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Monodromy Groups of Coverings of Curves
ROBERT GURALNICK

Abstract. We consider �nite separable coverings of curves f : X → Y
over a �eld of characteristic p ≥ 0. We are interested in describing the pos-
sible monodromy groups of this cover if the genus of X is �xed. There has
been much progress on this problem over the past decade in characteristic
zero. Recently Frohardt and Magaard completed the �nal step in resolving
the Guralnick�Thompson conjecture showing that only �nitely many non-
abelian simple groups other than alternating groups occur as composition
factors for a �xed genus. There is an ongoing project to get a complete
list of the monodromy groups of indecomposable rational functions with
only tame rami�cation. In this article, we focus on positive characteristic.
There are more possible groups but we show that many simple groups do
not occur as composition factors for a �xed genus. We also give a reduction
theorem reducing the problem to the case of almost simple groups. We also
obtain some results on bounding the size of automorphism groups of curves
in positive characteristic and discuss the relationship with the �rst prob-
lem. We note that prior to these results there was not a single example of
a �nite simple group which could be ruled out as a composition factor of
the monodromy group of a rational function in any positive characteristic.
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1. Introduction

Let k be a perfect �eld of characteristic p ≥ 0. Suppose that X and Y are
smooth projective curves over k and f : X → Y is a nonconstant separable
rational map. The (arithmetic) monodromy group A of this cover is de�ned
to be the Galois group of the Galois closure of the extension of function �elds
k(X)/k(Y ). Let Z denote the curve corresponding to the Galois closure. Let H

be the subgroup of A corresponding to X, i.e. X = Z/H. It is possible that
k′, the constant �eld of Z, properly contains k. Let G be the normal subgroup
of A consisting of those automorphisms which are the identity on k′. We call G

the geometric monodromy group of the cover. Then A/G is isomorphic to the
Galois group of k′/k.

The general theme that we wish to stress is that many arithmetic and geo-
metric properties of the cover f can be recast in properties of A and G and their
permutation representation on the cosets of H. This program has proved very
successful in attacking several problems� in particular, exceptional polynomi-
als [16], [42], [34], covers with a totally rami�ed point [35], exceptional rational
functions [31] and the genus question. This approach has three parts. The �rst
is the translation of the arithmetic or geometric problem to a group theoretic
one. The second is the solution of the group theoretic problem. Finally, the
third problem is to determine which group theoretic solutions correspond to an
actual geometric solution. All three parts may be di�cult and interesting. In
particular, the classi�cation of �nite simple groups and results about primitive
permutation groups have been used to solve several outstanding problems (for
example, see the above mentioned references).

The main focus of this article is to study in more detail the problem of de-
scribing the covers if we bound the genus of X. For this problem, we may assume
that k is algebraically closed and in particular A = G. There has been great
progress when p = 0 or more generally if the cover is tame. See [22]. We will
develop approaches here that are valid even in the presence of wild rami�cation.

If the cover is Galois, then there are classical results bounding the order of
Aut(X). By a classical result of Hurwitz, if the cover is tame and g(X) > 1,
then |G| ≤ 84(g− 1). If p > 0, Stichtenoth [64] showed that |G| < 16g4 with one
explicit family of exceptions�see also [56], [57].

The other extreme case is when the cover is indecomposable (or equivalently,
the �eld extension k(X)/k(Y ) is minimal). Since every cover is a composition
of indecomposable covers, this is a critical case. There is in fact a very close
connection between the Galois and non-Galois cases. In particular, if G has no
genus zero representations, then it cannot act on a curve of small genus (relative
to the size of G). This is already apparent in [64].

Let S be a (nonabelian) simple group. We say that S is a genus g group (in
characteristic p), if S is a composition factor of the monodromy group of a cover
f : X → Y with X of genus at most g. Since there exist covers from X → P1 of
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degree n with monodromy group Sn (or An) for g = 0 , we will concentrate on
Chevalley groups.

Thus, we let Ep(g) denote the set of genus g groups (in characteristic p) other
than alternating groups. Similarly, let Eta

p (g) denote the set of simple groups
(other than alternating groups) which are composition factors of monodromy
groups of tamely rami�ed covers X → Y with X of genus at most g.

By [40], this problem reduces to the case where f is indecomposable. It is
also easy to see that the critical case is when Y has genus 0. If p = 0, there
is a recent result answering a question posed in [40] (the �nal paper proving
this result was done by Frohardt and Magaard [22]; other papers involved in the
proof include [21], [32], [40], [58], [6], [49] and [51])� since the proof really only
uses the assumption that the cover is tame, the result can be stated as follows:

Theorem 1.1. Eta
p (g) is �nite for each g.

Indeed, much more precise information is known and hopefully a complete de-
termination of the monodromy groups of the tamely rami�ed indecomposable
covers of genus zero (and in particular, indecomposable rational functions) will
be available in the near future. In particular, there will be several in�nite fam-
ilies and a �nite list of other examples. There will be a similar result for any
�xed genus g.

We mention two results which involve special cases of this analysis.
The �rst is a special case in [31]:

Theorem 1.2. Let f(x) ∈ Q(x) be an indecomposable rational function. Sup-
pose that f is bijective modulo p for in�nitely many primes p. Aside from �nitely
many possibilities, the genus of the Galois closure of Q(x)/Q(f) is at most 1.

A much more precise version of the theorem is in [31], where an essentially
complete list of possibilities is given. After one solves the group theory problem,
it is left to determine which possibilities actually arise. This involves a careful
analysis of elliptic curves and results about torsion points and isogenies of elliptic
curves over Q.

The second result is a consequence of [32], [30] and [39].

Theorem 1.3. Let g ≥ 4 and p = 0. Let X be a generic curve of genus g. If
f : X → P1 is an indecomposable cover of degree n, then the monodromy group
of f is either Sn with n > (g + 1)/2 or An with n > 2g.

This was a problem originally studied by Zariski who proved that if g > 6 and
f : X → P1 with X generic of genus g, then the monodromy group of f is
not solvable (this is a special case of the result above�using the observation
of Zariski that any such cover is a composition of an indecomposable cover and
covers from P1 to P1). A more precise statement of the theorem above is to
say that the set of Riemann surfaces of genus g ≥ 4 which have indecomposable
covers of degree n to P1 with monodromy group other than An or Sn is contained
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in a proper closed subvariety of the moduli space of genus g curves. It is well
known that Sn does occur as the monodromy group of the generic curve (for
n > (g + 1)/2). It has been recently shown [17] that An actually does occur for
n > 2g, thus giving a fairly complete picture of the situation when g > 3.

If g < 4, there are more group theoretic possibilities. In unpublished work,
Fried and Guralnick have considered some possibilities for g = 2. The recent
work of Frey, Magaard and Völklein show that there are other examples when
g = 3 (all the group theoretic possibilities for g = 3 are known by the results
cited above).

Until now, it was not known that a single simple group in any positive char-
acteristic could be shown not to be a genus 0 group. In this article, we show
that there are in�nitely many such groups. In particular, we show that:

Theorem 1.4. If p does not divide the order of |S|, then S ∈ Ep(g) implies that
S ∈ Eta

p (g + 2) ⊆ E0(g + 2). In particular , for any odd prime p and any g, there
are in�nitely many simple groups not in Ep(g).

We also show that there are in�nitely many simple groups whose order is divisible
by p which are not in contained in Ep(g) for a �xed p and g. Let µp(S) be the
smallest g such that S ∈ Ep(g). Let Chev(r) denote the family of simple groups
which are Chevalley groups in characteristic r. Let Chevb(r) denote the groups
in Chev(r) which have rank at most b. Indeed, we prove the following result.

Theorem 1.5. Let X be a �xed type of Chevalley group. Fix a nonnegative
integer g. There are only �nitely many pairs (p, q) with p a prime and q a prime
power not divisible by p such that X(q) ∈ Ep(g). More precisely , µp(X(q)) →∞
as q →∞ for (p, q) = 1 and Ep(g) ∩ (⋃

r 6=p Chevb(r)
)
is �nite for each g.

The proof shows that typically µp(X(q)) grows like a polynomial of degree close
to b in q (as long as p does not divide q).

Abhyankar ([1], [2], [3], [4], [5]) has shown that many �nite groups of Lie type
(particularly the classical groups) are genus 0 groups in the natural characteristic
and so the exclusion p 6= r is necessary.

This led the author to make the following conjecture several years ago�the
positive characteristic analog of the Guralnick�Thompson Let Chev(r) denote
the set of �nite simple groups which are �nite groups of Lie type over a �eld of
characteristic r.

Conjecture 1.6. Ep(g) ∩ (⋃
r 6=p Chev(r)

)
is �nite.

Given the classi�cation of �nite simple groups, this conjecture says that there
are only �nitely many simple groups in Ep(g) other than Chevalley groups in
characteristic p.

The previous theorem goes a long way towards proving the conjecture. Namely,
the conjecture is true if we consider Chevalley groups of bounded dimension. The
next step would be to prove the same result for �xed q and then �nally to prove
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that the genus increases as the rank of the Chevalley group increases irrespective
of �eld size (all under the assumption that we are considering Chevalley groups
in characteristic di�erent from the characteristic of the �eld).

It is not clear what the right answer for exceptional groups in the natural
characteristic is. It will also be quite di�cult to handle the case of small �elds�
this was already evident in the case for tame covers. Some of the techniques
developed here should be useful.

We prove two main results and then apply them to obtain the previous the-
orem. The �rst is to show that one can check these questions by reducing to a
few minimal con�gurations and in particular, if p does not divide |Aut(S)|, it
reduces to the tame case. The results we obtain here give a much easier reduc-
tion for the genus problem even in characteristic zero (but do give less precise
information). The analog of the reduction theorem in the tamely rami�ed case
seems out of reach when wild rami�cation is present.

The second is to show that there is a close connection between the genus of
the Galois closure of the cover and the genus of X. In particular, let γp(S) be the
minimal genus h > 1 of a curve Z (in characteristic p) so that S is a subgroup
of Aut(Z). We show that if γp(S)/|S| is large compared to �xed point ratios
of elements in primitive permutation representations of S (and related groups),
then S cannot be a genus g group for g small.

This is used in conjunction with the following theorem.

Theorem 1.7. Let X be a type of Chevalley group. Let p and r be distinct
primes. There exists a constant c = c(X) such that if X(ra) acts on a curve of
genus g > 1, then g ≥ c|X(ra)|.
Using patching constructions, one can show that the constant c(X) → 0 as
the rank of X goes to in�nity and also that the characteristic assumptions are
necessary.

Of course if g ≤ 1, we know the automorphism groups. For tame covers, a
more speci�c version of the previous result is the Hurwitz bound on the size of
Aut(X). We will explore other bounds on automorphism groups of curves in
future work.

The paper is organized as follows. In section 2, we discuss the Riemann�
Hurwitz formula and show the connection between �xed points in permutation
representations and the genus.

In section 3, we indicate the connection between the `-torsion in the Jacobian
(and more generally the Tate module) and the genus and use some elementary
representation theory to obtain some inequalities on the genus.

In section 4, we give upper bounds for µ(S) and also show how to reduce to
the case that the cover is indecomposable and the map is to P1.

In section 5, we deal with the case of regular normal subgroups and show how
one can reduce to a smaller case (at the expense of possibly slightly increasing
the minimal genus).
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In section 6, using the previous sections, we prove our main reduction result
and prove Theorem 1.4.

In section 8, we obtain estimates for the Riemann�Hurwitz formula when we
have certain conditions on the inertia groups.

In section 9, we indicate the relationship between the genus of the Galois
closure and µ(S) and prove our main result about Chevalley groups.

In sections 10, 11 and 12, we introduce some group theoretic notation and
machinery. In particular, we prove a simple version of the Aschbacher�O'Nan�
Scott theorem that we use in the paper. There is a nice proof of this in the
literature (see [48]), but our proof is quite short and elementary and gives the
result precisely in the form we require. We also include a proof of a version
of Aschbacher's theorem on subgroups of classical groups. This has been of
fundamental importance in studying primitive permutation groups.

In the �nal section, we turn to a di�erent topic. It does show how group theory
plays an important role in studying covers of curves. It gives a simpler example
of a group G such that G/Q is an abelian p′-group on two generators where Q

is a quasi-p group (i.e. is generated by its Sylow p-subgroups) but G 6= QA

where A is abelian. In the case that G/Q is cyclic, clearly cyclic supplements
always exist and this easy fact is used in the proof of the Abhyankar conjecture
for curves.

This example in conjunction with work of Harbater and Van der Put [44] shows
that the strongest form of a conjecture of Abhyankar about covers unrami�ed
outside a normal crossing in the a�ne plane is not true. A much more general
but more complicated construction is given by the author in the appendix of
[44].

Some of the results stated above do depend on the classi�cation of �nite simple
groups and we do use that theorem in a few places in this paper. However,
for the most part, the results about Chevalley groups do not depend on the
classi�cation. In particular, one can give a proof of the minimal genus result for
Chevalley groups without reference to the classi�cation.

The author wishes to thank MSRI for its generous hospitality. Much of this
work was done while the author was a Research Professor at MSRI during the
Fall 1999 program on Galois groups and fundamental groups. He would also like
to thank the referee for a careful reading of the manuscript.

2. The Riemann�Hurwitz Formula

Let G be a �nite group and Ω a G-set of size n. If I ≤ G, de�ne ind(I) =
ind(I, Ω) = n − orb(I), where orb(I) is the number of orbits of I on Ω. Let
f(x) = f(x, Ω) denote the size of the set of �xed points of x ∈ G.

It follows by a result of Burnside (or by Frobenius reciprocity) that
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orb(I) = |I|−1
∑

x∈I

f(x).

If I is a descending sequence of normal subgroups of I = I0 ≥ I1 ≥ I2 ≥ . . . ≥
Im, de�ne

ρ(I,Ω) =
∑

i=0

[I : Ii]−1 ind(Ii).

We will often abuse notation and write ρ(I) for ρ(I, Ω). This notation will
be used in the case that I is the inertia group of a point on a curve and I is the
sequence of higher rami�cation groups.

We can now express the Riemann�Hurwitz formula in group theoretic nota-
tion.

Let k be an algebraically closed �eld of characteristic p ≥ 0 and X, Y smooth
projective curves over k with the genus of X, g(X) = g and g(Y ) = h. Let
f : X → Y be a separable nonconstant rational map of degree n. Let Z denote
the curve corresponding to the Galois closure and G the monodromy group of
the cover.

