations hold:

(1) / s,\(M)sH(M)dM = (8x,8u) = Oap.
U(n)

(ll) / S/\(M)sz{]' fOT‘)\: (/\1 > 2 A Zo)a k <n, A; even,
Oo(n) 0 otherwise.

(iif) / sa(M)dM = { L for Xi even, hy < 2n (1.4.12)
Sp(n) 0 otherwise.
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PRrOOF OF PROPOSITION 1.1. On the one hand,

(1 4+ za), (21 + -+ 20))

= Y Peasd =) ()= ()

IX=lul=k A=k |A|=k
A1,a1<n A1<n A1sn

= #{(P, Q) standard Young tableaux, each of arbitrary
shape A with [\ =k, A\ <n}
= #{m € Sk such that L(my) < n}. (1.4.13)

On the other hand, notice that, upon setting 6; = 02- + 6, for 2 < j < mn, the
expression H1<j<k<n |ei9j _ ot k
one computes:

is independent of ;. Then, setting z; = e*%*,

(@14 Fza)’, (@1 + - +2n))

1 i0;, i
== (14 +z)f @+ +z) [ €% - dor...don
7 Jio,2x]" 1<j<k<n
1 , )
=— elk91(1+zé+...+z;)ke*%l91(1+§é+..._{_Z;L)l
mn. [0,27!']" . .
II 1% —€“*do; ...do,
1<j<k<n
and upon setting 0; = 0} + 0,, for j > 2 and z;, = etk
1 2w .
=~ e!*=0% g9, x an (n—1)-fold integral
n. Jo

k(@1 4+ 2, (@1 - )Y = 5“/ ITe M|2F dM.  (1.4.14)

U(n)
It follows that
/ (tr(M + B M = 3 <k) / (e M) (&RE)F~ dM
U(n) 0<7<k J U(n)
0 if k£ is odd,
- { (k%) Jom [trM|* dM  if k is even. (1.4.15)

(The equality for k odd follows because then j # k — j for all 0 < j < k.)
Combining the three identities (1.4.13), (1.4.14) and (1.4.15) leads to

—1

#{m € Sk such that L(m) < n} = (Qkk) (Te(M + M))** dM. (1.4.16)
U(n)
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Finally

io %P(L(wn) <) = i) g #{m € Snn|!L(7rn) <1}
- i_o:o (;n)? <2:) h /U(,)(“(M + M) dM
) i (@;" 0 31 an

eVITE(MAM) gpp
Ul

_ 1 f(z1+z1 Hedz+2h) i0; _ gibk|2 dby
_l!/[;)27r] l H|e | HQﬂ-’

1<j<k<l 1<k<l

(where z; = e%%)
1 : do
_ = I | |6i07 . ei9k|2 I I eZ\/Zcosek k
I 27’
[0.27]" 1 <j k< k=1

showing (1.4.4) of Proposition 1.1. The latter also equals:

!
1 5 dz
= Ai(2)A(2) [ ] <e‘ﬁ(z’°+z’°)—.k )
k=1

(S1)t 27lek

l
5 dzk
det Vi(ze+Zk)
/M 32 et (<5703 e T (752
d
LY aw ( [ et fo)
1<k,m<lI

l! 2miz
€S k

2w
= det (/ eZ\/fcost‘)e'i(km)()da) )
0 1<k,m<lI

confirming Gessel’s result (1.4.3).

The proof of the second relation (1.4.5) of Proposition 1.1 is based on the
following computation:

/0( )(TrM)k am =y f* /0( )s,\(M) dM using (1.4.10)
5\1571
= Z 2 using Lemma 1.2
‘Alzky S‘IS"

Ai even
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= Z P using duality
P‘lZAkU A1<n,
A; even
_ (P, P) | P standard Young tableau of
~ ™\ shape A with [\ =k, A\; < n, A; even

= # {m}, € Sy, no fixed points and L(n)) <n}. (1.4.17)

In the last equality, we have used property (1.4.11): an involution has no fixed
points if and only if all columns of P have even length. Since all columns \; have
even length, it follows that |\| = k is even and then only is fo(n) (Tr M)* dM > 0;
otherwise this integral equals 0. Finally, one computes

i (t2/2)kp (L(m3y) < m, w3y, € Sy

k!
k=0
>\ 1%k okp! o 0 0 .
= Z 2k—k'm#{w% € Soi, L(my,) <n} using (1.4.1)
k=0 ) ’
o t* 0 0 0
= Z E#{ﬂ-k € S, L(m) <n}
k=0 "
= Z _'/ (Tr M)* dM using (1.4.17)
k=0 JO(n)
:/ tTerM
O(n)
ending the proof of Proposition 1.1. O

2. Integrals, Vertex Operators and Virasoro Relations

In Section 1, we discussed random matrix problems over different finite and
infinite matrix ensembles, generating functions for the statistics of the length of
longest increasing sequences in random permutations and involutions. One can
also consider two Hermitian random matrix ensembles, coupled together. All
those problems lead to matrix integrals or Fredholm determinants, which we list
in the following formulas (where 8 = 2,1,4):

n

e~ VM) gnf = cn/ 1A, (2))P Hp(zk) dzy,

" 1

[ ]
/gcn(E), $n(E) or Tn(E)

® / / dMy dMy e~ 3 Tr(Mi+M3—2cM:1 My)
HZ(E1x E2)

o / e M ang
O(n)
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. / eVETH(MAM) gy r
U(n)

o det(I — \K(y,2)Ip(z)), with K(y,z) asin (1.2.4). (2.0.1)

Each of these quantities admits a natural deformation, by inserting time vari-
ables t1,ts,... and possibly a second set s1,s2,..., seemingly ad hoc. Each
of these integrals or Fredholm determinant is then a fixed point for a natural
vertex operator, which generates a Virasoro-like algebra. These new integrals in
t1,ta,... are all annihilated by the precise subalgebra of the Virasoro generators,
which annihilates 79. This will be the topic of this section.

2.1. (G-Integrals
2.1.1. Virasoro constraints for S-integrals. Consider weights of the form
p(z)dz = e V# dz

on an interval F' = [A, B] C R, with rational logarithmic derivative and subjected
to the boundary conditions

ICI ! g ZO 7/7/ k
— — — _ — > .
— _‘/_f_zooil, hm f(z)p(z)z" =0 for k >0, (2.1.1)

and a disjoint union of intervals,
E=Jlezs 1,0l CFCR. (2.1.2)
1

These data define an algebra of differential operators

2r a
k= ZCf“f(ci)a
1

Take the first type of integrals in the list (2.0.1) for general 8 > 0, thus gener-
alizing the integrals appearing in the probabilities (1.1.9), (1.1.11) and (1.1.18).
Consider t-deformations of such integrals, for general (fixed) 3 > 0; they can be
written as follows, with ¢ := (t1,t2,...), ¢ = (c1,¢a,...,cor) and z = (21, ..., 25):

(2.1.3)

7

I(t,c; B) == / ) |AL(2)]P H(eE?tizip(zk)dzk) for n > 0. (2.1.4)
k=1

The main statement of this section is Theorem 2.1, whose proof will be outlined
in the next subsection. The central charge (2.1.9) has already appeared in the
work of Awata et al. [16].

THEOREM 2.1 (Adler and van Moerbeke [3; 6]). The multiple integrals

I,(t,¢; B) := / (2)|P H ( Xt ka zk)dzk) forn >0, (2.1.5)
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and

I, <t, ¢ %) = / (z)*/P H ( Xt zkp 2k) dzk) forn>0, (2.1.6)

with Iy = 1, satisfy respectively the Virasoro constraints®

(—Bﬁzai I ) =b; PIX) n))fn(t, ¢ 8) =0,

i>0

(oot ) 5 s () (e5) -0

i>0

(2.1.7)

for allk > —1, in terms of the coefficients a;, b; of the rational function (— log p)’
and the end points cz of the subset E, as in (2.1.1) to (2.1.2). For alln € Z, the

J(Z) (t,n) and ﬂJ] »(t,n) form a Virasoro and a Heisenberg algebra respectively,
mtemctmg via the formulas

k3
[ﬁJ(2)’ﬂJ(2)] (k — )ngn ( D )5194
[T 23] = =1 P58+ Rk + 1) .

I:"]]k'nﬂ J(l)] 5 k,—15 (218)

k
B

with central charge

c=1- 6<(§)1/2 - (2)1/2>2 and ¢ = (% - %) (2.1.9)

REMARK 1. The #J{)’s are defined by

o) — g8 'y 83 YY) (1_ §> ((k+1)ﬂjgb _ku]]g?zb)_ (2.1.10)

z+] k

Componentwise, we have
a]](l) ( ) ﬁv]k(:l) + nJ,EO) and ﬂ‘]]gco,)n = an(:O) = n50k

and

P2 (t,n) = gﬂJ,EZ) + <nﬁ +(k+1) (1 - g)) A0 4 n((n - 1)§ + 1) 79,

8When E equals the whole range F, then the Bj’s are absent in the formulae (2.1.7).



344 PIERRE VAN MOERBEKE
where

0
IBJIs(:l) 3t +ﬂ( k)tfka

By _ -
T et 8t8t g >t ﬂQ D itigt. (2.111)

—i+j=k —i—j=k

We put n explicitly in ﬁﬂl(273 (t,n) to indicate the m-th component contains n
explicitly, besides ¢t. For 8 = 2, (2.1.10) becomes particularly simple:

(2) _ L2p(1) 24(1)
ﬂ“]]k: n|ﬁ:2 - Z . Ji,n ‘Uj,n .-
iti=k

REMARK 2. The Heisenberg and Virasoro generators satisfy the following duality
properties:

%J(Z)( n):ﬁ,]]@)(_@_Q_n)a nEZ’

ln ln 9 ﬁ
t 2
530 (t,n) = —g Py ( - % _Fn) n>0. (2.1.12)

n (2.1.7), 8 (2) . (—PBt/2,—2n/[3) means that the variable n, which appears in the
n-th component, gets replaced by 2n/8 and ¢t by —(t/2.

REMARK 3. Theorem 2.1 states that the integrals (2.1.5) and (2.1.6) satisfy two
sets of differential equations (2.1.7) respectively. Of course, the second integral
also satisfies the first set of equations, with 3 replaced by 4/8.

2.1.2. Proof: (3-integrals as fixed points of vertex operators. Theorem 2.1 can
be established by using the invariance of the integral under the transformation
zi = zi+ef(2i)z; k+1 of the integration variables. However, the most transparent
way to prove Theorem 2.1 is via vector vertex operators, for which the B-integrals
are fixed points. This is a technique that we have used already in [2]. Indeed,
define the (vector) vertex operator, for t = (t1,ts,...) € C*, u € C, and setting

x(2) == (1,2,22,...):

Xg(t,u) = A TeXi tiv'e AR

—i e
79ty (|ul?). (2.1.13)
It acts on vectors f(t) = (fo(t), fi(t),-..) of functions, as follows:’

(Xa(t,w) £(8),, = =75 (jul?)" " fualt — Blu ).

For the sake of these arguments, it is convenient to introduce the vector Virasoro
generators B,]Ig) (t) = (ﬁq]]x)n(t, n))nez-

9For a € C, define [a] := (a, %oﬁ, %as, ...) € C®. The operator A is the shift matrix with
zeroes everywhere except for 1’s just above the diagonal: (Av)p = Vn41.-
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PROPOSITION 2.2. The multiplication operator z* and the differential operators
8‘9 k1 with z € C*, acting on the vertez operator Xg(t,z), have realzzations as
commutators, in terms of the Heisenberg and Virasoro generators ﬁ.]l (t,n) and
QIS(OE
k
Xﬁ(t Z) [ J ( ),Xﬁ(t,z)]

5.0 " Xs(t:2) = [P (), Xp (t, 2)]. (2.1.14)

PROOF. By explicit computation; see [3]. O
COROLLARY 2.3. Given a weight p(z)dz on R satisfying (2.1.1), we have
0 2
5.7 (@)Ks (1, 2)p(2) = [ > (@ 520 = b PB (1), Xa(t2)e(2)|
i>0
(2.1.15)

PrOOF. Using (2.1.14) on the last line below, compute
0
—2F T F(2)X5(t, 2)p(2)

0z
_ (p,(z))f(z)> X (¢, 2)p(2) + p(z)% (ZFH f(2)X5(t, 2))

- (Z biz* X (8, z)) p(2) + p(2) 63 (Z aiZ" X (¢, z>)

0

|:Zb ﬁq]];s:llwrl’ 5(t, 2 } [Zazﬂ,]]kﬂ,xﬁ (t,2)p(z )}, (2.1.16)

establishing (2.1.15). O

Giving the weight pg(u) du = p(u)Ig(u) du, with p and E as before, define the
integrated vector vertex operator

Ys(t, pE) == / du p(u)Xg(t,u), (2.1.17)

E

and the vector operator
Dk = 3]@ - Vk
2r
0

- Zcf“f(ci)% -3 (ai BIP) () — b P10 (8 )), (2.1.18)

1 >0

consisting of a c-dependent boundary part By and a (¢,n)-dependent Virasoro
part Vg.

PROPOSITION 2.4. The following commutation relation holds:

[Dk, Yg(t,pr)] =0. (2.1.19)
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PRrROOF. Integrating both sides of (2.1.15) over E, one computes:

2r

/| 4z (7 F ()R (1, 2)p(2) = S (~1)'ck  F(e) s 1, coo(e)

1

= S (e [ Kol 2)ple) s
= [Bk, Ys(t, pp)], (2.1.20)

while, on the other hand,

/E i [ S (@232~ P10 ) Xa z)p(z)}

i>0
= [ > (633 - 020 0) / dzpr(2)Xs (t,z)]

i>0
= [V, Ys(t, pE)]- (2.1.21)
Subtracting both expressions (2.1.20) and (2.1.21) yields
0= [Bx — Vi, Yg(t, p5)] = [D, Ys(t, p5)]- O

ProrosIiTION 2.5. The column vector

I(t) := ( / |An(2)1? TT =5 4% p(z) dzk)
" n>0

k=1

is a fized point for the vertex operator Yg(t, pg) (see definition (2.1.17)):
(Ys(t, pp)I), = In, n>1. (2.1.22)

PrROOF. We have
I (t) :/ H (27 55 In(21)p(2h) dz, )
B / d“PE(U)SZTOt"“iIUIﬂ(”_”
R
n—1
< H 1= 2 18n-a P T (57 5 ppar) dan)
Rr—1
k=1 k=1
- / du pp (u)eET vy P 1)
R

. n—1

_ co u”? 8 o 'Zi

e BYT Y ati/ ) |An71(z)|ﬁ I I (ezl t; ka(Zk) de)
R™— k=1
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Z/nwawnmm”4%Ef““ ETE AL (1)
R

= (Ys(t, pp)I(t)),,- (2.1.23)

PRrROOF OF THEOREM 2.1. Proposition 2.4 implies that, for n > 1,
0=[Dx, (Ys(t,pm))"11
= DkYﬂ(t, pE)nI —Yﬁ (t, pE)nDkI (2124)
Taking the n-th component for n > 1 and k > —1, setting

u”?t 8

Xﬂ(tau) zeztiuieiﬁz i 9t

and using (2.1.22), we get
0= ('DkI - Yﬁ(t,pE)n'DkI)

= (Dul)a— [ dupe()Xa( (W) . [ dupsa)Xa(tw)(DeD)o
= (DiI)n.
Indeed (Dxl ) 0 for £ > —1, since 19 = 1 and Dy, involves ﬁJ,§2), 'BJ,S) and

IO for k> —

By ,Ez) is pure differentiation for £ > —1;
ﬂJ,gl)is pure differentiation, except for k£ = —1; but
ﬁJill) appears with coefficient n(3, which vanishes for n = 0;
J,EO) appears with coefficient n((n—l)g + 1), vanishing for n = 0. O
2.1.3. Examples

Example 1: Gaussian (-integrals. The weight and the a; and b;, as in (2.1.1),
are given by
p(z) =e V) = e, V= g/f =2z,

ap =1, bp =0, by = 2, and all other a;,b; = 0.
From (2.1.7), the integrals

n
I, :/ An(2)? T e #2210tk dy, (2.1.25)
En k=1

satisfy the Virasoro constraints, for & > —1,

By I, = ch+1 9 = (P32, +2°1), ) - (2.1.26)
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Introducing the notation

. 1 N 1
oi=(n-2)p+itt-bo=(n-T)grit1,  (2120)

and setting F,, = log I,,, the first three constraints have the form

0 ., O
—ﬁ_lF = (28_2‘;1 — Zztiﬂ>F_ntl’

122
—BoF = (28_2‘,‘2 — iZZt 8t ) — 50’1,
_BF = ( o _, 9 Z ) . (2.1.28)
8t3 8t1 > 8tz+1

For later use, take the linear combinations
Dl = —%‘B,l, DQ == —%Bo, D3 = _%(Bl + %0’13,1), (2129)
such that each D; contains the pure term OF/dt;, i.e., D;F = (0F/0t;) +

Example 2: Laguerre (-integrals. Here the weight and the a; and b;, as in
(2.1.1), are given by

efvzzaefz’ V’=?=Z;a,
ap=0,a, =1, bg = —a, by =1, and all other a;,b; = 0. Thus, from Theorem
2.1, the integrals
In = / H Za _Zk+zl 1 tiz;-c dzk (2'1'30)

satisfy the Virasoro constraints, for £ > —1:
27 9
2 1 1
O R oy Y QA C NRPLTIC R R PR
1 (3
Introducing the notation

;== (n—%>ﬂ+i+1—bo:(n—%>ﬂ+i+1+a,

and setting F' = F,, = log I,,, the first three have the form
0 0 n
—B_F = <__ 't~—)F——
0
~BoF = (5 )
0 Bty Z P Otiv1

