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Tannakian Fundamental Groups
Associated to Galois Groups

RICHARD HAIN AND MAKOTO MATSUMOTO

Abstract. The goal of this paper is to give background and motivation for
several conjectures of Deligne and Goncharov concerning the action of the
absolute Galois group on the fundamental group of the thrice punctured
line, and to sketch solutions, complete and partial, of several of them. A
major ingredient in these is the theory of weighted completion of pro�nite
groups. An exposition of weighted completion from the point of view of
tannakian categories is included.

1. Introduction

The goal of this paper is to provide background, heuristics and motivation for
several conjectures of Deligne [14, 8.2, p. 163], [14, 8.9.5, p. 168] and [27, p. 300]
and Goncharov [19, Conj. 2.1], presumably along the lines used to arrive at them.
A complete proof of the third of these conjectures, and partial solutions of the
remaining three are given in [23].1 A second goal of this paper is to show that the
weighted completion of a pro�nite group, developed in [23], and a key ingredient
in the proofs referred to above, can be de�ned as the tannakian fundamental
group2 of certain categories of modules of the group. This should help clarify
the role of weighted completion in [23].

Hain was supported in part by grants from the National Science Foundation. Matsumoto was
supported in part by a Mombusho Grant and also by MSRI during a visit in the fall of 1999.

1After writing that paper, we learned from Goncharov that proofs of `-adic versions of [14,
8.2, p. 163] and [14, 8.9.5, p. 168] had previously been given in the unpublished manuscript [2]
of Beilinson and Deligne.

2A tannakian category T with �ber functor ω is equivalent to the category of representations
of the automorphism group of ω. We shall refer to this proalgebraic group as the tannakian fun-
damental group of T with respect to the base point ω. Basic material on tannakian categories,
such as their de�nition, can be found in [13].
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2. Motivic Cohomology

It is believed that there is a universal cohomology theory, called motivic coho-
mology. It should be de�ned for all schemes X. It is indexed by two integers m

and n. The coe�cient ring Λ is typically Z, Z/N , Z`, Q or Q`; the corresponding
motivic cohomology group is denoted

Hm
mot(X, Λ(n)).

There should be cup products

Hm1
mot(X, Λ(n1))⊗Hm2

mot(X, Λ(n2)) → Hm1+m2
mot (X, Λ(n1 + n2)). (2�1)

Motivic cohomology should have the following universal mapping property: if
H•
C( ,Λ( )) is any Bloch-Ogus cohomology theory [9] (such as étale cohomology,

Deligne cohomology, Betti (i.e., singular) cohomology, de Rham cohomology, and
crystalline cohomology) there should be a unique natural transformation

Hm
mot( , Λ(n)) → Hm

C ( ,Λ(n))

compatible with products and Chern classes

cn : Km(X) → H2n−m
C (X, Λ(n)),

where K• denotes Quillen's algebraic K-group functor, [39].

Beilinson's de�nition. Beilinson [1] observed that the motivic cohomology
with Q coe�cients of a large class of schemes could be de�ned in terms of
Quillen's algebraic K-theory [39].

Suppose that X is the spectrum of the ring of S-integers in a number �eld
or a smooth scheme over a perfect �eld. Denote the algebraic K-theory of X

by K•(X). As in the case of topological K-theory, there are Adams operations
([25], [31])

ψk : K•(X) → K•(X),

de�ned for all k ∈ Z+. They can be simultaneously diagonalized:

Km(X)⊗Q =
⊕

n∈Z
Km(X)(n)

where ψk acts as kn on Km(X)(n).

Definition 2.1 (Beilinson). For a ring Λ containing Q, de�ne the motivic
cohomology groups of X by

Hm
mot(X, Λ(n)) = K2n−m(X)(n) ⊗Q Λ.
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The ring structure of K•(X) induces a cup product (2�1) as

ψk(xy) = ψk(x)ψk(y) x, y ∈ K•(X).

Motivation for Beilinson's de�nition comes from topological K-theory and can
be found in the introduction of [4].

If X is smooth, then it follows from a result of Grothendieck (see [12]) that

H2n
mot(X,Q(n)) ∼= CHn(X)⊗Q.

In the next section, we present the well-known computation of the motivic co-
homology of the ring of S-integers in a number �eld.

Proposition 2.2. There are Chern classes

cmot
j : Km(X) → H2j−m

mot (X,Q(j))

such that for each Bloch-Ogus cohomology theory H•
C( , Λ( )), where Λ contains

Q, there is a natural transformation

H•
mot( , Λ( )) → H•

C( , Λ( ))

that is compatible with Chern classes.

Proof. The basic tool needed to construct the natural transformations to other
cohomology theories is the theory of Chern classes

cj : Km(X) → H2j−m
C (X,Z(j))

constructed by Beilinson [1] and Gillet [17] for a very large set of cohomology
theories H•

C that includes all Bloch-Ogus cohomology theories. These give rise
to the Chern character maps

ch : Km(X) →
∏

j≥0

H2j−m
C (X,Q(j)).

The degree j part of this

chj : Km(X) → H2j−m
C (X,Q(j))

is a homogeneous polynomial of degree j in the Chern classes, just as in the
topological case. The key point is the compatibility with the Adams operations
which implies that the restriction of chk to Km(X)(j) vanishes unless k = j. It
follows that chj factors through the projection onto Km(X)(j):

Km(X)
chj //

proj

²²

H2j−m
C (X,Q(j))

Km(X)(j)
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Thus the Chern character induces a natural transformation

Hm
mot(X,Q(n)) → Hm

C (X,Q(n)).

It is a ring homomorphism as the Chern character is. De�ne

chmot
j : Km(X) → H2j−m

mot (X,Q(j))

to be the projection Km(X) → Km(X)(j). From this, one can inductively con-
struct Chern classes cmot

j : Km(X) → H2j−m
mot (X,Q(j)). Compatibility with the

Chern classes cj : Km(X) → H2j−m
C (X, Λ(j)) is automatic and guarantees the

uniqueness of natural transformation H•
mot → H•

C . ¤

The quest for cochains. Beilinson's de�nition raises many questions and
problems such as:

(i) How does one de�ne motivic cohomology with integral coe�cients?
(ii) Find natural cochain complexes (a.k.a., motivic complexes) whose homology

groups are motivic cohomology.
(iii) Compute motivic cohomology groups.

Bloch's higher Chow groups [5] provide an integral version of motivic cohomology
as well as a chain complex whose homology is motivic cohomology. (See also [6]
and [33].) One di�culty with this approach is that, being based on algebraic
cycles and rational equivalence, it is di�cult to compute with.

More fundamentally, one would also like motivic cohomology groups to be the
ext or hyper-ext groups associated to a suitable category of motives. In the ideal
case, this category will be tannakian after tensoring all its objects with Q, so that
the category of Q-motives will be equivalent to the category of representations
of a proalgebraic group de�ned over Q. These goals have been achieved to some
degree. For all �elds k, Voevodsky [44] and Levine [34] have each constructed
a triangulated tensor category of �mixed motives over k�. For each scheme X,
smooth and quasi-projective over k, there is an object M(X) in this category
such that Ext•(Z(−n),M(X)) is isomorphic to the integral motivic cohomology
groups of X (i.e., Bloch's higher Chow groups). However, the categories obtained
from the categories of Levine and Voevodsky by tensoring their objects with Q
are not tannakian.

One can also propose that there should be a tannakian category of mixed Tate
motives over a �eld k. The motivic cohomology of k should be an ext in this
category. In the case where k is a number �eld (or any �eld satisfying Beilinson-
Soulé vanishing), Levine [32] has constructed such a tannakian category of mixed
Tate motives. Goncharov [18, p. 611] later proved a result similar to Levine's
and proved, in addition, that the bounded derived category of this tannakian
category of mixed Tate motives is equivalent to the full subcategory of mixed
Tate motives of the category of mixed motives over k.
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An older and less fundamental approach to constructing categories of motives,
proposed by Deligne [14] and Jannsen [29], is to view them as �compatible sys-
tems of realizations�. These also form a tannakian category. We shall take this
approach in this paper as it is more accessible and is more consistent with our
point of view.

3. The Motivic Cohomology of the Spectrum of a Ring of
S-integers

Basic results of Quillen [37] and Borel [10] give the computation of the motivic
cohomology of the spectra of rings of S-integers in number �elds. Suppose that
F is a number �eld with ring of integers OF and that S is a �nite subset of
SpecOF . Set XF,S = SpecOF − S. Set

dn = ords=1−n ζF (s) =





r1 + r2 − 1 when n = 1,
r1 + r2 when n is odd and n > 1,
r2 when n is even,

(3�1)

where ζF (s) denotes the Dedekind zeta function of F and r1, and r2 denote the
number of real and complex places of F , respectively.

Theorem 3.1. For all n and m, Hm
mot(XF,S ,Q(n)) is a �nite dimensional

rational vector space whose dimension is given by

dim Hm
mot(XF,S ,Q(n)) =

{
d1 + #S when m = n = 1,
dn when m = 1 and n > 1,
0 otherwise.