Let B ⊂ Y denote the (�nite) set of branch points of the cover. If y ∈ B, let
I = I(y) denote the inertia group of some point in Z over y and let Ii(y) denote
the ith higher rami�cation group. See [61] for details about higher rami�cation
groups. The Riemann�Hurwitz formula can now be stated:

Theorem 2.1.
2(g − 1) = 2n(h− 1) +

∑

y∈B

ρ(I(y)).

In particular, we record:

Corollary 2.2. If h > 1, then n ≤ (g − 1)/(h− 1) ≤ (g − 1).

Thus, for a �xed g, given n and h > 1, there are only �nitely many possibilities
for G.

If h = 1, we have a similar result. This is stated in [32] for characteristic
0; however the proof is identical using the Riemann�Hurwitz formula. For the
second corollary, just note that ind(I) ≥ n/2 for any nontrivial I in the regular
representation.

Corollary 2.3. If the cover f : X → Y is indecomposable of degree n and
h = 1, then one of the following holds:

(i) n is prime, G is cyclic of order n, g = 1 and the cover is unrami�ed .
(ii) G ∼= An or Sn.
(iii) 2(g − 1) ≥ √

n− 1.

Corollary 2.4. If the cover f : X → Y is Galois and h = 1, then one of the
following holds:
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(i) G is abelian and the cover is unrami�ed .
(ii) 2(g − 1) ≥ n/2.
So the critical case is when h = 0.

Also, note that the each of the groups I(y) has a normal Sylow p-subgroup,
I1(y), and that I(y)/I1(y) is a cyclic p′-group.

Let N denote the normal subgroup of G generated by the subgroups I1(y), y ∈
B. Then G/N is a p′-group and is the monodromy group of the cover Z → Z/N .
Moreover G/N generated by the images of the I(y) and choosing appropriate
generators for the (cyclic) images of the I(y), the product of these generators is
1�i.e. we have the description of the monodromy group G/N as in character-
istic zero.

3. The Tate Module
Let Z be a smooth projective curve of genus g over an algebraically closed

�eld k of characteristic p ≥ 0. Let J = J(Z) be the Jacobian of Z. So J is the
set of formal �nite sums of points of Z with weight zero modulo those elements
which correspond to divisors of functions on Z.

If m is a positive integer, let J [m] denote the m-torsion points on J . If ` is a
prime, let T`(Z) denote the inverse limit of J [`a]. So this is a Z`-module and of
course, Aut(Z) acts on this module as well. Let T ′`(Z) = T`(Z)⊗Q`.

The following result is classical.
Lemma 3.1. Let H be a �nite subgroup of Aut(Z). Let V = T ′` for any ` 6= p.
Then 2g(Z/H) = dim CV (H). If p 6= ` and ` does not divide the order of H,
then 2g(Z/H) = dim CJ[`](H).
Proof. The Jacobian is a g-dimensional abelian variety. Thus, for any m not
divisible by p, J [m] has order m2g. Let d = |H| and f : Z → Z/H the covering
map of degree d. Let f∗ denote the induced map from J(Z) → J(Z/H). If
y ∈ Z/H, let f∗(y) = ny

∑
z, where the sum runs over x with f(z) = y and ny

is the order of the inertia group of any such z (note this is independent of z).
Then f∗ induces a map from J(Z/H) → Y . In particular, note that the image
of f∗ is contained in J(Z)H . It follows immediately from the de�nitions that
f∗f∗(D) = dD for element D ∈ J(Z)H and similarly that f∗f∗(D) = dD for
element D ∈ J(Z/H). In particular, this shows that T ′`(Z)H ∼= T ′`(Z/H) for all
` 6= p.

If ` does not divide the order of H, then the �xed points on the Tate module
have the same dimension as the �xed on points on the `-torsion subgroup of the
Jacobian. ¤
We could replace V by the `-torsion subgroup for some ` not dividing |H|. We
remark that it is well known that the Tate module is really independent of `.
Also if ` does not divide the order of H and the genus is at least 2, then H acts
faithfully on the `-torsion subgroup.
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The case ` = p is also interesting but in fact in that case V can be 0 (and in
general 0 ≤ dim V ≤ g(Z)).

If p = 0, we could also use the module of holomorphic di�erentials on Z and
remove the 2 in the formula.

We point out an interesting consequence. If H is a subgroup of G, let 1G
H

denote the permutation module for G over C.

Corollary 3.2. Let Z be a curve over k with G a �nite group of automorphisms
of Z. Suppose that H and K are subgroups of G such that 1G

H is isomorphic to
a submodule of 1G

K . Then g(Z/H) ≤ g(Z/K).

Proof. Let V denote the Tate module for some su�ciently large prime ` other
than the characteristic of the curve. By Frobenius reciprocity, dim CV (H) =
dimHomG(1G

H , V ) and dim CV (K) = dim HomG(1G
K , V ). Since 1G

H is a direct
summand of 1G

K , dim HomG(1G
H , V ) ≤ dim HomG(1G

K , V ), whence the result. ¤

Here are some well known situations where the previous result applies.

(i) G = Sn or An. Let H be the stabilizer of a subset of size j and K the
stabilizer of a set of size j′ with 1 ≤ j ≤ j′ ≤ n/2.

(ii) PSL(n, q) ≤ G ≤ PΓL(n, q). Let H be the stabilizer of a subspace of
dimension j and K the stabilizer of the a subspace of dimension j′ with
1 ≤ j ≤ j′ ≤ n/2.

(iii) G is a classical group and H is the stabilizer of a totally singular 1-space.
Then we can take K to be the stabilizer of any totally singular space of less
than maximal rank or usually the stabilizer of a nonsingular space as well.
See [19] for a precise statement.

We now prove some easy representation theoretic facts that will be useful in
estimating genera.

Lemma 3.3. Let G be a �nite group with a normal subgroup E. Let H be
a maximal subgroup of G which does not contain any normal subgroup of G

contained in E. Assume that E = X1× . . .×Xt with the Xi = Xgi being the set
of G-conjugates of X := X1. Set Y = X2× . . .×Xt. Let N = NG(X) = NG(Y ).
If V is a �nite dimensional CG-module, then dim CV (H) ≥ dim CV (NH(X)Y )−
dim CV (NG(X)).

Proof. Since both sides of the inequality we are proving are additive over
direct sums and since V is a completely reducible CG-module, it su�ces to
prove the result for V irreducible. If V is trivial, there is nothing to prove.
Suppose that E does not act faithfully on V . Let K denote the kernel of E

on V . Since H is maximal and does not contain K, G = HK and NG(X) =
NH(X)K and similarly for Y . In this case 0 = CV (G) = CV (HK) = CV (H)
and CV (NG(X)) = CV (NH(X)) whence we have equality.

So we may assume that E acts faithfully on V . Note that since NG(X) ≥ E,
CV (NG(X)) = 0.
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We may assume that CV (Y ) = W is nonzero (or the result obviously holds).
Let Yi = Y gi . Note that

∑
i CV (Yi) is a direct sum (for if

∑
vi = 0 with 0 6= v1

and vi ∈ CV (Yi), then v1∈CV (Y )∩⋂
i>1 CV (Yi)=CV (Y )∩CV (X)=CV (E)=0).

Now NG(X) leaves W invariant (since NG(X) normalizes Y ). As we have seen
above the distinct images of W under G form a direct sum Also the stabilizer of
W is NG(X) (for if gW = W and g is not in NG(X), then 〈Y, Y g〉 = E would
imply that W = CV (E) = 0). It follows that V ∼= WG

NG(X) and so V ∼= WH
NH(X)

as H-modules (since as noted G = HNG(X)). So by Frobenius reciprocity,
CV (H) ∼= CW (NH(X)) = CV (NH(X)Y ). ¤

The following variant of the previous result will also be useful.

Lemma 3.4. Let G be a �nite group with a normal subgroup E. Let H be
a maximal subgroup of G which does not contain any normal subgroup of G

contained in E. Assume that E = X1×. . .×Xt with the Xi = Xgi being the set of
G-conjugates of X := X1. Let ∆ = {1, . . . , t}. Let δ ⊂ ∆ and set Xδ =

∏
i∈δ Xi.

Let Yδ = Xδ′ where δ′ is the complement of δ. Let Nδ = NG(Xδ). Let V be an
irreducible CG-module containing an E-submodule W of the form W1⊗ . . .⊗Wt

with Wi an irreducible Xi module with Wj trivial if and only if j ∈ δ′. Then
dim CV (H) ≥ dim CV (NH(Xδ)Yδ)− dim CV (NG(Xδ)).

Proof. Note that NH(Xδ)Yδ ≤ NG(Xδ) and so each term on the righthand
side of our desired inequality is non-negative.

First suppose that E does not act faithfully on V . Let K denote the kernel of
E on V . Since K is normal in G, G = KH. Then CV (H) = CV (HK) = CV (G).
If G acts trivially, then the lefthand side is 1 and the righthand side is 0.

Otherwise, the lefthand side is 0. Since G = HK, NG(Xδ) = KNH(Xδ),
whence the righthand side is also 0.

So we may assume that E acts faithfully on V . If W = V , Yδ has no �xed
points on V for δ any proper subset of ∆ (for Yδ contains some Xj and V

restricted to Xj is a direct sum of copies of Vj). Thus, the righthand side of the
equation is 0.

Let U := Uδ = CV (Yδ). So W ⊆ U . By irreducibility, V =
∑

Uγ where γ

is the orbit of δ. Note that this sum is in fact direct, since the terms are direct
sums of irreducible E-modules which are not isomorphic (as they have di�erent
kernels). Moreover, the stabilizer in G of Uδ is precisely NG(Xδ) (because of the
permutation action on the Xi). Thus, V is isomorphic to the induced module,
UG

NG(Xδ). Since G = NG(Xδ)H, this implies that VH
∼= UH

NH(Xδ) and so by
Frobenius reciprocity, dim CV (H) = dim CU (NH(Xδ)). Since U = CV (Yδ), it
follows tht CV (NH(Xδ))(Yδ) = CU (NH(Xδ)), whence the result. ¤

We next deal with diagonal subgroups (see section 11 for terminology). The
result is actually more general than we state� the condition that X is simple is
not necessary.
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Lemma 3.5. Let G be a �nite group with a minimal normal subgroup E =
X1 × . . . × Xt with the Xi the set of G-conjugates of the nonabelian simple
group X = X1 and t > 1. Let H be a maximal subgroup of G not containing
E such that H ∩ E is a diagonal subgroup of E. Let ∆ = {1, . . . , t}. If δ ⊂
∆, set Xδ =

∏
i∈δ Xi. Let Yδ = Xδ′ where δ′ is the complement of δ. Let

Nδ = NG(Xδ). If V is a �nite dimensional CG-module, then dim CV (H) ≥
dim CV (NH(X12)Y12)− dim CV (NG(X12)).

Proof. It su�ces to assume that V is irreducible. Note that the righthand side
is always non-negative (since NG(X12) ≥ NH(X12)Y12).

If V is a trivial G-module, there is nothing to prove.
If E acts trivially on V , then CV (H) = CV (HE) = 0. On the other hand,

since G = HE, we have NG(X12) = ENH(X12) and so CV (NH(X12)Y12) =
CV (NG(X12)).

So assume that E acts nontrivially on V . In particular, this implies that
CV (NG(X12)) = 0. If Y12 has no �xed points on V , then clearly the result holds
(since the right hand side of the inequality is 0).

Suppose �rst that CV (Y1) is nonzero. Then as in the previous result, V is the
direct sum of the CV (Yi) = [Xi, V ]. Since H ∩ E is a diagonal subgroup, this
implies that (H ∩E)Yi ≥ E and so H ∩E has no �xed points on [Xi, V ] and so
none on V . Since H ∩E ≤ NH(X12), the right hand side is 0, whence the result.

Finally, assume that W := CV (Y12) 6= 0, but CV (Y1) = 0. This implies that
every irreducible E-submodule of V is of the form U1 ⊗ . . . ⊗ Ut with Ui an
irreducible Xi-module with Ui nontrivial for precisely 2 terms. In particular, it
follows that W is a sum of E-homogeneous components. Let Wij = CV (Yij).
Since Wij is also a sum of E-homogeneous components and there are no common
irreducibles among the distinct Wij , it follows that V = ⊕Wij and the nontrivial
Wij must be a single G-orbit. Clearly, W is invariant under NG(X12) and indeed,
we see that this is the full stabilizer of W . Since G = HE = HNG(X12), H acts
transitively on the Wij as well. Thus, V ∼= WH

NH(X12)
and so by Frobenius

reciprocity, CV (H) = CW (NH(X12)) = CV (NH(X12)Y12). ¤

The next lemma gives a bound in certain additional cases.

Lemma 3.6. Let A be a �nite group and G a normal subgroup. Let M = NA(M)
be a maximal subgroup of A such that M∩G is properly contained in the maximal
subgroup J of G. Assume moreover that the intersection of any proper subset of
M -conjugates of J properly contains M ∩G. Let V be an irreducible CA-module.
Then either G acts trivially on V or dim CV (J) ≤ dim CV (M).

Proof. Since M does not contain G, it follows that A = GM . Let W = CV (J).
Choose a transversal 1 = x1, . . . xt in M for A/G. We claim that

∑
xiW is a

direct sum. If not, then there exists a nonzero vector v ∈ W with v ∈ ∑
I>1 xiW .

Thus, v ∈ CV (J) ∩ CV

(⋂
i>1 Jxi

)
. By assumption,

⋂
i>1 Jxi is not contained in
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J and so G =
〈
J,

⋂
i>1 Jxi

〉
. Hence v ∈ CV (G) = 0. Thus, the map w 7→ ∑

xiw

is an injection from W to CV (M). ¤

Note that if M ∩ G is not maximal in G and J is a maximal self-normalizing
subgroup of G containing M∩G and A/G has order 2, the hypotheses are always
satis�ed.

4. Upper Bounds for Genus
The �rst result is classical. Let k be an algebraically closed �eld of character-

istic p ≥ 0. All covers refer to curves over k.

Lemma 4.1. There exist covers f : P1 → P1 of degree n with monodromy group
Sn.

Proof. Let f(x) = x2h(x), where h is a polynomial of degree n−2 with distinct
nonzero roots. Choose h in addition so that f is separable and indecomposable
(these are both open conditions on the coe�cients of h). Then the monodromy
group is a primitive group of degree n containing a transposition (consider the
inertia group over 0). It is elementary to prove that a primitive permutation
group of degree n containing a transposition is Sn. ¤

Lemma 4.2. Let S be a nonabelian simple group and let n be the minimal index
of a maximal subgroup of S. Then there exists a cover f : X → P1 of degree n

with X of genus n + 1. In particular , µ(S) ≤ n + 1.