0 562> ﬂ(@F)
B.F = <6t3 U26t2 Z 6tz+2 2o )t ~2\an)
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Again, replace the operators B; by linear combinations D;, such that D;F =
(OF/0t;) +

Dl == —B,l, @2 == —BO - 0'13,1, @3 == _Bl - 0'230 - 0'10'2‘371. (2132)

Example 3: Jacobi (-integral. This case is particularly important, because it
covers not only the first integral, but also the third integral in the list (2.0.1),
used in the problem of random permutations. The weight and the a; and b;, as
n (2.1.1), are given by

g_a-bt(at+b)z
f 1-— 22 ’

ap=1,a1 =0,a2 =—1, by =a—0b, by = a+ b, and all other a;,b; = 0. The
integrals

p(z)=eV =(1-2)1+2)° V' =

In= / |An(2)|7 TT( = 2)2(1 + 2)PeXZ0 5% iz (2.1.33)

satisfy the Virasoro constraints (k > —1):

o,
—Brl, ZCkJrl 2 36
= ( Jz(fiz,n — P 400 PI) b PIY ) e (21.34)

41
Introducing o; = (n - %),@—H’—i— 1+ by, the first four (k = —1,0,1,2) have
the form

_Ble: (0’1—+th atH_l 127175 at )F+n(b0—t1),

- 2o )P 3 (50
_%F_( ot " an +Z” (atm >+23t§ F+o\an

_%(Ul_bl)v
0 0 1o} 02
_ﬁlF = (030_t3+b03_t'2 +Z Zt <3tl+3 8t,~+1 ) +ﬂ8t18t2)F
OF OF
+ﬂ6—tl@—t2’

o 9 9
_32F_(040—u+b03t3 (02=b1)3 +Z“ <8tz+4 8ti+2)

i>1

ﬂ(@Q 0? 62 ) Ié; (8F)2 <8F)2 OF OF
e Fr=( (=) - (=) +2—7 ).
3 ot2 6t§+ Ot10ts3 * Ota Oty + Oty Ots

(2.1.35)
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2.2. Double Matrix Integrals. Consider now weights of the form

p(z,y) = e2igz1 iy’ p(z)p(y), (2.2.1)

defined on a product of intervals F; x F, C R?, with rational logarithmic deriv-
ative

P9 _ Tt F_§_ Tiebw
p o Yisea! P Yiso@yt
satisfying
lim f(z)p(z)zF = lim f(y)p(y)y* =0 for all k > 0. (2.2.2)
z—0F; y—0F;
Consider subsets of the form
E=F; x By := U[CQifl’CQi] X U[égifl,agi] CF xFC R2. (223)
i=1 i=1

A natural deformation of the second integral in the list (2.0.1) is given by the
following integrals:

n(t, s, E) = / A (z2)Ar(y) H ezfil(tizfcfsiyi)p(xk,yk) dzy dyr,  (2.2.4)
Bn k=1

In the theorem below, 7@ kn and J] ., are vectors of operators, whose components
are given by the operators (2.1. 10) for B =1; i.e,

10,0 =30 )]s T ) =PI O],y s

thus, from (2.1.10) and (2.1.11), one finds
1
IE () = 5 (TP @) + @2n+k+ 1)) +n(n +1)J), (2.2.5)

satisfying the Heisenberg and Virasoro relations (2.1.8), with central charge ¢ =
—2and ¢ = 1.

The a;, @;, bi, bs, ¢;, i, ri; given by (2.2.1), (2.2.2) and (2.2.3) define differential
operators

2r
0
:Z k1 g, —Z 7@ Z )_b, 1
- ¢ f(cl)aci (a ( k—+1, n+ Mmrml g —— 8rm+k+zl 'L']]k+1+1,n>’

>0 m,l>1
2r 6 )
Din:=) e f(E —~—Z< ( 20 ) biJ). >
k,n - 'l f( )acz o k+i,n 2 mly 67’m Lkt k+i+1,n

(2.2.6)
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THEOREM 2.6 (Adler and van Moerbeke [3; 4]). Given p(z,y) as in (2.2.1), the
integrals

I,(t,s,m; E) == / An(z)An(y) H eZ?il(t"mz_siyi)p(xk,yk) dxg dyr (2.2.7)
En k=1
satisfy two families of Virasoro equations for k > —1:
Dimln(tys,; E) =0 and Dy ,I,(t,s,m;E) =0. (2.2.8)

PrOOF. The proof of this statement is very similar to the one for (-integrals.
Namely, define the vector vertex operator,

X2 (t, s;u,v) = A~ 1eE T (t—ain®) = B (7 %_%%)X(uv), (2.2.9)

WhiCh, as a consequence of Proposition 2.2 for 8 = 1, interacts with the operators
.,]]](;) (t) = ( ’(;)n(t’n))nez as follows:

uka(t,s;u,v) = [chl)(t), Xm(t,s;u,v)]

0
%u’“lxm (¢, s;u,v) = [.]1592) (1), Xya(t, s;u,v)]. (2.2.10)
A similar statement can be made, upon replacing the operators u* and %u
by v* and 2v**1, and upon using the j],(:)(s)’s

Finally, one checks that the integral vertex operator

k+1

Y(¢, 55 p8) := // dz dy p(z,y)Xa2(t, s; 2, y) (2.2.11)
E

commutes with the two vectors of differential operators Dy = (Dg,n)nez, as in
(2.2.6):
[DkaY(ta 53 pE)] = [@k,Y(t, 83 pE)] =0,
and that the vector I = (I = 1,11,...) of integrals (2.2.7) is a fixed point for
Y(ta S5 pE)a
Y(t, s;50E)1(t, 8,75 E) = I(t, 8,75 E).

Then, as before, the proof of Theorem 2.6 hinges ultimately on the fact that
Do annihilates Iy = 1. O

2.3. Integrals over the Unit Circle. We now deal with the fourth type of
integral in the list (2.0.1), which we deform, this time, by inserting two sequences
of times t1,t3,... and s1, 32,.... The following theorem holds:

THEOREM 2.7 (Adler and van Moerbeke [7]). The multiple integrals over the
unit circle S*,

i oo i —iy dz
In(t,s) = Ap(2)]? TT X7 (tizimsiz) 2280y 5 2.3.1
= [ 1P = (231)



352 PIERRE VAN MOERBEKE

with Io = 1, satisfy an SL(2,Z)-algebra of Virasoro constraints:

k=-1,0=0,
DZmIn(t, s)=0, onlyfor ¢ k=0, 0 arbitrary, (2.3.2)
k=1, 0=1,

where the operators ‘Dz’n = Dz,n(t,s,n), k€Z, n>0 are given by
2 2 1 1
= T (tn) = 3% (=s,m) = k(63 (t,0) + (1= 017} (—s,m)), (23.3)

uﬂﬂzJﬁL(L7ﬁ:::ﬁJXL(t7ﬂ as in (2.1.11).

| pB=1?
The explicit expressions are

. 0 . 0 0
‘DflI = (Z(Z + 1)t1+18—t — Z(’L — ].)Sifl% +n (tl + 8_51>)In =0

i>1 ti>2 g
.0 .0
%I_me%—m%ﬁh_o (2.3.4)
i>1
DI, = _Z(Z+151+1 +Z 8 +n<51+i) I, =0.
i>1 i>2 Ot

Here the key vertex operator is a reduction of Xi5 (¢, s;u,v), defined in the
previous section (formula (2.2.9)). For all k € Z, the vector of operators

Di(t,s) = (Dk n(t;s n))nez

forms a realization of the first order differential operators (d/du)u**!, using the
vertex operator Xis(t, s;u,u~"), namely

iuk+1xl2(t,5§%u71) _ DZ(t,s), Xu(t,S?U,Ul)] ‘
du u u

Indeed,

(2.3.5)

d 1
& UEX, (¢ st
uduu 12(t, s5u,u” )

(9 ki1 O 1k k 49) )
= (3_uu ~ 50 " kEOu® — k(1 — 0)v " | X429 (t,s,u,v)|v:

= 32 () = I (—s) = k(03 (&) + (1 = )T (=5)), Kua(t, 53u, —u)]
= [DZ (t, ), Xi12(t, s;u, ufl)] .

The DY := DY(t, s) satisfy Virasoro relations with central charge zero:
[Df, D] = (k—1)Di s (2.3.6)

thus, from (2.3.5) we have the commutation relation

[DY(t,s),Y(t,s)] =0, with Y(¢,s) ::/ d‘,‘ Xio(t, s;u,u™ ). (2.3.7)
s

1 2T
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The point is that the column vector I(¢,s) = (Ip,I1,...) of integrals (2.3.1)
is a fixed point for Y(, s):
(Y(t,8))p =1, n>1, (2.3.8)
which is shown in a way similar to Proposition 2.5.

PRrROOF OF THEOREM 2.7. Here again the proof is similar to the one of Theorem
2.1. Taking the n-th component and the n-th power of Y(¢,s), with n > 1, and
noticing from the explicit formulae (2.3.4) that (DY (t,s)I) o = 0, we have, by
means of a calculation similar to the proof of Theorem 2.1,

0= ([Df, Y(t,8)")1),,
— (DIY(t, )" I — Y(t,5)" D),
= (DYI - Y(t,5)"DLI) = (DLI) . -

3. Integrable Systems and Associated Matrix Integrals

3.1. Toda lattice and Hermitian matrix integrals

3.1.1. Toda lattice, factorization of symmetric matrices and orthogonal polyno-
mials. Given a weight p(z) = e~V (?) defined as in (2.1.1), the inner product over
ECR,

(f,9)t = /Ef(Z)g(Z)pt(Z) dz, with pi(z) := eX="* p(2), (3.1.1)
leads to a moment matrix

mn(t) = (i (t)Jo<ij<n = (2%, 27 )1)o<i j<n, (3.1.2)

which is a Hdnkel matriz'®, thus symmetric. This is tantamount to Ame, =
Moo T, where A denotes the shift matrix; see footnote 9. As easily seen, the
semi-infinite moment matrix mq, evolves in ¢ according to the equations

Opsj O commuting
= it+k,j, and th = Amg. 3.1.3
Oty Hith,, anc tius Oty Moo vector fields ( )
Another important ingredient is the factorization of m, into a lower-triangular
times an upper-triangular matrix!!

Mmoo (t) = S(t) 'S()T T,

where S(t) is lower triangular with non-zero diagonal elements.

The main ideas of the following theorem can be found in [2; 5]. Remember
that ¢ = (e1,...,c2,) denotes the boundary points of the set E; further, dM
refers to properly normalized Haar measure on J,.

10Hzsnkel means that uij depends on i+ j only.
' This factorization is possible for those #’s for which 7, (t) := det m,, (t) # 0 for all n > 0.



354 PIERRE VAN MOERBEKE

THEOREM 3.1. The determinants of the moment matrices
1 n
Tn(t,¢) := det mp (¢, c) = —/ A2(2) H pt(zx) dzg
n! En P
_ / (PCVANEEE MY g
Hn(E)

satisfy the following relations:

(i) Virasoro constraints (2.1.7) for =2,

27
0
(- e+ X (00~ 53) )l =
1 v >0

(ii) The KP-hierarchy'?(k =0,1,2,...)

. (8 10 190 ) 1 62 0
— =y | = | Th 0T =0,
R\ ot 20ty 3 0t5 20t 0ters) "

of which the first equation reads:

0 \4 8 \2 52 5 2
9t ) 4 1 ——1 —0.
(<6t1> +3 (6t2) 6t18t3> 0g 7n +6 (8t% og Tn> 0

(iii) The standard Toda lattice, i.e., the symmetric tridiagonal matriz

0 T1 T0T2 1/2
—log — — 0
8t1 8 T0 <’7’12 )
<@)”2 0 g™ <@>”2
L(t) := S@)AS(t) * = ™ oty n 73
0 )\ 0 T
’7'22 8t1 gTQ
satisfies the commuting equations3
oL &
o, = [2(Ls L.

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(iv) Eigenvectors of L: The tridiagonal matriz L admits two independent eigen-

vectors:

12Given a polynomial p(t1,ta, ... ), define the customary Hirota symbol

0 0
0, =p(=—,=—,... t t— ‘
p(8)fog p(ayl  Bya’ )f( fy)g( 9,
The s;’s are the elementary Schur polynomials eXf izt = >iso s;(t)z*. For later use, set
= o 10 -
0) = —_— =y )
s(9) St (at1 2 Otg )

13The notation ( )s; means the skew-symmetric part of ( ); for details, see Section 3.1.2.
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* p(t;2) = (Pn(t;2))nx0 satisfying (L()p(t; 2))n = 2pn(t;z), n 2 0, where
pn(t; 2) are n-th degree polynomials in z, depending ont € C*°, orthonormal
with respect to the t-dependent inner product'* (3.1.1)

(Pr(t;2), pi(t; 2))e = Oris

they are eigenvectors of L, i.e., L(t)p(t; z) = zp(t; z), and enjoy the follow-

ing representations, where x(z) = (1,z,22,...)T:
1
(t:2) = (S(E)x(2) 1 O

pnt7z :StXZnZ det
Tn () Tnt1(t)
Hn,0 ,Ufn,nfl|zn
2B o Tenn(®) (3.1.9)
" Tn(t) ’ Tn(t)

* q(t,2) = (qn(t; 2))nx0, with

n(t;
gn(t;2) == z/n %pt(u) du,
satisfying (L(t)q(t; 2))n = 2zqn(t; 2) for n > 1; the function qn(t;z) enjoys
the representations
a(t;2) = (ST HH)x(z 1)), = (SBmec(t)x(z 1)),
1Tt 1)
" Tn(t) -

In the case 8 = 2, the Virasoro generators (2.1.11) take on a particularly elegant
form, namely for n > 0,

(3.1.10)

100 ="3 - I0OI@ = TP @) + 200 () + n2dor
i+j=k

I (8) = I () + nédor,

with!®
0
IV = 2 4 Lkt
k ETR + 3 (=k)t_k,
2
@) _ 9 L 0 .
T =D gt D itig g Y ity (3.1.11)
itj=k ' —itgj=k ) —i—j=k

Statement (i) is already contained in Section 2, whereas statement (ii) will be
established in Section 3.1.2, using elementary methods.

14The explicit dependence on the boundary points ¢ will be omitted in this point (iv).

15The expression J ,(cl) vanishes for k£ = 0.
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3.1.2. Sketch of Proof

Orthogonal polynomials and T-function representation: Representation (3.1.4) of
the determinants of moment matrices as integrals follows immediately from the
fact that the square of a Vandermonde determinant can be represented as a sum
of determinants

A%(ug, ... up) = Z det(“ﬁ}:)_2)1gk,l§n‘

ocESn
Indeed,
i (£) = nldetima (f) = Z det (/ Zzl:(rlf)th(Za(k))dZa(k))
o€eS, E \<ki<n
I+k—2
= Z /;‘n det (zo-—l(—k) )1Sk7lsnpt(zo.(k))dzo_(k)

o€ES,
= A2(2) H pt(zr) dz,
En k=1

whereas the representation (3.1.4) in terms of integrals over Hermitian matrices
follows from Section 1.1.

The Borel factorization of m., is responsible for the orthonormality of the
polynomials p,(¢; 2) = (S(¢)x(2))n; indeed,

(pr(t; 2), pr(t; 2)) o<k <o = /ESx(z)(Sx(z))Tpt(z)dz =SmST =1.

Note that Sx(z)(Sx(z)) " should be viewed as a semi-infinite matrix obtained by
multiplying a semi-infinite column and row. The determinantal representation
(3.1.9) follows at once from noticing that (py(t;2),2F) =0 for 0 < k <n —1,
because taking that inner product produces two identical columns in the ma-
trix thus obtained. From the same representation (3.1.9), one has p,(t;2z) =
hn'/?2n + .-, where hy,, = Trnt1/Tn(t).

The “Sato” representation (3.1.9) of p,(¢; z) in terms of the determinant 7, (¢)
of the moment matrix can be shown by first proving the Heine representation of
the orthogonal polynomials, which goes as follows:

1
My (E z
R 2p, (t; 2) = idet ()
Tn
Hn,0 HUn,n—1 | 2"
@t [
. ui  up up n
=5 ) det} S [T pe(us) du;
11171 UEL uin72 o1 1
u'ir, u5b+1 u%n—l oM
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u? u(2) ... ug/
= — [ det| : N uug - -ul ! H pe(u;) du;
En
T i P !
ul  uy  ---up (27
0 0 0
Ug(1) Ug(2) "~ Ug(m)|]
DY 1
1 Yo) Yo2) " Yo(n)|* n
. . . o 1 -1
= ,7__ det : : : ua(l)ua(2) e uZ(n) H Pt (ua(i))duo’(i)
n JE™ n 1 un 1., un—l znfl 1
(1) 0(2) a(n) .
IR for any permutation o € .S,
0(1) 0'(2) o(n)
u? ug . u%
1 1 1
up  uy  e-ul |z
o 1 . .n . o 0 1 n—1 5
= det| : E (1) Up(1)Ug(2) - 'ug(n)HPt(ui)dUi
En ’U,;L 1 ug 1. unfl znfl 1
n
1 n
= / A2 (u) H(z — ug) pt(ur) dug, upon summing over all o.
- Tn n

Therefore, using again the representation of A%(z) as a sum of determinants,
Heine’s formula leads to

n

1/2 l k 2 Yo (k)
i *Pat, 2) = n! T / Z det (u + 1<k,lgn H( - )pt( Uo (k) B (k)

1
= det < fjkiz — —Ufjkl) Pt(ug(k)) dua(k)
n' Tn / Z (k) z o) 1<k,I<n
z" 1
= —det <uij - —ui,j+1>
Tn z 0<i,j<n—1
Zn -1
= ™ det (pi;(t — [2 D)ogi,jgn—l

= z"%(%(&z)_l]) (3.1.12)

invoking the fact that

stz = [T T = [t (12 L) e
VA

1
= pits(t) — ;Mi+j+1(t)-
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Formula (3.1.10) follows from computing on the one hand S(t)mex(z) using
the explicit moments p;;, together with (3.1.12), and on the other hand the
equivalent expression ST 1(t)x(z !). Indeed, using (S(t)x(2))n = pn(t;2) =

>0 Prk(t)2",

i>0 >0 1>0

=St / ) du

7>0 >0
J

— [ S ot Y (%) utwy
E >0 >0

. [ nt)

E zZ—U

Mimicking computation (3.1.12), one shows that

h:t/Z Z (STfl(t))nj P Tn+1(t + [zil])z—n,

720 7a(t)

from which (3.1.10) follows, upon using Sms = S'~!. Details of this and
subsequent derivation can be found in [5; 6].