Proof. First suppose that S is empty. Quillen [37] showed that each K-group
Km(XF,S) is a �nitely generated abelian group. It follows that each of the groups
Hj

mot(XF,S ,Q(n)) is �nite dimensional. The rank of K0(XF,S) is 1 and the rank
of K1(XF,S) is r1 + r2 − 1 by the Dirichlet Unit Theorem. The ranks of the
remaining Km(XF,S) were computed by Borel [10]. It is zero when m is even
and > 0, and dn when m = 2n− 1 > 1. It is easy to see that

H0
mot(XF,S ,Q(0)) = K0(XF,S)⊗Q ∼= Q.

Borel [11] constructed regulator mappings

K2n−1(XF,S) → Rdn , n > 0,

and showed that each is injective mod torsion. Beilinson [1] showed that Borel's
regulator is a non-zero rational multiple of the regulator mapping

chn : K2n−1(XF,S) → H1
D(XF,S ,R(n)) ∼= Rdn

to Deligne cohomology. The properties of the Chern character and Borel's injec-
tivity together imply that

H1
mot(XF,S ,Q(n)) = K2n−1(XF,S)(n) = K2n−1(XF,S)⊗Q
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and that Hm
mot(XF,S ,Q(n)) vanishes when m > 1, and when m = 0 and n 6= 0.

The result when S is non-empty follows from this using the localization sequence
[39], and the fact, due to Quillen [38], that the K-groups of �nite �elds are torsion
groups in positive degree. Together these imply that each prime removed adds
one to the rank of K1 and does not change the rank of any other K-group. ¤

Denote the Galois group of the maximal algebraic extension of F , unrami�ed
outside S, by GF,S . In this paper, a �nite dimensional GF,S-module means
a �nite dimensional Q`-vector space with continuous GF,S-action. Denote the
category of Q mixed Hodge structures by H. Denote the ext functor in the
category of �nite dimensional GF,S-modules by ExtGF,S

, and the ext functor in
H by ExtH. The results on regulators of Borel [11] and Soulé [41] can be stated
as follows.

Theorem 3.2. The natural transformation from motivic to étale cohomology
induces isomorphisms

H1
mot(XF,S ,Q`(n)) ∼= H1

ét(XF,S ,Q`(n)) ∼= Ext1GF,S
(Q`,Q`(n))

for all n ≥ 1. The natural transformation from motivic to Deligne cohomology
induces injections

H1
mot(XF,S ,Q(n)) ↪→ H1

D(XF,S ,Q(n)) =

[ ⊕

ν:F↪→C
Ext1H(Q,Q(n))

]Gal(C/R)

. ¤

Thus each element x of K2n−1(XF,S) determines an extension

0 → Q`(n) → E`,x → Q`(0) → 0

of `-adic local systems over XF,S and a Gal(C/R)-equivariant extension

0 → Q(n) → EHodge,x → Q(0) → 0

of mixed Hodge structures over XF,S ⊗ C. One can think of these as the étale
and Hodge realizations of x ∈ K2n−1(XF,S).

4. Mixed Tate Motives

As mentioned earlier, one approach to motivic cohomology is to postulate that
to each su�ciently nice scheme X (say, smooth and quasi-projective over a �eld,
or regular over a ring OF,S of S-integers in a number �eld) one can associate a
category T (X) of mixed Tate motives over X. This should satisfy the following
conjectural properties.

(i) T (X) is a (neutral) tannakian category over Q with a �ber functor ω :
T (X) → VecQ to the category of �nite dimensional rational vector spaces.
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(ii) Each object M of T (X) has an increasing �ltration called the weight �ltra-
tion

· · · ⊆ Wm−1M ⊆ WmM ⊆ Wm+1M ⊆ · · · ,
whose intersection is 0 and whose union is M . Morphisms of T (X) should be
strictly compatible with the weight �ltration � that is, the functor

GrW
• : M 7→

⊕
m

GrW
m M :=

⊕
m

WmM/Wm−1M

to graded objects in T (X) should be an exact tensor functor.
(iii) T (X) contains �the Tate motive Q(1)� over Spec R where R is the base

ring (here either a �eld or OF,S). This can be considered as the dual of the
local system R1f∗(Q) over Spec R, where f is the structure morphism of the
multiplicative group Gm, i.e., f : Gm⊗R → Spec R. Put Q(n) := Q(1)⊗n for
n ∈ Z. (Negative tensor powers are de�ned by duality.)

(iv) There should be realization functors to various categories such as `-adic
étale local systems over X[1/`] := X ⊗R R[1/`] (where R is the base ring
and ` does not divide the characteristic of R), variations of mixed Hodge
structure over X, etc. These functors should be faithful, exact tensor functors.
These functors are related by natural comparison transformations. The Betti,
de Rham, `-adic and crystalline realizations of Q(1) should be the Betti,
de Rham, `-adic and crystalline versions of H1(Gm).

(v) For each object M , GrW
2m+1 M is trivial and GrW

2m M is isomorphic to the
direct sum of a �nite number of copies of Q(−m).

The last property characterizes mixed Tate motives among mixed motives. The
category T (X), being tannakian, is equivalent to the category of �nite dimen-
sional representations of a proalgebraic Q-group π1(T (X), ω), which represents
the tensor automorphism group of the �ber functor ω. We denote it simply by
π1(T (X)), if the selection of ω does not matter.

There are several approaches to constructing the category T (X), at least when
X is the spectrum of a �eld or X = XF,S , such as those of Bloch-Kriz [8], Levine
[32], and Goncharov[18].

We follow Deligne [14] and Jannsen [29], who de�ne a motive to be a �com-
patible set of realizations� of �geometric origin.� This is a tannakian category.
Deligne does not de�ne what it means to be of geometric origin, but wants it
to be broad enough to include those compatible realizations that occur in the
unipotent completion of fundamental groups of varieties in addition to subquo-
tients of cohomology groups. We refer the reader to Section 1 of Deligne's paper
[14] for the de�nition of compatible set of realizations. One example is Q(1),
de�ned as H1(Gm/Z), another is the extension Ex of Q(0) by Q(n) coming from
x ∈ K2n−1(XF,S) described in the previous section.

The hope is that

Hm
mot(X,Q(n)) ∼= Extm

T (X)(Q(0),Q(n))
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holds when X is the spectrum of a �eld or XF,S .3 This covers the cases of
interest for us. In general, one expects that motivic cohomology groups of X

can be computed as hyper-exts:

Hm
mot(X,Q(n)) ∼= Hm(X, Ext•T (Q(0),Q(n))).

Deligne's conjecture (Conjecture 5.5) will be a consequence of:

Postulate 4.1. If X = XF,S , there is a category of mixed Tate motives T (X)
over X with the above mentioned properties. It has the property that there is a
natural isomorphism

Hm
mot(X,Q(n)) ∼= Extm

T (X)(Q(0),Q(n)),

which is compatible with Chern maps.

Examples of mixed Tate motives over SpecZ. One of the main points
of [14] is to show that the unipotent completion of the fundamental group of
P1 − {0, 1,∞} is an example of a mixed Tate motive (actually a pro-mixed Tate
motive), smooth over SpecZ.

As base point, take −→01, the tangent vector of P1 based at 0 that corre-
sponds to ∂/∂t, where t is the natural parameter on P1 − {0, 1,∞}. Deligne
[14] shows that the unipotent completion of π1(P1 − {0, 1,∞},−→01) is a mixed
Tate motive over SpecZ by exhibiting compatible Betti, étale, de Rham and
crystalline realizations of it. It is smooth over SpecZ essentially because the
pair (P1 − {0, 1,∞},−→01) has everywhere good reduction.

There is an interesting relation to classical polylogarithms which was discov-
ered by Deligne (cf. [14], [3], [20]). There is a polylog local system P , which is
a motivic local system over P1

Z − {0, 1,∞} in the point of view of compatible
realizations. Its Hodge-de Rham realization is a variation of mixed Hodge struc-
ture over the complex points of P1 − {0, 1,∞} whose periods are given by log x

and the classical polylogarithms: Li1(x) = − log(1 − x), Li2(x) (Euler's diloga-
rithm), Li3(x), and so on. Here Lin(x) is the multivalued holomorphic function
on P1(C)− {0, 1,∞} whose principal branch is given by

Lin(x) =
∞∑

k=1

xk

kn

in the unit disk.4
The �ber P−→

01
of P over the base point −→01 is a mixed Tate motive over SpecZ

and has periods the values of the Riemann zeta function at integers n > 1. In

3If this is true, then Hm
mot(Spec F,Q(n)) will vanish when n < 0 and m = 0, and when

n ≤ 0 and m > 0. This vanishing is a conjecture of Beilinson and Soulé. It is known for
number �elds, for example.

4This goes back to various letters of Deligne. Accounts can be found, for example, in [3]
and [20].
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fact, P−→
01

is an extension

0 →
⊕

n≥1

Q(n) → P−→
01
→ Q(0) → 0

and thus determines a class

(en)n ∈
⊕

n≥1

Ext1H(Q(0),Q(n)).