Proof. By [63], there exists an unrami�ed S-cover of a genus 2 curve Y . Thus,
there exists a degree n cover X of Y with monodromy group S. By the Riemann�
Hurwitz formula, X has genus n + 1. ¤

With some e�ort, one should be able show that µ(S) < n/2 at least for p 6= 2.
One would need a slight generalization of a the generation result from [29] given
below�something like given 1 6= x ∈ S, there exists y ∈ S with S = 〈x, y〉 such
that y and xy have order prime to p. If p 6= 2, this would give µ(S) ≤ (n− 1)/2
and a slightly weaker bound for p = 2.

We give the proof of a slightly better result in characteristic zero only. One
can do a bit better for most simple groups because they can be generated by
elements of order 2 and 3, we can require in this case that (in characteristic 0)
X has genus at most n/6 + 1 (and asymptotically for many families that is the
best that can be done).

Lemma 4.3. Let G be an almost simple group with socle S acting faithfully
on a set of cardinality m. If x is a nontrivial element of G, then there exists
a Riemann surface X and f : X → P1 of degree at most m with X of genus
g ≤ ind(x)/2 and monodromy group G0 with S ≤ G0 ≤ G. In particular , if n

is the minimal degree of a permutation representation of S, then there exists a
Riemann surface f : X → P1 of degree m with X of genus g ≤ n/4.
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Proof. By [29], there exists an element y ∈ G so that G0 := 〈x, y〉 ≥ S. By
passing to a G0-orbit if necessary we may assume that G = G0. By Riemann's
existence theorem, there exists a 3 branch point cover f : X → P1 with inertia
groups generated by x, y and z := (xy)−1. Since ind(y), ind(z) < m, it follows
that g(X) ≤ ind(x)/2.

Apply this result to the case that G = S and x is an involution to obtain the
last statement. ¤

Lemma 4.4. [40] If f : X → Y is a branched covering and f = f1 ◦ f2, then any
composition factor of the monodromy group of f is a composition factor of the
monodromy group of fi for i = 1 or 2.

We will need the following result about minimal permutation representations of
a groups with a given composition factor.

Lemma 4.5. Let S be a nonabelian simple group. Let n be the smallest cardi-
nality of a faithful G-set for any group G with S as a composition factor of G.
Then F ∗(G) = S and n is the index of the largest proper subgroup of S.

Proof. Let Ω be the given G-set of size n. Note �rst that G is transitive (for
otherwise S is a composition factor in G/K or K where K is the subgroup acting
trivially on some G-orbit and either group acts faithfully on a smaller G-set).
We claim also that G is primitive on Ω. Otherwise, S is a composition factor of
the stabilizer of a block or a composition factor of G acting on the blocks. In
either case, we would have a smaller action with S as a composition factor.

Let H be a point stabilizer. If G has a normal abelian subgroup or 2 minimal
normal subgroups, then H has a smaller faithful orbit and has S as a composition
factor. So let L be a simple component of G and let Li, 1 ≤ i ≤ t be the G-
conjugates of L. Thus, G has a unique minimal normal subgroup.

Suppose that S is not a component of G. Then S embeds in G/K where K

is the subgroup normalizing each Li. Thus, t ≥ n, but (cf. section 11), n ≥ 5t,
a contradiction.

So S is a component of G and G has a unique minimal normal subgroup. Let
m be the index of the largest proper subgroup of S. By section 11, one of the
following holds: n ≥ mt or n ≥ |S| > m. Thus, t = 1 (as claimed). ¤

It is convenient to de�ne md(S) to be the smallest index of a proper subgroup
of S. We remark that md(S) is known for all S �cf [45].

Lemma 4.6. Let f : X → Y be a branched covering of degree n with S a
nonabelian composition factor of the monodromy group G of f . Assume that Y

has genus at least 1.

(i) If Y has genus at least 2, then g(X)− 1 ≥ n ≥ md(S);
(ii) If S is not an alternating group, then g(X)− 1 > n/12 ≥ md(S)/12.
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Proof. By Lemma 4.4, we may assume that f is indecomposable. Let h = g(Y ).
If h > 1, then the Riemann�Hurwitz formula yields g − 1 ≥ n(h − 1) ≥ n. By
the previous lemma, n ≥ md(S).

Suppose that h = 1. Since S is nonabelian, the cover must be rami�ed.
Then the Riemann�Hurwitz formula yields that g − 1 ≥ (1/2)ρ(J) where J is
a nontrivial inertia group. Clearly, ρ(J) ≥ ind(J) and so by [49], ind(J) ≥ n/6
whence the second statement. ¤

5. Regular Normal Subgroups
In this section, we show that the a�ne case can be reduced to the other cases.

We �rst prove two general results.

Lemma 5.1. If G is a �nite primitive permutation group with point stabilizer H

and N is a regular normal subgroup, then H ∩Hg contains no nontrivial normal
subgroup of H for g any nontrivial element of G \N .

Proof. Let K be a nontrivial normal subgroup of H in H∩Hg. Since G = HN ,
we may assume that g ∈ N . Then H∩Hg = CH(g) and so NG(K) ≥ 〈H, g〉 = G

(by the maximality of H). This contradicts the fact that H contains no nontrivial
normal subgroup of G. ¤

Lemma 5.2. Let H be a group of automorphisms of a �nite group N which is
transitive on the set of all nontrivial elements of N . If H is not solvable, then
H contains a normal cyclic subgroup C with F ∗(H/C) simple.

Proof. N is characteristically simple and must have all elements of the same
order, whence N is an elementary abelian p-group for some prime p. The result
follows easily from Aschbacher's theorem on subgroups of classical groups (see
the appendix). ¤

We now �x some notation. Fix a prime p. All curves will be smooth projective
curves over an algebraically closed �eld of characteristic p. Let S be a �nite
nonabelian simple group. Fix a non-negative integer d. Let λ(S, d) denote the
smallest positive n such that there exists an indecomposable separable branched
cover f : X → Y of degree n with monodromy group G such that S is a compo-
sition factor of G and X has genus at most d (if the characteristic is not clear,
we write λp(S, d)).

Similarly, let λ′(S, d) denote the smallest positive n′ such that there exists
an indecomposable separable branched cover of degree f : X → Y of degree n

with monodromy group G such that S is a component of G and X has genus at
most d.

Let λ′′(S, d) denote the smallest positive n such that there exists an indecom-
posable separable branched cover f : X → Y of degree n with monodromy group
G such that F (G) = 1, X has genus at most d and S is a composition factor
of G.
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In particular, to say that any of these quantities is �nite is to say that such
covers exist.

Theorem 5.3. Let f : X → Y be an indecomposable separable nonconstant map
of degree n = λ(S, d) with X of genus g ≤ d. Assume that S is a nonabelian
composition factor of the monodromy group G of f . Assume that G contains
a regular normal abelian subgroup N . Then Y has genus zero and one of the
following holds:

(i) g = 0 and λ′(S, 2) < n;
(ii) g = 0 and λ′′(S, 1) < n;
(iii) g = d, G acts transitively on the nontrivial elements of N via conjugation

and λ′(S, d + 1) < λ(S, d).

Proof. Let Ω denote the G-set of degree n corresponding to the cover. Let H

be the stabilizer of a point ω and let Ωi be the nontrivial H-orbits on Ω. Let Hi

be the stabilizer of a point in Ωi. Identifying H with G/N , we may identify Ωi

with the G-set G/NHi.
Let Z denote the Galois closure of X/Y and consider the curves Xi := Z/NHi

and let gi denote the genus of Xi.
If x ∈ G, then write x = yz with y ∈ H and z ∈ N . Let fix(x, Ω) denote

the cardinality of the set of �xed points of x on Ω. We note that fix(x, Ω) ≤
1+

∑
fix(y, Ωi). For if x is conjugate to y, this is clear while if x is not conjugate

to y, then fix(x, Ω) = 0.
Then ind(J, Ωi) = ind(JN/N, Ωi). The previous paragraph shows that for

any subgroup J of G, ind(J, Ω) ≤ 1 +
∑

i ind(J,Ωi).
Let h denote the genus of Y . Now applying the Riemann�Hurwitz formula to

the curves X and Xi, we obtain:

2(g − 1) = 2n(h− 1) +
∑

J

ρ(J,Ω) ≥ 2n(h− 1) +
∑

J,i

ρ(J, Ωi).

Here the sum is over the inertia groups (and higher rami�cation groups) J of
the cover X → Y .

Now
2(gi − 1) = 2ni(h− 1) +

∑

J

ρ(J,Ωi),

and so since n = 1 +
∑

ni,

(g − 1) ≥ (h− 1) +
∑

(gi − 1).

Note that the monodromy group of the cover of Xi → Y is G/N ∼= H (by
Lemma 5.1). By minimality, it follows that gi > d ≥ g for each i and so h = 0.

This implies that either g = 0 and each gi = 1 or H has only one nontrivial
orbit on Ω in which case g = g1 − 1 ≥ d and so g = d.
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Suppose that the second case occurs and g 6= 0. Now apply Lemma 5.2 to
conclude that (3) holds.

Now suppose the �rst case holds. So g = 0. Now start over and choose
an indecomposable cover φ : W → P1 of degree m with W of genus 1 and m

minimal with S as a composition factor. Note that m < n. So this gives a
primitive permutation group. If this group has a normal elementary abelian
group, then we repeat the argument and obtain a cover as in the second case
(with the genus at most 2) and so λ′(S, 2) < n. If not, then we conclude that
λ′′(S, 1) < n. ¤

Lemma 5.4. Let f : X → Y be an indecomposable separable nonconstant map of
degree n = λ′′(S, d) with X of genus g ≤ d. Assume that S is a nonabelian com-
position factor of the monodromy group G of f . Then G has a unique minimal
normal subgroup or d = 0 and λ′′(S, 1) < λ′′(S, 0).

Proof. Assume that G has more than one minimal normal subgroup. Let Ω
be the G-set of size n associated with the cover. Let H be a point stabilizer.
Let N be a minimal normal subgroup of G. Since there are 2 minimal normal
subgroups of G, N is a regular normal nonabelian subgroup. So G = HN is a
semidirect product.

De�ne the curves Xi as in the previous proof. Arguing precisely as above, we
have the same possibilities (and note that S is a composition factor of G/N and
G/N has no normal abelian subgroups). In this case, H has more than one orbit
on the nontrivial elements of N , eliminating that possibility. So it follows that
g = 0 and gi = 1 for each i. ¤

We note that for most S, the situations in the lemma cannot occur. For example,
if S = Am,m ≥ 5, then there is a degree m cover from P1 to P1 and so λ(S, d) =
λ′(S, d) = λ′′(S, d) = m.

6. Minimal Genus for Composition Factors

Let S be a �nite nonabelian simple group. As in the previous section, all
curves considered are over an algebraically closed �eld of characteristic p. Let
µ′p(S) = µ′(S) denote the minimal genus g of a curve X so that there exists a
cover f : X → Y with f indecomposable and S is a component of the monodromy
group of f .

Let µ′′(S) denote the minimal genus g of a cover f : X → Y with f indecom-
posable such that the monodromy group has no normal abelian subgroup and S

is a composition factor. Clearly, we have:

Lemma 6.1. µ(S) ≤ µ′′(S) ≤ µ′(S).

We rephrase Theorem 5.3 in this notation.

Lemma 6.2. Assume that µ(S) < µ′′(S). Then one of the following holds:
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(i) µ(S) = 0 and µ′(S) ≤ 2;
(ii) µ(S) = 0 and µ′′(S) = 1;
(iii) µ(S) > 0, and µ′(S) = µ(S) + 1.
Proposition 6.3. µ′′(S) = µ′(S) or µ′(S) ≤ 2.
Proof. Let f : X → Y be a separable branched covering of degree n = λ′′(S, g)
with X of genus g = µ′′(S), S a composition factor of the monodromy group G

of the cover. We may assume that G has no normal abelian subgroup and that
µ′(S) > 2.

Let Z denote the curve corresponding to the Galois closure. Let H be the
subgroup with X = Z/H. If S is a component of G, µ′′(S) = µ′(S). So assume
that this is not the case. It follows that S is a composition factor of G/F ∗(G).

Since G has no normal abelian subgroup, we can write E = F ∗(G) as a direct
product of conjugates of a subgroup J . Let J ′ be the direct product of all the
other distinct conjugates of J .

Let V denote a the complexi�cation of a Tate module for Z. By Lemmas 3.3
and 3.4, dim CV (H) ≥ dim CV (NH(J)J ′)− dim CV (NG(J)).

Note that S is a composition factor of the monodromy group of the cover
Z/NG(J) → Y . It follows that Z/NG(J) has genus g′ which is at least µ(S).

First suppose that g′ > 1. Then the genus of Z/(NH(J)J ′) is at least
5(g′ − 1) + 1 (by the Riemann�Hurwitz formula and the fact that the degree
of Z/(NH(J)J ′) → Z/NG(J) is at least 5). Hence 2g = dim CV (H) ≥ 8(g′ − 1).

Thus, g = µ′′(S) ≥ 4(g′ − 1) ≥ 4(µ(S) − 1). Thus µ′′(S) > µ(S) and so the
previous lemma applies. If µ(S) = 0, then µ′′(S) ≤ 2, contradicting the fact that
g ≥ 4(g′ − 1) ≥ 4. Otherwise, µ′′(S) ≤ µ(S) + 1 and so µ(S) + 1 ≥ 4(µ(S)− 1),
whence µ(S) = 1 and g = µ′′(S) ≤ 2, contradicting the fact that g ≥ 4.

Next consider the case that g′ ≤ 1. If g′ = 1, since Z/(NH(X)Y ) → Z/NG(X)
is not an abelian, Z/(NH(J)J ′) has genus g′′ ≥ 2. Again, by Lemmas 3.3 and
3.4, g ≥ g′′ − 1 ≥ 1.

It follows that µ(S) < µ′′(S) and λ(S, µ(S)) < λ′′(S, µ′′(S)) (because there
is a smaller degree cover which yields a cover with composition factor S and
genus no larger than g). Thus, the minimal degree cover achieving µ(S) must
have an abelian normal subgroup. It follows by the proof of Theorem 5.3 that
λ′′(S, µ(S) + 1) < λ(S, µ(S)) or µ′(S) ≤ 2.