The vectors p and q are eigenvectors of L. Indeed, remembering x(z) =
(1,2,22,...)T, and the shift (Av),, = v,41, we have

Ax(z) = zx(z) and ATx(z7!) =zx(z7') —ze;, withe; = (1,0,0,...)".

Therefore, p(z) = Sx(z) and g(2) = ST 1x(27!) are eigenvectors, in the sense
that

Lp = SASil,S’X(z) = zSX(z) = zp,
Lq=8TATSTS T Ix(z) =28 x(27!) — 28T ey = 2 — 25T e;.

Then, using L = LT, one is led to

((L—=zI)p), =0 forn>0,
((L—zI)q)n =0 forn>1

Toda lattice and Lie algebra splitting: The Lie algebra splitting of semi-infinite
matrices and the corresponding projections (used in (3.1.8)), denoted by ( ) and
( ), are defined as follows:

s = {skew-symmetric matrices},

1 = ith
gllco) =5 @b wit { b = {lower-triangular matrices}.
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Conjugating the shift matrix A by S(t) yields a matrix
L(t) = S(t)AS(t) !

=SAS 18T 15T
= SAm ST using (3.1.3)
= SmeATST using Amee = Moo AT

=S(S1STHATST using (3.1.3) again
=(SASTHT =L,

which is symmetric and thus tridiagonal. Moreover, from (3.1.3) one computes

om 0
— S(AFmy, — oo) T gpAkgl —1gT-1yoT
0 S( Moo = i )ST = SRS S (57T
0S asT
_ sk 14 gT-1
=L +3tk5 + S ot

Taking the () and ( )o parts of this equation (A_ means the lower-triangular
part of the matrix A, including the diagonal and A the diagonal part) leads to

aS asT oS
k -1 T-1 -1 11k
(L L—l—atks +<S Bt )0—0 and <8tks )0— 5(L%)o-

Upon observing that, for any symmetric matrix

()= (e o) =2 8) -2 5,

it follows that the matrices L(t), S(t) and the vector p(t;z) = (Pn(t;2))n>0 =
S(t)x(z) satisfy the (commuting) differential equations and the eigenvalue prob-
lem

as

o = —H(IS, Lp(t2) = 2p(6 2) (3:1.13)
and thus
g_i = —[1(LF), L], g_ti = —1(L*)ep (Standard Toda lattice).

The bilinear identity: The functions 7,(¢) satisfy the following identity, for n >
m+ 1, t,t' € C, where one integrates along a small circle about oo,

?{ Tt — [z )Ty (¢ + [271])62(“4;)#,2”7”71 dz = 0. (3.1.14)

An elementary proof can be given by expressing the left hand side of (3.1.14),
in terms of p,(t; z) and ppy,(t, 2), using (3.1.9) and (3.1.10). One uses below the
following identity (see [2]):

/Rf(z)g(z)dz: <f,/ﬂ§%du>oo, (3.1.15)
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involving the residue pairing'®. So, modulo terms depending on ¢ and ' only,
the left-hand side of (3.1.14) equals

) 7y, m tl, 00 41,4
?{ dzz "pp(t; z)ezl (ti=t;)z z"fmflzm“/ p4( w) et tiv p(u) du
zZ=00 R

zZ—U

= /pn(t;Z)ez(tﬁt;)zipm(t';z)ezt;zip(z) dz using (3.1.15)
R

= /pn(t;z)pm(t';z)eztizip(z) dz=0 whenm<n-—1. (3.1.16)
R

The KP-hierarchy: Setting n = m+1, shifting t — t—y, ¢ — t+y, evaluating the
residue and Taylor expanding in y and using the elementary Schur polynomials
Sn, leads to (see footnote 12 for the definition of p(d:)f o g and 9)

1 oo i
0= z—m- dze EE W (b my — [t +y+ [27Y)

= 2m dz (Zz s;(—2y) ) (; zjsj(5)> e yk%Tn oTy

_ 21 Yk f’tk Z i(_2y)5i+1(5)7'n O Tp
0

= (1+Zy]—+0 > <aitl+Zsi+1(5)(_2%+O(92)))Tn07n

0 o 0 =
= N [ — ) 2
(8t1 + El yk(@tk Bt Sk+1(a)>>7n07n+0(y )a
thus yielding (3.1.6), taking into account that

707 =0

ot

and that the coeflicient of yy, is trivial for £k =1, 2.

The Riemann—Hilbert problem: As a function of z, the integral (3.1.10) has a
jump across the real axis:

2zl —wu QM 22 2l —wu
72/ <0 Jz'>0

1 n(2; 1 n(2;
— lim / P ,( u) pe(u) du = pp(t, 2)pe(2) + — lim / Mpt (u) du.
21 2>z R R

Thus we have (see [29; 19; 5]):

16The residue pairing about z = co between f = Zaizi € Ht and g = ijz_j_l eXH
is defined as i>0 jez

(f19)00 = ?{_ z)g(z)— Zaz i

i>0
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COROLLARY 3.2. The matriz

M= . Tl
Tn(t Tn(t
Vi ()71 ®) -
Tat=() o mltET)
Tn(t) Tn(t)

satisfies the Riemann—Hilbert problem:

1. Y,.(z) holomorphic on the upper and lower half-planes C and C_;

2. Y, (2) =Yui(2) <(1) 27m'it(z)) (jump condition);

3. Y(2) <z_ 0 ) =14+ 0(z71), when z — oo.

3.2. Pfaff Lattice and symmetric/symplectic matrix integrals

3.2.1. Pfaff lattice, factorization of skew-symmetric matrices and skew-orthog-
onal polynomials. Consider an inner product with a skew-symmetric weight

Ay, 2):

(= [ 10050y, 2 dy dz, with 5,) = ~3(0:2)
(3.2.1)
Since (f,g): = —(g, f)+, the moment matrix, depending on ¢ = (¢1, t2,...),
Ma(t) = (i (t))osij<n-1 = (¥, 2 )e)o<ij<n 1

is skew-symmetric. It is clear from formula (3.2.1) that the semi-infinite matrix
Moo evolves in ¢ according to the commuting vector fields:

O . Om
Hij = Witk,j + Hi 4k, l.e., * = Akmoo + mooATk. (322)
8tk atk

Since my, is skew-symmetric, my, does not admit a Borel factorization in
the standard sense, but m., admits a unique factorization, with an inserted
semi-infinite, skew-symmetric matrix J, with J2 = —I, of the form (1.1.12) (see
2]):

meo(t) = Q1 () QT (),

where

QZn,Zn 0

Q(t) = 0 Quen € K. (3.2.3)

Q2n+2,2n+2 0
" 0 Q2n+2,2n+2




362 PIERRE VAN MOERBEKE

K is the group of lower-triangular invertible matrices of the form above, with
Lie algebra €. Consider the Lie algebra splitting, given by

t = {lower-triangular matrices of the form (3.2.3)}

24
n = sp(co) = {a such that Ja'J = a}, (3:24)

gloco) =¢@n {

with unique decomposition'”

a=(a)e+ (a)n
= (o~ J(a)T) + }ao — T(ao) ")
+ ((ay + J(ay)"J) + 2(ao + J(ao) " J)). (3.2.5)

2
Consider as a special skew-symmetric weight (3.2.1

) (see [13]):
Py, z) = 2D%(y — 2)p(y)p(z) with a = F1, p(y) =e VW), (3.2.6)
together with the associated inner product!® of type (3.2.1):
(o) = [ Fge= 92025y - 2)5()(z) dy (3:27)

[ Fa@e=T 10 ety — 2yt dy s tora = -,
/R{f, g}H(y)e=T 28" j(y)? dy for a = +1,

in terms of the Wronskian {f,g} := g—£ g— fg—z. The moments with regard to
these inner products (with that precise definition of time ¢!) satisfy the differen-
tial equations Ouij/0ty = pitk,j + Hi,j+k, as in (3.2.2).

Now recall that the determinant of an odd skew-symmetric matrix equals 0,
whereas the determinant of an even skew-symmetric matrix is the square of a
polynomial in the entries, the Pfaffian, which is defined by this property up to
sign.!® Now introduce the Pfaffian T-functions, defined with regard to the inner
products (3.2.7):

TQn(t) =
pf <// ykzle(y _ z)eZi’o ti(yi+zi)ﬁ(y)ﬁ(z) dy dz) ifa=—1,
R 0<k,i<2n—1 (3.2.8)
pf </ {v*,y'}e> 2 P (y) dy) if o = +1.
R 0<k,I<2n—1
Setting
_ p(2)Ig(2) for a = —1,
plz) =19 1,
P2 (2)Ig(2), t—t/2 fora=+1

17a4 refers to projection onto strictly upper (strictly lower) triangular matrices, with all
2 x 2 diagonal blocks equal zero. ag refers to projection onto the “diagonal”, consisting of 2 x 2
blocks.

18We set ¢(z) = signz, so that &’ = 26(z).

n
19We have (det ’ITLG(t))l/z = pf(man(t)) = ( 0<i<j<2n—1F2J ]) .

1
E dro ANdz1 N+ ANdxon_1
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in the identities (3.2.8) leads to the identities (3.2.9) between integrals and Pfaf-
fians, spelled out in Theorem 3.3 below. Recall that ¢ = (cy, ..., ca,) stands for
the boundary points of the disjoint union E C R. Denote by 8, (E) and T,(FE)
the set of matrices in §8,, and 7,, with spectrum in E.

THEOREM 3.3 (Adler, Horozov, and van Moerbeke [9]; Adler and van Moerbeke
[7]). Consider the integral

I = In(t,c) i= / 1An(2)]? TT (5 %% pl2) de.)

n

Then I, is a Pfaffian in certain cases:

e 3=1,n even:

I, = / eTr(—V(X)+X2 XY gy
Sn(E)

= n!pf <// Y ale(y — 2)e=T B p(y) p(2) dy dZ)
E? 0<k,l<n—1
=nl7,(¢,¢); (3.2.9a)
e 3 =4, n arbitrary:

Ton(E)

= n! pf < / {y*,y' 1T p(y) dy)
E 0<k,I<2n—1
= nlm,(t/2,c). (3.2.9b)
The I, and T,’s satisfy satisfy the following relations:
(i) The Virasoro constraints®® (2.1.7) for 3 =1,4:
2r o
2 1
<_ Z Cfﬂf(ci)% + Z(ai ﬁJEchi,n —bi ﬂJEcliJrl,n))In(t’ c)=0. (3.2.10)
1 >0

(ii) The Pfaff-KP hierarchy (see footnote 12 for notation)

- 1 KL -
- )m,oT, = ” n_ 2.11
(5140) = 5 g ) 700 =5k iz s (32,11
for n even and k = 0,1,2,.... The first relation in this hierarchy reads (for
n even)

o \4 O \2 52 Py 9 e
<(3_tl> #3(37,) _48t18t3>10gT"+6<6—ﬁ1°gT") =125

20Here the a;’s and b;’s are defined in the usual way, in terms of p(z); namely, —p’/p =

(Cbiz)/(F aiz?).
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(iii) The Pfaff Lattice: The time-dependent matriz L(t), zero above the first su-
perdiagonal, obtained by dressing up A and having the general form

0 1
—dy  (ha/hg)'/? 0
dy 1
L(t) = Q)AQ() " = —dy (hg/ho)'/? (3.2.12)
* d2
satisfies the Hamiltonian commuting equations
OL p )
Fri [—(L")e, L] (Pfaff lattice) (3.2.13)

(iv) Skew-orthogonal polynomials: The vector of time-dependent polynomials

q(t;2) = (qn(t; 2))nz0 = Q(t)x(2)

in z satisfies the eigenvalue problem
L(t)q(t, z) = zq(t, 2) (3.2.14)

and enjoy the following representations (with hap = Tony2(t)/T2n(t))

1
h71/2 m2n+1(t) V4
t;z) = 22 f
Qon(t; 2) @ P :
z
-1 —z ... —22"| 0
1
omp—12Ten(t—[27Y]) o 12
— pmpm1/2Tenl T IE ) ong
? an T2n(t) i .+ ’
Ho,2n+1
My () z B1,2n41
o1/ :
2n -
@nt1(t;2) = =" pf _
n+1(t2) Ton(t) 2277 pon 19041
-1 .. —z2n—1 0 —z2ntl
Pon41,0 oo Hopgign—t | 22T 0

ny— 1 0 — n —
& h2"1/2 Ton (t) <Z 0t1) Ton(t = [¢71]) = 2 +1h27:/2 +oe
(3.2.15)

They are skew-orthogonal polynomials in z; that is, <qi (t;2), g (¢; z)>t = Jij.



INTEGRABLE LATTICES: RANDOM MATRICES AND PERMUTATIONS 365

The hierarchy (3.2.11) already appears in the work of Kac and van de Leur [42]
in the context of what they call the DKP-hierarchy. Interesting further work has
been done by van de Leur [69].

3.2.2. Sketch of Proof.

Skew-orthogonal polynomials and the Pfaff Lattice: The equalities (3.2.9) be-
tween the Pfaffians and the matrix integrals are based on two identities [49].
The first, due to de Bruyn, reads

%/n H dy; det(F;(11) Gi(y1) .- Fi(yn) Gi(yn))ogiggn_l

— det!/? (/R(Gi(y)Fj () — Fi(y)Gi(y)) dy) |

0<4,j<2n—1
the second (Mehta [50]) is
A% (z) = det (le (b)) b (xb) ... b (‘r;),)ogigm—l'
On the one hand (see Mehta [49]) setting in the calculation below p; g(z) =

p(2)eX % Ip(2), Fi(z) := [ y'p,p(y)dy, and Gi(z) = F{(z) = o' py n(=),
one computes:

a1 L, 1Bon [ ootz

2n
_ i , '
= /7oo<z1<z2< det (zJHpt,E(ZJH))Ogm.ggn_l H dz;,
- <22p <00 i=1

n
= 2ok ) dz
/;oo<z2<z4< Hpt’E( Zk) 2k

<zep<oo k=1

Z2 Z2n
det </ Z1Pt,E(zl) dz1, 23, - - - ,/ Z2n71pt7E(an—1) dzon—1, Zzn)
0<i<2n—1

— 00 Z22n—2

n
= 2ok ) dz
/7oo<z2<z4< Hpt’E( Zk) 2k

e<z2op<oo k=1

det (E(ZQ)v Zév Fi(z4) - F:i('zQ)a Zia s 7Fi(z2n) - Fi(’z?n*?)v Zén)0<i<2n_1

/ oo<z2<z4< H dZ21 det( ( ) Gi(z2), ce ’Fi(z2”)’Gi(zQ"))OgiSanl’

- <z2, <00

1
5l H dy; det(Fi(yn), Ga(w) -, Fu(tn)s Gi(Un)) picam 1
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_ det!”? ( | GWEw-Fw6;w) dy)

0<4,5<2n—1

= pf < / / y*ale(y—z)eXt “(“"I)p(y)p(Z)dde) = Tan(t),
E? 0<k,I<2n—1

which establishes (3.2.9a).
On the other hand, upon setting

FJ(-’E) = xjp(:z:)eZtmi and GJ(.’E) = FJ’(Q;) — (-ij(.’r)eztiwi)"

one computes

LI @ma) [T @S et aa)

E 1<t ]<TL k=1

= /E H(,ﬁ(zk)ezzth dag) det (2 (23) 2 (28)' ... @ (&8)) ooy
: k=1 T

=g [L o det(Fitw) Gitwn) - Filon) Gilon)occsn s

= det!/? ( [ G)F ) - F)60) dy)

0<i4,j<2n—1
— pf ( [ A =T ) dy) = 7o),
E 0<k,l<2n—1

establishing (3.2.9b).
The skew-orthogonality of the polynomials gk (t; z) follows immediately from
the skew-Borel decomposition of m.:

(ar(t,y), @t 2)) k>0 = QU(Y', 27))ij>0Q T = QmeQT = J

with the g,’s admitting the representation (3.2.15) in terms of the moments.
Using L = QAQ ™!, mo = Q@ 'JQT ! and J? = —I, one computes from the
differential equations (3.2.2)

0=0Q (Akmoo + Mmoo ATE — Omoo ) Q—r
Oty

= (QAQ™)J = (JQTTIATFQT )T + —QQ (JQ*”EJ)J

Bt
(Lk+ngQ ) J(L’“ giQ )J.