The class en is trivial when n = 1 and is the coset of ζ(n) in

C/(2πi)nQ ∼= Ext1H(Q(0),Q(n))

when n > 1. Since ζ(2n) is a rational multiple of π2n, each e2n is trivial.
Deligne computes the `-adic realization of P−→

01
in [14] and shows that the

polylogarithm motive is a canonical quotient of the enveloping algebra of the Lie
algebra of the unipotent completion of π1(P1 − {0, 1,∞},−→01). (See also [3] and
[20].)

5. The Motivic Lie Algebra of XF,S and Deligne's Conjectures

Assume that X is as in Section 4, and that there is a category of mixed Tate
motives T (X) with properties (i)�(v) in Section 4. Since T (X) is tannakian, it is
determined by its tannakian fundamental group π1(T (X)), which is an extension
of Gm by a prounipotent Q-group

1 → UX → π1(T (X)) → Gm → 1 (5�1)

as we shall now explain.
The category of pure Tate motives is the tannakian subcategory of T (X)

generated by Q(1). By the faithfulness of realization functors, it is equivalent
to the category of �nite dimensional graded Q-vector spaces, and hence to the
category of �nite dimensional representations of Gm; Q(n) corresponds to the
nth power of the standard representation. This induces a group homomorphism
between the tannakian fundamental groups

π1(T (X)) → π1(pure Tate motives) ∼= Gm.

Since the category of pure Tate motives is a full subcategory and every subob-
ject of a pure Tate motive is pure, this morphism is surjective (cf. [13, Propo-
sition 2.21a]), and the properties of the weight �ltration imply the unipotence
of its kernel UX , thus we have (5�1). The Lie algebra tX of π1(T (X)) is an
extension

0 → uX → tX → Q → 0

where uX is pronilpotent. This tX is called the motivic Lie algebra of X. We shall
see that the knowledge of the cohomologies of uX (as Gm-modules) is equivalent
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to the knowledge of the extension groups Ext•T (X)(Q(0),Q(m)) for all m in the
next section.

5.1. Extension groups in a tannakian category. We start with a general
setting. Let K be a �eld of characteristic zero. Let G be a proalgebraic group
(in this paper a proalgebraic group means an a�ne proalgebraic group) over K,
or equivalently, an a�ne group scheme over K (cf. [13]). A G-module V is a
(possibly in�nite dimensional) K-vector space with algebraic G-action (cf. [30]).
The category of G-modules is abelian with enough injectives, and hence we have
the cohomology groups

Hm(G, V ) := Extm
G (K, V )

de�ned as the extension groups, where K denotes the trivial representation.
The right hand side has an interpretation as Yoneda's extension groups, i.e.,
as the set of equivalence classes of m-step extensions (see [45]). Since each G-
module is locally �nite [30, 2.13], every m-step extension representing an element
of Extm

G (K, V ) can be replaced by an equivalent extension consisting of �nite
dimensional modules when V is �nite dimensional. Thus, the right hand side
does not change when the category of G-modules is replaced by the category of
�nite dimensional G-modules.

Let T be a neutral tannakian category over K with a �ber functor ω, and let
G be its tannakian fundamental group with base point ω. Since T is isomorphic
to the category of �nite dimensional G-modules, we have the following.

Lemma 5.1. Let T be a neutral tannakian category and G be its tannakian
fundamental group. Then, for any object V , we have

Extm
T (K,V ) ∼= Hm(G, V ). ¤

Suppose that G is an extension

1 → U → G → R → 1

of proalgebraic groups over K. Then, for any G-module V , we have the Lyndon-
Hochschild-Serre spectral sequence (cf. [30, 6.6 Proposition]):

Es,t
2 = Hs(R, Ht(U , V )) ⇒ Hs+t(G, V ).

If R is a reductive algebraic group, then every R-module is completely reducible.
Consequently, Hs(R, V ) vanishes for s ≥ 1 for all V , and

Hm(G, V ) ∼= H0(R,Hm(U , V )).

If, in addition, the action of G on V factors through R, then one has an R-module
isomorphism

Hm(U , V ) ∼= Hm(U ,K)⊗ V.
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Moreover, if we assume that U is prounipotent, then its Lie algebra u is a
projective limit

u ∼= lim
←−
n

u/n

of �nite dimensional nilpotent Lie algebras. It has a topology as a projective
limit, where each u/n is viewed as a discrete topological space.

Let V be a continuous u-module over K. The continuous cohomology Hm
cts(u,V )

is de�ned as the extension group Extm(K,V ) in the category of continuous u-
modules. We denote Hm

cts(u,K) by Hm
cts(u). It is easy to show that

Hm
cts(u) ∼= lim

−→
n

Hm(u/n),

where Hm(u/n) can be computed as the cohomology of the complex of cochains

Hom(Λ•(u/n),K).

The following is standard.

Proposition 5.2. Let u be a pronilpotent Lie algebra, and let H1(u) denote the
abelianization of u. Then

H1(u) ∼= Hom(H1
cts(u),K).

If H2(u) = 0, then u is free.

It is also well known that the category of U-modules is equivalent to the category
of continuous u-modules. Hence we have

Hm(U ,K) ∼= Hm
cts(u).

Putting this together, we have the following.

Theorem 5.3. Suppose that 1 → U → G → R → 1 is a short exact sequence of
pro-algebraic groups over a �eld K of characteristic zero. Assume that R is a
reductive algebraic group, and that U is a prounipotent group. Let u be the Lie
algebra of U . If V is an R-module, considered as a G-module, then

Hm(G, V ) ∼= (Hm
cts(u)⊗ V )R.

Consequently , we have the R-module isomorphism

Hm
cts(u) ∼=

⊕
α

(Hm(G, Vα)⊗ V ∗
α ),

where {Vα} is a set of representatives of the isomorphism classes of irreducible
R-modules, and ( )∗ denotes Hom( ,K).
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5.2. Deligne's conjecture. By applying Theorem 5.3 to (5�1), we have

Extm
T (X)(Q(0),Q(n)) ∼= [Hm

cts(uX)⊗Q(n)]Gm

and Gm-module isomorphisms

Hm
cts(uX) ∼=

⊕

n∈Z
Extm

T (X)(Q(0),Q(n))⊗Q(−n), (5�2)

where uX is the Lie algebra of UX , the prounipotent radical of π1(T (X), ω). By
a weight argument, each extension on the right hand side vanishes if n ≤ m− 1.
Postulate 4.1 says that these Ext groups should be the motivic cohomology
groups of X, and Theorem 3.1 says that they should be isomorphic to the Adams
eigenspaces of the K-groups of X:

Proposition 5.4. Assume the existence of a category T (XF,S) of mixed Tate
motives over XF,S with properties (i)�(v) as in Section 4. Suppose that Postu-
late 4.1 holds for all n ≥ 1. Let UXF,S

be the unipotent radical of π1(T (XF,S), ω),
and uXF,S be its Lie algebra. Then there is a natural Gm-module isomorphism

H1
cts(uXF,S

) ∼=
⊕

n≥1

K2n−1(XF,S)⊗Z Q(−n),

and Hm
cts(uXF,S

) = 0 whenever m ≥ 2. Moreover , the exactness of GrW
• implies

that
H1(GrW

• uXF,S
) =

⊕

n≥1

K2n−1(XF,S)∗ ⊗Q(n)

and that
Hm(GrW

• uXF,S ) = 0 when m > 1.

It follows from this that GrW
• uXF,S

is isomorphic to the free Lie algebra generated
by H1(GrW

• uXF,S
).

Let us assume that there is a category T (XF,S) satisfying (i)�(v) in Section 4.
Then Postulate 4.1 is equivalent to the following conjecture of Deligne:

Conjecture 5.5 (Deligne). (i) [14, 8.2.1] For the category T (XF,S) of mixed
Tate motives smooth over XF,S one has a natural isomorphism

Ext1T (XF,S)(Q(0),Q(n)) ∼= K2n−1(XF,S)⊗Q for all n,

which is compatible with the Chern mappings.
(ii) [14, 8.9.5] The group π1(T (XF,S)) is an extension of Gm by a free prounipo-

tent group.

Note that by De�nition 2.1, Theorem 3.1 and the isomorphism (5�2), (i) is
equivalent to Postulate 4.1 for m = 1, and that (ii) is equivalent to Postulate 4.1
for m ≥ 2.
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Consequences of Deligne's conjecture. Deligne's conjecture suggests re-
strictions on the action of Galois groups on pro-` completions of fundamental
groups of curves. Here is a sketch of how this should work.

As in the beginning of Section 4, there should be a Betti realization functor

realB : T (XF,S) → {Q-vector spaces}
to the category of Q-vector spaces, and an `-adic realization functor

real` : T (XF,S) → {`-adic GF -modules},
to the category of the Q`-vector spaces with a continuous GF -action. The Galois
modules should be unrami�ed outside S∪[`], where [`] denotes the set of primes of
F over `. We choose realB as our �ber functor ω. Let ω` denote the functor real`
which forgets the GF -action. Conjecturally, there is a comparison isomorphism

ω ⊗Q`
∼= ω`,

so we shall identify these two. De�ne T (XF,S)⊗Q` to be the tannakian category
whose objects are the same as those of T (XF,S) and whose hom-sets are those
of T (XF,S) tensored with Q`. The `-adic realization functor induces a functor

real` : T (XF,S)⊗Q` → {`-adic GF -modules} (5�3)

(by an abuse of notation we denote it by real` again), and by forgetting the
Galois action a �ber functor ω` : T (XF,S)⊗Q` → VecQ`

(under a similar abuse
of notation). Through the comparison isomorphism, it is easy to show that

π1(T (XF,S)⊗Q`, ω`) ∼= π1(T (XF,S), ω)⊗Q`.