The �rst condition does not hold by the inequality at the start of the para-
graph and the second does not hold by assumption. This completes the proof. ¤
Corollary 6.4. Either µ(S) ≤ µ′(S) ≤ 2 or µ′(S) ≤ µ(S) + 1.
Proof. Assume µ′(S) > 2. Then µ′(S) = µ′′(S). By Lemma 6.2 µ′′(S) ≤
µ(S) + 1. ¤
The previous result allows us to concentrate on computing µ′(S)�i.e. a lower
bound for µ′(S) is very close to the lower bound for µ(S). The next result
essentially reduces this to the almost simple case.
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Theorem 6.5. Let f : X → Y be an indecomposable degree n cover with
monodromy group G with S a component of G. Assume that X has genus g =
µ′(S). Moreover , assume that n is minimal with respect to these conditions.
Then one of the following holds:

(i) F ∗(G) = S; or
(ii) F ∗(G) = S × S and H ∩ F ∗(G) is a diagonal subgroup of F ∗(G); or
(iii) µ′(S) ≥ md(S)/12 + 1.

Proof. Let E = F ∗(G). Let Z be the curve corresponding to the Galois closure
of the cover. Let H be the subgroup of G of index n with X = Z/H.

Suppose that we can write E = A1 × . . . × At, where the Ai are all the
conjugates of A = A1

∼= Sm, H ∩ E is the direct product of the subgroups
H ∩ Ai and NH(A)C(A) does not contain A. By Lemmas 3.3 and 3.4, g ≥
g(Z/(NH(A)C(A)) − g(Z/NG(A)). If h := g(X/NG(A)) ≥ 2, then by the
Riemann�Hurwitz formula, g(Z/(NH(A)C(A)) − 1 ≥ md(S)(h − 1) and so g ≥
(md(S)− 1)(h− 1) ≥ (md(S)− 1).

If h = 1, then the same argument (together with Lemma 2.3 and the fact
that we may assume that S is not an alternating group), implies that g ≥
md(S)/12 + 1.

So we may assume that h = 0 and so g ≥ g(Z/(NH(A)C(A)). Note that the
monodromy group of the cover Z/(NH(A)C(A)) → Z/NG(A) is NG(A)/CG(A)
and so has S has a composition factor (since C(A)NH(A) does not contain A).
Thus, by minimality, A = E. So we cannot decompose E in such a manner.

By the Aschbacher�O'Nan�Scott Theorem, this implies that either F ∗(G) = S

or E is the unique minimal normal subgroup of G and H ∩ E is a full diagonal
subgroup of E.

In the latter case, we apply Lemma 3.5. Arguing exactly as above, by mini-
mality, we see that F ∗(G) = S × S. ¤

Putting together the previous results, we obtain:

Theorem 6.6. Let S be a nonabelian simple group. If µ′(S) < (md(S))/12 + 1,
then there exists an indecomposable cover f : X → P1 with X of genus g and with
S a composition factor of the monodromy group J of f such that g ≤ µ(S) + 1
or g = 2 and one of the following holds:

(i) F ∗(J) = S; or
(ii) F ∗(J) = S × S and H ∩ F ∗(J) is a full diagonal subgroup of F ∗(J).

If p is a prime that does not divide the order of Aut(S), the previous theorem
essentially asserts that the minimal genus of any group involving S does not have
order divisible by p, whence we can apply the results about tame covers and so
we obtain the following result. Note this says nothing about characteristic 2.

Theorem 6.7. Let S be a nonabelian simple group. If p does not divide the
order of Aut(S), then one of the following holds:
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(i) µp(S) ≥ md(S)/12 + 1; or
(ii) µ0(S) ≤ 2; or
(iii) µp(S) = µta(S).

We can extend this result to the case that p does not divide the order of S (rather
than Aut(S)) by observing if that holds, then the Sylow p-subgroup P of Aut(S)
is cyclic and Aut(S) = PG0 with G0 being a p′-group. An easy analysis of this
situation together with the results of this section yield Theorem 1.4.

Since for any odd prime there are in�nitely many simple groups not divisible
by p (for p > 3, consider L2(r) with r prime and p not dividing r(r2 − 1); for
p = 3, consider the Suzuki groups), we have the following corollary.

Corollary 6.8. If p is an odd prime and g is �xed , then there are in�nitely
many simple groups with µp(S) > g.

We will obtain much more precise results in the next few sections including
results that hold for p = 2.

7. Composition Factors of Genus g Covers

We will use Theorem 6.6 to show that there are many groups which are not
composition factors of genus g in characteristic p.

If G is a �nite group, de�ne γ(G) := min{g(X)− 1|G ≤ Aut(X)}. Of course,
γ(G) depends on the characteristic (although if p does not divide the order of
G, then by Grothendieck, the description of G-covers is independent of charac-
teristic).

We need the following result. There should be a more conceptual proof but
we use the classi�cation of �nite simple groups. If S is a �nite simple group, let
fpr(S) be minimum of fix(x, Ω)/|Ω| as where Ω is a faithful G-set for some group
G with F ∗(G) = S and 1 6= x ∈ G.

Lemma 7.1. Let S be a �nite simple nonabelian group. If x ∈ Aut(S), the
number of elements y in the coset xS with y2 = 1 is at most |S| fpr(S).

Proof. If S is alternating, this is clear (since fpr(S) is very close to 1). The
result follows by inspection for the sporadic groups.

So assume that S is a Chevalley group. The number of involutions in S (or
xS) is at most |S|/d where d is the smallest degree of a nontrivial complex
representation of S. These degrees are known (see [66] and [52]). If S is a
classical group, then fpr(S) is approximately 1/q whence we are not even close.
If S is an exceptional group, all conjugacy classes of involutions are known and
we can get an exact formula for the number of involutions and again the result
holds easily. ¤

Theorem 7.2. Let S be a �nite nonabelian simple group. Then one of the
following holds:



20 ROBERT GURALNICK

(i) µ(S) ≥ 1 + md(S)/12 ; or
(ii) µ(S) ≥ −2md(G) fpr(G)+md(G)(γ(G))/|G|)(1− fpr(G)) for some group G

with F ∗(G) = S.

Proof. We may assume that µ(S) < (md(S) − 1)/6. Then by Theorem 6.6,
there exists an indecomposable cover f : X → P1 with X either of genus 2 or
genus at most µ(S) + 1 such that the monodromy group G of the cover satis�es
(1) or (2) of Theorem 6.6. Let n denote the degree of f .

Let Z denote the Galois closure of the cover and let H be such that Z/H = X.
Let h denote the genus of Z.

Consider case (1) of 6.6 �rst.
Then F ∗(G) = S and 2 + (h− 1)/|G| = ∑

J ρ(J,G)/|G| and 2 + (g − 1)/n =∑
J ρ(J,Ω)/n. Here the sum is over the inertia groups corresponding to branch

points of the cover.
Now ind(J,Ω)/n = 1 − |J |−1 − |J |−1

∑
g∈J# f(g, Ω))/n) ≥ (1 − |J |−1)(1 −

fpr(G)).
It follows that ρ(J,Ω)/n ≥ (ρ(J,G)/|G|)(1− fpr(G)).
Thus, (1− fpr(G))[2 + (h− 1)/|G|] ≤ 2 + (g − 1)/n, or

g − 1 ≥ −2n fpr(G) + n(γ(G))/|G|)(1− fpr(S)).

Since n ≥ md(G) and g ≤ µ(S) + 1 or µ(S) = 0 and g = 2, the result follows
in this case.

Consider case (2). So n = |S|. In this case f(g, Ω)/n ≤ fpr(S) (by the previous
lemma and [6]). By Lemma 5.4, we may assume that G does not normalize either
component. Precisely as above, it follows that

(1− fpr(S))(h− 1)/|G| ≤ −2 fpr(S) + (g − 1)/n.

Consider the curve Z/S where S is one of the components of G. Then R :=
NG(S)/S acts on this curve, whence it has genus at least γ(R). Note that R is
almost simple with socle S. Thus, 2(h− 1) ≥ 2|S|γ(R) and so

(1− fpr(S))nγ(R)/|G| = (1− fpr(S))γ(R)/|R| ≤ −2 fpr(S) + (g − 1)/n.

As above, this implies (ii) holds. ¤

We restate this:

Corollary 7.3. Let S be a nonabelian �nite simple group with n = md(S).
Then (µ(S) − 1) ≥ n/12 or µ(S)/n ≥ −2 fpr(G) + (γ(G))/|G|)(1 − fpr(G)) for
some group G with F ∗(G) = S.

In particular, if fpr(G) is small and γ(G) is large, then µ(S) is large. We shall
apply this to Chevalley groups of characteristic di�erent from p. Here fpr(G) is
roughly 1/q and γ(G) is a constant times |G| log(q) (where the constant depends
only on the type of G).
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8. Estimates on Inertia Groups

Let k be an algebraically closed �eld of characteristic p. Let f : X → Y be a
Galois cover with Galois group G. Let I be the inertia group of a point of X and
let Ii be the higher rami�cation groups. We write I = I1D with D cyclic. Let
C = CD(I1) and set r = |D : C| and s = |C|. In this section, we obtain estimates
for ρ(I)/|G|. The permutation representation is the regular representation for
G since we have a Galois cover. Restricting this representation to I gives |G : I|
copies of the regular representation. Thus, ρ(I)/|G| is independent of G and
can be computed by considering any such cover with the same I (and higher
rami�cation groups).

In particular, we want to reduce to the case that I = G. This can be done in
several ways. We could just replace G by I and consider the cover X → X/I (and
so the point with inertia group I is totally rami�ed). Alternatively, by Katz�
Gabber [46], there exists a Galois cover ψ : L → P1 rami�ed at precisely 2 points
with inertia groups I (and the same higher rami�cation groups) and D. Let g(L)
denote the genus of L. Thus, 2(g(L) − 1)/|I| + 2 = ρ(I)/|I| + (|D| − 1)/|D| or
ρ(I)/|I| = 1 + 2(g(L)− 1)/|I| − 1/|D|.

For the remainder of this section, we assume that G = I; i.e. there is a totally
rami�ed point.

Lemma 8.1. If Ij 6= Ij+1, then j ≡ 0 (mod s).

Proof. We may assume j > 0. Choose an element x ∈ Ij with x not in Ij+1

and pass to the abelian subgroup C × 〈x〉. Now apply Hasse�Arf [61]. ¤

Lemma 8.2. ρ(I)/|I| ≥ 1 + 1/r − (s + 1)/|I|.
Proof. By the previous result, I1 = . . . = Is. Thus, ρ(I)/|I| ≥ 1 − 1/|I| +∑s

i=1(1/rs)(1− 1/|Ii|), whence the result. ¤

Assume now that I1 is abelian. We change our numbering scheme to keep track
of distinct terms among the higher rami�cation subgroups and count multiplic-
ities. Let I1 = J1 > J2 > . . . > Jm = 1 with the Jj being the distinct higher
rami�cation groups. Let ri denote the number of higher rami�cation groups
equal to Ji. It follows from Hasse�Arf [61] that if Ij 6= Ij+1, then |CI1| divides∑j

i=1 |Ii| and in particular, ri+1 is a multiple of |CI1 : Ii+1|.
Thus (recall our permutation representation is the regular representation)

ρ(I)/|I| = 1− 1/|I|+ |C|/|D|
∑

i=1

λi(1− 1/|Ji|),

where the λi are positive integers. In particular, we see that
ρ(I)/|I| > 1 + |C|/|D| − 1/|I| − |C|/|D||I1|

≥ 1 + |C|/|D| − 1/|D||I1| − |C|/|D||I1|
≥ 1 + |C|/2|D|,

unless possibly |I1| = 2 or |I1| = 3 and C = 1.
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If |I1| = 2, then C = D. If D = 1, then ρ(I)/|I| is a positive integer. If
D 6= 1, then |I| ≥ 6 and so ρ(I)/|G| ≥ 4/3.

If |I1| = 3 and C = 1, then either D = 1 = I2 and ρ(I)/|I| = 4/3 or
ρ(I)/|I| ≥ 1 + 1/|D| = 1 + |C|/|D|. Summarizing we have the following:
Lemma 8.3. If I1 is a nontrivial abelian group, then one of the following holds:
(i) ρ(I)/|I| ≥ 1 + |C|/2|D|;
(ii) I = I1 has order 2, I2 = 1 and ρ(I)/|I| = 1;
(iii) |I1| = 2 and ρ(I)/|I| ≥ 4/3; or
(iv) I = I1 has order 3, I2 = 1 and ρ(I)/|I| = 4/3.
Keep the assumption that I1 is abelian. Set λ =

∑
λi. Then

1− 1/|I|+ (|C|/|D|)(1− 1/p)λ ≤ ρ(I)/|I| < 1− 1/|I|+ |C|/|D|λ.

Lemma 8.4. Fix r = |D/C|. Assume that I1 is abelian and p > 3.
(i) If λ ≥ 2|D|/|C|, then ρ(I)/|I| ≥ 12/5;
(ii) If p is su�ciently large, then ρ(I)/|I| > 1 + 1/3r;
(iii) Let d > 1 be a positive integer with ρ(I)/|I| > 1 + 1/d. If |I| ≥ 8r2 and p is

su�ciently large, then ρ(I)/|I| > 1 + 1/d + 1/(9r2); and
(iv) If ρ(I)/|I| > 2, |I| ≥ 8r2 and p is su�ciently large, then ρ(I)/|I| > 2 +

1/(9r2).
Proof. The �rst statement follows immediately from the inequality above.

So we may assume that λ ≤ 2r. Note that D/C is a cyclic group acting
faithfully on I1. Thus, |I1| > r and so r−1/|I| ≥ 1/r−1/r(r+1) ≥ 1/2r. Thus,
for p su�ciently large, ρ(I)/|I| > 1 + 1/3r.

Suppose that ρ(I)/|I| > 1 + 1/d for d > 1 an integer. If d > 4r, then
ρ(I)/|I|+ 1− 1/d > 2 + 1/(12r).

So assume that d ≤ 4r and ρ(I)/|I| + 1 − 1/d > 2. Thus, 1 − 1/|I| + λ/r >

1 + 1/d, and λ/r − 1/d ≥ 1/rd ≥ 1/(4r2). Hence λ/r − 1/d − 1/|I| ≥ 1/(8r2)
and so for p su�ciently large, ρ(I)/|I| > 1 + 1/d + 1/(9r2).