Then computing the +, — and the diagonal part (in the sense of footnote 17)
of the expression leads to commuting Hamiltonian differential equations for @,
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and thus for L and ¢(¢; z), confirming (3.2.13):

0Q
ot;

OL

oL 99 _ _
ot;

= [(Li)mL]a ot =

—(LY)Q, (LY)eq (Pfaff lattice). (3.2.16)

The bilinear identities: For all n,m > 0, the 75,,’s satisfy the bilinear identity

7y ,,1 d
$ manlt = [ Dramialt + o e D g am 2 2

’ —1 d
+ f Tonsa(t + [2])Tam (' — [2])eS itz p2n-2m B2 g (3.9 17)
2=0 2mi
The differential equation (3.2.2) on the moment matrix mq, admits the following
solution, which upon using the Borel decomposition my = Q1J QT 1, leads
to

Moo (0) = = ZF 5A%m _(¢)e™ TT AT
= (Q(t)e=T A" TLr(Q(t)eZ T AT T (3.2.18)

so the right-hand side of (3.2.18) is independent of ¢; equal, say, to the same
expression with ¢ replaced by #'. Upon rearrangement, one finds

(Q(1)e= A" (JQ(t)eZ A" ) ™! = (JQ(1)e= M) TTH(Q(¢)eZ #A") T,
and therefore?!
§ QN © QU)K ) T iz
= 7{:0 ((JQ®) T 'x(2) ® Q' )x(= 1)) Tt (3919

2miz

Setting t — ' = [z; '] + [2, '] in the exponential leads to

-1 -1
et (te—ti)z" _ (1_i> (1_1) e (th—tr)z ™" _ (1_i> (1_i>
2 20/ 221 220/’

and somewhat enlarging the integration circle about z = oo to include the points
z1 and z3, the integrand on the left-hand side has poles at z = z; and 22, whereas
the integrand on the right-hand side is holomorphic. Combining the identity
obtained and the one, with z; * 0o, one finds a functional relation involving a
function ¢(t;2) =1+ O0(z1):

ot —[z3 i21) _ olt = [21 ] 22)

= , teC®, zeC.
o(t; 21) o(t; z2)

21We use Ax(z) = zx(z), AT x(z) = 2~ x(z) and the matrix identities (see [25])
dz dz
UVi=§ U@V Gae= ¢ U@ 81 x5
0

z2=00 2= 2miz
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Such an identity leads, by a standard argument (see [8, Appendix], for example)
to the existence of a function 7(¢) such that

R (A Ea)
o(t;z) = T

This, combined with the bilinear identity (3.2.19), yields the bilinear identity
(3.2.17).

The Pfaff-KP hierarchy: Shifting
tst—y, tetty

n (3.2.17), evaluating the residue and Taylor expanding in y leads to (for 8,
see footnote 12)

]. oo i
P e X W (t—y — [z Nrmea(t+y+ )7 2 dz
21 J,— oo
]. oo 'Zii n—2om
tom B EET I gt~y + )Tty - [2])27 " dz
2mi J,_g
1 = > -
= 2—\% ZZJS] E —Yi Bt Zziksk(_a)TQn ° T2m+22:2n72m72 dZ
°° j=0 k=0

2 .7{ g z JS (2y)e X vige; E z Sk 72n+2072mz2n 2m 4y
e

= Z Sj(_Qy)ezl “vinh $k(—0)T2n © Tom 2

j—k=—2n+2m+1
—Yi
+ Z Sj(2y)621 o $£(0)T2nt2 © Tom
k—j=—2n4+2m—1

10 0 = =
=--- +yk((§6_tl(9_tk - Sk+1(3))7'2n 0 Ton + Sk—3(0)Tont2 °T2n2> +---,

establishing the Pfaff-KP hierarchy (3.2.11), different from the usual KP hierar-
chy, because of the presence of a right-hand side.

REMARK. L admits the following representation in terms of 7, much in the style
of (3.1.7):
Loo Lon 0 0
Lo Lu Liz ©
L=h1? ¥ Ly Lo Lo hl/2,
* * f132 IA433

with the 2 X 2 entries IA/,']- and

h = diag(hg, ho, hg, hg, h4, h4, - ), hgn = Tgn+2/72n.
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For example, using - to denote partial differentiation with respect to ¢;:

_(IOgTZn). 1
j-lnn = ) - )
_52(3)Tzn _ 52( 3)7'2n+2 (log 72n+2)_
Ton T2n+2
e L 0 0 P . * (log T2n+2)"
Ln,n+1 = < 1 0 ) ) Ln+1,n — < % " .

3.3. 2d-Toda Lattice and Coupled Hermitian Matrix Integrals

3.3.1. 2d-Toda lattice, factorization of moment matrices and bi-orthogonal poly-
nomials. Consider the inner product

<f, g)t’s = // f(y)g(z)ezio(tiyi,s,-zi)-i-cyzdy dz, (331)
ECR2
r

on a subset £ = E1 X Fy := Ui:1[62i—1ac2i] X U::1[62i—1,é2i] C F1 x Iy C R2.
Define the customary moment matrix, depending on ¢ = (¢1,t2,...) and s =
(81, 82y .- ):

my(t,s) = (/Lij(t,s))ogiijgnil = (<y1,23>t,s)ogi7jgn71,
and let its factorization in lower-triangular times upper-triangular matrices be

Meo(t,s) = S5 (t,5)5a(t, 5).

(3.3.2)
Then m, evolves in t, s according to the equations
Opij _ Opij _
Bty = Mitk,j, D5k = —Hi,j+k>
ie., 6;;‘:0 = Afmg, ag::o = —meATE. (3.3.3)

In the next integral (3.3.4), dM denotes properly normalized Haar measure
on H,,.

THEOREM 3.4 (Adler and van Moerbeke [4; 3]). The integrals I,(t, s;c, &), with
Iy =1,

n

1 1 0o (4. i i
T =detm, = —I, = — // An(m)An(y) H 621 (ti$k—31yk)+6xkykdxk dy
n! n! [ Jgn Pt

= / / € Tr (M1 Mz)  Te 35° (4: M3 —s:M3) gL AN, (3.3.4)
92 (E)

satisfy the following relations:
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(i) Virasoro constraints®? (2.2.8) for k > —1:

T 8 B
(—Zci%l%+J,§2>Tf+csk+n(3) n(=0,)TE

(— Z et 08" + J(2))Tf + ¢80(8y)Spsn(—0s)TE 0 TF | =0, (3.3.5)

i=1
with
I =3P + @n+k+1)J0 +nn+ 1)),
JO = 1(J® L n+ k+1)J" 4 nn+1)77).

kn = 2
(ii) A Wronskian identity:?3
{82 log 7, 0%logT, } {02 log 1, 0%logT, } o (3.3.6)
S

(‘)t1832 ’ 8t1381 8318t2 ’ 8t1851

(i) The 2d-Toda lattice: Given the factorization (3.3.2), the matrices Lq
SlASfl and Ly := SzATSEI, with hy, = Tny1/Tn, have the following form,
where the (k — 1)-th subdiagonal is given by the diagonal matriz in front of

AFR—L.
Zdlag( at ) Tntk— 141 07n> AR
Tn+k—141Tn nez

hLFh1 Zdlag Ou)Tnik—t110Tn)  yio (3.3.7)
Tn+k—1+1Tn nez ’

and satisfy the 2d-Toda Lattice?*

OL; n O0L; " )
o =[(L})+, Li] and s =LY, L;], i=1,2.

(3.3.8)

(iv) Bi-orthogonal polynomials: The expressions
t—[y '] s)
M) (¢, s:9)): = (Sy(t _ =y s
2 ( ,S,y) (Sl( ;S)X)y))n Y Tn(t,s) ’

T, S 271
P2 (t5:2): = (bS] M (t,9)x(2)),, = W (3.3.9)

22For the Hirota symbol, see footnote 12. The J( )s are as in remark 1 at the end of

Theorem 2.1, for 3 = 1 and J =J “|t——s, with
w_ 0 @ _ 0?
J Z E)t_yp, JP = 2 itijt;.
BT gy TR Z at,0t; Z oty > it
i+j=k —itji=k —i—j=k
of

23in terms of the Wronskian {f,g}; = ag fa
24py and P_ denote the upper (including diagonal) and strictly lower triangular parts of

the matrix P, respectively.
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form a system of monic bi-orthogonal polynomials in z:

(D (t,59), 02 (t,52)) 15 = b with hy = 1L, (3.3.10)

Tn
which are also eigenvectors of L1 and La:
2p(t, 83 2) = Li(t, s)p (¢, s; 2),
) (t,52) = L3 (4, )p (¢t 53 2)- (3.3.11)
REMARK. Each statement can be dualized via the duality ¢t <> —s, L; ¢
hLjyh™1.

3.3.2. Sketch of proof. Identity (3.3.4) follows from the fact that the product
of the two Vandermonde appearing in the integral (3.3.4) can be expressed as a
sum of determinants:

Ap(w)An(v) = Y det(ul o), kn (3.3.12)
oc€S,

together with the Harish-Chandra, Itzykson and Zuber formula [34; 38]

/ U7 e U0 (2m)nn—1)/2 det(e**¥7)1<ij<n (3.3.13)

Moreover the 7,,’s satisfy the following bilinear identities, for all integer m,n > 0
and t,s € C*:

7{ Tt — [27Y, ) Tmgt (£ + [27Y], 8')e Xt (i mt)=" yn—m—1 g,
_ ?{ st (b5 — [2])Tm(t', 8 + [2] ) (smsD= " pnom1 g0 (3.3 14)
z=0

Again, the bi-orthogonal nature (3.3.10) of the polynomials (3.3.9) is tanta-
mount to the Borel decomposition, written in the form Sime(hS, )T = h.
These polynomials satisfy the eigenvalue problem (3.3.11) and evolve in ¢, s ac-
cording to the differential equations

opH) op

5 = (L)Y, e = —(L5)-p,
ap@ ap®
g; =—((h*Lih)™) p@, ;’S = ((h 'Leh)™) p®.  (3.3.15)

From the representation (3.3.7) and the bilinear identity (3.3.14), it follows
that _
pk—l(at)7n+2 O Tn _ 2

T2  Os,0ty,

log Tp+1, (3.3.16)

and so, for k =1,
TnTnt2 02

7‘5_,_1 - 3818t1

log Tn41- (3.3.17)
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Thus, using (3.3.7), (3.3.16) and (3.3.17), we have

- 0% log T i1
(Lk) — pkfl(at)7n+2 O Tp _ 0810t
1 nmn+1 TntoTn 82 long+1 )
3518t1
. 0 log T 1
(hLPnt), = Pt CO ot OO (g5 1)
mntl Tn+2Tn 0 IOng+1
8516t1
Combining (3.3.18) with (3.3.17) for k = 2 yields
A
2 _ 8510t2 il - 0 Tn+2
(Ll)n,nﬂ = f = o log( — - (3.3.19)
o) n
6516t1 8 Tn+1

= ilo (T"+1)2 ” log T,

o Btl & Tn 8516t1 &Tntl |-
Then, subtracting 8/9s1 of (3.3.19) from 9/0%; of the dual of the same equation
(see remark at the end of Theorem 3.4) leads to (3.3.6).

3.4. The Toeplitz Lattice and Unitary Matrix Integrals

3.4.1. Toeplitz lattice, factorization of moment matrices and bi-orthogonal poly-
nomials. Recall that a Toeplitz matrix is one whose (2, j)-th entry depends only
on ¢ — j. Consider the inner product

(F(2), 9(2))en = 745 dz

1 2miz

(z)g(zfl)eZTo(tizi,siz_i), t, s € Coo, (341)

where the integral is taken over the unit circle S' C C around the origin. It has
the property

(2% f g5 = (f,2 79,6 (3.4.2)
The ¢, s-dependent semi-infinite moment matrix mq(t, s), where
p(Z) dz k—1 Z""(tlzi—sz_i)
ma(t,s) == ((zF, 2", = <% P2 27 k=131 (fiz" —ss
( )ogk,lgn 1 o 2miz o<hicn 1

= Toeplitz matrix (3.4.3)

satisfies the same differential equations as in (3.3.3):

agZ"" =A"m. and a{;”"" = —mgA™".  (2-Toda Lattice)  (3.4.4)
n Sn

As before, define

Tn(t, ) := det my (¢, s).
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Also, consider the factorization me(t,s) = S; *(t,5)Sa(t, s), as in (3.3.2), from
which one defines L, := SlASfl and Ly := S’gATS’gl and the bi-orthogonal

polynomials p(.k)

;. (t,8;2) for kK = 1,2. Since m, satisfies the same equations
(3.3.3), the matrices Ly and Lo satisfy the 2-Toda lattice equations; the Toeplitz
nature of m, implies a peculiar “rank 2”-structure, with h;/h; 1 = 1 —z;y; and

Zo=yo=1:

—Z1Yo0 1-— T1Y1 0 0
—Tayo —Tayr 1 —T2y2 0
h~'Lih=| —%3%0 —x3yn  —x3y2 1 —x3y3
—Z4Yo —T4Y1 —T4Y2 —T4Y3
and
—ZoY1 —ZoY2 —ZoYs3 —ZoY4
1—mzy1  —T1Y2 —T1Y3 —T1Y4
Ly = 0 L—zoys  —ways —T2ys : (3.4.5)

0 0 1—23y3s —T3y4

Some of the ideas in the next theorem are inspired by the work of Hisakado
[37].

THEOREM 3.5 (Adler and van Moerbeke [7]). The integrals I,,(t,s), with Ip = 1,

1 1 i cory i =iy d
Talt,s) = detm, = I, : = = [An(2)? TT (3T tesimnen) 22k
n! n! (S1)n Pty 22

U(n)
= > sxa(t)sa(—s), (3.4.6)
{Young diagrams A|X;<n}
satisfy the following relations:
(i) An SL(2,Z)-algebra of three Virasoro constraints (2.3.2):
T (t:m) =3 (=, m) =k (03, (6:m)+(1=0)1 L (=5,m)) Tn(t, 5) = O,

k=-1,0=0,
for ¢ k=0, 0 arbitrary, (3.4.7)
k=1, 60=1.

(ii) 2d-Toda identities: The matrices L1 and Ly defined above satisfy the 2-Toda
lattice equations (3.3.8); in particular,

82

881 8t1

Tn—1Tn+1

2
Tn

log 7, =
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and

2 2 3

0 Tn 0
= logT,=-2-—"1 : log Tn — —5—— log T, 3.4.8
6823t1 08T 681 8 Tn—1 8813t1 08T 35%6151 08T ( )

the first being equivalent to the discrete sinh-Gordon equation

%qn
8t1 (981

-
where ¢, = log nil

n

— e‘]n7QTv,—1 _ eQH-}—l*QH,

(iii) The Toeplitz lattice: The 2-Toda lattice solution is a very special one — the
matrices Ly and Ly have a “rank 27 structure, given by (3.4.5), whose x,’s
and y, ’s equal?®

]. oo i Vi
Ta(t,8) = —/ Sn(—Tr M, -1 T M? -1 Tr M3, ) e20 Tr(tM =siM) gpp
Tn JU(n)

PRI W
M0 20t 30t3)

Tn(t, 8)
1 v " oo i V&l
yn(tvs = _/ S”(_TrMa_%TI‘M2v_%’I‘I‘M37 ) ezl Tr(t: M 7SiM)dM
Tn JU(n)
0 10 190
(=, ==, ==, ... )Ta(t,
5 Gnaanzag 0
- = DPn (t,S,O),
Tn(t, )
(3.4.9)
and satisfy the integrable Hamiltonian system
Ozn, oH" oy, oHY
=(1- nJn ! ) =—(1- nYn z )
S R T
O OH”  dyn oH?
Os. = (1 - mnyn) ayl " Ds. = _(1 - mnyn) 8:; (3.4.10)

(Toeplitz lattice), with initial condition x,(0,0) = y,(0,0) =0 forn > 1
and boundary condition xo(t,s) = yo(t,s) = 1. The traces

1 .
H® = _—Trri, i=1,23,..., k=12
?

)
of the matrices L; in (3.4.5) are integrals in involution with regard to the
symplectic structure w := > " (1 — zxyx) * dzk A dyx. The Toeplitz nature of
Moo leads to identities between T’s, the simplest (due to Hisakado [37]) being:

82 82 (9 Tn41 (9 Tn41
1 log 7, )(1 1 n):——l nHL _— Jog L.
( + 8818t1 08 Tn+1 + 6518t1 08T 8t1 o8 Tn 881 08 Tn
(3.4.11)

25Remember that the s(t1,ta,...) are elementary Schur polynomials.
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REMARK. The first equation in the hierarchy above reads:

B.Tn 3?Jn
., — In 1- nYn)y, [ = " Yn— 1-— nYn),
a5, = ° +1(1 = znyn) o5, ~ Y 1(1 = Znyn)

Ozn
881

Oyn
= xnfl(l - -Tnyn)a 8—81 = _ynJrl(]- - -Tnyn)

3.4.2. Sketch of Proof. The identity (3.4.6) between the determinant and the
moment matrix uses again the Vandermonde identity (3.3.12),

/ ST TG M s ) gap
U(n)

n
ooy i L, dzk
— A, 2 ST (tizg—sizy ")
/(Sl)nl (Z)| H <€ 27rizk

k=1

n oo i —1 de
= A A, (z S (tizg—sizy ) 20k
[, 20 n<z)k]_11(e o
3 det (zH szl) ﬁ I iz sz ) A2k
Styn o(m)"o(m) ) 1<l m<n 2mizy,
(Y™ pes, SHMER
> det (7{ (e S )
51 2z 1<l,m<n

oc€Sy

= nldet <?{ zlmeZ?o(tizisizi)d—%>
gt 2miz 1<l,m<n

= nldet my, (¢, s) = n!7,(¢).