The following is closely related to the Tate conjecture on Galois modules.

Postulate 5.6. The realization functor real` in (5�3) is fully faithful, and its
image is closed under taking subobjects.

The �rst condition is that every Galois compatible morphism comes from a
morphism of motives up to extension of scalars, and the second condition is that
every Galois submodule arises as an `-adic realization of a motive. We shall see
that this postulate follows from Deligne's Conjecture 5.5 and our Theorem 9.2
(see Corollary 9.4).

Every element of GF gives an automorphism of the forgetful �ber functor
of the category of GF -modules (i.e. forgetting the Galois action), and hence an
automorphism of ω`. Thus we have a homomorphism

GF → π1(T (XF,S)⊗Q`, ω`)(Q`) ∼= π1(T (XF,S), ω)(Q`). (5�4)

In addition, the GF -action on the `-adic realization of any (pro)object M of
T (XF,S) factors through π1(T (XF,S))⊗Q` via the morphism (5�4).

Proposition 5.7. Postulate 5.6 is equivalent to the statement that the above
morphism (5�4) has Zariski dense image.
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Proof. Let G denote the tannakian fundamental group of the category of
�nite dimensional `-adic GF -modules. By [13, Prop. 2.21a], the conditions in
Postulate 5.6 are equivalent to the surjectivity of G → π1(T (XF,S)⊗Q`, ω`). It
is a general fact that the image of GF → G(Q`) is Zariski dense. ¤

Assuming Postulate 5.6, the Zariski density of the image of (5�4) implies that
for any object M of T (XF,S), the Zariski closure of the image of GF in Aut(M)
should be a quotient of π1(T (XF,S))⊗Q`. We can de�ne a �ltration J•M on GF

(which depends on M) by

Jm
MGF := the inverse image of Wm Aut M.

The image of the Galois group GF (µ`∞ ) of F (µ`∞) in π1(T (XF,S), ω`) will lie in
its prounipotent radical and should be Zariski dense in it. The exactness of GrW

•
will then imply that ( ⊕

m<0

Grm
JM

GF

)
⊗Z`

Q`

(a Lie algebra) is a quotient of GrW
• uXF,S

, and hence generated by
⊕

m≥1

Hom(K2m−1(XF,S),Q`(m)).

For example, the pronilpotent Lie algebra p of the unipotent completion of
π1(P1 − {0, 1,∞},−→01) should be a pro-object of T (SpecZ). One should therefore
expect that the graded Lie algebra

( ⊕
m<0

Grm
Jp

GQ
)⊗Z`

Q`

is generated by elements z3, z5, z7, . . ., where zm has weight −2m.
Following Ihara [26], we de�ne

Im
` GQ = ker{GQ → Out(π(`)

1 (P1(C)− {0, 1,∞},−→01)/Lm+1)}
where Lm denotes the mth term of the lower central series of the pro-` completion
of π1(P1(C)− {0, 1,∞},−→01). This is related to the �ltration J•p by

Im
` GQ = J−2m

p GQ = J−2m+1
p GQ .

Making this substitution, we are led to the following conjecture, stated by Ihara
in [27, p. 300] and which he attributes to Deligne.

Conjecture 5.8 (Deligne). The Lie algebra
[ ⊕

m>0

Grm
I`

GQ

]
⊗Q`

is generated by generators s3, s5, s7, . . ., where sm ∈ Grm
I`

GQ .



TANNAKIAN FUNDAMENTAL GROUPS ASSOCIATED TO GALOIS GROUPS 197

Deligne also asked whether this Lie algebra is free. A related conjecture of
Goncharov [19, Conj. 2.1], stated below, and the questions of Drinfeld [15] can
be `derived' from Deligne's Conjecture 5.5 in a similar fashion. The freeness
questions are more optimistic and are equivalent to the statement that the rep-
resentation of the motivic Galois group π1(T (SpecZ)) in the automorphisms of
the `-adic unipotent completion of the fundamental group of P1 − {0, 1,∞} is
faithful. The computational results [27], [35] and [43] give support to the belief
that this Lie algebra is free. Indeed, these computations show that Gr>0

I`
GQ is

free up to Gr12I`
GQ .

Conjecture 5.9 (Goncharov). The Lie algebra of the Zariski closure of the
Galois group of Q(µ`∞) in the automorphism group of the `-adic unipotent com-
pletion of π1(P1 − {0, 1,∞},−→01) is a prounipotent Lie algebra freely generated
by elements z3, z5, z7, . . ., where zm has weight −2m.

Deligne's Conjecture 5.8 above and the generation part of Goncharov's conjec-
ture are proved in [23]. A brief sketch of their proofs is given in Section 10.
Modulo technical details, the main point is the computation of the tannakian
fundamental group of the candidate for T (XF,S)⊗Q` given in the next section.

Polylogarithms revisited. Assuming the existence of tSpecZ (i.e. the Lie alge-
bra of π1(T (SpecZ))), we can give another interpretation of the �ber P−→

01
of the

polylogarithm local system. Being a motive over SpecZ, it is a tSpecZ-module.
Note that since

W−1P−→01 =
⊕

n≥1

Q(n),

a direct sum of Tate motives (no nontrivial extensions), the restriction of the
tSpecZ-action on W−1P−→01 to uSpecZ is trivial and [uSpecZ , uSpecZ ] annihilates
P−→

01
. Since P−→

01
is an extension of Q(0) by W−1P−→01 , this implies that there is a

homomorphism

ψ :
(
tSpecZ/[uSpecZ , uSpecZ ]

)⊗Q(0) −→ P−→
01

such that the diagram

tSpecZ ⊗ P−→
01

quotient

²²

action // P−→
01

tSpecZ/[uSpecZ , uSpecZ ]
ψ

66nnnnnnnnnnnnn

commutes. By comparing graded quotients, it follows that ψ is an isomorphism

P−→
01
∼= tSpecZ/[uSpecZ , uSpecZ ]

of motives over SpecZ.
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6. `-adic Mixed Tate Modules over XF,S

In this section, we describe a candidate for the category of `-adic realizations of
objects and morphisms of T (XF,S). This is essentially the category constructed
by Deligne and Beilinson in their unpublished manuscript [2]. It is purely Galois-
representation theoretic, and requires no postulates. For technical reasons, we
assume that S contains [`], the set of primes over `. This condition will be
removed in Section 11. By a �nite dimensional GF,S-module, we shall mean a
�nite dimensional Q`-vector space on which GF,S acts continuously.

We de�ne the category T`(XF,S) of `-adic mixed Tate modules which are
smooth over XF,S to be the category whose objects are �nite dimensional GF,S-
modules M that are equipped with a weight �ltration

· · · ⊆ Wm−1M ⊆ WmM ⊆ Wm+1M ⊆ · · ·
of M by GF,S-submodules. The weight �ltration satis�es:

(i) all odd weight graded quotients of M vanish: GrW
2m+1 M = 0;

(ii) GF,S acts on its 2mth graded quotient GrW
2m M via the (−m)th power of the

cyclotomic character,
(iii) the intersection of the WmM is trivial and their union is all of M .

Morphisms are Q`-linear, GF,S-equivariant mappings. These will necessarily pre-
serve the weight �ltration, so that T`(XF,S) is a full subcategory of the category
of GF,S-modules.

The category T`(XF,S) is a tannakian category over Q` with a �ber functor ω′

that takes an object to its underlying Q`-vector space. We shall denote the tan-
nakian fundamental group of this category by A`

F,S := π1(T`(XF,S), ω′). Every
element of GF,S acts on ω′, which induces a natural, continuous homomorphism

ρ : GF,S → A`
F,S(Q`).

This has Zariski-dense image as T`(XF,S) is a full subcategory of the category
of GF,S-modules, closed under taking subobjects (cf. [13, Proposition 2.21a]).

Relation to mixed Tate motives over XF,S. As explained in Section 4,
the existence of a category T (XF,S) of mixed Tate motives over XF,S satisfying
(i)�(v) in Section 4 implies the existence of an `-adic realization functor

real` : T (XF,S)⊗Q` → T`(XF,S).

This will induce a morphism of tannakian fundamental groups

A`
F,S = π1(T`(XF,S), ω′) → π1(T (XF,S), ω)⊗Q`.

The main result of [23] may be regarded as saying thatA`
F,S = π1(T`(XF,S), ω′)

is isomorphic to the conjectured value of the Q`-form π1(T (XF,S), ω) ⊗ Q` of
the motivic fundamental group of XF,S . We shall explain this in Section 9.
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It is interesting to note that we have not restricted to GF,S-modules of geo-
metric origin as Deligne would like to. So one consequence of our result is that,
if Deligne's Conjecture 5.5 is true, then all objects and morphisms of T (XF,S)
will be of geometric origin.