The same argument yields the last statement. ¤
If p is small or to get better bounds, one needs to analyze the above case more
closely. However, we will not need this in this article.

We need to handle the remaining primes. We �rst show that ρ(I)/|I| cannot
be too close to 1− 1/d if |I1| is small. If |I| itself is small, this is clear since we
have bounded the denominator and we can also bound d easily.

First note that an easy consequence of Hasse�Arf is the following:
Lemma 8.5. Each ri is a multiple of |C|. Indeed , ri is a multiple of |Ci|, where
Ci = CD(Ji/Ji+1).
Proof. By passing to the subgroup CiJi, we may assume that I = C1I1 and
prove the result for r1. We can then pass to I/I2 and assume that I2 = 1, whence
I is abelian and now Hasse�Arf applies. ¤
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Lemma 8.6. Fix r = |D/C|. Assume that I1 contains an abelian subgroup I ′ of
index at most m. Suppose that there are at least t ≥ 5rm distinct terms among
the I ′j = Ij ∩ I ′. Then ρ(I)/|I| > 5/2.

Proof. Let J1, . . . , Jt denote the smallest subgroups among the higher ram-
i�cation groups with �xed intersection with I ′. Let mi denote the number of
terms among the higher rami�cation groups which intersect I ′ in Ji. Then the
Riemann�Hurwitz formula yields:

ρ(I)/|I| ≥ 1− 1/|I|+ (1/|I|)
∑

mi(|Ji| − 1).

Now mi is a multiple of |C| and also by Hasse�Arf mi is a multiple of |I ′ : I ′j |.
Thus,

ρ(I)/|I| ≥ 1− 1/|I|+ (1/rm)
∑

(1− 1/|Ji|) ≥ 1− 1/|I|+ t/(2rm),

whence the result. ¤

Lemma 8.7. Fix r = |D/C|. Assume that |I1| < N .

(i) Let d > 1 be a positive integer with ρ(I)/|I| > 1 + 1/d. Then ρ(I)/|I| >

1 + 1/d + 1/(32r3N2); and
(ii) If ρ(I)/|I| > 2, then ρ(I)/|I| > 2 + 1/(2rN);
(iii) If ρ(I)/|I| > 1, then ρ(I)/|I| > 1 + 1/(2rN).

Proof. By the previous lemma and the Riemann�Hurwitz formula, it follows
that

ρ(I) = |I| − 1 + ai

∑
(|Ji| − 1),

with the ai being positive integers that are multiples of s. Thus,

ρ(I)/|I| = 1− 1/|I|+ b/r|I1|,

for some positive integer b.
We assume that s > 1. If s = 1, then |I| = r|I1| and ρ(I)/|I| = 1 + b/r|I1|

and the argument we give below will also be valid.
If ρ(I)/|I| > 2, it follows that b > r|I1| and so ρ(I)/|I| > 2+1/r|I1|−1/|I| ≥

2 + 1/(2r|I1|). We get precisely the same estimate if ρ(I)/|I| > 1.
If d ≥ 4rN and ρ(I)/|I| > 1 + 1/d > 1, then ρ(I)/|I| > 1 + 1/(2rN) ≥

1/d + 1/(4rN).
So assume that d < 4rN and ρ(I)/|I| > 1 + 1/d. Thus, b/r|I1| > 1/d + 1/|I|.

It follows that b/r|I1| − 1/|I| ≥ 1/d|I| and so ρ(I)/|I| ≥ 1 + 1/d + 1/d|I|. If
s < 2d, this implies that ρ(I) > 1 + 1/d + 1/(32r3N2).

Also, ρ(I) ≥ 1 + 1/d + 1/rd|I1| − 1/|I|. If s ≥ 2d, this implies ρ(I) ≥
1 + 1/d + 1/2rd|I1| > 1 + 1/(8r2N2).

¤
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9. Automorphism Groups of Curves

Let k be an algebraically closed �eld of characteristic p ≥ 0. Let f : Z → Y

be a G-Galois cover. Assume that Z has genus h > 1.
It is classical that Aut(Z) is �nite. We sketch a slightly di�erent proof of this

than the standard ones. This proof came out of discussions with M. Zieve at
MSRI. This topic will be more fully explored in further work by the author and
Zieve.

First consider the case that Z is de�ned over a �nite �eld. We �rst prove a
weaker result that is valid for any genus curve.

Theorem 9.1. Let Z be a curve over k, the algebraic closure of a �nite �eld .
Then Aut(Z) is locally �nite.

Proof. Let G be a �nitely generated subgroup of Aut(Z). Then G is de�ned
over some �nite sub�eld k0 of k. Let f be any nonconstant function on Z. We
may enlarge k0 and assume that f is de�ned over k0 and all the poles and zeroes
of f are k0-rational points. Let H be the subgroup of G which �xes all k0 rational
points. Since there are only �nitely many such points, H has �nite index in G

and so it su�ces to prove that H is �nite. Since h ∈ H implies that h �xes
the zeroes and poles of f , it follows that fh = a(h)f where a : H → k∗0 is a
homomorphism. Thus, fn is �xed by H for some n (for example, n = |k∗0 |).
Thus, the �xed �eld F of H (acting on k(Z)) has transcendence degree 1 over
k, whence k(Z)/F is a �nite extension and so H is �nite. ¤

Theorem 9.2. There exists a positive valued integral monotonic function c(g)
such that if Z has genus at least 2, then |Aut(Z)| ≤ c(g). In particular , Aut(Z)
is �nite.

Proof. Let G be a subgroup of Aut(Z). It su�ces to show the bound holds
when G is �nitely generated (for if every �nitely generated subgroup has order
less than c(g), so does the whole group). So assume that G is �nitely generated.

First we de�ne c(g) and show that if G is �nite, then |G| ≤ c(g).
We can now apply the Riemann�Hurwitz formula and some relatively easy

computations as in [64] or the previous section to obtain some bound (one easily
gets cg5; Stichtenoth obtains cg4 with some extra e�ort) to see that c(g) can be
taken to be a polynomial in g.

Alternatively, let W := W` denote the set of `-torsion points on the Jacobian
of Z. As we have observed, if ` does not divide the order of G, then 2g(Z/G) =
dim WG (this is really the character formula version of the Riemann�Hurwitz
formula�see [61]). In particular, if H is the kernel of the action of G on T ,
we see that g(Z/H) = g(Z). If Z has genus greater than 1, then the Riemann�
Hurwitz formula shows that Z has no nontrivial separable maps to a curve of
genus g(Z), whence H = 1. Thus, G acts faithfully on W for any su�ciently
large prime `. In particular, |G| divides the greatest common divisor of the
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orders of GL(2g, `) for all su�ciently large `. Note that this does not depend
on how large we need to let ` be (this was observed by Minkowski in his proof
of the bound on the orders of �nite subgroups of GL(n,Q) or more generally
�nite subgroups of GL(n,C) with all traces rational). We can take c(g) to be
this greatest common divisor.

In conjunction with this previous theorem, this proves the result for k the
algebraic closure of a �nite �eld.

Consider the general case. Suppose that G has in�nite order. We may write
the function �eld k(Z) = k(u, v). Choose a �nitely generated subring R of k such
that both Z and G are de�ned over R and that G acts on S = R(u, v). We note
that if M is a maximal ideal of R, then R/M is �nite (by the Nullstullensatz).
Moreover, taking a plane model for Z over R, we see that any reduction will
have genus at most some �xed g′ (in fact, one knows that the reduction will
have genus at most g). Enlarging R if necessary (by inverting a �nite number
of elements), we can also assume that there are c > c(g′) distinct elements of G

that remain distinct on (R/M)(u, v) for any maximal ideal M of R and that the
genus of (R/M)(u, v) is at least g (all we need is at least 2).

Now we have G acting on F (u, v) with F a �nite �eld. Moreover, the image H

of G in this action has order greater than c(g′) since the xi are still distinct. This
is a contradiction, whence G is �nite. Then |G| ≤ c(g) and the result follows. ¤
The standard Riemann�Roch argument shows that no nontrivial element of G

�xes more than 2g + 2 elements. So if we are over a �nite �eld, we can enlarge
the �eld to guarantee the existence of at least 2g + 3 rational points and we see
that G acts faithfully on these points and so is �nite.

In this section, we consider subgroups of Aut(Z) that are isomorphic to
Chevalley groups in a characteristic di�erent from p and show that the genus of
Z must be at least linear in the order of the group. The constant will depend
only the type of Chevalley group and not the �eld. We will use the results of
the previous section.

So �x a type of Chevalley group L. Let q be a prime power. Let J(q) denote
a group with F ∗(J(q)) = L(q) and J(q) contained in the group of inner-diagonal
automorphisms of L(q) (for what we need we could just consider L(q)). Let W

denote the Weyl group of L.
We need the following facts about J(q).

Lemma 9.3. Let G = J(q) and let U be a p-subgroup of G with p not dividing q.
(i) If p does not divide the order of the Weyl group of L, then the Sylow p-

subgroup of G is abelian and if U has exponent pd, then |U | ≤ ptd where t is
the rank of the corresponding algebraic group.

(ii) If the exponent of U is at most pd, then there exist constants e, t (depending
only on L) such that |U | ≤ eptd.

(iii) There exists a constant δ (depending only on L) such that any p′-element
of NG(U)/CG(U) has order at most δ.
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Proof. It su�ces to prove this result for p-subgroups of the corresponding
algebraic group G.

If p does not divide the order of the Weyl group, then every p-subgroup of
G is contained in maximal torus (see [24]). Thus, (i) and (ii) follow in this
case. Similarly, it is known that W controls fusion in subgroups of tori and so
N(U)/C(U) embeds in W and (iii) holds as well for these primes.

Now consider a prime dividing the order of the Weyl group. There is no harm
in embedding the simple algebraic G into GL(n, F ) with F algebraically closed
(over a �nite �eld) and n depending only on L. Then every p-subgroup is conju-
gate to a subgroup of the monomial group M (since every absolutely irreducible
representation of a p-group is induced from a 1-dimensional representation of a
subgroup). So we may assume that U ≤ M . If U has exponent pd, then U ∩ T

(with T the torus) has order at most pdn and since |U | divides |U ∩ T |n!, (ii)
follows.

Finally, we prove (iii). Again, it su�ces to prove this for subgroups of
GL(n, F ) = GL(V ) and for primes dividing the order of the Weyl group. In
particular, there are only �nitely many primes (depending upon L) to consider.
By a result of Thompson (see [23], 3.11), we may assume that [U,U ] ≤ Z(U),
U/Z(U) is elementary abelian and the element is faithful on U/Z(U). By ele-
mentary representation theory, we see that U/Z(U) has rank at most n, whence
the order of U/Z(U) is bounded as a function of n. Thus (iii) holds. ¤
We will now prove:
Theorem 9.4. There exists a constant c = c(L) such that if J(q) is a subgroup
of Aut(Z) for some curve Z of genus g > 1 de�ned over the algebraically closed
�eld k of characteristic p with p not dividing q, then g ≥ c|J(q)|.
Proof. Let G = J(q). Consider Z/G. Let h be the genus of Z/G. If h > 0, the
Riemann�Hurwitz formula together with the fact that ind(I) ≥ |G|/2 for any
nontrivial inertia group I gives g − 1 ≥ |G|/4. So we may assume that h = 0.

Let I be an inertia group with I1 6= 1. Write I = DI1 with D a cyclic p′-group
and let C = CD(I1). By the previous results, we know that |D/C| < r for some
constant r = r(L).

There are three possibilities for p.
First suppose that p is small (depending upon L) but |I1| is large (large enough

so that it contains an abelian subgroup of exponent at least pt with t satisfying
the hypotheses of 8.6. Then ρ(I)/|G| ≥ 5/2, whence g − 1 ≥ 5|G|/4 and the
result holds.

So assume either p is large (and in particular does not divide the order of the
Weyl group, whence I1 is abelian) or that |I1| is bounded.

If there is another wildly rami�ed point or at least 3 rami�ed branch points,
then 2(g − 1)/|G| ≥ −1 + ρ(I)/|I|. It follows by Lemma 8.4 for p large and by
Lemma 8.7 if |I1| is small, that ρ(I)/|I| > 1 + δ for some positive δ (depending
only upon r which in turn is bounded in terms of L and the bound on |I1|).
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Suppose that there is only one rami�ed point. Then 2(g − 1)/|G| = −2 +
ρ(I)/|I|. In particular, ρ(I)/|I| > 2 and Lemma 8.4 for p large and Lemma 8.7
if |I1| is small, that ρ(I)/|I| > 2 + δ for some positive δ (again depending only
upon r).

So we may assume that there is precisely one more rami�ed point in the cover
and it is tamely rami�ed with inertia group cyclic of order d. Thus, 2(g−1)/|G| =
−1− 1/d + ρ(I)/|I|. In particular, ρ(I)/|I| > 1 + 1/d. Again, Lemma 8.4 for p

large and Lemma 8.7 if |I1| is small imply that ρ(I)/|I| > 1 + 1/d + δ for some
positive δ depending only upon r

This completes the proof. ¤

Corollary 9.5. Let L be a �xed type of Chevalley group. There exists a positive
constant c = c(L) such that µp(L(q)) ≥ c md(L(q))/ log q for q su�ciently large
with q prime to p.

Proof. Let f : X → Y be a cover with monodromy group G involving L(q) with
X of genus µp(L(q)). Let Z be the curve corresponding to the Galois closure. By
Theorem 7.2, we may assume that F ∗(G) = L(q). Note that |G| ≤ 6|J(q)| log(q),
where J(q) is the subgroup of G consisting of inner-diagonal automorphisms. By
the previous result, this implies that g(Z) ≥ d(L)|G|/ log(q) for some constant
d(L). By [49] (excluding L2(q)), fpr(G) ≤ 4/3q. There is an analogous result for
L2(q). Now apply Corollary 7.3. ¤

10. The Generalized Fitting Subgroup

Let G be a �nite group. A subgroup H of G is subnormal in G if there is
a chain of subgroups H = G0 < G1 . . . < Gm = G with Gi normal in Gi+1.
A group G is called quasisimple if G/Z(G) is simple and G is equal to its own
commutator subgroup. A component of G is a quasisimple subnormal subgroup.
It is not di�cult to show that any two distinct components of G commute (see
the next two lemmas). Let F (G) denote the Fitting subgroup of G (the maxi-
mal normal nilpotent subgroup). Let E(G) be the subgroup of G generated by
the components of G. The generalized Fitting subgroup of G is de�ned to be
E(G)F (G) and is denoted by F ∗(G).