The last equation of (3.4.6) follows from the fact that the solution to equations
(3.4.4) with initial condition mu (0, 0) is given by

Meoo(t, 8) = €21 A (0,0)e™ X1 sid™t

Since (3.4.3) gives the initial condition m(0,0) = I, the Cauchy—Binet for-
mula implies
Tn(t, s) = det my, (¢, s)

= D sa()su(=s)det (hr—itnw;—jin)ycijen = D SAE)SA(=8),
g A {A1A<n}
A1,01<n
establishing the last equation of (3.4.6); details can be found in [7].
Using the equality 2¥T = 2% (see (3.4.2)), one shows that the polynomials

P11 (2) — 2P (2) and pl),(0)2"pP (271
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are perpendicular to the monomials z°,21,..., 2™ and that they have the same
29-term; one makes a similar argument, by dualizing 1 <+ 2. Therefore, we have
the Hisakado identities between the polynomials

Pria(2) = 20 (2)

P (0)2mpP (271
2
piL(z) PP (2) = p2)

@) (0)zpP (=Y. (3.4.12)

The rank 2 structure (3.4.5) of L; and Ly, with z,, = p%)(t $;0) and y, =
(2)(t s;0), is obtained by taking the inner product of p,, +1( z) — 2 )( ) with
itself, for different n and m, and using the fact that zp& )( )= Llp(l)( ).

To check the first equation in the hierarchy (see remark at the end of Theorem
3.5), consider, from (3.4.9),

Or, OV (t,s;2)

B, Bt = —((Ll),p(l))n|z:0 using (3.3.15)

z=0

) 2
(t, o t,50
= hnp') L (2, 5;0) E jpl % (¢,5:0) using (3.4.5)

n—1
er 1
= hna?n+1 Z hy
i=0 '
n—1
1 1 . h
= fnnia ; (h_z N hil) usine hi—1 =1-aiw
hn
= xn+1h—1 = Znt1(1 — Tnyn),
e

and similarly for the other coordinates. From (3.3.7) and (3.4.5), upon making
the products of the corresponding diagonal entries of L; and hLJ h™!, one finds
(3.4.11):

a Tn+1 i Og Tn+1

log
atl Tn 651 Tn

= " Tnt1YnTnlYnt1 = —TalYnTn+1Ynit1
_<1 . hn )(1 B hn+1>‘
hnfl hn

4. Ensembles of Finite Random Matrices

4.1. PDEs Defined by the Probabilities in Hermitian, Symmetric and
Symplectic Random Ensembles. As used earlier, the disjoint union E =
U7 [c2i—1,2i] C R, and the weight p(z) = e~V ()| with —p'/p = V' = g/ define
an algebra of differential operators

27
0
Bk = ZC?+1f(Ci)a—c, keZ.
1
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The aim of this section is to find PDEs for the following probabilities in terms
of the boundary points ¢; of E (see (1.1.9), (1.1.11) and (1.1.18)), i.e.

P,(E) : = P,( all spectral points of M € E)

. f&fn(E), 8n(E) or Tn(E) etr VM) ap

J3ea®), $u® or T € VD AM
S 2@ P Ty e V&) day
— ﬁRn 1AL ()P T, e~V dzy”

(4.1.1)

B =2,1,4 respectively,

involving the classical weights below. In anticipation, the equations obtained
in Theorems 4.1, 4.2 and 4.3 are closely related to three of the six Painlevé
differential equations:

weight p(z) Painlevé
Gauss e’ v
Laguerre 2% %* A%

Jacobi (1—2)%(1+2)® VI

For 8 = 2, the probabilities satisfy partial differential equations in the boundary
points of E, whereas in the case § = 1,4, the equations are inductive. Namely,
for 8 =1 (resp. 8 = 4) , the probabilities P, ;2 (resp. P,11) are given in terms of
P,,_5 (resp. P,_1) and a differential operator acting on P,. The weights above
involve the parameters 3, a, b and

som2((2)" (0" {0 oz,

As a consequence of the duality (2.1.12) between (3-Virasoro generators under the
map (3 +— 4/8, and the equations (2.1.7), the PDEs obtained have a remarkable
property: the coefficients () and @; of the PDEs are functions in the variables
n, B, a, b, having the invariance property under the map

a b
—9 Y SN
n— —2n, a— 5 — 5
to be precise,
a b _ b
Qi<_2naﬂa_§a_§)‘ﬂ:1 _Qi(n,ﬂ’a’ )|,3:4=' (412)

The results in this section are mainly due to Adler, Shiota, and van Moerbeke
[11] for 8 = 2 and to Adler and van Moerbeke [6] for § = 1, 4. For more detailed
references, see the end of Section 4.2.
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4.1.1. Gaussian Hermitian, symmetric and symplectic ensembles. Given the
disjoint union E and the weight eb%’
form

, the differential operators Bj take on the

2r o
Br = P
=24

Define the invariant polynomials

Q = 120%n (n +1- %) and Qo =4(1+ (51574)b<2n +02, (1 - 3))

THEOREM 4.1. The probabilities

 Jpn 1A (2)P T e ¥ day,
fIRn |An(z)|ﬁ H::l e~ dzy, ’

P.(E) (4.1.3)

with 8 = 2,1, 4, satisfy the following PDE, where we put F := F,, = log P,:

P 2P - _
5 n—1Tnty o 2 whenn even and B =1,
51,4Q< P2 1) with mdez{ 1 when n arbitrary and B3 =4

2

b
- (3i1+(Q2+693% (F)YB2, +4(2— 67 ) ﬂ(3B(2)—4B_1$1+6$0))F. (4.1.4)

4.1.2. Laguerre Hermitian, symmetric and symplectic ensembles. Given the
disjoint union £ C Rt and the weight 2%e~%*, the B;, take on the form

2r 6
§ : k+2
%k = a C; —aCi .

Define the polynomials, also respecting the duality (4.1.2),

¥

nn—1)(n+2a)(n+2a+1) for f=1,
n(2n+1)2n+a)(2n+a—1) for 8 =4,

N W

2
Q2= <3,6n2 — % +6an+4<1 — g) +3>5ﬁ4 +(1-a?)(1 _5{3,4)
Q= <ﬂn2+2an+ (1- g)) Qo =b2- &) (n+5).

THEOREM 4.2. The probabilities

_ fEn |An(z)|ﬁ HZ:I de_bzk dzp,
fRi |An(2)1P [Tpey 2pe b5 dzy,

Py(E) (4.1.5)
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satisfy the following PDE, where we put F := F,, = log P, and use the same
convention on the indices n =2 and n =1 as in (4.1.4):

P 2 2

-1 nt

5{3@(% - 1) = (B‘il —2(67 4 +1)B3,
n

+(Qa + 6B F —4(62, + 1)B_1F)B? | — 387 ,(Q1 — B_1F)B_,
b2
+ 5(2 — 07 )(3B3 — 4B1B_1 — 2B1) + Qo(2BoB_1 — Bo))F. (4.1.6)

4.1.3. Jacobi Hermitian, symmetric and symplectic ensembles. In terms of
E C [~1,+1] and the Jacobi weight (1 — 2)2(1 + z)?, the differential operators
B take on the form

With by = a — b, by = a + b, introduce the variables

(Bn4b1+2—06)(Bn+b1),

D

r= 50+ O42-6)), 5= Shbi+2-6), =

which themselves have the invariance property (4.1.2). Introduce also the fol-
lowing invariant polynomials in g, r, s:

Q =15 (5" —ar+¢°)” — 4(rs” — 4gs” — 45* + ¢°r)) ,
Qq =352 — 3qr — 61 + 2¢* + 23¢ + 24

Q2 = 3qs® + 9s% — 4¢°r + 2qr + 4¢° + 1042,

Qs = 3qs® + 65% — 3¢°r + ¢> + 4¢>

Qs =95 —3qr —6r+¢* +22¢+24 = Q; + (65> — ¢* — q). (4.1.7)
THEOREM 4.3. The probabilities

S 180 (2)P Ty (1 = 22)° (1 + 25)° da,

f[—1,1]n 1AL (2) [P Ty (1 — 25)a (1 + 2x)? dzg (4.1.8)

Pn(E) =

satisfy the following PDE, where we put F' = F,, = log Py:
for B =2:
(2‘B‘f1 +(g—r+4)B%, — (4B _F —5)B 1 +3¢B2 — 2¢B, + 8ByB2,

- 4(q - 1)313,1 + (43,1F - S)Bl + 2(4‘3le - S)'Bo‘B,l + QQBQ)F
+4B? | F (2BoF + 3B? ,F) =0 (4.1.9)
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for B =1,4:

B

= (q+1)(4¢BL, +12(4B_1F —5)B>, +2 (¢ +12) (4B_1F — 5)BoB_4
+3¢*BE —4(q—4)gB1B_1 +q(4B_1 F —5)B; +20¢BoB2 | +2¢*B,) F
+(Q2B? ;| —sQ1B_1+Q3Bo) F +48(B_1F)* —48s(B_1F)* +2Q4(B_1 F)?
+12¢°(BoF)*+16q (2q—1) (B2, F)(BoF) +24(q—1) q(B, F)?
+24(2B_1F —s)((q+2)BoF + (q+3)B? F)B_1 F. (4.1.10)

The proof of these three theorems will be sketched in Sections 4.3, 4.4 and 4.5.

4.2. ODEs When E Has One Boundary Point. Assume the set E consists
of one boundary point ¢ = z, besides the boundary of the full range; thus, setting
respectively E = [—o0,z], E = [0,z], E = [—1,z] in the PDEs (4.1.4), (4.1.6)
and (4.1.9), (4.1.10), leads to the equations in = below. Notice that, for 8 = 2,
the equations obtained are ODEs and, for § = 1, 4, these equations express P, ;2
in terms of P,_s and a differential operator acting on P,:

d
(1) Gauss ensemble (8 =2,1,4) : fu(z) = o log P, (max; A; < x) satisfies

P 2P o
n— n—+
Ty
b’z?

__ p 12 YL o8B o bz_x
= 082+ (150 - D + @) 1 - 47

d
(2) Laguerre ensemble (8 = 2,1,4): fn(z) = z— log P,,(max; A\; < z) (with all
. . dz
eigenvalues \; > 0) satisfies:

(62, —2)fn. (4.2.1)

P 2P 2 bZ 2
n—37" " ntj xr
5,Q <7 - 1) - (36?,4fn T8, 2)— Qur - 36?,4@) fu

P2 B
= oy — (207, — )a’ fy + 62° £
b2
—z <4(5{{4 +1)fn — 7(5{{4 —2) —2Qoz — Q2+ 287 4 + 1) fh. (4.2.2)

d
(3) Jacobi ensemble: [ = fn(x) = (1 — xg)d—loan(maxi Ai < z) (with all
eigenvalues —1 < \; < 1) satisfies: *

o for f=2:

2(x2_1)2f///+4(m2_1) (a:f"—3f'2)—|—(16a:f—q(m2 _ 1) —2833—7“) f/
—f(Af—qz—3s) =0, (4.2.3)
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o for f=1,4:

Q(M_Q
P

=4(g+1)(® = 1)*(—g(2® = D" + (12f — gz — 35)f" + 6¢(q — 1)f"*)
—(a® —1)f"(24f(q+3)(2f — 5) +8fq(5¢ — 1)z — g(q+1)(gz” + 252 +8) + Qo)
+ F(48f° +48f%(qz + 2z — s) + 2f (8¢ + 2qz* — 12gsz — 2457 + Q)
—q(q + 1)z(3g2® + sz — 2qz — 3q) + Q37 — Q15). (4.2.4)

For 8 = 2, the term containing the ratio (P, 2P, /P2) — 1 on the left-hand
side of (4.2.1), (4.2.2) and (4.2.4) vanishes, and one thus obtains the following
ODEs:

e Gauss: fp(z) = % log P, (max; A; < x) satisfies
" +6f?% 4+ 4b(2n — ba?) f' + 4b*x f = 0.
e Laguerre: f,(z) := x% log P, (max; \; < x) satisfies
22" 4 af” +6xf? —4ff — ((a — bx)? — 4nbx)f' —b(2n 4+ a — bx) f = 0.
e Jacobi: f,(z) = (1— m%% log P,,(max;)\; < x) satisfies
2(z® — 1) f" +4(z® — 1) (zf” — 3f?) + (16zf — q(z® — 1) — 25z —7) f’
—fdf—qgx—s)=0.

Each of these three equations is of the Chazy form (see the Appendix on Chazy
classes)

P’ 6 4P’ P 4 2 !
flll + Ff-// + Fflz ff + f2 + Q Q f + , (4.2‘5)
with c=0and P,Q, R havmg the followmg form:
Gauss P(z)=1 4Q(z) = —4b*z? + 8bn R=0
Laguerre P(z) ==z 4Q(z) = ( r — a)? + 4bnz R=0
Jacobi  P(z)=1-22 4Q(z)=—3(g(z*—1)+2sz+7) R=0

Cosgrove shows that such a third order equation (4.2.5) in f(z), with P(x),
Q(z), R(z) of respective degrees 3, 2, 1, has a first integral (9.0.2), which is
second order in f and quadratic in f”, with an integration constant c. Equation
(9.0.2) is a master Painlevé equation, containing the 6 Painlevé equations. If

f(z) satisfies the equations above, then the new (renormalized) function g(z)
defined by

Gauss 9(2) =b7V2f(2b1/2) + Znz
Laguerre g(z) = f(z) + 1b(2n + a)z + %a?

Jacobi  g(z):=—3 (ac)|$:2z_1 — 302+ 15(a+s)
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satisfies the canonical equations, which then can be transformed into the stan-
dard Painlevé equations; these canonical equations are respectively

o g2 = —4g" +4(zg — g)? + Arg + As, (Painlevé IV)
o (29")? = (29’ — 9)(—49" + A1(2g' — g) + A2) + Asg’ + Ay, (Painlevé V)

o (2(z — 1)g")? = (29’ — 9)(49"* — 49'(z¢’ — g) + A2) + A1g"* + Asg' + A4,
(Painlevé VI)

with respective coefficients

o 4y =3(in)", A =~ (in)’,

[ ] A1 = b2 A2 = bz((’ﬂ +% )2 + %a2), A3 = —a2b(n + %a), A4 = %(ab)Z X
((n +30)* + 50),

o A1 =5(2¢+7), As = 1545, Az = gz ((q— 5)> +2qr), As = 5159(25° +qr).

For 8 = 1 and 4, the inductive partial differential equations (4.1.4), (4.1.6),
(4.1.10), and the derived differential equations (4.2.1), (4.2.2) and (4.2.4) are
due to Adler and van Moerbeke [6]. For 8 = 2 and for general E, they were
first computed by Adler, Shiota, and van Moerbeke [11], using the method of the
present paper. For 8 = 2 and for F having one boundary point, the equations
obtained here coincide with the ones first obtained by Tracy and Widom in [63],
who recognized them to be Painlevé IV and V for the Gaussian and Laguerre
distribution respectively. In his Louvain doctoral dissertation, J. P. Semengue,
together with L. Haine [32], were lead to Painlevé VI for the Jacobi ensemble,
for 8 = 2 and E having one boundary point, upon subtracting the Tracy and
Widom differential equation [63] from the one computed with the method of
Adler, Shiota, and van Moerbeke [11]. The classification by Cosgrove [23] and
Cosgrove and Scoufis [24, (A.3)] leads directly to these results.

4.3. Proof of Theorems 4.1, 4.2 and 4.3

4.3.1. Gaussian and Laguerre ensembles. The three first Virasoro equations, as
n (2.1.29) and (2.1.32), are differential equations, involving partials in ¢ € C*
and partials D1, D, D3 in ¢ = (c1,-..,car) € R?", for F := F,(t,c) = log I,;
they have the general form:

DkF———I— Z YeiVi(F) + vk + 0xt1, k=1,2,3, (4.3.1)
—1<5<k
with first V;(F)’s given by
., OF p 0’F (8F>2 :
(F) = t; o i\ =5 — ), -1<j<2. 4.3.2
Vi(F)= Y i 8ti+j+262’1<8t% + 3t j (4.3.2)

iitg>1

n (4.3.1) and (4.3.2), 8 > 0,7k;,Vk, 0k are arbitrary parameters; also d2; = 0
for j # 2 and = 1 for j = 2. The claim is that the equations (4.3.1) enable one
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to express all partial derivatives,

gt B(t )

i1 il )
oty ..oty |,

along L :={all t;, =0, ¢ = (c1,...,cqr) arbitrary},

(4.3.3)
uniquely in terms of polynomials in

Djl PN ‘:DjTF(O,C).

Indeed, the method consists of expressing OF /0ty | o in terms of Dy f | 4o using
(4.3.1). Second derivatives are obtained by acting on DxF with D;, by noting

that D; commutes with all ¢-derivatives, by using the equation for D;F', and by
setting in the end ¢t = 0:

DleF Dl—+ Z 'Yk:JDl ))
—1<j<k

< + Z Vi ) 1(F), provided V;(F') does not

—1<j<k contain nonlinear terms
<8t 2 M )(at 2 miv; +5’t1>
—1<j<k —1<<l

_ 0’F
o Ot 0t

+ lower-weight terms.