7. Weighted Completion of Pro�nite Groups

In this and the subsequent two sections we will sketch how to compute the
tannakian fundamental group π1(T`(XF,S), ω′) of the category of `-adic mixed
Tate modules smooth over XF,S , which was de�ned in Section 6. It is convenient
to work in greater generality.5

Suppose that R is a reductive algebraic group over Q` and that w : Gm → R

is a central cocharacter � that is, its image is contained in the center of R. It
is best to imagine that w is nontrivial as the theory of weighted completion is
uninteresting if w is trivial.

Suppose that Γ is a pro�nite group and that a homomorphism ρ : Γ → R(Q`)
has Zariski dense image and is continuous where we view R(Q`) as an `-adic Lie
group.

By a weighted Γ-module with respect to ρ and w we shall mean a �nite dimen-
sional Q`-vector space with continuous Γ-action together with a weight �ltration

· · · ⊆ Wm−1M ⊆ WmM ⊆ Wm+1M ⊆ · · ·
by Γ-invariant subspaces. These should satisfy:

(i) the intersection of the WmM is 0 and their union is M ,
(ii) for each m, the representation Γ → Aut GrW

m M should factor through ρ and
a homomorphism φm : R → Aut GrW

m M ,
(iii) GrW

m M has weight m when viewed as a Gm-module via

Gm
w−−−−→ R

φm−−−−→ AutGrW
m M.

That is, Gm acts on GrW
m M via the mth power of the standard character.

The category of weighted Γ-modules consists of the Γ-equivariant morphisms be-
tween weighted Γ-modules. These morphisms automatically preserve the weight
�ltration and are strict with respect to it; that is, the functor GrW

• is exact.
One can show that the category of weighted Γ-modules is tannakian, with

�ber functor ω′ given by forgetting the Γ-action.

Definition 7.1. The weighted completion of Γ with respect to ρ : Γ → R(Q`)
and w : Gm → R is the tannakian fundamental group of the category of weighted
Γ-modules with respect to ρ and w.

5We may generalize further: weighted completion and its properties in this section are
unchanged even if we replace Q` by an arbitrary topological �eld of characteristic zero and Γ
by an arbitrary topological group.
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Denote the weighted completion of Γ with respect to ρ and w by G. There is a
natural homomorphism Γ → G(Q`) which has Zariski dense image as we shall
see below.

This de�nition di�ers from the one given in [23, Section 5], but is easily seen
to be equivalent to it. (See below.) In particular, we can apply it when:

• Γ is GF,S ,
• R is Gm and w : Gm → Gm takes x to x−2,
• ρ is the composite of the `-adic cyclotomic character χ` : GF,S → Z×` with

the inclusion Z×` ↪→ Q×` .

In this case, the category of weighted Γ-modules is nothing but the category of
mixed Tate modules T`(XF,S). Recall that we denote the corresponding weighted
completion by A`

F,S := π1(T`(XF,S), ω′).

Equivalence of de�nitions. Here we show that the de�nition of weighted
completion given in [23] agrees with the one given here.

Suppose that G is a linear algebraic group over Q` which is an extension

1 → U → G → R → 1

of R by a unipotent group U . Note that H1(U) is naturally an R-module, and
therefore a Gm-module via the given central cocharacter w : Gm → R. We can
decompose H1(U) as a Gm-module:

H1(U) =
⊕

n∈Z
H1(U)n

where Gm acts on H1(U)n via the nth power of the standard character. We
say that G is a negatively weighted extension of R if H1(U)n vanishes whenever
n ≥ 0.

Given a continuous homomorphism ρ : Γ → R(Q`) with Zariski dense image,
we can form a category of pairs (ρ̃, G), where G is a negatively weighted extension
of R and ρ̃ : Γ → G(Q`) is a continuous homomorphism that lifts ρ. Morphisms
in this category are given by homomorphisms between the Gs that respect the
projection to R and the lifts ρ̃ of ρ. The objects of this category, where ρ̃ is
Zariski dense, form an inverse system. Their inverse limit is an extension

1 → U → G → R → 1

of R by a prounipotent group. There is a natural homomorphism ρ̂ : Γ →
G(Q`), which is continuous in a natural sense. It has the following universal
mapping property: if ρ̃ : Γ → G(Q`) is an object of this category, then there is
a unique homomorphism φ : G → G that commutes with the projections to R

and with the homomorphisms ρ̃ : Γ → G(Q`) and ρ̂ : Γ → G(Q`). In [23], the
weighted completion is de�ned to be this inverse limit. The equivalence of the
two de�nitions follows from the following result.
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Proposition 7.2. The inverse limit de�ned above is naturally isomorphic to
the weighted completion of Γ relative to ρ and w.

Proof. Denote the inverse limit by G and by M = M(ρ,w) the category of
weighted Γ-modules with respect to ρ : Γ → R(Q`) and w. We will show thatM
is the category of �nite dimensional G-modules, from which the result follows.

Suppose that M is an object of M. Then the Zariski closure of Γ in Aut M

is an extension
1 → U → G → R′ → 1

of a quotient of R by a unipotent group. Here R′ is the Zariski closure of the im-
age of Γ in AutGrW

• M . Because the action of Γ on each weight graded quotient
factors through ρ, and because Gm acts on the mth weight graded quotient of
M with weight m, it follows that this is a negatively weighted extension of R′.
Pulling back this extension along the projection R → R′, we obtain a negatively
weighted extension

1 → U → G̃ → R → 1

of R and a continuous homomorphism Γ → G̃(Q`) that lifts both ρ and the
homomorphism Γ → R′(Q`). By the universal mapping property of G, there
is a natural homomorphism G → G̃ compatible with the projections to R and
the homomorphisms from Γ to G(Q`) and G̃(Q`). Thus every object of M
is naturally a G-module. It is also easy to see that every morphism of M is
G-equivariant.

Conversely, suppose that M is a �nite dimensional G-module. Composing
with the natural homomorphism ρ̂ : Γ → G(Q`) gives M the structure of a Γ-
module. In [23, Sect. 4], it is proven that every G-module has a natural weight
�ltration with the property that the action of G on each weight graded quotient
factors through the projection G → R and that Gm acts with weight m on the
mth weight graded quotient. It follows that M is naturally an object of M.
Since G-equivariant mappings are naturally Γ-equivariant, this proves that M
is naturally the category of �nite dimensional G-modules, which completes the
proof. ¤

8. Computation of Weighted Completions

Suppose that Γ, R, ρ : Γ → R(Q`) and w : Gm → R are as above. The
weighted completion G of Γ is controlled by the low-dimensional cohomology
groups H•

cts(Γ, V ) of Γ with coe�cients in certain irreducible representations V

of R. If one knows these cohomology groups, as we do in the case of GF,S ,
one can sometimes determine the structure of the weighted completion. These
cohomological results are stated in this section.

The weighted completion of Γ with respect to ρ and w is an extension

1 → U → G → R → 1
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where U is prounipotent. Now we are in the situation of Theorem 5.3. Denote
the Lie algebra of U by u. Since u is a G-module by the adjoint action, the
natural weight �ltration on u induces one on H•

cts(u). By looking at cochains, it
is not di�cult to see that if u = W−Nu for some N > 0, then

WnHm
cts(u) = 0 if n < Nm. (8�1)

Let Vα be an irreducible R-module. Since w is central in R, the Gm-action
commutes with the R-action, so Schur's Lemma implies that there is an integer
n(α) such that Gm acts on Vα via the n(α)th power of the standard character.
This is the weight of Vα as a G-module. Now (8�1) and Theorem 5.3 imply

Hm(G, Vα) = 0

if n(α) > −Nm. Note that always u = W−1u.
Suppose that V is an `-adic Γ-module, i.e., a Q`-vector space with continuous

Γ-action. We shall need the continuous cohomology H•
cts(Γ, V ), which is de�ned

as the cohomology of a suitable complex of continuous cochains as in [42, Sect. 2].
A G-module V can be considered as an `-adic Γ-module through ρ̂ : Γ → G(Q`).
There is a natural group homomorphism

Φm : Hm(G, V ) → Hm
cts(Γ, V )

for each m ≥ 0.
Let {Vα}α be as in Theorem 5.3. These are considered as Γ-modules via ρ.

The following theorem is our basic tool for computing u when the appropriate
continuous cohomology groups Hi

cts(Γ, Vα) are known for i = 1, 2.

Theorem 8.1. For m = 1, 2, the mappings Φm de�ned above satisfy :

(i) Φ1 : H1(G, Vα) → H1
cts(Γ, Vα) is an isomorphism if n(α) < 0;

(ii) Φ2 : H2(G, Vα) → H2
cts(Γ, Vα) is injective.

This and Theorem 5.3 imply the following, by using (8�1) and the comment
following it.

Corollary 8.2. (i) There is a natural R-equivariant isomorphism

H1
cts(u) ∼=

⊕

{α:n(α)≤−1}
H1

cts(Γ, Vα)⊗ V ∗
α .

(ii) If N is an integer such that H1
cts(Γ, Vα) = 0 for 0 > n(α) > −N , then there

is a natural R-equivariant inclusion

Φ : H2
cts(u) ↪→

⊕

{α:n(α)≤−2N}
H2

cts(Γ, Vα)⊗ V ∗
α .