We �rst need an elementary result about commutators. This follows from the
three subgroup lemma (see [23]).

Lemma 10.1. Suppose that H is a perfect subgroup of G, N is a subgroup of G

and [H, N ] is centralized by H. Then H commutes with N .

Proof. Since H is perfect, [H,N ] = [[H, H], N ]. The three subgroup lemma
asserts that [[H, H], N ] ≤ [[H, N ],H] = 1 as claimed. ¤

The next result is standard although the proof is not.

Lemma 10.2. Let H be a component of G.
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(i) H commutes with every normal subgroup of G not containing H.
(ii) If H and K are distinct components, then H and K commute.
(iii) H commutes with F (G).

Proof. Let M be a normal subgroup of G minimal with respect to containing
H. So M is generated by the conjugates of H. If M = G, then H is normal in G.
If M is proper in G, then by induction, H commutes with all other components
of M (any component of M is a component of G). So in either case, M is a
central product of the components it contains and HCM . Also, we see that
F (M) = Z(M).

Let N be a normal subgroup of G not containing H. Then [M, N ] ≤ M ∩
NCM . So either [M, N ] ≤ Z(M) or M ≤ N , whence either H ≤ N or H

commutes with N by the previous result.
Since H is not contained in F (G), it follows that H commutes with F (G).
All that remains to show is that H commutes with any other distinct compo-

nent K. Let N be a minimal normal subgroup containing K. So N is a central
product of all its components, whence if H ≤ N , the result holds. If not, then
we have seen that [H, N ] = 1 and so also [H, K] = 1. ¤

We next give a di�erent characterization of E(G).

Lemma 10.3. Let D = Z(F (G)). Let X/D be the product of all the minimal
normal subgroups of CG(F (G))/D. Then E(G) = [X,X].

Proof. Note that X/D has no normal abelian subgroups, for if Y/D is abelian,
then since D is central in Y , Y is nilpotent and so Y ≤F (G)∩X =Z(F (G))=D.

Thus, X/D is a direct product of nonabelian simple groups. In particular,
X = [X, X]D with D ≤ Z(X) and so [X, X] is perfect and modulo its center
is a direct product of nonabelian simple groups S1 × . . . × St. Let Qi be the
preimage of Si in X. Then as above, we see that [Qi, Qi] is perfect and simple
modulo its center� i.e. a component. We also see that [X, X] is the product of
the [Qi, Qi], whence [X, X] ≤ E(G).

By the previous lemma, every component centralizes F (G) and modulo D

is simple. Moreover, as we have already seen, its normal closure is a direct
product of simple groups, whence X contains every component of G. Thus,
E(G) = [X,X]. ¤

The important property of this subgroup is the following (cf [8]) result which
follows immediately.

Theorem 10.4. CG(F ∗(G)) = Z(F (G)) = Z(F ∗(G)). In particular , F ∗(G) ≥
CG(F ∗(G)).

Proof. Note that D := Z(F ∗(G)) = Z(F (G)) (since every component com-
mutes with F (G)). Let C = CG(F ∗(G)). Suppose that C properly contains D.
Consider a minimal normal subgroup of CG(F (G)/D contained in C/D. By the
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previous result, this minimal normal subgroup is contained in DE(G) and so is
contained in the center of DE(G), whence is contained in D, a contradiction. ¤

In particular, this shows that there are only �nitely many groups with a given
generalized Fitting subgroup (for G/Z(F (G)) embeds in Aut(F ∗(G)) and so we
have a bound on |G|).

11. Aschbacher�O'Nan�Scott Theorem
In this section, we give a proof a version of the structure theorem for primitive

permutation groups which we have used extensively. See [9] for a more detailed
version.

Recall that a group G is said to act primitively on a set Ω of cardinality greater
than 1 if G preserves no nontrivial equivalence relations on Ω. In particular, this
implies that G is transitive on Ω (consider the equivalence relation of being in the
same G-orbit). With this added assumption, it is equivalent to the condition that
a point stabilizer is maximal. We include a proof of this well known elementary
fact.

Lemma 11.1. Let G act transitively on Ω. Then G is primitive if and only if
the stabilizer of a point ω is a maximal subgroup of G.

Proof. Let H be the stabilizer of the point ω. Then Ω can be identi�ed with
G/H, the set of left cosets of H. If H is not maximal, consider the natural map
π : G/H → G/M for M a maximal subgroup containing H (here π(gH) = gM).
The �bers of π de�ne a G-invariant equivalence relation on G/H.

Suppose that H is maximal. Let Γ be the equivalence class of ω in a nontrivial
G-invariant equivalence relation. Since H �xes ω, H preserves Γ. The same is
true for every point of Γ. Since G does not preserve Γ and H is maximal this
implies that H preserves each point of Γ. Since G is transitive, this implies that
NG(H) is transitive on Γ. Since H is maximal, this implies that H is normal in
G and so is trivial. Thus, G has prime order, a contradiction. ¤

Theorem 11.2. Let G be a �nite group acting primitively on a set Ω of cardi-
nality n. Let H be the stabilizer of a point . Let A be the product of the minimal
normal subgroups of G. Then A = F ∗(G) and one of the following holds:

(i) A is an elementary abelian p-group, G = AH (semidirect) and H acts irre-
ducibly on A via conjugation and n = pa = |A|.

(ii) A = A1 ×A2 with A1
∼= A2 a direct product of t ≥ 1 isomorphic nonabelian

simple groups, H ∩ A = {(a, φ(a)|a ∈ A1} for some isomorphism φ : A1 →
A2. Moreover , A1 and A2 are the two minimal normal subgroups of G and
n = |A1|.

(iii) A is the unique minimal normal subgroup of G, A = L1 × . . . × Lt is the
direct product of t copies of isomorphic nonabelian simple groups and one of
the following :
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(i) 1 6= H∩A = H∩L1× . . .×H∩Lt and n = mt with m = |L1 : H∩L1| and
the H ∩Li all H-conjugate. Moreover , NH(L1)CG(L1)/CG(L1) is maximal
in NG(L1)/CG(L1).

(ii) There exists a partition {∆1, . . . ∆s} of {1, . . . , t} into s < t subsets of
size t/s and A∩H = K1× . . .×Ks where Ki

∼= L1 is a full diagonal of the
direct product of the Ai := Lj , j ∈ ∆i. In this case, n = |L1|t−s.

(iii) A ∩H = 1, t > 1 and n = |L1|t.
Proof. Note that H contains no nontrivial normal subgroups (since a normal
subgroup �xing 1 point �xes all points). Let B be any normal subgroup of G.
Then G = BH (since H is maximal). Thus, B is transitive, Now CH(B) is
normal in H and normalized by B, whence is normal in G and trivial. Now let
B be a minimal normal subgroup. Suppose that B is abelian. Then B ≤ CG(B),
so CG(B) = B, and so B is the unique minimal normal subgroup. Thus we are
in case (1).

So we may assume that there are no minimal normal abelian subgroups. So
F ∗(G) = E(G). Let A1 = L1 × . . . × Lt be a minimal normal subgroup with
Li conjugate nonabelian simple groups (and components of G). Suppose that
there is another minimal normal subgroup A2. Then A1 and A2 commute. Then
G = HAi and H ∩ Ai centralizes Aj for j 6= i. As noted above, CH(Ai) = 1,
whence H ∩ Ai = 1 for i = 1, 2. On the other hand, Ai ≤ G = HAj and
so the projections of H ∩ A1A2 into Aj are both onto and injective. Thus,
H ∩ A1A2 = {(a, φ(a)|a ∈ A1} for some isomorphism φ : A1 → A2 as required.
Thus, we are in case (2).

So we may assume that A is the unique minimal normal subgroup of G and
A = L1 × . . .×Lt with the Li conjugate nonabelian simple groups (and compo-
nents). If H ∩A = 1, there is nothing more to say (except to show that t > 1�
this requires the classi�cation of �nite simple groups in the form of the Schreier
conjecture that outer automorphism groups are solvable� see [9] for details).

Suppose that H1 = H ∩ L1 6= 1. Since G = AH and A normalizes L1, it
follows that H permutes the Li transitively, whence Hj = H ∩ Lj is conjugate
to H1 via H. The maximality of H implies that H is the normalizer of H ∩ A

and all that remains to be shown in this case is that NH(L1)CG(L1) is maximal
in NG(L1).

We note the following�H1 is the maximal NH(L1) invariant subgroup of L1

(otherwise H normalizes the direct product of the conjugates of this NH(L1)
invariant overgroup of H1 contradicting the maximality of H). Suppose that K

is a maximal subgroup of NG(L1) containing NH(L1)CG(L1). Let K1 = K ∩L1.
Since ANH(L1) = NG(L1), it follows that |NG(L1) : NH(L1)CG(L1)| = |L1 :
H1| and similarly |NG(L1) : K| = |L1 : K1|. Clearly, K1 contains H1 and is
normalized by NH(L1) whence K1 = H1 and K = NH(L1)CG(L1) as required.

In the remaining case, H ∩A 6= 1 = H∩Li. Let πi denote the projection from
onto Li. Then H normalizes the direct product of these projections and by the
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maximality of H, if these are proper H contains them. Thus, each projection
is onto. Let Ki be the kernel of πi. If Ki = 1, then H ∩ A ∼= Li and is a full
diagonal subgroup (i.e. of the form {(x, φ2(x), . . . , φt(x))|x ∈ L1} where φi an
isomorphism from L1 to Li).

If K1 6= 1, let ∆1 be those i such that πi(K1) = 1. All other projections of K1

are surjective (because K1 is normal in H∩A and the projections are surjective).
By induction, there is a partition ∆1, . . . , ∆s such that K1 is a direct product of
full diagonal subgroups of Ai, i = 2, . . . , s. Since K1 is normal in A ∩H and is
self normalizing in A2 × . . .× As, it follows that the projection τ of A ∩H into
A2 × . . . × As is the same as that of K1. Thus, A ∩ H = ker(τ) × K1. Since
(A∩H)/K1

∼= L1, this implies that ker(τ) is a full diagonal subgroup of A1. The
only remaining point is to show that the ∆i all have the same cardinality. This
is clear since H normalizes A ∩H and acts transitively on the Lj . ¤

Much more can be said particularly in case (3) of the theorem. See [9].

12. Aschbacher's Subgroup Theorem

In this section, we prove a version of Aschbacher's Theorem about subgroups
of classical groups over �nite �elds. Roughly, the theorem is that if G is a
classical group on a vector space over a �nite �eld F , then any subgroup either
is (modulo its intersection with the center) almost simple (i.e. has a unique
minimal normal subgroup which is a nonabelian simple group) or preserves some
natural geometric structure on the space. By a natural geometric structure on
the space, we include such things as a tensor product decomposition, a subspace,
a direct sum decomposition or a �eld extension structure. We will make this more
precise below.

In Aschbacher's statement, there are 8 families of structures considered. In
fact, there are di�erent ways of organizing the possible structures that one wants
to consider (or equivalently, the possible subgroups�the stabilizers of these
structures). Aschbacher [7] proved a slightly more general theorem in that he
considered subgroups of automorphism groups of classical groups. See also [50]
for an approach using Lang's theorem.

This section is based on notes for a course given at USC in 1998.
This theorem has become a standard and important tool in the analysis of

subgroups of classical groups. See [33] for one example of how it is used.
When one is using the theorem, it can be important to consider as �ne a

strati�cation of the possible geometric structures as possible. Indeed, one cat-
egory that Aschbacher did not consider was the case of tensor decompositions
over extension �elds.

However, the proof of the theorem can be organized in di�erent ways. In
particular, one does not need to consider all the structures considered by As-
chbacher.
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The theorem is quite a bit simpler to prove in the case that all irreducible
submodules for normal subgroups of G are absolutely irreducible (eg, if one works
over the algebraic closure). If that fails, then either G preserves a �eld extension
structure on the space or preserves a direct sum decomposition. Thus, one can
give a proof as in the case of an algebraically closed �eld except for adding one
additional class. One can then study this extra class separately. If there is no
form involved, then essentially no extra work is required.

We now give a proof of the theorem. In the following subsections, we analyze
and classify the groups preserving a �eld extension structure (in the case that
there is no form preserved, there is essentially nothing more to add). In the last
subsection, we give some elementary results about groups preserving forms and
other representation theory facts which are used in the proof.

Recall that a group G is almost simple if and only if it has a unique minimal
normal subgroup which is a nonabelian simple group S (this is equivalent to
S ≤ G ≤ Aut(S)).

Let F be a �eld of characteristic p ≥ 0 which is either �nite of algebraically
closed (there are variations of this result over more general �elds). Let G be a
�nite subgroup of GL(V ) where V is a vector space of dimension d over F (the
statement is valid for algebraic groups as well in the case F is algebraically closed
with an identical proof where many of the details become quite a bit easier).

Suppose that q is a quadratic form, a unitary form or an alternating form on V .
We assume that either q = 0 or that q is nondegenerate (i.e. except for the case
of quadratic forms in characteristic 2, the radical of the form is 0). Let X(V, q)
denote the subgroup of GL(V ) which preserves q up to scalar multiplication.
The nondegeneracy condition implies that X(V, q) acts irreducibly on V . So
X(V, q) is one of GL(V ), GO(V, q), GSp(V ) or GU(V ) in the case q = 0, q is
a quadratic form, alternating form or unitary form respectively. We let I(V, q)
denote the isometry group of q (i.e. the subgroup preserving the form). So
I(V, q) is one of GL(V ), O(V, q), Sp(V ) or U(V ). Note that except for the case
of quadratic forms, there is only one class of nondegenerate forms. In the case
of quadratic forms, there are 2 classes if F is �nite and 1 if F is algebraically
closed. Moreover, if dim V is odd, the two classes of quadratic forms give rise to
the same isometry groups.

We say that a group H acts homogeneously on V (over F ) if V is a direct sum
of isomorphic simple FH-modules. The homogeneous component corresponding
to a simple FH-module W is the sum of all simple submodules isomorphic to W .