When the nonlinear term is present, it is taken care of as follows:

OF OF _ OF OF 0
‘Dl((‘)tl) N 28_751918_751 o 28151 Ot (3t1 + Z Y3 Vi(F) + +5lt1)

—1<j5<1

Higher derivatives are obtained in the same way. We only record here, for future
use, the few partials appearing in the KP equation (3.1.6):

0’F
rrafe (DI—710D1) F+v1071— 01
1

O'F
o | (D1 —6v10D3 +1173, DI —675,D1) F—6774(61—71710)
1

0’F
ol (D3 —2720D2 +B721732 D3 — (271 +710) 7217328+ 272,-1) D1 — 2721 D3) F
2

+ 8721732 (D1 F)* 4+ By21732(VE +71071 — 1) +2(Y2173 +Y20Y2 + V172, 1)

0’F
O0t10t3 1 ¢

3
= ('Dl'Da — 2’732D§+,3’732(’71 +27v10) D3 — 75’)’10732(2’)’1 +710)D1
3
—371,-1D2 —371093) F+ 76710732(9117)2 —B32(D1F)(DIF)

+3 (271073 +B8732710(7F +71071 —01) +271,-172) -
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4.3.2. Jacobi ensemble. Here, from the Virasoro constraints (2.1.35), one pro-
ceeds in the same way as before, by forming ‘BiF|t:0, BiBjF|t:0, etc., in terms
of t; partials. For example, from the expressions B,1F|t:0, 232_1F|t:0, BOF|t:0,
one extracts

or| o) or
Oty li=0’  0t2 li=0’ Oty

From the expressions B§1F|t:0, BOB,1F|t:0, B1F|t:0’ and using the previous

t=0

information, one extracts

8_F
Ots

O*F
=0 Ot10ty

0*F
t—0’ Ot}

t=0
Finally, from the expressions BoF|,_,, B1B 1F|,_,, B¢F|,_,, BoB2 F|,_,»
B‘ilF|t:0, one deduces

0*F
t=0" Ot}

0?F
t=0’  Ot10t3

O3F

=0’ Ot20ty

oF
ot}

oF

, 4.3.4
t=0" Ot4 ( )

t=0
This provides all the partials, appearing in the KP equation (3.1.6).
4.3.3. Inserting partials into the integrable equation. From Theorem 3.3, the in-

tegrals I,(t, ¢) , depending on 8 = 2,1,4, on ¢t = (¢1,%2,...) and on the boundary
points ¢ = (¢1,...,ca,) of E, relate to 7-functions, as follows:

Ite) = [ 180@1° T 4 p(en) d)
k=1

nl7,(t,c), n arbitrary, § =2,
=< nl7m,(t,c), n even, 8=1, (4.3.5)
nl1on (t/2, ), n arbitrary, 5 = 4,

where 7,(t, ¢) satisfies the KP-like equation
n arbitrary for § = 2,

n even for 8 = 1,4,
(4.3.6)

a\! 2\ , & 7\
KP)F := — 3l =— ) —4 F+6|—=F) .
(KP). <<0t1> - <8t2> 8t18t3> - (8t% )
Evaluating the left hand side of (4.3.6): Here I,,(t) will refer to the integral (4.3.5)
over the full range. For 8 = 2, the left-hand side is zero. For 8 = 1, the left-hand

side can be evaluated in terms of the probability P,(E), as follows: taking into
account P, := P,(E) = I,(0,¢)/I,(0),

TTL*Z(tac)TTH“Z(tac) B _
12 Py PR 04= (KP)¢log T (t,c),

with

Tn—2 (tv C)Tn+2 (t7 C)
Tn(ta 0)2

_ (n‘)2 In_g(t, C)In+2(t, C)
=0 (n—2)!(n+2)! I, (t,c)?

12

t=0
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n(n — 1) Infz(O)Ifn+2(0) Pn72Pn+2

(n+1)(n+2) 1,(0)2 p2
P, 2(E)P,,2(E)
= 12N 202 +
TR
with b3 given by?®
n(n—1
% (Gauss),
M _ nn—1) I, 2(0)I,2(0) _ n(n—1)(n+2a)(n+2a+1) L
b = ) ndl) LL(0) 164 (Laguerre),
% (Jacobi).
6
(4.3.7)
For 8 = 4, we have
127—2nf2 (t/2,¢)T2n12(t/2,c) —19 (n! > I 1(t, ) Inya(t, c)
Ton(t/2, )2 o (n=D(n+1) I,(t,c)? =0
19" I,—1(0)Ip41(0) Pr—1Ppia
(n+1)  In(0) P2
Pr1(B)Pnya(E)
— (4) 1 +1
12b,, P2(E) ,
with
2n(2 1
% (Gauss),
2
(4) _ (n!) I,-1(0)1,,+1(0) _ 2n(2n+1)(2n+a)(2n+a—1) L
b = i) 2(0) B (Laguerre),
% (Jacobi),
6
(4.3.8)

where @ is precisely the expression appearing in (4.1.7) and where

+forg =1,

Qf =3¢(g+1)(g—3) (Q+4i4\/m) {—forﬂ:4-

by

(4.3.9)

The exact formulae and b show they satisfy the duality property (4.1.2):

b (a,b,n) = b (—La,—1b,—2n).

26 This calculation is based on Selberg's integrals: see Mehta [49, p. 340]. For instance, in
the Jacobi case, one uses

L) = /[ 1,1]n An(@)? [T —25)*(1 +2;)" da;
1, i
— 9n(2a+2b+B(n—1)+2)/2 "1:[1 T(a+jB/2+ 1)T(b+jB/2+DT((1 +1)6/2+1)
11 B2+ Dl (a+b+(n+j—1)3/2+2) .

J
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Evaluating the right-hand side of (4.3.6): From Section 2.4, it also follows that
F,.(t;c¢) = log I,(t; ¢) satisfies Virasoro constraints, corresponding precisely to
the situation (4.3.1), with

Gaussian ensemble:?”

_ 1 _ — _ 1.
M,—1=—3, 71,0 =71 = 0,01 = —35n;
1 1 )
Y2,-1 =0, 72,0 = =3, V2,1 = 0,72 = —3no1, 62 =0;
_ 1 _ _ 1 o _ 1
V3,1 =—%01, 13,0 =0, 73,1 =—3, 13,2 =73 =0, d3 = —3no1.

Laguerre ensemble?® §, = 6o = 63 =0, and

Y1,-1 =0, 11,0 = -1, 1 = —3n(o1 +a),
Y2,-1 =0, Y20 = —01, V2,1 = —1, 72 = —3no1(o1 +a);
¥3,-1 =0, ¥30 = —0102, Y31 = —02, Y32 = —1, 73 = —3no102(01 + a).
Jacobi ensemble: see (4.3.4).
They lead to expressions for
84_F
oty

0*F
= Ot

O’F
* Ot10ts

0’F
=0 0t

)

t=0 t=0

in terms of Dy, and By, which substituted in the right-hand side of (4.3.6) —i.e.,
in the KP-expressions—leads to the right-hand side of (4.1.4),(4.1.6), (4.1.9)
and (4.1.10). In the Jacobi case, the right-hand side of (4.3.6) contains the same
coefficient 1/QF as in (4.3.9), which therefore cancels with the one appearing on
the left-hand side; see the expression bL* in (4.3.7) and (4.3.8).

5. Ensembles of Infinite Random Matrices: Fredholm
Determinants As 7-Functions of the KdV Equation

Infinite Hermitian matrix ensembles typically relate to the Korteweg-de Vries
hierarchy, itself a reduction of the KP hierarchy; a brief sketch will be necessary.
The KP-hierarchy is given by t,,-deformations of a pseudo-differential operator?®
L: (commuting vector fields)

OL

d
pu— ] n — -1 PR 1 [ pp—
or. =L L, L=DtaaD 4oy with D=on  (501)

Wave and adjoint wave functions are eigenfunctions ¥ (z,t;z) and ¥ (z,¢; 2),
depending on z € R, t € C*, z € C, behaving asymptotically like (5.0.3) below

2"Remember from Section 2.1 that o1 = B(n — 1) + 2.
28Remember from Section 2.1 that o1 = B(n — 1) +a + 2 and o2 = B(n — %) +a+3.

29Tn this section, given P a pseudo-differential operator, Py and P_ denote the differential
and the (strictly) smoothing part of P respectively.
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and satisfying

vt ov-
Otn, Otn,
According to Sato’s theory, ¥+ and ¥~ have the following representation in
terms of a 7-function (see [25]):

2Ot =10t =(L"), 0", 20 =LTU", =—(L™), . (5.0.2)

T (0t 7) = @ 1) TEF D)
1Y T(t)
— ei(zz+2f° tzzl)(l + O(Zil)), for 2 /\ 00, (503)

where 7 satisfies and is characterized by the following bilinear relation
%ezr’(“_t;)ziT(t — [T D + 27 ))dz =0 forall t,t' € C*; (5.0.4)

the integral is taken over a small circle around z = co. From the bilinear relation,
one derives the KP-hierarchy, already mentioned in Theorem 3.1, of which the
first equation reads as in (3.1.6).

We consider the p-reduced KP hierarchy, i.e., the reduction to pseudo-dif-

ferential L’s such that LP = DP + --- is a differential operator for some fixed
p > 2. Then (LFP), = LFP for all k > 1 and thus OL/dty, = 0, in view of the
deformation equations (5.0.1) on L. Therefore the variables ty,tap,%3p,... are

not active and can thus be set = 0. The case p = 2 is particularly interesting
and leads to the KdV equation, upon setting all even ¢; = 0.
For the time being, take the integer p > 2 arbitrary. The arbitrary linear

combinations?’
OE(z,t;2) == Z aE0E (2, t;w2) (5.0.5)
wECp
are the most general solution of the spectral problems LP®T = 2P®*t and

LTP®~ = 2P® respectively, leading to the definition of the kernels:

hoa(y,2) = / iz & (z,1;9)8* (2, 1 2),

kf:t(ya Z) = kz,i (ya Z)IE(z)a

where the integral is taken from a fixed, but arbitrary origin in R. In the same

(5.0.6)

way that U¥*(z,t,2) has a 7-function representation, so also does kf,t(y, z) have
a similar representation, involving the vertex operator
Y(z,t;y,2) := Z ayal, X (z,t;wy,w'z), (5.0.7)
w,w'ECp
where (see [25; 11; 12])
X(2, by, 2) = —— VI EE oy ST T g (5.0.8)

z2-Y

30Here := {w such that wP = 1}.
P
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A condition } . ala, /w =0 is needed to guarantee that the right-hand side
of (5.0.7) is free of singularities in the positive quadrant {y; > 0 and z; > 0 with
i,j =1,...,n} and lim,_,, Y (z,t;y, 2) exists. Indeed, using Fay identities and
higher degree Fay identities, one shows stepwise the following three statements,

the last one being a statement about a Fredholm determinant:3!
koi(y,2) = ——Y (z, £y, 2)7 (1)
x,t Y, - T(t) y U3 Y, 2)T ’
1k
det (ka:,t (yiv Z])) 1<i,5<n = ; H Y(.T, t; i, Zi)Ta
i=1
1 E
det(I — AkP,) = Ze M p Y@tz — Tt E) (5.0.9)
' T 7(t)

The kernel (5.0.12) at ¢ = 0 will define the statistics of a random Hermitian
ensemble, when the size n  co. The next theorem is precisely a statement
about Fredholm determinants of kernels of the form (5.0.12); it will be identified
at t = 0 with the probability that no eigenvalue belongs to a subset E; see Section
1.2. The initial condition that Virasoro annihilates 7y, as in Sections 2.1.2 (Proof
of Theorem 2.1), is now replaced by the initial condition (5.0.11) below.

THEOREM 5.1 (Adler, Shiota, and van Moerbeke [11; 12]). Consider Virasoro

)

generators J1(2 satisfying

aﬂzHlY(x,t;z,z) = [LI2(1), Y(z,t;2,2)], (5.0.10)
z

where Y (z,t; 2, z) is defined in (5.0.7), and a T-function satisfying the Virasoro
constraint, with an arbitrary constant crp:

(J,Si) - ckp) T=0 fora fited k > —1. (5.0.11)

Then, given the disjoint union E C RT, the Fredholm determinant of

1 ke i(z,2)

E A TR " L Sk R
L N ERI R

Ig(\N), X=2P, X =27, (5.0.12)

satisfies the following constraint for that same k > —1:

2r
0 1
k41 (2) By
(_ ; € 8Ci + %(Jkp - Ckp))'l'det(_[ - /‘LKm,t) =0. (5013)

31The Fredholm determinant of a kernel A(y, z) is defined by

o0
det(I— M) =1+ 3 (—n)™ // det (A(z6, %)) 1< j<m 21 -+ d2m.
m=1

215 <zZm
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The generators JTSZ) take on the following precise form:

0

JU = 7+ (=n)t_n,
JP = TN ID: — (n 1)
" ;J;n e D (5.0.14)
= 6—2+2 > itii+ D itigty — (n 4 1)JEY.
L Ot;0t; £ oty ! "
i+j=n J —i+j=n J —i—j=n

REMARK. For KdV (i.e., p = 2), we have (L?)T = L? = D? — ¢(z), so the
adjoint wave function has the simple expression ¥~ (z,t;2) = ¥ (x,t;—2). In
the next two examples, which deal with KdV, set

U(z,t;2) = Ut (x,t;2).

Example 1: Eigenvalues of large random Hermitian matrices near the “soft
edge” and the Airy kernel. Remember from Section 1.2, the spectrum of the
Gaussian Hermitian matrix ensemble has, for large size n, its edge at ++/2n,

1/6_ Therefore, the eigenvalues in The-

near which the scaling is given by v/2n
orem 5.2 must be expressed in that new scaling. Define the disjoint union

E = ile2i—1, c2:], with ¢z, possibly co.

THEOREM 5.2. Given the spectrum z1 > zo > --- of the large random Hermitian
matriz M, define the “eigenvalues” in the new scale:

u; = 20?3 <\;—;—n — 1) forn 7 oo. (5.0.15)
The probability of the “eigenvalues”
P(E®) := P(all “eigenvalues” u; € E°) (5.0.16)
satisfies the partial differential equation (setting By, := 212;1 cF19/dc;)?
(B2, — 4(Bo — 1))B_11log P(E®) + 6(B2, log P(E))* = 0. (5.0.17)
In particular, the statistics of the largest “eigenvalue” uy (in the new scale) is
given by
P(u; < z) =exp <— /oo(oz —2)g?(a) da) , (5.0.18)
with

g" =xg+2g° (Painlevé II)
e (2/3)2%/2 (5.0.19)
_W for x / oo.

~

g9(z)

32When ¢y, = 0o, that term in By, is absent.
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The partial differential equation (5.0.17) is due to Adler, Shiota, and van Mo-
erbeke [11; 12]. The equation (5.0.19) for the largest eigenvalue is a special
case of (5.0.17), but was first derived by Tracy and Widom [63], by methods of

functional analysis.

PrOOF. Remember from Section 1.2 that the statistics of the eigenvalues is
governed by the Fredholm determinant of the kernel (1.2.4), for the Hermite
polynomials. In the limit,

1 U v
lim ———K, \/2n+—,v2n+7>:Ku,v,
n oo 4/2n1/6 < \/2n1/6 \/2n1/6 (u,0)

where
K(u,v) = / Az + u)A(x +v)dz, Au) = / einm—a/3 g (5.0.20)
0 —00
Then

P(E°) := P(all eigenvalues u; € E) = det (I — K(u,v)Ig(v)). (5.0.21)

In order to compute the PDEs of this expression, with regard to the endpoints
¢; of the disjoint union E, one proceeds as follows:
Consider the KdV wave function ¥(z,t; z), as in (5.0.2), with initial condition

U(z,to;2) = zl/zA(a: +2?2) = e“+(2/3)z3(1 +0(z7YY),
z— 00, to=(0,0,2,0,...), (5.0.22)

in terms of the Airy function®?, which, by stationary phase, has the asymptotics
1 o0
Au) = ﬁ/ o~V /3+yu dy = u—1/4e(2/3)u?? (1 i O(u_3/2))-
—o0

The definition of A(u) is slightly changed, compared to (5.0.20). A(u) satisfies
the differential equation A(y)"” = yA(y), and thus the wave function ¥(z, to; 2)
satisfies (D? — z)¥(z, to; z) = 22V(z, to; 2). Therefore L2|;—;, = SD?S Y;—y, =
D? — z, so that L? is a differential operator, and ¥ is a KdV wave function,
with 7(t) satisfying®* the Virasoro constraints (5.0.11) with co;, = —26k0. The
argument to prove these constraints is based on the fact that the linear span (a
point in an infinite-dimensional Grassmannian)

W = spanc{z/)n(z) = e_(2/3)23\/58—A(u) ,n=0,1,2,... }

ou™ =22
33The ¢ in the definition of the Airy function is omitted here.
34 Although not used here, the 7-function is Kontsevich’s integral [44; 10]:

dy e~ T(¥Y?/3+Y?2) 1 2
5 Sy dY e~ TrY?Z with t, = - Te(Z™ ™) + g&n,s, 7 = diagonal matrix.
H

(t) =
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is invariant under multiplication by 22 and under the operator

1,9 2) 1 5

(2 4 222) - =22

2z <3z +e 4”
Define, for A = 22 and X = 2’2, the kernel

1 © ,
221/22’1/2 /0 ‘Il(x’t’ z)\I/(.r,t,z )d.’E, (5023)

Kt()\, )\l) =
which flows off the Airy kernel, by (5.0.22),
Kiy(A\N) / Az + N)A(z + ) dz.