This is proved in [23]. Below we shall give another more categorical proof, similar
to that in [2].

Corollary 8.3. (i) If H1
cts(Γ, Vα) = 0 whenever n(α) < 0, then u = 0.
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(ii) Let N be as in Corollary 8.2. If H2
cts(Γ, Vα) = 0 whenever n(α) ≤ −2N ,

then u is free as a pronilpotent Lie algebra. ¤

In the proof of Theorem 8.1 we shall use Yoneda extensions. Let V be a �nite
dimensional `-adic Γ-module. For each m ≥ 0, de�ne

Extm
Γ (Q`, V )

to be the m-th Yoneda extension group in the category of �nite dimensional
`-adic Γ-modules, where Q` denotes the trivial Γ-module. For each m ≥ 1, there
is a natural homomorphism

Extm
Γ (Q`, V ) → Hm

cts(Γ, V ),

which, by Theorem A.6, is an isomorphism when m = 1, and injective when
m = 2.

There is an exact functor from the category of weighted G-modules to the cat-
egory of `-adic Γ-modules. It induces morphisms between the extension groups,
and hence homomorphisms

Ψm : Hm(G, V ) → Extm
Γ (Q`, V ), m ≥ 0.

The homomorphisms Φm above factor through these:

Hm(G, V )
Ψm

//

Φm

**
Extm

Γ (Q`, V ) // Hm
cts(Γ, V ).

In fact, this is one of several equivalent ways to de�ne the natural mappings Φm.

Proof of Theorem 8.1. In view of Theorem A.6, it su�ces to prove that Ψ1

is an isomorphism, and that Ψ2 is injective.
Since the functor from the category of weighted Γ-modules to the category of

Γ-modules is fully faithful, a 1-step extension of weighted Γ-modules splits if it
splits as an extension of Γ-modules. This establishes the injectivity of Ψ1.

To prove surjectivity of Ψ1, we de�ne a natural weight �ltration on each Γ-
module extension E of Q` by Vα. Simply set W0E = E and Wn(α)E = Vα. Since
n(α) < 0, this makes E a weighted Γ-module.

To prove that Ψ2 is injective, we need to show that if a 2-step extension

1 → Vα → E2 → E1 → Q` → 1 (8�2)

lies in the trivial class of extensions of Γ-modules, then it also lies in the trivial
class of extensions of weighted Γ-modules.

If n(α) ≥ −1, then H2(G, Vα) = 0, and there is nothing to prove. Thus we
may assume n(α) ≤ −2. Since Wm is an exact functor, we may apply W0 to
(8�2) to obtain another 2-step extension, without changing the extension class.
Then, taking GrW

0 , we have a short exact sequence

0 → GrW
0 E2 → GrW

0 E1 → Q` → 0
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of R-modules. Since R is reductive, this has a splitting Q` ↪→ GrW
0 E1. Taking

the inverse images of this copy of Q` along E2 → E1 → GrW
0 E1 in E2 and in

E1, we obtain a 2-step extension

0 → Vα → E′
2 → E′

1 → Q` → 0

equivialent to (8�2) satisfying W−1E
′
2 = E′

2 and W0E
′
1 = E′

1. Using the dual
argument, we may assume that (8�2) satis�es W0E1 = E1, W−1E2 = E2,
Wn(α)−1E2 = 0, and Wn(α)E1 = 0.

By Yoneda's characterization [45, p. 575] of trivial m-step extensions, the
extension (8�2) represents the trivial 2-step extension class as Γ-modules if and
only if there is a Γ-module E and exact sequences

0 → E2 → E → Q` → 0 and 0 → Vα → E → E1 → 0

which are compatible with the existing mappings Vα ↪→ E2 and E1 ³ Q`. To
establish the injectivity of Ψ2, it su�ces to prove that E is a weighted Γ-module.
But E has the weight structure W0E = E and W−1E = E2. This completes the
proof of Theorem 8.1. ¤

Example 8.4. Suppose that Γ = Z×` , that R = Gm/Q`
and that ρ : Z×` ↪→

Gm(Q`) = Q×` is the natural inclusion. Take w to be the inverse of the square
of the standard character. (With this choice, representation theoretic weights
coincide with the weights from Hodge and Galois theory.) In this example we
compute the weighted completion of Z×` with respect to ρ and w. Note that

H1
cts(Z

×
` ,Q`(n)) = 0,

for all non-zero n ∈ Z, where Q`(n) denotes the nth power of the standard
representation of Gm. It has weight −2n under the central cocharacter.

Corollary 8.3 tells us that the unipotent radical U of the weighted comple-
tion of Z×` is trivial, so that the weighted completion of Z×` with respect to ρ

is just ρ : Z×` → Gm(Q`). More generally, if Γ is an open subgroup of Z×` ,
then the weighted completion of Γ, relative to the restriction Γ → Q×` of the
homomorphism ρ above and the same w, is simply Gm.

Example 8.5. LetMg be the moduli stack of genus g curves over SpecZ. Sup-
pose that there is a Z[1/`]-section x : SpecZ[1/`] → Mg. We allow tangential
sections, and then such x exist for all g.

Let x̄ : SpecQ → SpecZ[1/`] → Mg be a geometric point on the generic
point of x. Let Cx̄ be the curve corresponding to x̄.

There is a short exact sequence of algebraic fundamental groups

1 → π1(Mg ⊗Q, x̄) → π1(Mg ⊗Q, x̄) → GQ → 1, (8�3)

where the left group is isomorphic to the pro�nite completion Γ̂g of the mapping
class group Γg of a genus g surface. We �x such an isomorphism. We have the
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natural representation

π1(Mg ⊗Q, x̄) → AutH1
ét(Cx̄,Q`). (8�4)

It is known that the image of (8�4) is isomorphic to GSpg(Z`), where GSpg

denotes the group of symplectic similitudes of a symplectic module of rank 2g.
By considering the action of the mapping class group on the Z/`Z homology

of the surface, we obtain a natural representation Γ̂g → Spg(Z/`). Let Γ`
g be

the largest quotient of Γ̂g that also maps to Spg(Z/`) and such that the kernel
of the induced mapping Γ`

g → Spg(Z/`) is a pro-` group.
One can construct a quotient

1 → Γ`
g → Γarith,`

g → GQ,{`} → 1

of the short exact sequence (8�3) such that the homomorphism (8�4) induces a
homomorphism

ρ : Γarith,`
g → GSpg(Q`)

from (8�4).
De�ne the central cocharacter ω : Gm → GSpg by x → x−1I2g. In [24] we

show that the weighted completion Garith,`
g of Γarith,`

g is an extension

Gg ⊗Q` → Garith,`
g → A`

Q,{`} → 1,

where Gg is the completion of Γg relative to the standard homomorphism ρ :
Γg → Spg(Q), which is studied in [21] and for which a presentation is given in
[22]. We expect that the left homomorphism is injective.

9. Computation of A`
F,S

In this section, we compute A`
F,S , the tannakian fundamental group of the

category of `-adic mixed Tate modules over XF,S . An equivalent computation
was done by Beilinson and Deligne in [2]. We shall need the following result of
Soulé [41] when ` is odd. The case ` = 2 follows from [40]. Recall that dn is
de�ned in (3�1).

Theorem 9.1 (Soulé [41]). With notation as above,

K2n−1(XF,S)⊗Q`
∼= H1

cts(GF,S ,Q`(n))

and hence

dimQ`
H1

cts(GF,S ,Q`(n)) =
{

d1 + #S when n = 1,
dn when n > 1.

In addition, H2
cts(GF,S ,Q`(n)) vanishes for all n ≥ 2.
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Denote the unipotent radical of A`
F,S by K`

F,S . We have the exact sequence

1 → K`
F,S → A`

F,S → Gm → 1,

and the corresponding exact sequence of Lie algebras

0 → k`
F,S → a`

F,S → Q` → 0.

The Lie algebra a`
F,S , being the Lie algebra of a weighted completion, has

a natural weight �ltration. Note that since w is the inverse of the square of
the standard character, all weights are even. Thus the weight �ltration of a`

F,S

satis�es

a`
F,S = W0a

`
F,S , k`

F,S = W−2a
`
F,S and GrW

2n+1 a`
F,S = 0 for all n ∈ Z,

and we may take N = 2 in Corollary 8.2. The basic structure of A`
F,S now

follows from Corollary 8.2, Corollary 8.3 and Soulé's computation above.

Theorem 9.2 (Hain-Matsumoto [23]). The Lie algebra GrW
• k`

F,S is a free
Lie algebra and there is a natural Gm-equivariant isomorphism

H1
cts(k

`
F,S) ∼=

∞⊕
n=1

H1
cts(GF,S ,Q`(n))⊗Q`(−n) ∼= Q`(−1)d1+#S ⊕

⊕
n>1

Q`(−n)dn ,

where dn is de�ned in (3�1). Any lift of a graded basis of H1(GrW
• k`

F,S) to a
graded set of elements of GrW

• k`
F,S freely generates GrW

• k`
F,S .

As a corollary of the proof, we have:

Corollary 9.3. There are natural isomorphisms

Extm
T`(XF,S)(Q`,Q`(n)) ∼=

{Q` when m = n = 0,
H1

cts(GF,S ,Q`(n)) when m = 1 and n > 0,
0 otherwise.