Theorem 12.1. Let G be a subgroup of X(V, q) with V a vector space of dimen-
sion n over a �eld F which is either �nite or algebraically closed . Let p denote
the characteristic of F . Then one of the following holds:

(R1) G stabilizes a totally singular subspace;
(R2) G stabilizes a nondegenerate subspace;
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(R3) if the characteristic is 2 and q is a quadratic form, G stabilizes a 1-
dimensional nonsingular subspace;

(D1) G leaves invariant a decomposition V = ⊕2
i=1Vi with each Vi totally singu-

lar ;
(D2) G leaves invariant a decomposition V = ⊕t

i=1Vi with each Vi nondegener-
ate;

(T1) G leaves invariant a tensor decomposition on V ; i .e. G embeds in

X(W1, q1)⊗X(W2, q2)

where n = w1w2 with dim Wi = wi and q = q1 ⊗ q2 or p = 2, each qi is a
nondegenerate alternating form and X(W1, q1)⊗X(W2, q2) ≤ O(V, q) for the
unique (up to scalars) quadratic form vanishing on all simple tensors;

(T2) G leaves invariant a tensor structure on V ; i .e. G embeds in X(W, q′) oSr

where n = wr, q = q′ ⊗ · · · ⊗ q′ (r times) and dimW = w or p = 2, q′ is
alternating and G preserves a quadratic form on V ;

(E) F ∗(G) = Z(G)E where E is extraspecial of order s1+2a with s prime, n = sa

and E acts absolutely irreducibly (and so G is contained in the normalizer of
EZ(G)); if s is odd , G preserves no alternating or quadratic form and if s = 2,
G will preserve a form.

(EXT) G preserves an extension �eld structure; or
(S) G/Z(G) is almost simple.

Proof. Suppose that G acts reducibly. So let U be a proper invariant sub-
space of minimal dimension. Then rad(U) is also invariant under G�thus,
either U ⊆ Rad(U) or U is nondegenerate (the radical is taken with respect to
the corresponding form if it exists� in the case q is a quadratic form and F

has characteristic 2, we compute the radical with respect to the corresponding
alternating form). If U is nondegenerate, then (R2) holds.

If U is contained in Rad(U), then U is totally singular unless possibly p = 2. In
the latter case, the set of vectors with q(u) = 0 forms a G-invariant hyperplane
of U . By minimality, it follows that either U is totally singular or U is 1-
dimensional. Thus (R1) or (R3) hold.

So we assume that G acts irreducibly. Let N be any normal noncentral
subgroup of G.

Suppose that N does not act homogeneously on V . Let V1 be a homogeneous
component of V for N . If V1 is nondegenerate (or there is no form), then so
is every component and so (D1) holds. Otherwise, V1 is totally singular (since
⊕Rad(Vi) is G-invariant). The irreducibility of G implies that there is a unique
component V ′

i so that Vi is not perpendicular to V ′
i . Thus, G permutes the

nondegenerate subspaces Vi ⊕ V ′
i . If this is a proper subspace, then (D1) holds.

If not, then (D2) holds.
So we may assume that every normal subgroup of G acts homogeneously. Let

W be an irreducible constituent of N . If W is not absolutely irreducible, then
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the center of EndN (V ) is a proper extension �eld E/F whence G preserves an
extension �eld structure on V (this uses the fact that the Brauer group of F is
trivial). We will consider this situation in more detail below.

So we may assume that every normal noncentral subgroup acts homogeneously
and each irreducible constituent is absolutely irreducible. In particular, this
means that we are assuming that G is absolutely irreducible.

Let G0 be the normal subgroup of G which actually preserves the form (rather
than up to a scalar multiple). Since G/G0Z(G) is cyclic, G0 cannot consist of
scalars (unless n = 1).

Let N be a normal noncentral subgroup and suppose that N does not act
irreducibly. Moreover, if a form is involved, we assume that N ≤ G0. Let W be
an irreducible constituent of V for N . Let G1 be the normalizer in GL(W ) of N .
Then a straightforward computation (using the fact that the centralizer of N on
W consists of scalars) shows the normalizer of N in GL(V ) is G1 × GLn/d(U)
acting on W ⊗ U with U of dimension n/d. In particular, G embeds in this
group.

If there is no form involved we are done (i.e. G preserves a tensor decompo-
sition�and we note that there is a unique conjugacy class of such subgroups
in GL depending only on the dimensions d and n/d). We now consider how the
form behaves with respect to this tensor decomposition.

Case 1. q is a quadratic form.

Then V is self dual as an FN -module and hence so W is self-dual for N . Since
N acts absolutely irreducibly on W , there is a unique (up to scalar multiple)
bilinear form B on W which is N -invariant (if p 6= 2, this form is symmetric; if
p = 2, the form is alternating).

An easy dimension computation shows that all the N -invariant bilinear forms
on V are of the form (W,B)⊗ (U,B′).

Suppose that p 6= 2. If B is alternating, then q = B ⊗ B′ where B′ is
an alternating form on B′. As we noted above, G ≤ G1 × GL(U) acting on
V = W ⊗U where G1 normalizes N on W . Thus, G1 ≤ GSp(W ). It follows that
G ≤ X(V, q) ∩G1 ×GL(U) = GSp(W ) ⊗GSp(U) < GO(q). Moreover, there is
a unique conjugacy class of such subgroups.

If B is symmetric, then similarly, we see that G ≤ GO(B)⊗GO(B′) < GO(q)
with B′ symmetric as well. There may be several conjugacy classes depending
upon the dimension of W and the class of B.

If p = 2, we need to proceed in a slightly di�erent manner and the answer
is actually easier. Let ∆ be the associated alternating bilinear form associated
to q. As above, we see that ∆ = B ⊗ B′ where B′ is a bilinear form on U

and G ≤ GSp(W ) × GSp(U). Let T denote the image of GSp(W ) ⊗ GSp(U)
in GL(V ). In fact, T is contained in the orthogonal group and not just the
symplectic group. Indeed, this last group preserves a unique (up to scalar mul-
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tiplication) quadratic form. Since T is transitive on all nonzero vectors of the
form w ⊗ u, the quadratic form would have to be constant on such vectors. It
is straightforward to compute that there exists a unique quadratic form which
vanishes on all such vectors and has the corresponding associated alternating
form B ⊗ B′. The uniqueness shows that the form is T -invariant. Since G is
absolutely irreducible, it preserves a unique quadratic form, whence q is the form
described above.

Case 2. q is alternating.

As above, we see that N leaves an essentially unique form B on W . Thus, G1

does as well. Arguing precisely, as above, we see that G ≤ X(W,B)⊗X(U,B′) ≤
X(V, q). If p 6= 2, then we see that B is symmetric and B′ alternating or vice
versa. If p = 2, then we may take both B and B′ alternating and we see that in
fact G preserves a quadratic form (indeed, in Aschbacher's theorem, this is one
of the geometric structures allowed�a subform).

Case 3. q is unitary.

In this case F is a �nite �eld of cardinality m2. Let F0 be the sub�eld of F

of cardinality m. Since N acts absolutely irreducibly on W and homogeneously
on V , it follows that N preserves a unique (up to F0 multiple) unitary form h

on W .
Arguing as above, we see that this implies that q = h⊗h′ and G ≤ X(W,h)⊗

X(U, h′) ≤ X(V, q).

So now we may assume that every noncentral normal subgroup acts absolutely
irreducibly. Let N be a minimal such subgroup. Thus, CG(N) = Z(G). It
follows that N/(N ∩ Z(G)) is characteristically simple (i.e. has no nontrivial
characteristic subgroups). Thus M := N/(N ∩ Z(G) is either an elementary
abelian s-group for some prime s or it is a direct product L1 × . . . × Lt where
Li
∼= L is a nonabelian simple group.
Suppose that M is an elementary abelian s-group. Since N ′, the derived group

of N , is contained in the center of N , it follows that N ′ is either trivial or has
order s. In the �rst case, N is abelian and noncentral. Since it acts absolutely
irreducibly, it follows that n = 1. So we may assume that N ′ has order s. Since
N acts absolutely irreducibly, Z(N) ≤ Z(G).

It follows easily that if s is odd, then N is an extraspecial s-group of order
s1+2a and n = sa. If s is even, then N is of symplectic type (i.e. either N is
extraspecial or Z(N) has order 4 and N = Z(N)E with E extraspecial).

Thus, (E) holds.
So we may assume that M is a product of t isomorphic nonabelian simple

groups. It follows that N is a central product of components Q1, . . . , Qt. By
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minimality, each of the Qi are conjugate in G. Also, we may assume that every
minimal normal noncentral subgroup has this form. Since CG(N) = Z(G), it
follows that N is unique. So if t = 1, we see that (S) holds. So assume that
t > 1.

Since N acts absolutely irreducibly on V , it follows that V = W1 ⊗ . . .⊗Wt

and N embeds in Q̂1 × . . . × Q̂t ≤ GL(W1) × . . . × GL(Wt) where Q̂i
∼= Q̂ is a

covering group of Qi. Since the Qi are conjugate, we may assume that Wi is an
absolutely irreducible Q̂-module and the Wi are isomorphic as Q̂-modules. In
particular, they have the same dimension. This is easily seen to be true over the
algebraic closure. However, since the character of G is de�ned over F , the same
is true for Q̂ acting on Wi.

It follows that the normalizer of N in GL(V ) is precisely (R1× . . .×Rt)Symt

where Ri is the normalizer of Q̂i in GL(Wi) and Symt acts on W1⊗ . . .⊗Wt by
permuting the coordinates. In particular, G is contained in this product and so
G preserves a tensor structure on V .

If G preserves a form on V , then so does N and since V restricted to Qi is
homogeneous (as N = QiCN (Qi)) and so Q̂i preserves a form on Wi (and the
type is the same for each i).

So if q is unitary, it follows that G ≤ X(W,h) o St ≤ X(V, q) with h unitary.
If V is self dual for N , then it follows that G ≤ X(W, f) ≤ X(V, q). If p 6= 2,
then for t even, necessarily q is symmetric. If t is odd, then q and f are either
both symmetric or are both alternating. If p = 2, then we see that G does
preserve a quadratic form (necessarily unique) and so we may always take f to
be alternating.

This completes the proof. ¤

Note that one can state the previous theorem in a di�erent manner. Namely,
we have produced natural families of subgroups so that any �nite subgroup of
X(V, q) is either contained in one of those subgroups or is almost simple (modulo
the center). One can of course add to this family some almost simple groups and
so when analyzing the subgroup structure of X(V, q) (or related groups), one can
use this result. See [45] for an analysis of which of these subgroups are maximal.

The theorem above gives a very speci�c list of possibilities and one can analyze
the conjugacy classes of such subgroups quite easily and produce some natural
invariants. In particular, we note that two irreducible subgroups of X(V, q) are
conjugate in X(V, q) if and only if the representations are equivalent (up to an
outer automorphism) if and only if the characters are the same (up to an outer
automorphism).

The one family that we did not analyze so carefully in the proof above is the
case where G preserves an extension �eld structure on V . If F is algebraically
closed, this cannot occur. If q = 0, then it is straightforward to see that the
group preserving a �eld extension structure corresponding to a �eld extension
is precisely GLn/d(E).Gal(E/F ) where d = [E : F ]�i.e. the subgroup of E-
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semilinear transformations on V . Note that the only invariant for the conjugacy
class is d (and d must divide n).

In the next section, we will analyze the case where q 6= 0 and G preserves an
extension �eld structure on V .

12.1. Field Extension Structures We now make more precise the family of
overgroups occurring in the extension �eld case. We will break the proof up into
the various cases depending upon the type of q.

So we assume that F is a �nite �eld of order m = pa and that V is a vector
space of dimension n over F . As usual, let q denote a form (zero, quadratic,
alternating or unitary) on V and we assume that G ≤ X(V, q). We may also
assume that G is irreducible on V and that G preserves a �eld extension structure
on V . More precisely, there is an F -subalgebra E ⊂ EndF (V ) so that G preserves
E (and we have an homomorphism from G into Gal(E/F )).

Note that if the isomorphism class of E is �xed, then E is uniquely deter-
mined up to conjugation in GL(V ) (because E has a unique representation of
�xed dimension). Since the norm map is surjective for �nite �elds, in fact this
conjugation can always be realized in SL(V ). So in the case where q = 0, G pre-
serves an E-structure on V if and only if G is a subgroup of AutE(V ).Gal(E/F ).

So we assume that (V, q) is nondegenerate. We also make the blanket assump-
tion throughout this section that every normal subgroup of G acts homogeneously
on V (or G will satisfy (D1) or (D2)).

Let E/F be an extension of �nite �elds of degree d > 1. Suppose that B

is a nondegenerate bilinear form on the vector space U over E. Let V = U

considered as a vector space over F . Then q = tr ◦B is a nondegenerate bilinear
form on V and X(U,B) ≤ X(V, tr ◦B).

We �rst discuss the case where q is either alternating or a quadratic form.

Proposition 12.2. Assume that q is a nondegenerate alternating or quadratic
form on V where V is a vector space of dimension n over the �nite �eld F . Let
G ≤ X(V, q) be an irreducible subgroup. Assume that every normal subgroup
of G acts homogeneously on V . Assume that G normalizes some proper �eld
extension E/F where E is a subalgebra of EndF (V ). Assume moreover that G

preserves no additive decomposition of V . Then G ≤ X(U, q′) where U = V

considered as a vector space over some nontrivial �eld extension E/F and q′ is
a form on U .

Proof. Let Z denote the subgroup of nonzero scalars in GL(V ). Let H =
G∩ I(X, q). Note that either GZ = HZ or GZ/HZ has order 2. We claim that
H acts irreducibly. If not, then V = V1 ⊕ V2 with G permuting each of the H-
invariant subspaces Vi. Since H is homogeneous on V , V1

∼= V2 as H-modules.
Since V is self dual as an H-module, we may choose V1 and V2 nonsingular.
Then G preserves the decomposition V1 ⊕ V2, a contradiction.

Let E = EndH(V ). So E/F is a proper �eld extension.
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Let U denote V considered as an EH-module. Note that V ′ := V ⊗F E0
∼=

⊕Uσ where the sum is taken over σ ∈ Gal(E/F ). Since E is commutative, then
centralizer of H in V ′ which is just E ⊗F E is also commutative. It follows that
V ′ is multiplicity free, whence Uσ and U are nonisomorphic for all nontrivial σ.
Since V ′ is self dual, it follows that Uτ ∼= U∗ for some τ . Thus, Uτ2 ∼= U and so
τ2 = 1.