Thus 7det(I — K[,) satisfies (5.0.13), with that same constant cp, for k =
~1,0,1,...:

1 1
( Z k+1 4 ;i) + 1—65k,0)7det(I_KtE) =0. (5.0.24)

Upon shifting ¢t3 — t3 + 2/3, in view of (5.0.22), the two first Virasoro con-

straints for £ = —1 and k& = 0 read as follows, with B := Zfrl cF19/dc;:

7
B_1logT(t, E) <8t + - Zzt >log7(t,E)+Z

1
Bolog 7(t, E) <6t3 + = iz:zt )logT (tB)+ 15 (5:0.25)

The same method as in Section 4 enables one to express all the t-partials, ap-
pearing in the KdV equation,

84 82 82 2
(8_75‘11 — 4—8t16t3) log7(t, E) + 6(8_75% log (¢, E)) =0,

in terms of c-partials, which upon substitution leads to the partial differential
equation (B3, —4(Bo — 1)) f +6(B_1f)? =0 (announced in (5.0.17)) for
2r 6
— c\ _ c c\ _ Ey _
f:=B_1log P(E) = 21: B (E°), where P(E®) = det(I-K%) = 0

When E = (—o0, ), this PDE reduces to an ODE:

F"—dxf +2f +6f° =0, with f= di log P(max \; < ). (5.0.26)
X 7

According to Appendix on Chazy classes (section 9) , this equation can be re-
duced to

4+ 4f'(f?—zf' + f) =0, (Painlevé II) (5.0.27)
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which can be solved by setting
fl — _92 and f :g/2 _J;g2 _94‘

An easy computation shows g satisfies the equation g"” = 2¢3 + zg (Painlevé II),
thus leading to (5.0.19). O

Example 2: Eigenvalues of large random Laguerre Hermitian matrices near the
“hard edge” and the Bessel kernel. Consider the ensemble of n X n random
matrices for the Laguerre probability distribution, thus corresponding to (1.1.9)
with p(dz) = 2¥/2e=%/2 dz. Remember from Section 1.2, the density of eigenval-
ues near the “hard edge” z = 0 is given by 4n for very large n. At this edge, the
kernel (1.2.4) with Laguerre polynomials p,, tends to the Bessel kernel [52; 30]:

1 1!
nh/n;o RKS/) (%, %) = KW (u,v) := 5/0 zdy(zu)Jy(zv)dz.  (5.0.28)

Therefore, the eigenvalues in the theorem below will be expressed in that new
scaling. Define, as before, the disjoint union E = (J][c2i_1, c2:]-

THEOREM 5.3. Given the spectrum 0 < z1 < zo < ... of the large random
Laguerre-distributed Hermitian matriz M, define the “eigenvalues” in the new
scale:

u; =4nz; forn / oc. (5.0.29)
The statistics of the “eigenvalues”
P(E®) := P(all “eigenvalues” u; € E°) (5.0.30)
leads to the following PDE for F = log P(E°), where By := 222;1 c19/dc;):

(B—2B3+(1-v?)B2+B1 (Bo — 1)) F—4(BoF)(BLF)+6(BLF)* = 0. (5.0.31)

In particular, for very large n, the statistics of the smallest eigenvalue is governed

by
P(u; > z) =exp (—/ Mdu) , Uy~ 4nzq,
0 u

with [ satisfying
(zf")? —4(zf' = )2+ ((z—v¥)f = f)f =0. (Painlevé V) (5.0.32)

Equation (5.0.32) for the smallest eigenvalue, first derived by Tracy and Widom
[63], by methods of functional analysis, is a special case of the partial differential
equation (5.0.31), originating in [11; 12].

REMARK. This same theorem would hold for the Jacobi ensemble, near the
“hard edges” z = +£1.
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PROOF. Define a wave function ¥(z,t; z), flowing off
U(z,0;2) = e*B(—z2) = "*(1 4+ O(z ")),

where B(z) is the Bessel function3?

. e?ov+1/2 © ,—v+1/2,—uz i 1
B(z) = H,(iz) = =1 ).
(2) = ev/ze" Hy (iz) F(—u+1/2)/1 @ e =140
As the operator
2-1/4
L2|t=0 —D?_ %
z

is a differential operator, we are in the KdV situation; again one may assume
ta =t4 = ... =0 and we have

sr(t— (271
\Iji(.’lﬁ,t; —z) = \IJ+(.’E,t, Z) — ewz+2tiz w,

()

in terms of a 7-function®® satisfying the Virasoro constraints
ISP 7= ((2v)% = 1)ékor (5.0.33)

Set p =2, a; = a’, = (1/4n)ie’™/? and a_, = ai = (1/47)e "™/? in (5.0.5);
this defines the kernel (5.0.6) and so (5.0.12), which in terms of A = 2% and
N = 2’2, takes on the form:

1

K&)(AN) =
:c,t( ) An /_ZZI

/m (1™ /20 (2, t, 2) + e /20 (2,8, —2))
(e ™ 2W(a,t,2") + ie™ /2 (z, t, —2")) d,
which flows off the Bessel kernel
KN = % /0 ’ zJ, (xVN)J, (zVN) dz.
_ LVOVYNIVN) = 3, (VN)WVATL(VR)

= f =1
20— ) or x

The Fredholm determinant satisfies for £ C Ry and for £ =0,1,...:

2r
( —~ Zcf“% +373 4+ (L - y2)5k,0> (rdet(I — KX7)) =0.  (5.0.34)
1 T

35¢ = 4/mw/2€i™V/2, —% <v< %
361(t) is given by the Adler-Morozov—Shiota—van Moerbeke double Laplace matrix trans-
form, with ¢, given in a similar way as in footnote 34 (see [10]):

r(t)=c<t>/ dX det X*7/%e™ “<ZZX)/ dY Sp(¥)e™ XY,
e +
Hy Hy
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Upon shifting ¢; — ¢; + +/—1 and using the same B; as in (5.0.25), the
equations for £k =0 and k = 1 read

B log7(t, E) %( Zzt —+\/_ )logT(t E)+i(3-v%),

i>1

1 0? )
By log7(t, E) <Zzt 3t1+2 o8 +v- +3 6t1> log 7(¢, E). (5.0.35)

Expressing the t-partials (5.0.20), appearing in the KdV-equation at ¢ = 0
(see formula just below (5.0.25)) in terms of the c-partials applied to log 7(0, E),
leads to the following PDE for F' = log P(E°):

(Be—2B3+(1—v°)Bi+B1(Bo— 1)) F—4(BoF)(BLF)+6(B3F)* = 0. (5.0.36)

Specializing this equation to the interval E = (0,z) leads to an ODE for f :=
—z OF /0x, namely

1

f///_|_ f— f/2+ 2ff+( )
Z

- —2f =0, (5.0.37)

which is an equation of the type (9.0.1); changing z ~ —z and f ~ —f leads
again to an equation of type (9.0.1), with P(z) = z, 4Q(z) = —z — v? and
R = 0. According to Cosgrove and Scoufis [24] (see the Appendix on Chazy
classes), this equation can be reduced to the equation (9.0.2), with the same
P,Q, R and with ¢ = 0. Since P(z) = z, this equation is already in one of the
canonical forms (9.0.3), which upon changing back  and f, leads to

(f")2+4(=af + 1) f?+ (@=v3)f = f)f =0. (Painlevé V) O

Example 3: Eigenvalues of large random Gaussian Hermitian matrices in the
bulk and the sine kernel. Setting v = j:% yields kernels related to the sine
kernel:

K(+1/2)(y2 2= 1 /w sinzy sinzz dr — 1 (sinz(y—z) sinz(y+2)
2,0 ’ o yl/2z1/2 27 y—2z y+z ’

Kg(ﬁ)l/z)(y2,z2) _ l /m cos Ty coszz do — i sinz(y — 2) n sinz(y + 2) ‘
, 7 Jo y1/221/2 o v—2 o

Therefore the sine-kernel obtained in the context of the bulk-scaling limit (see
(1.2.7)) is the sum K, g(c;l/ V4K ii)l/ 2 Expressing the Fredholm determinant of
this sum in terms of the Fredholm determinants of each of the parts, leads to
the Painlevé V equation (1.2.8).
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6. Coupled Random Hermitian Ensembles

Consider a product ensemble (M, M) € H2 := H,, x H,, of n x n Hermitian
matrices, equipped with a Gaussian probability measure,

Cn AM;y dMy e~ (1/2) Te(ME+ M5 —2¢ My My) (6.0.1)

where dM; dM; is Haar measure on the product H?2, with each dM;,
dMy = Al (x) [[ dzidU  and  dMy = A2(y) [ ] dvi dU (6.0.2)
1 1

decomposed into radial and angular parts. In terms of the coupling constant c,
appearing in (6.0.1), and the boundary of the set

T

E=FE; x By .= U[azi,l,azi] X U[b2i71,b2i] C RQ, (603)

i=1 =1

define differential operators Ag, By of “weight” k,

1 "9 °. 9 1 "9 .9
M=a(XateXa) Bora (2133— > a)
T 6 8 S
Ag:;aj%—c%, %22321)]8—1)]—0%,

forming a closed Lie algebra.3” The following theorem can be derived, via similar
methods, from the Virasoro constraints (3.3.5) and the 2-Toda equation (3.3.6):

THEOREM 6.1 (Gaussian probability) (Adler and van Moerbeke [3]). The
joint statistics

// dM, dM, e 3 Tr(M;+M3 —2cM1 M>)
H2 (E1XE2)

// dMl sz 67%%(M12+M22*2CM1M2)
g—fZ

P.(M € H2(Ey x Ey)) =

n
— 3 (2% +yi —2czryr)
Ap( (y) e dxydyy
En k=1
n
/ An( H e 3 (@htyi—2czryr) drsdys
R2n k=1
37We have .
1+ 2c
A1, Bl =0, [A1As]= A1, [Az,Bi] = —— A,
1—c 1-c¢
—2c 1+ c2
[A2, B2l =0, [A1,Bo] = ——5B1, [By,Ba] = —5 B
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satisfies the following nonlinear third-order partial differential equation®® (inde-
pendent of n), where F,, := (1/n)log P,(E):

{BotiF, BirFot S} = {AoBi, ABiFat 5T = 0. (6.0.4
1) a4, c?—1) 3,

7. Random Permutations

The purpose of this section is to show that the generating function of the
probability

P(L(m,) <1) = %#{wn € Sy | L(mn) <1}

is closely related to a special solution of the Painlevé V equation, with peculiar
initial condition. Remember from Section 1.4 that L(m,) is the length of the
longest increasing sequence in the permutation 7.

THEOREM 7.1 (Tracy and Widom [66]). For every ! > 0,
Z m_lp(L(Wn) <l)= oV tr(M+M) gar
n:
- " (7.0.1)

oo [ 1og (2) i,

with g; satisfying the initial value problem for Painlevé V:
12 /

v 9 1 1 g 2 ? g—1
_d (- 4= Jg 4 2 S LA
9= <g_1+g)+u+ug(g )= 5 7 0,

(7.0.2)

!
gu)=1- ;'1_2 + 0™, nearu=0.

The systematic derivation below is due to Adler and van Moerbeke [7].

PRrROOF. The first identity in (7.0.1) follows from Proposition 1.1. Upon inserting
(t1,t2,...) and (s1, S2,-..) variables in the U(n)-integral (7.0.1), the integral

In(t,s) = / T I (LM s M) g (7.0.3)
U(n)

= nldet (/ zkileZ?(t”i*S"z_i)—dZ. )
51 202 ) o<k i<n—1

puts us in the conditions of Theorem 3.5. It deals with semi-infinite matrices L
and hLJ h~! of “rank 2”, having diagonal elements
0 T 0 Tn

=1 =(L)p-1n-1, bF:i=——-1
" 5 og p— (L1)n-1,n-1, U} 35, og —

= n!7,(t, s)

b = (hL;—hil)n_lyn_l.

To summarize Theorem 3.5, I,,(¢, s) satisfies three types of identities:

38in terms of the Wronskian {f,g}x = (Xf)g — f(Xg), with regard to a first order differ-
ential operator X.
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(i) Virasoro (see (3.4.7)); we set F' := log 7p:

/\7717'” . 0 . o o
0= - = <Z(l + 1)t7,+18_t - Z(l 1)51 18 =+ naT>F + ntl,

i1 ti>2
0= VoTn B ;( ZSl%) F,
0= 3(‘131 VT:F”
= <§(z + l)ti+1%20ti - ;(z —1)s;1 3t(19<29si + nat?281>F +n. (7.0.4)

(ii) two-Toda (see (3.4.8)):

02 0°log Tn _ _, 0 log 0? o 0° o
= Tag Tn — 3 9a, Tn
85287‘}1 681 ’Tn 1 65187&1 & asfatl &
82 3
=2bF ——— log 7y — =—5—=—log 7. 7.0.5
n 3 101 OB T 85%3151 0BT ( )

(iii) Toeplitz (see (3.4.11)):

0 T, O T
T(T)p = = log ———1
(T) Btl 8 Tn—1 881 8 Tn—1

+(1+8—210 T) 14+ ——— 82 log T, —i(ilo n )
8816t1 & n 8 18t1 & n 851 6t1 ng—l

— b b*+(1+8—2107><1+ > 1or—ib)—o (7.0.6)
o nen 8816t1 & Tn 8181&1 & Tn 881 m) e

Defining the locus £ = { all t; = s; = 0, except t1,s1 # 0}, and using the second
relation (7.0.4), we have on L

VoTn

=0,

—<t i—s i)lo T,
o latl 1851 gnL

implying that 7,,(¢, s | ¢, is a function of z := —{15; only. Therefore we may write
T”|L = 7,(), and so, along L, we have

Tn

0 0 0 0 o? 0 0

o - oz Bs, . N9 oos | orlon

Setting
o 0 02
fn(x) ax 8 IOng( ) = —Mlong(t, S) L, (707)
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and using = —t; 51, the two-Toda relation (7.0.5) takes on the form
0% logr, 02 0 (0%logT, b
Plosral _ oy Oy 0 (Fhokm)) (ol
51 6526t1 L 51 < " 6816t1 08T 651 8516751 ) o t1 f +fn

Setting relation (7.0.7) into the Virasoro relations (7.0.4) yields

_ Von _ VoTn—1

0 0 Tn
= (t1— —s51=——)1 = t1b b
0 Tn Tno1 1L (latl 81651) 8 Tm1le n ¥ o0n
0 V_17, ( 0? 0? )
= — = — l
0 6t1 Tn L 51 6826t1 +n6t1851 08 Tn L o

= (202 fu(@) + F4(@)) + nl—fa(e) +1).
1

*

This is a system of two linear relations in b, and b},

with its derivatives, are given by

by, bn n(fn—1)+zf,

whose solution, together

t $1 2z fn ’
% _ me_n _ x(fnﬂ; - frlzz) + (fn +n)frlL
ds1 Oz s1 212 )

Substituting the result into the Toeplitz relation (7.0.6), namely
b b*—(l—f)(l—f —ib)
nO, — n n 881 n |,

leads to f, satisfying Painlevé equation (7.0.2), with g = f,, as in (7.0.7) and
u = z. Note, along the locus £, we may set t; = 1/z and s; = —+/z, since it
respects t,s; = —x. Thus, I,(t,s)|, equals (7.0.1).

The initial condition (7.0.2) follows from the fact that as long as 0 < n </,
the inequality L(m,) <[ is always verified, and so

[’} " 1 " $l+1 | 12
> (n;)z#{” € Sn | L(ma) <1} = ot m((l+ DI=1)+0(«™)
5 (n! = nl !
1 o
= exp <:c R + O(z' ))’
thus proving Theorem 7.1. O
REMARK. Setting
g(x)
fala) = 22
@)= g1

leads to standard Painlevé V, with a =6 =0, 3 = —n?/2, v = —2.
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8. Random Involutions

This section deals with a generating function for the distribution of the length
of the longest increasing sequence of a fixed-point free random involution 79,
with the uniform distribution:

2k
(2K

ProPOsSITION 8.1 (Adler and van Moerbeke [7]). The generating function

k!
P (L(m3y) <1+1, 75, € Spp) = #{W% € Soi | L(may) < 1+1}.

o0

L(n%) <141)

k=0

— Eo(l+1)_emTrM + Eo(l+1)+emTrM

con ([ ) e ([0, son

where f = fli, satisfies the initial value problem for Painlevé V:

1 6 4 16u? + 12 16, 2(12-1
ot Spr Lyp WCAlp 10, 202D, o
8.0.2
bt
ff(u) =u*+ T O(u'™?)  nearu = 0.

PROOF. The first equality in (8.0.1), due to Rains [57; 58], follows immediately
from Proposition 1.1. The results of Section 1.3 lead to

/ e TTM g = eiz/ H 222 (1 — 2,) (1 + 21 )°dz,
O(2n+1) ¢

[7171]7L
(8.0.3)
with a = :I:%, b= :F%, (with corresponding signs). Inserting ¢;’s in the integral,
the perturbed integral, with e*® removed and with ¢; = 2z, reads

In(t) = /[ . H (1 — 2)%(1 + 25)%e=1 b2k dzy, = nl7,(t); (8.0.4)
1,1 Pt}

this is precisely integral (3.1.4) of Section 3.1.1 and thus it satisfies the Virasoro
constraints (3.1.5), but without boundary contribution B;F. Explicit Virasoro
expressions appear in (2.1.35), upon setting 8 = 2. Also, 7,(t), as in (3.1.4),
(see Theorem 3.1) satisfies the KP equation (3.1.6). Differentiating the Virasoro
constraints in ¢; and tg, and restricting to the locus

L :={t; = z, all other ¢; = 0},
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lead to a linear system of five equations, with by = a — b, by = a + b,

1 2 2 1 1
(Jl(wzz - ch ) + bUJl(ﬁzl + blv]]gﬁzz)

=0 fork=-1,0,

I
01 (1 _ 12 (1) (1)
B_I_ (Jk+2_‘]]k +b0‘]Ik+1 +b1\2]]k+2> :0 fO'rk;:_l,O,

o 1

2L (4, o+l + 0 ], =0 fork= -1,

in five unknowns (F,, = log7,)
OF, OF, 0%F, O°F,, 0%F,
Oto C Ots c Ot10ts c Ot10t3 L ’ 0t§ C )

Setting t; = = and F) = 0F, /0, the solution is given by the expressions

OF 1
OF, 1
Dt e = ——5 (@ (F + F? + (bo — @) F, + n(n + b))
3
8%F, 1
8t1622 =3 ((2n +b)(zF) — F) — bon),
62Fn 1 2 11 !/ 7 2 1! 12 1A
5o |. =3 (®(F'+2F,F))—z((z® —boz+ 1)F)) + F,? + by F),
1 315
+(2n+b1)*FE! +n(n+b1)) +2(2n+ b )*F), 4+ 2bon(2n+b1)),
’F,, 1
aatZ = (z(2F? + 2bgF), + ((2n + b1)* 4+ 2)F)) + 2n(n + by))
2

—3(2n + by)°F,, — 3bon(2n + b1)).