Consequently , for all n ∈ Z, there are natural isomorphisms

Ext1T`(XF,S)(Q`,Q`(n)) ∼= K2n−1(SpecOF,S)⊗Q`.

Corollary 9.4. Suppose that there is a category of mixed Tate motives T (XF,S)
with properties (i)�(v) as in Section 4. If Deligne's conjecture 5.5 is true, then,
the image of the `-adic realization functor real` in (5�3) is equivalent to the
category of weighted GF,S-modules. In particular , Postulate 5.6 follows.

Proof. Deligne's conjecture 5.5 implies that π1(T (XF,S)), the tannakian fun-
damental group, is an extension

1 → UXF,S → π1(T (XF,S)) → Gm → 1,
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where UXF,S
is a free prounipotent group generated by K2n−1(XF,S)∗. This and

Theorem 9.2 show that the natural map π1(T`(XF,S)) → π1(T (XF,S)) ⊗ Q` is
an isomorphism, and it follows that

real` : T (XF,S)⊗Q` → `-adic GF -modules

is fully faithful and its image is equivalent to the category of weighted GF,S-
modules. ¤

Note that these theorems can be generalized to the case where S may not contain
all the primes above `, see Section 11.

Another example. Suppose that S is a �nite set of rational primes containing
`. Suppose that F is a �nite Galois extension of Q with Galois group G, which
is unrami�ed outside S. De�ne

ρ : GQ,S → Gm(Q`)×G

by
ρ(σ) = (χ`(σ), f(σ))

where f : GQ,S → G is the quotient homomorphism and χ` is the `-adic cyclo-
tomic character. De�ne

w : Gm → Gm ×G

by w : x 7→ (x−2, 1). It is a central cocharacter. Denote the weighted completion
of GQ,S with respect to ρ and w by GQ,S .

Denote the set of primes in OF that lie over S ⊂ SpecZ by T .

Proposition 9.5. There is a natural inclusion ι : A`
F,T → GQ,S and an exact

sequence
1 −−−−→ A`

F,T
ι−−−−→ GQ,S −−−−→ G −−−−→ 1.

Proof. If {Vα} is a set of representatives of the isomorphism classes of irre-
ducible representations of G, then {Q`(m) £ Vα} is a set of representatives of
the isomorphism classes of irreducible representations of Gm ×G, where W £ V

denotes the exterior tensor product of a representation W of Gm and V of G.
Consider the restriction mapping

φ : Hi
cts(GQ,S ,Q`(m) £ Vα) → Hi

cts(GF,T ,Q`(m) £ Vα)G

and the transfer mapping [42]

ψ : Hi
cts(GF,T ,Q`(m) £ Vα)G → Hi

cts(GQ,S ,Q`(m) £ Vα).

A direct computation on cocycles shows that φ ◦ ψ and ψ ◦ φ are both multipli-
cation by the order of G, and are thus isomorphisms.

Therefore Hi
cts(GQ,S ,Q`(m) £ Vα) vanishes if Vα is nontrivial, and it equals

Hi
cts(GF,T ,Q`(m)) if Vα is trivial. This shows that the unipotent radical of the

completion GQ,S is isomorphic to that of A`
F,T .
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By functoriality of weighted completion, we have a homomorphism A`
F,T →

GQ,S which induces the isomorphism on the unipotent radical. The statement
follows. ¤

10. Applications to Galois Actions on Fundamental Groups

Let G` denote GQ,{`}. In this section, we sketch how our computation of
the weighted completion of G` can be used to prove Deligne's Conjecture 5.8
about the action of the absolute Galois group GQ on the pro-` completion of the
fundamental group of P1(C)− {0, 1,∞}. Modulo a few technical details, which
are addressed in [23], the proof proceeds along the expected lines suggested in
Section 5.2 given the computation of A`

F,S .
We begin in a more general setting. Suppose that F is a number �eld and

that X is a variety over F . Set X = X ⊗ Q and denote the absolute Galois
group of F by GF . Suppose that the étale cohomology group H1

ét(X,Q`(1)) is a
trivial GF -module. Let S be a set of �nite primes of F , containing those above
`. Suppose that X has a model X over SpecOF,S which has a base point section
x : SpecOF,S → X (possibly tangential) such that (X , x) has good reduction
outside S.6 Then the GF -action on the pro-` fundamental group π`

1(X, x) factors
through GF,S .

Denote the `-adic unipotent completion of π`
1(X,x) by P (see [23, Appen-

dix A]) and its Lie algebra by p. The lower central series �ltration of p gives
it the structure of a pro-object of the category T`(XF,S) of `-adic mixed Tate
modules over XF,S . It follows that the GF -action on P induces a homomorphism

A`
F,S → AutP ∼= Aut p

and that the action of GF on P factors through the composition of this with
the natural homomorphism GF → GF,S → A`

F,S(Q`). One can show (see [23,
Sect. 8]) that the image of GF (µ`∞ ) in A`

F,S lies in and is Zariski dense in K`
F,S .

For the rest of this section, we consider the case where X = P1 − {0, 1,∞},
F = Q, S = {`} and x is the tangential base point −→01. Goncharov's conjecture
[19, Conj. 2.1] (cf. the generation part of Conjecture 5.9) follows immediately,
since kQ,{`} is generated by z1, z3, z5, . . ., where zj has weight −2j. The image
of z1 can be shown to be trivial.

We are now ready to give a brief sketch of the proof of Conjecture 5.8. One
can de�ne a �ltration I•` on GQ similar to I•` using the lower central series L•P
of P instead:

Im
` GQ = ker{GQ → OutP/Lm+1P}

6What we mean here is that there is a scheme eX , proper over SpecOF,S , and a divisor D

in eX which is relatively normal crossing over SpecOF,S such that X = eX −D, and D does not
intersect with x. In the tangential case, the tangent vector should be non-zero over each point
of SpecOF,S .
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where LmP is the mth term of its lower central series. The lower central series
of P is related to its weight �ltration by

W−2mP = LmP, GrW
2m+1 P = 0.

There is a natural isomorphism (see [23, Sect. 10])

[Grm
I`

GQ ]⊗Q`
∼= [Grm

I`
GQ ]⊗Q`.

Thus it su�ces to prove that [Grm
I`

GQ ]⊗Q` is generated by elements s3, s5, s7, . . .,
where sj has weight −2j.

As above, the homomorphism GQ → OutP factors through the sequence

GQ → GQ,{`} → AQ,{`} → OutP
of natural homomorphisms. A key point ([23, Sect. 8]) is that the image of
I`

1GQ in K`
Q,` is Zariski dense. This and the strictness can be used to establish

isomorphisms

Grm
I`

GQ ⊗Q`
∼= GrW

−2m(im{k`
Q,` → OutDer p})

∼= im{GrW
−2m k`

Q,` → GrW
−2m OutDer p}

for each m > 0.
Theorem 9.2 implies that GrW

• k`
Q,` is freely generated by σ1, σ3, σ5, . . . where

σ2i+1 ∈ GrW
−2(2i+1) k`

Q,`. It is easy to show that the image of σ1 vanishes in
GrW

• OutDer p. It follows that the image of GrW
• k`

Q,` is generated by the images
of σ3, σ5, σ7, . . ., which completes the proof.

Remark 10.1. Ihara proves the openness of the group generated by σ2i+1 in
a suitable Galois group, see [28]. He also establishes the non-vanishing of the
images of the σ2i+1 and some of their brackets in [27].

11. When ` is not contained in S

Let [`] denote the set of all primes above ` in OF . In this section, we generalize
the de�nition of the category T`(XF,S) of `-adic mixed Tate modules smooth over
XF,S = SpecOF − S (see Section 6) to the case where S does not necessarily
contain [`].

For this, we de�ne the category T`(XF,S) of `-adic mixed Tate modules over
XF,S to be the full subcategory of T`(XF,S∪[`]) (de�ned in Section 6) consisting
of the Galois modules which are crystalline at every prime p ∈ [`] − S. (Recall
that an `-adic GF -module M is crystalline at a prime p of F if it is crystalline
as GFp-module, where Fp is the completion of F at p and GFp is identi�ed with
the decomposition group of GF at p, see [16; 7] for crystalline representations.)

It is known that the crystalline property is closed under tensor products,
direct sums, duals, and subquotients [16], so that T`(XF,S) is a tannakian cate-
gory. Denote its tannakian fundamental group by A`

F,S . We have a short exact
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sequence
1 → K`

F,S → A`
F,S → Gm → 1,

and the corresponding exact sequence of Lie algebras

0 → k`
F,S → a`

F,S → Q` → 0.

Let V be a GF,S-module. The �nite part of the �rst degree Galois cohomol-
ogy H1

ctsf (GF,S , V ) ⊂ H1
cts(GF,S , V ) is de�ned in [7, (3.7.2)]. This corresponds

to those extensions of Q` by V as GF,S-modules, which are crystalline at ev-
ery prime in [`] outside S. By a remark on p. 354 in [7], H1

ctsf (GF,S ,Q`) =
(OF,S

×)⊗Z`
Q`, so its dimension is d1 + #S = r1 + r2 + #S − 1. Theorem 9.2

is generalized as follows, by replacing H1
cts with H1

ctsf [23]. We shall give a
categorical proof below.