Suppose �rst that τ = 1, i.e. U is self dual. Then there exists a nondegenerate
bilinear form B on U which is H-invariant. Moreover, B is unique up to scalar
multiplication by E0. Let I = I(U,B). Note that this is independent of the
choice of B. Since G acts naturally on the set of such forms, it normalizes I.
Note that I(U,B) preserves the form trE/F ◦ B. Note also that for p 6= 2, this
form is the same type as q�i.e. B is alternating if and only if q is (because H and
I(U,B) have the same centralizer it follows that all forms stabilized by I(U,B)
are also stabilized by H and also are of the same type). Thus, I(U,B) ≤ I(X, q)
and G is contained in the normalizer of I(U,B) in X(V, q).

If p = 2 and q is alternating, precisely the same argument su�ces. All that
remains to show is that if q is a quadratic form, then H preserves a quadratic
form on U . Let B be an H-invariant alternating form on U . Then as above we
may assume that C = tr ◦ B where C is the alternating form on V associated
to q.

Since the set of H-invariant forms on V has cardinality |E| and the map
B 7→ trE/F ◦ B is injective, we see that we may assume that C := trE/F ◦ B is
either q or if p = 2 and q is a quadratic form, C is the associated alternating
form. Moreover, in the latter case, by considering Sp(B) ∩ O(V, q), we see that
H ≤ I(U, f) where f is a quadratic form on U whose associated alternating form
is B. By a dimension argument, we may assume that q = trE/F ◦ f . Thus, we
see that G is contained in the normalizer of I(U, h) where h is a form of the
same type as q (i.e. quadratic or alternating). Since q = trE/F ◦ q, it follows
that I(U, h) ≤ I(X, q) and the result follows.

Next assume that τ 6= 1. It follows that H preserves a unitary form h on U

(note the assumption implies that [E : F ] is even). Let E0 denote the �xed �eld
of τ . Since H acts absolutely irreducibly on U , it is contained in precisely one
unitary group on U , whence G normalizes this unitary group. ¤

A minor variant on the previous argument shows that:

Proposition 12.3. Assume that h is a nondegenerate hermitian form on V

where V is a vector space of dimension n over the �nite �eld F . Let G ≤
X(V, h) be an irreducible subgroup. Assume that every normal subgroup of G acts
homogeneously on V . Assume that G normalizes some proper �eld extension of
F where contained in EndF (V ). Assume moreover that G preserves no additive
decomposition of V . Then G ≤ X(U, h′) where U = V considered as a vector
space over some nontrivial �eld extension E/F and h′ is a hermitian form on U .
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12.2. Some Elementary Representation Theory

Lemma 12.4. Let H be a normal subgroup of �nite index in G and assume that
V is a homogeneous FH-module and an irreducible FG-module. Let W be an
irreducible constituent of V for H.
(a) If W is absolutely irreducible, then G embeds in GL(W )⊗GL(U) acting on
W ⊗ U ∼= V .
(b) If G/H is abelian and V is absolutely irreducibly as a G-module, then V is
an irreducible FH-module.
(c) If G/H is abelian of exponent m and all mth roots of 1 are in F , then V

irreducible as an FG-module implies that V is irreducible as an FH-module.

Proof. (a) is well known and is straightforward by computing the normalizer
of H in GL(V ).

We now prove (b). By Frobenius reciprocity, V embeds in the induced module
WG

H . This has the same composition factors as W ⊗ F [G/H] (for example, we
can compute the Brauer character). Since G/H is abelian, over the algebraic
closure, we can �nd a chain of G-submodules of WG

H so that all quotients are
isomorphic to W as H-modules. Since V is absolutely irreducible, this implies
that dim V ≤ dim W , whence V = W as required.

If G/H has exponent m and F contains all mth roots of 1, then the same
argument shows that each FG-composition factor of WG

H has dimension at most
dim W , whence V = W . Thus, (c) holds. ¤

Lemma 12.5. Let G be a �nite group.

(i) If V is an irreducible FG-module, then G preserves a nondegenerate symmet-
ric or alternating form on V if and only if V is self dual . Moreover , any two
forms are in the same C-orbit where C is the group of units in the centralizer
of G in End(V ).

(ii) If V is an irreducible FG-module and p = 2, then G preserves a nondegen-
erate alternating form if and only if V is self dual . If G preserves a nonde-
generate quadratic form on V , then there is a single C-orbit of such quadratic
forms.

(iii) If V is a homogeneous self dual module and W is an irreducible submodule of
dimension m and dimEndFG(W ) = d, then the dimension of the G-invariants
on the space of bilinear forms is d(n/m)2.

Proof. G leaves invariant a nonzero bilinear form on V if and only if there are
nonzero �xed points on V ⊗ V . Any nonzero invariant form must be nondegen-
erate (since Rad(V ) would be invariant). Such a form gives an FG-isomorphism
between V and V ∗.

So we may assume that V is self dual. In that case V ⊗V ∼= V ⊗V ∗ ∼= End(V ).
The nonzero G invariants on End(V ) are precisely C, whence there is a single
C-orbit of invariants.
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If p 6= 2, then V ⊗ V is the direct sum of alternating forms and symmetric
forms so if G has a �xed point, there must be one that is either symmetric or
alternating. Since C preserves both spaces (as GL(V ) does), it follows that all
invariant forms are either symmetric or alternating.

If p = 2, then the composition factors on V ⊗ V (as a GL(V )-module) are
∧2(V ), V ′ and ∧2(V ) where V ′ is a twist of V (by the Frobenius automorphism).
In any case, V ′ is an irreducible G-module, whence if G has �xed points, then
G must have a �xed point on ∧2(V ). Thus, G always preserves an alternating
form. Arguing as above, we see that the nontrivial G �xed points is a single
C-orbit.

If G preserves a quadratic form q, we claim that the only quadratic forms
which are G-invariant are Cq. Let Bq denote the associated alternating form
(so Bq(v, v′) = q(v + v′) + q(v) + q(v′)). We know that the set of G-invariant
alternating forms is a single C-orbit. Suppose q′ is G-invariant. Then replacing
q′ by an element in Cq′, we may replace q′ by something in its orbit so that
Bq = Bq′ . An elementary computation shows that the set of elements with
q(v) = q′(v) is a proper linear G-invariant subspace. Since G is irreducible, it
must be 0, whence q = q′ and the result follows.

If V is homogeneous, then we compute the invariants as above. ¤

Lemma 12.6. Let F be the �nite �eld of order q2. Let V be an n-dimensional
vector space over F such that V restricted to G is a homogeneous module with
irreducible constituent W . Then G �xes a unitary form on W if and only if it
does so on V if and only if χ(gq) = χ(g−1) for all g ∈ G where χ is the Brauer
character associated to W . If V is irreducible, these conditions are also equivalent
to χ(gq) = χ(g−1) for all g ∈ G where χ is the character associated to W .
Moreover , if G preserves a unitary form on W , and W is absolutely irreducible,
then the space of unitary forms on V which are G-invariant is a vector space
over Fq of dimension m2 where m = dim V/ dim W is the multiplicity of W .

Proof. Let ρ denote the �eld automorphism x → xq on F . By de�nition of
the unitary group, we know that ρ(g) is similar to g−1, viewing G as a subgroup
of the unitary group on V . Since V is homogeneous as a G-module, this same
condition holds in GL(W ). Thus, to complete the �rst part of the proof, we need
only show that if the character of W satis�es the hypothesis, then W supports
a G-invariant form.

The easiest proof is to use Lang's Theorem. Let φ denote the given represen-
tation of G into GL(V ). We need to �nd S ∈ GLn(F̄ ) so that Sφ(g)S−1 is in
the unitary group. This is equivalent to the equation

(Sφ(g)S−1)−T = ρ((Sφ(g)S−1)).

By hypothesis, there exists U ∈ GLn(F ) with Uφ = φ′U . By Lang's Theorem,
U = Sρ(S−T ) for some S ∈ GLn(F̄ ). This implies that S satis�es the equation
above. ¤
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13. Abelian Supplements

Let p be a prime. Let p(G) denote the normal subgroup of the �nite group
generated by all its Sylow p-subgroups. A �nite group G is said to be a quasi
p-group if G = p(G) or equivalently if G has no nontrivial p′-quotients. This
notion has become quite important in studying fundamental groups of varieties
in characteristic p. See [43] and [60] for the solution of the Abhyankar conjecture
about fundamental groups of a�ne curves.

Certain two dimensional varieties are considered in [44]. For these varieties,
Abhyankar observed that for any �nite image of the fundamental group we have

1 → p(G) → G → A → 1,

where A is abelian generated by 2 elements. Abhyankar also conjectured that
these conditions were su�cient. Harbater and Van der Put [44] showed that
in fact it must also be the case that G = p(G)B for some abelian subgroup B

of G. In the appendix of [44], we developed a theory about this situation and
gave examples. Combining the examples with the results of [44] shows that the
Abhyankar conjecture does not hold.

In this section, we give a simpler form of the example. We also give some
examples of a similar phenomenon when A is cyclic of bounded order. Recall
that if H ≤ G, then B is called a supplement to H in G if G = HB and a
complement to B if in addition H ∩B = 1.

Of course, if G/p(G) is cyclic, we can always write G = p(G)B where B is a
cyclic p′-group. If p(G) is a p-group (i.e. there is a unique Sylow p-subgroup of
G), then the short exact sequence above splits and so abelian supplements will
always exist. The apparent hope was that quasi p-groups have cohomological
properties similar to p-groups. However, that is not the case as the examples in
the appendix of [44] show.

If G/p(G) is abelian of rank larger than 2, it is quite easy to write down a
plethora of examples where there is no abelian supplement to p(G). It is a bit
harder to �nd such examples with the quotient that is abelian of rank 2.

A generalization of the following result appears in the thesis of the author.
See also [25].

Lemma 13.1. Let r be an odd prime. Let R := Rd be the free group on 2d

generators subject to xr = 1 = [[x, y], z] for all x, y, z ∈ R. Then there exist
elements in [R, R] which are a product of d commutators but no fewer . Moreover ,
Z(R) = [R, R] is elementary abelian of order pd(2d−1) and R/Z(R) is elementary
abelian of order p2d.

Proof. It is straightforward to verify that |R| = rd(2d+1) and that Z(R) =
[R, R] and R/Z(R) are elementary abelian. If we choose generators xi, 1 ≤ i ≤ 2d

for R and set yij = [xi, xj ] for i < j, then any element in w ∈ [R, R] can be
expressed uniquely as

∏
i<j y

cij

ij where cij may be viewed as an element of Fr.
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This gives a bijection between [R, R] and the set of 2d × 2d skew symmetric
matrices over Fr (by sending w to the unique skew symmetric matrix whose i, j

entry to be cij for i < j). On the other hand, a commutator will correspond to
a rank two skew symmetric matrix. So if w corresponds to a nonsingular skew
symmetric matrix, w is a product of d commutators but no fewer. This also
shows that [R,R] has the order mentioned above. ¤

We �rst give the example when p = 2 because it is so simple.

Proposition 13.2. Let p = 2 and r be any odd prime. Let H be the semidirect
product of R2 and a cyclic group generated by an involution τ , where τ inverts
each generator xi. Note that τ centralizes Z := Z(R2). Pick a subgroup Y = 〈y〉
of Z of order r which contains noncommutators. Let E be the extraspecial group
of order r3 and exponent r. Let G be the central product of H and E identifying
Z(E) and Y (precisely , G = (H × E)/〈(y, w)〉 where w generates Z(E)). Then

(i) p(G) = H;
(ii) G/p(G) is elementary abelian of order r2; and
(iii) there is no abelian supplement to H in G.

Proof. Since R = [τ,R], it follows that the normal closure of τ is H and so
the �rst assertion holds. Clearly G/H ∼= E/W is elementary abelian of order r2,
whence the second statement holds.

Suppose that B is an abelian supplement to H in G. There is no harm
in assuming that B is an r-group (pass to the Sylow r-subgroup of B) and is
generated by two elements u, v (pass the subgroup generated by a pair of elements
which generate modulo H). Then u = ah1 and v = bh2 where a, b generate E/W

and hi ∈ R (clearly, we can take hi ∈ H but since u and v are r-elements, so
are the hi). Then 1 = [u, v] = [ah1, bh2] = [a, b][h1, h2]. This implies that
yj = [h1, h2] for some nontrivial j (since [a, b] is a nontrivial power of w which
we identify with that same power of y). However, yj is not a commutator in R.
This contradiction completes the proof. ¤

We now show how to modify the construction for an arbitrary p. Let r be a
prime congruent to 1 modulo p. Let c, d ∈ F ∗r of order p with cd = 1. Then
there is an automorphism τ of order p of R2 which sends xi to xc

i if i is even
and xd

i if i is odd. Moreover, τ centralizes y = y14y23. Note that y ∈ Z(R) and
y is not a commutator in R. Let H be the semidirect product R and the group
generated by τ . Let E be as above and de�ne G to be the central product of
H and E �identify y with a nontrivial central element of E. The proof of the
previous result shows that:

Proposition 13.3. (i) p(G) = H;
(ii) G/p(G) is elementary abelian of order r2; and
(iii) there is no abelian supplement to H in G.
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More recently, Harbater has become interested in another fundamental group
problem. In this case, G is a group with G/p(G) cyclic of order dividing a �xed m

(with m prime to p). The question is whether there is a cyclic supplement of order
dividing m. If G/p(G) cyclic of order exactly m, then any cyclic supplement of
order dividing m would have to be a complement of order m. If m is in�nite, then
of course one can also �nd such a supplement (just choose any cyclic subgroup
which generates G/p(G)). It is not hard to show that for any �xed m there are
examples with no cyclic supplement of order dividing m.

The �rst example that comes to mind is G = M10 and m = 2. Let p be 3
or 5. Then p(G) = A6 and G/p(G) has order 2. However, p(G) contains all
involutions of G and so there is no supplement of order 2.

For convenience, let us take m an odd prime (di�erent from p). An obvious
modi�cation of the construction gives examples for any m prime to p. Let S be
an extraspecial m-group of order m1+2d such that S admits an automorphism τ

of order p with CS(τ) = Z(S). The existence of such an automorphism amounts
to �nding an element of order p in Sp(V ) that has no trivial eigenvalues. Let H

be the semidirect product of S and τ . Let G be the central product of H and
J = 〈w〉 with J cyclic of order m2 (where we identify the center of S with the
subgroup of J of order m). Any cyclic supplement of order m is generated by
an element of the form wh for some h ∈ S. Since m is odd, it is straightforward
to compute that (wh)m = wm for all h ∈ S, whence any cyclic supplement has
order a multiple of m2. Clearly p(G) = H and G/H is cyclic of order m.
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