Putting these expressions into KP and setting t; = x, one finds

0 9 \?2 02 62
o= ((on) +3(an) o )5+ o)
( oty * Oty 8t13t3 * ot3
= % (2 F"" + 42’ F" + x(—42® + 4boz + 2 — (2n + b1)*)F"' + 82°F'F"
+62°F"* + 22F" + (2box — (2n + b1)*)F' 4+ n(2z — bo)(n + by) — bon?).

Finally, the function

H(z) := x%F(x) = :c% log 7.(x)
satisfies
2*H" + zH" +6cH' — (4H + 422 — 4bz + (2n + a)?) H' + (4z — 2b)H
+2n(n+a)z —bn(2n+a) =0. (8.0.5)
This third order equation is Cosgrove’s [24; 23] equation, with P = z, 4Q =
—42%4+4br—(2n+a)?, 2R = 2n(n+a)x—bn(2n+a). So, this third order equation
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can be transformed into the Painlevé V equation (9.0.3) in the appendix. The
boundary condition f(0) = 0 follows from the definition of H above, whereas,
after an elementary, but tedious computation, f'(0) = f”(0) = 0 follows from
the differential equation (8.0.5) and the Aomoto extension [15] (see Mehta [49,
p. 340]) of Selberg’s integral:3°

Sy fyar ez AT, 2] (1 — 2;)0 das ... day,

1 1 n
fO o fO |A(l‘)|'8 H]’:1 -T;y(l - -Tj)a dzy ...dz,

_ﬁ T+1+(n—4)8/2
Sy i 542+ (2n—j5-1)8/2

j=1
However, the initial condition (8.0.2) is a much stronger statement, again stem-
ming from the fact that as long as 0 < n <[, the inequality L(m,) <l is trivially
verified, thus leading to

2 I+1

cTrM __ ‘r_ €z
Eo,aine - P ( > T

ending the proof of Proposition 8.1. O

+ O(x’+2)) ,

Appendix: Chazy Classes

Most of the differential equations encountered in this survey belong to the
general Chazy class

" =F(zf,f,f"), where F is rational in f, f’, f” and locally analytic in z,

subjected to the requirement that the general solution be free of movable branch
points; the latter is a branch point whose location depends on the integration
constants. In his classification Chazy found thirteen cases, the first of which is
given by

4P" ., P" ., 4Q , 2Q’ 2R
IZEEA A SR R =
with arbitrary polynomials P(z),Q(z), R(z) of degree 3,2,1 respectively. Cos-
grove and Scoufis [24; 23, (A.3)] show that this third order equation has a first
integral, which is second order in f and quadratic in f”,

P 6
111 n 12
- 0.1
"+ 5+ 5f 0 (9.0.1)

4
f”2+ﬁ ((Pflz +QfI+R)fI _ (P/flz + Q/f/+R/)f
1 i 1 2 ]‘ /11 3
+§(P +Q"f -sF fP4ec)=0; (9.0.2)
c is the integration constant. Equations of the general form

f* =Gz, £, f")

1 R 1 Red+1
39Here Rewy, Red > —1, and Re3 > —2min (—, ey + , eo+ )
n

n—1 n—1
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are invariant under the map
a1z + as asf +agz+ ar
sy WEXG g g, 35S Haertar
asz + ay asz + ay

Using this map, the polynomial P(z) can be normalized to
P(z) =2(2—1), 2z, or 1.

In this way, Cosgrove shows (9.0.2) is a master Painlevé equation, containing
the 6 Painlevé equations. In each of the cases, the canonical equations are
respectively:

o g% = 4¢3 — 2¢'(2g' — g) + Ay (Painlevé II)
o g% = 4¢3 + 4(29' — 9)? + A1’ + Ay (Painlevé IV)
o (2¢")2 = (2g' — 9)(—49? + Ai1(29' — g) + A2) + A3g' + As  (Painlevé V)

o (2(z—1)g")? = (29’ — 9) (49'2 —44'(zg' — g) + Ag) + A9+ A3g + Ay
(Painlevé VTI)

(9.0.3)
The Painlevé II equation above can be solved by setting
9(2) = 3(u)” = (v + 32)* — (a + 3e1)u,
g'(2) = —geru’ — 3(u” + 32),
A =1(a+ W+ %z)281)2 (e = £1).
Then u(z) satisfies yet another version of the Painlevé II equation
u’ =2u® 4 zu+ a. (Painlevé II)

Now, each of these Painlevé II, IV, V, VI equations can be transformed into the
standard Painlevé equations, which are all differential equations of the form

f"=F(z,f,f"), rationalin f and f’ and analytic in z,

whose general solution has no movable critical points. Painlevé showed that this
requirement leads to 50 types of equations, six of which cannot be reduced to
known equations.

Acknowledgment

These lectures represent joint work especially with (but also inspired by) Mark
Adler, Taka Shiota and Emil Horozov. Thanks also for many informative dis-
cussions with Jinho Baik, Pavel Bleher, Edward Frenkel, Alberto Griinbaum,
Alexander Its, especially Craig Tracy and Harold Widom, and with other par-
ticipants in the semester at MSRI.

I thank Pavel Bleher, David Eisenbud and Alexander Its for organizing a truly
stimulating and enjoyable semester at MSRI.



INTEGRABLE LATTICES: RANDOM MATRICES AND PERMUTATIONS 403

References

[1] M. Adler and P. van Moerbeke: Bdicklund transformations, Birkhoff strata and
isospectral sets of differential operators, Advances in Mathematics, 108, 140204
(1994).

[2] M. Adler and P. van Moerbeke: Matriz integrals, Toda symmetries, Virasoro
constraints and orthogonal polynomials, Duke Math. J. 80, 863-911 (1995).

[3] M. Adler and P. van Moerbeke: The spectrum of coupled random matrices, Annals
of Mathematics, 149, 921-976 (1999).

[4] M. Adler and P. van Moerbeke: String orthogonal Polynomials, String Equations
and two-Toda Symmetries, Comm. Pure and Appl. Math., 50, 241-290 (1997).

[6] M. Adler and P. van Moerbeke: Vertex operator solutions to the discrete KP-
hierarchy, Comm. Math. Phys., 203, 185-210 (1999).

[6] M. Adler and P. van Moerbeke: Hermitian, symmetric and symplectic random
ensembles: PDE’s for the distribution of the spectrum, Annals of Mathematics
(2001). Preprint available at solv-int/9903009.

[7] M. Adler and P. van Moerbeke: Integrals over classical groups, random permuta-
tions, Toda and Toeplitz lattices, Comm. Pure Appl. Math. 53, 1-53 (2000). Preprint
available at math.C0/9912143.

[8] M. Adler and P. van Moerbeke: The Pfaff lattice, matriz integrals and a map from
Toda to Pfaff, Duke Math J. (2001). Preprint available at solv-int/9912008.

[9] M. Adler, E. Horozov and P. van Moerbeke: The Pfaff lattice and skew-orthogonal
polynomials, International Mathematics Research notices, 11, 569-588 (1999).

[10] M. Adler, A. Morozov, T. Shiota and P. van Moerbeke: A matriz integral solution
to [P,Q] = P and matriz Laplace transforms, Comm. Math. Phys., 180, 233263
(1996).

[11] M. Adler, T. Shiota and P. van Moerbeke: Random matrices, vertez operators and
the Virasoro algebra, Phys. Lett. A 208, 67—78, (1995).

[12] M. Adler, T. Shiota and P. van Moerbeke: Random matrices, Virasoro algebras
and non-commutative KP, Duke Math. J. 94, 379-431 (1998).

[13] M. Adler, T, Shiota and P. van Moerbeke: Pfaff T-functions, Math. Annalen
(2001). Preprint available at solv-int/9909010.

[14] D. Aldous and P. Diaconis: Longest increasing subsequences: From patience sorting
to the Baik-Deift-Johansson theorem, Bull. Am. Math. Soc. (N.S.) 36 (4), 413432
(1999).

[15] K. Aomoto: Jacobi polynomials associated with Selberg integrals, SIAM J. Math.
Anal. 18, 545-549 (1987).

[16] H. Awata, Y. Matsuo, S. Odake and J. Shiraishi: Collective field theory, Calogero-
Sutherland Model and generalized matriz models, RIMS-997 reprint (1994). Available
at hep-th/9411053.

[17] B. Baik, P. Deift and K. Johansson: On the distribution of the length of the
longest increasing subsequence of random permutations, Journal Amer. Math. Soc.
12, 1119-1178 (1999). Preprint available at math.CO/9810105.

[18] J. Baik and E. Rains: Algebraic aspects of increasing subsequences, preprint
available at math.CO/9905083.



404 PIERRE VAN MOERBEKE

[19] P. Bleher, A. Its: Semiclassical asymptotics of orthogonal polynomials, Riemann-
Hilbert problem and universality in the matriz model, Ann. of Math. 150 1-81 (1999).

[20] N. Bourbaki: Algébre de Lie, Hermann, Paris.

[21] Bowick and E. Brézin: Universal scaling of the tail of the density of eigenvalues
in random matriz models, Phys. Letters B 268, 21-28 (1991).

[22] E. Brézin, H. Neuberger: Multicritical points of unoriented random surfaces,
Nuclear Physics B 350, 513-553 (1991).

[23] C. M. Cosgrove: Chazy classes IX-XII of third-order differential equations, Stud.
Appl. Math. 104(3), 171-228 (2000).

[24] C. M. Cosgrove, G. Scoufis: Painlevé classification of a class of differential
equations of the second order and second degree, Studies. Appl. Math. 88, 25-87
(1993).

[25] E. Date, M. Jimbo, M. Kashiwara, T. Miwa: Transformation groups for soliton
equations, pp. 39-119 in Proc. RIMS Symp. Nonlinear integrable systems — Clas-
sical and quantum theory (Kyoto 1981), World Scientific, 1983.

[26] P. Diaconis, M. Shashahani: On the eigenvalues of random matrices J. Appl. Prob.,
suppl. in honour of Takdcs 31A, 4961 (1994).

[27] F. Dyson: Statistical theory of energy levels of complex systems, I, II and III, J.
Math Phys 3 140-156, 157-165, 166175 (1962).

[28] P. Erdos and G. Szekeres: A combinatorial theorem in geometry, Compositio Math.,
2, 463-470 (1935).

[29] A.S. Fokas, A. R. Its, A. V. Kitaev: The isomonodromy approach to matriz models
in 2d quantum gravity, Comm. Math. Phys., 147, 395430 (1992).

[30] P. J. Forrester: The spectrum edge of random matriz ensembles , Nucl. Phys. B,
402, 709-728 (1993).

[31] I. M. Gessel: Symmetric functions and P-recursiveness , J. of Comb. Theory, Ser
A, 53, 257-285 (1990)

[32] L. Haine, J. P. Semengue: The Jacobi polynomial ensemble and the Painlevé VI
equation, J. of Math. Phys., 40, 2117-2134 (1999).

[33] J. M. Hammersley: A few seedlings of research, Proc. Sixth. Berkeley Symp. Math.
Statist. and Probability, Vol. 1, 345-394, University of California Press (1972).

[34] Harish-Chandra: Differential operators on a semi-simple Lie algebra, Amer. J. of
Math., 79, 87-120 (1957).

[35] S. Helgason: Groups and geometric analysis; integral geometry, invariant differen-
tial operators, and spherical functions, Academic Press 1984,

[36] S. Helgason: Differential geometry and symmetric spaces, Academic Press, 1962

[37] M. Hisakado: Unitary matriz models and Painlevé III , Mod. Phys. Letters, A 11
3001-3010 (1996).

[38] CL Itzykson, J.-B. Zuber: The planar approzimation, II, J. Math. Phys. 21, 411—
421 (1980).

[39] M. Jimbo, T. Miwa, Y. Mori and M. Sato: Density matriz of an impenetrable Bose
gas and the fifth Painlevé transcendent, Physica 1D, 80-158 (1980).

[40] K. Johansson: On random matrices from the compact classical groups, Ann. of
Math., 145, 519-545 (1997).



INTEGRABLE LATTICES: RANDOM MATRICES AND PERMUTATIONS 405

[41] K. Johansson: The Longest increasing subsequence in a random permutation and
a unitary random matriz model, Math. Res. Lett., 5(1-2), 63-82 (1998)

[42] V. G. Kac and J. van de Leur: The geometry of spinors and the multicomponent
BKP and DKP hierarchies, pp. 159—202 in The bispectral problem (Montreal PQ,
1997), CRM Proc. Lecture notes 14, AMS, Providence (1998).

[43] R. D. Kamien, H. D. Politzer, M. B. Wise: Universality of random-matriz
predictions for the statistics of energy levels Phys. rev. letters 60, 1995-1998 (1988).

[44] M. Kontsevich: Intersection theory on the moduli space of curves and the matric
Airy function, Comm. Math. Phys. 147, 1-23 (1992).

[45] D. Knuth: “The art of computer programming, v. III: searching and sorting”, 3rd
edition, Addison-Wesley, Reading, MA, 1998.

[46] B. F. Logan and L. A. Shepp: A wvariational problem for random Young tableauz,
Advances in Math., 26, 206-222 (1977).

[47] I. G. MacDonald: “Symmetric functions and Hall polynomials”, Clarendon Press,
1995.

[48] G. Mahoux, M. L. Mehta: A method of integration over matriz variables: IV, J.
Phys. I (France) 1, 1093-1108 (1991).

[49] M. L. Mehta: Random matrices, 2nd ed., Boston: Academic Press, 1991.

[60] M. L. Mehta: Matrix Theory, special topics and useful results, Les éditions de
Physique, Les Ulis, France, 1989.

[61] Moore, G.: Matrix models of 2D gravity and isomonodromic deformations, Progr.
Theor. Phys., Suppl. 102, 255-285 (1990).

[62] T. Nagao, M. Wadati: Correlation functions of random matriz ensembles related
to classical orthogonal polynomials, J. Phys. Soc. of Japan, 60 3298-3322 (1991).

[63] A. M. Odlyzko: On the distribution of spacings between zeros of the zeta function,
Math. Comput. 48 273-308 (1987).

[64] A. Okounkov: Random matrices and random permutations, preprint available at
math.CO/9903176.

[65] L. A. Pastur: On the universality of the level spacing distribution for some
ensembles of random matrices, Letters Math. Phys., 25 259-265 (1992).

[66] C. E. Porter and N. Rosenzweig, Statistical properties of atomic and nuclear
spectra, Ann. Acad. Sci. Fennicae, Serie A, VI Physica 44, 1-66 (1960); Repulsion
of energy levels in complex atomic spectra, Phys. Rev. 120, 1698-1714 (1960).

[67] E. M. Rains: Topics in probability on compact Lie groups, Harvard University
doctoral dissertation, (1995).

[68] E. M. Rains: Increasing subsequences and the classical groups, Elect. J. of
Combinatorics, 5, R12 (1998).

[69] P. Sarnak: Arithmetic quantumn chaos, Israel Math. Conf. Proceedings, 8, 183-236
(1995).

[60] A. Terras: “Harmonic analysis on Symmetric Spaces and Applications II”,
Springer, 1988.

[61] C. L. Terng: Isoparametric submanifolds and their Cozeter groups, J. Differential
Geometry. 21, 79-107 (1985).



406 PIERRE VAN MOERBEKE

[62] C. L. Terng, W. Y. Hsiang and R. S. Palais: The topology of isoparametric
submanifolds in Euclidean spaces, J. of Diff. Geometry 27, 423-460 (1988).

[63] C. A. Tracy and H. Widom: Level-spacings distribution and the Airy kernel,
Commun. Math. Phys., 159, 151-174 (1994).

[64] C. A. Tracy and H. Widom: Level spacing distributions and the Bessel kernel,
Commun. Math. Phys., 161, 289-309 (1994).

[65] C. A. Tracy and H. Widom: On orthogonal and symplectic matriz ensembles,
Comm. Math. Phys. 177, 103-130 (1996).

[66] C. A. Tracy and H. Widom: Random unitary matrices, permutations and Painlevé,
preprint available at math.CO/9811154.

[67] K. Ueno and K. Takasaki: Toda Lattice Hierarchy, Adv. Studies in Pure Math. 4,
1-95 (1984).

[68] S. M. Ulam: Monte Carlo calculations in problems of mathematical physics,
pp- 261281 in Modern Mathematics for the Engineers, E. F. Beckenbach ed.,
McGraw-Hill (1961).

[69] J. van de Leur: Matriz integrals and geometry of spinors, preprint available at
solv-int/9909028.

[70] P. van Moerbeke: The spectrum of random matrices and integrable systems,
pp. 835—852 in Physical applications and Mathematical aspects of Geometry, Groups
and Algebras, Vol.II, Eds.: H.-D. Doebner, W. Scherer, C. Schulte, World Scientific,
1997.

[71] P. van Moerbeke: Integrable foundations of string theory, pp. 163-267 in Lectures
on Integrable systems, Proceedings of the CIMPA-school, 1991, Ed.: O. Babelon, P.
Cartier, Y. Kosmann-Schwarzbach, World Scientific, 1994.

[72] A. M. Vershik and S. V. Kerov: Asymptotics of the Plancherel measure of the
symmetric group and the limiting form of Young tables, Soviet Math. Dokl., 18,
527-531 (1977).

[73] H. Weyl: The classical groups, Princeton University Press, 1946.

[74] E. P. Wigner: On the statistical distribution of the widths and spacings of nuclear
resonance levels, Proc. Cambr. Phil. Soc. 47 790-798 (1951).

PIERRE VAN MOERBEKE

DEPARTMENT OF MATHEMATICS
UNIVERSITE DE LOUVAIN

1348 LOUVAIN-LA-NEUVE
BELGIUM

DEPARTMENT OF MATHEMATICS
BRANDEIS UNIVERSITY
WarLTtHAM, MA 02454
UNITED STATES
vanmoerbeke@geom.ucl.ac.be, vanmoerbeke@math.brandeis.edu