Theorem 11.1. The Lie algebra GrW
• k`

F,S is a free Lie algebra and there is a
natural Gm-equivariant isomorphism

H1
cts(k

`
F,S) ∼=

∞⊕
n=1

H1
ctsf (GF,S ,Q`(n))⊗Q`(−n) ∼= Q`(−1)d1+#S ⊕

⊕
n>1

Q`(−n)dn ,

where dn is de�ned in (3�1). Any lift of a graded basis of H1(GrW
• k`

F,S) to a
graded set of elements of GrW

• k`
F,S freely generates GrW

• k`
F,S .

Corollary 11.2. There are natural isomorphisms

Extm
T`(XF,S)(Q`,Q`(n)) ∼=

{Q` when m = n = 0,
H1

ctsf (GF,S ,Q`(n)) when m = 1 and n > 0,
0 otherwise.

Consequently , for all n ∈ Z, there are natural isomorphisms

Ext1T`(XF,S)(Q`,Q`(n)) ∼= K2n−1(SpecOF,S)⊗Q`. ¤

This shows that T`(XF,S) has all the properties of the category T (XF,S) ⊗ Q`,
where T (XF,S) is the category whose existence is conjectured by Deligne. In
particular, GrW

• k`
Q,∅ is free with generators σ3, σ5, . . ..

Proof of Theorem 11.1. It su�ces to show that the natural mapping

Φ1 : H1(A`
F,S ,Q`(n)) → H1

ctsf (GF,S ,Q`(n))

is an isomorphism when n ≥ 1 and that the natural mapping

Φ2 : H2(A`
F,S ,Q`(n)) → H2

cts(GF,S ,Q`(n))

is injective when n ≥ 2. The proof is similar to that of Theorem 8.1. To show
that Φ1 is an isomorphism, it su�ces to show that an extension E of Q` by
Q`(n) corresponding to an element of H1

ctsf (GF,S ,Q`(n)) is crystalline, which is
well-known. So the �rst assertion follows.

We now consider the case of Φ2. Set Vα = Q`(n). We may assume n ≥ 2.
It su�ces to show that E in the proof of Theorem 8.1 is crystalline provided



TANNAKIAN FUNDAMENTAL GROUPS ASSOCIATED TO GALOIS GROUPS 211

E1 and E2 are crystalline. But this follows from the next result, which will be
proved below.

Proposition 11.3. Let

0 −→ V −→ U −→ Q`(1)n −→ 0

be a short exact sequence of crystalline `-adic representations of GFp . Assume
that V is a successive extension of direct sums of a �nite number of copies of
Q`(r) with r ≥ 2. Then, for any extension

0 −→ U −→ E −→ Q` −→ 0

of `-adic representations of GFp , E is crystalline if and only if its pushout by the
surjection U → Q`(1)n is crystalline.

Let U be E2 as in the proof of Theorem 5.3. Since W−2E2 = E2, U is an extension
of Q`(1)n for some n. Since m ≥ 2, the pushout of E along U → Q`(1)n is a
quotient of E1, and hence is crystalline. Thus the proposition says that E is
crystalline, which completes the proof of Theorem 11.1. ¤

Proposition 11.3 follows from the following two lemmas.

Lemma 11.4. Let
0 → V1 → V2 → V3 → 0

be a short exact sequence of crystalline `-adic representations of GFp . Then we
have a long exact sequence

0 → H0(GFp , V1) → H0(GFp , V2) → H0(GFp , V3)

→ H1
ctsf (GFp , V1) → H1

ctsf (GFp , V2) → H1
ctsf (GFp , V3) → 0. ¤

This follows from [7, Cor. 3.8.4].

Lemma 11.5. Let V be a crystalline `-adic representation of GFp . If V is a
successive extension of Q`(r) (r ≥ 2), then H1

ctsf (GFp , V ) = H1
cts(GFp , V ).

Proof. The proof is by induction on the dimension of V . In the case dim(V ) =
1, this is well-known (loc. cit. Example 3.9). Assume dim V = n ≥ 2 and the
claim is true for n− 1. By assumption, there exists an exact sequence of `-adic
representations of GFp :

0 −→ V ′ −→ V −→ Q`(r) −→ 0

for some integer r ≥ 2 such that V ′ satis�es the assumption of the lemma. By
Lemma 11.4, we have the following commutative diagram whose two rows are
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exact:
0 - H1

ctsf (GFp , V ′) - H1
ctsf (GFp , V ) - H1

ctsf (GFp ,Q`(r)) - 0

0 - H1
cts(GFp , V ′)

?
- H1

cts(GFp , V )
?

- H1
cts(GFp ,Q`(r))

?

The right vertical arrow is an isomorphism and the left one is also an isomorphism
by the induction hypothesis. Hence the middle one is also an isomorphism. ¤

Proof of Proposition 11.3. By Lemma 11.4, we have the following commu-
tative diagram whose two rows are exact:
0 - H1

ctsf (GFp , V ) - H1
ctsf (GFp , U) - H1

ctsf (GFp ,Q`(1)n) - 0

0 - H1
cts(GFp , V )

?
- H1

cts(GFp , U)
?

- H1
cts(GFp ,Q`(1)n)

?

and the left vertical arrow is an isomorphism by Lemma 11.5. Hence the right
square is cartesian. ¤

Appendix: Continuous Cohomology and Yoneda Extensions
In this appendix we prove a result about the relation between continuous

cohomology and Yoneda extension groups in low degrees. It is surely well known,
but we know of no reference.

Suppose that K is a topological �eld, and Γ a topological group. A continuous
Γ-module is a Γ-module V , where V is a �nite dimensional K-vector space. The
action Γ → GL(V ) is required to be continuous, where GL(V ) is given the
topology induced from that of K.

Denote by C(Γ,K) the category of �nite dimensional continuous Γ-modules.
Since any K-linear morphism between �nite dimensional vector spaces is con-
tinuous, this is an abelian category. For continuous Γ-modules A and B, de�ne
Ext•Γ(A,B) to be the graded group of Yoneda extensions of B by A in the cate-
gory C(Γ,K).

For a continuous Γ-module A, one also has the continuous cohomology groups
H•

cts(Γ, A) de�ned by Tate [42], which are de�ned using the complex of continu-
ous cochains.

Theorem A.6. If A is a continuous Γ-module, there is a natural isomorphism
Ext1Γ(K, A) ∼= H1

cts(Γ, A) and a natural injection Ext2Γ(K,A) ↪→ H2
cts(Γ, A).

Proof. It is well known that an extension 0 → A → E → K → 0 in C(Γ,K)
gives a continuous cocycle f : Γ → A by choosing a lift e ∈ E of 1 ∈ K and
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de�ning f(σ) = σ(e)− e. Conversely, for a given continuous cocycle f , we may
de�ne continuous Γ-action on A ⊕ K by σ : (a, k) 7→ (σ(a) + kf(σ), k). These
are mutually inverse, which establishes the �rst claim.

To prove the second claim, we �rst de�ne a K-linear mapping

ϕ : Ext2Γ(K, A) → H2
cts(Γ, A)

as follows. For c ∈ Ext2Γ(K, A), choose a 2-fold extension 0 → A → E2 →
E1 → K → 0 that represents it. By [45], c is the image under the connecting
homomorphism

δ : Ext1Γ(K, E2/A) → Ext2Γ(K,A)

of the class c̃ of the extension 0 → E2/A → E1 → K → 0.
We shall construct ϕ so that the diagram

Ext1Γ(K,E2) //

'
²²

Ext1Γ(K, E2/A)
δ //

'ψ

²²

Ext2Γ(K, A)

ϕ

²²
H1

cts(Γ, E2) // H1
cts(Γ, E2/A)

δcts // H2
cts(Γ, A)

commutes, where the rows are parts of the standard long exact sequences con-
structed in [45] and [42, Sect. 2]. De�ne ϕ(c) to be δcts(ψ(c̃)).

To prove ϕ(c) is well-de�ned, it su�ces to show that two 2-fold extensions
that �t into a commutative diagram

0 −−−−→ A −−−−→ E′
2 −−−−→ E′

1 −−−−→ K −−−−→ 0∥∥∥
y

y
∥∥∥

0 −−−−→ A −−−−→ E2 −−−−→ E1 −−−−→ K −−−−→ 0

give a same element of H2
cts(Γ, A). But this follows from the functoriality of the

connecting homomorphism for H•
cts, i.e., the commutativity of

H1
cts(Γ, E′

2/A) −−−−→ H2
cts(Γ, A)y

∥∥∥
H1

cts(Γ, E2/A) −−−−→ H2
cts(Γ, A).

The K-linearity of ϕ is easily checked. Finally, the injectivity of ϕ follows
from the fact that for each extension as above, ϕ is injective on the image of the
connecting homomorphism δ : Ext1Γ(K, E2/A) → Ext2Γ(K, A). ¤

Note that one may de�ne

Extm
Γ (K, A) → Hm

cts(G,A)

by induction on m in the same way.
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