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Cellular Decomposition of
Compactified Hurwitz Spaces

MICHEL IMBERT

ABstrACT. We describe a cellular decomposition of compactified Hurwitz
spaces, generalizing the cellular decomposition of moduli spaces of punc-
tured Riemann surfaces My .

The main motivation for this work is the integration of cohomology
classes on compactified Hurwitz spaces, and is provided by Witten’s con-
jecture on moduli spaces of Riemann surfaces with spin, and by the fact
(proved in this paper) that these spaces are closely related to Hurwitz spaces
of Galois cyclic coverings. This article also aims to give all details of the
Harer—Kontsevich theorem.

1. Introduction

In the last ten years, the geometry of moduli spaces of punctured Riemann
surfaces have seen an increasing interest and known some striking progress [20] in
connection with physic’s theories [26]. This also concerns some generalizations of
moduli spaces of punctured surfaces, like moduli spaces of stable maps, or moduli
spaces of Riemann surfaces with spin [27] [17]. In this paper, we firstly show
that the topological framework which have allowed M. Kontsevich to compute
in a combinatorial way some Chern classes on M, ,, (a key point of his proof of
Witten’s conjecture [26]) extends to the setting of Hurwitz spaces, and secondly
we sketch an analogy between Hurwitz spaces of cyclic coverings and moduli
spaces of Riemann surfaces with spin. In a forthcoming work, our results will be
used to study the cohomology of Hurwitz spaces for cyclic coverings.

Hurwitz spaces basically consist in equivalence classes of ramified coverings
between two compact Riemann surfaces, where (p; : S1 — T1) is equivalent to
(p2 : S — Ty) if there exists two biholomorphisms f : S} — Sy and h: Ty — T
such that pso f = hop;. We often denote by g the genus of the total space, and
by ¢’ the genus of the base. They are related by the Riemann-Hurwitz formula:
29 — 2 =d(2g9’ — 2) + B, where d is the degree of the covering, and B, the total
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branching number. We only consider cases d > 1 and B > 0. Let us denote by
H(g,g',d) the set of such equivalence classes with fixed g, ¢’ and d, and call it a
Hurwitz space. There are two ways to study it.

The first one is to work with this equivalence relation. This is the approach
of W. J. Harvey [11] [15], and A. Kuribayashi [22] in the setting of Teichmiiller
theory.

The second one is configurative (only branch points are allowed to move on
the base). This is the approach of W. Fulton [9] and M. Fried [8].

In both cases, it is necessary to fix more accurate invariants in equivalence
classes of coverings, such as number of branch points, multiplicities, monodromy
group. It is in fact the notion of ramification data (a way to encode what
actually happens in a neighborhood of a ramification point) which allows us a
combinatorial study of Hurwitz spaces, using coverings of fat-graphs.

We show that the graphical description of punctured Riemann surfaces with
fat-graphs and lengths of edges, extend to holomorphic maps between compact
Riemann surfaces. Punctures come as ramification points and branch points.
Coverings of fat-graphs are étale on the underlying graphs, the ramification can
be read on faces. We give details on the combinatorial model of Kontsevich’s
compactification of moduli spaces, and compactify Hurwitz spaces in a similar
way.

Let H(g,¢', G, K, R) be the subset of H(g,g’,d) where we have fixed a mon-
odromy of type (G, K, R), for a fixed finite group G, some ramification data R
of degree b, and a subgroup K of index d such that (),.,t 'Kt = {eg}.

Then, our main result is a generalization of the Harer—Kontsevich theorem
(theorem in appendix B of [20]):

THEOREM 1.1. There ezist a combinatorial Hurwitz space ﬂ;?;}b(G7K7 R), a
suitable compactification H'(g9,9',G,K,R) of H(g,9',K,G, R) and an homeo-
morphism

Hyow (G, K, R) — H'(9,9', G, K, R) x P(R%,)

leading to a cellular decomposition of H'(g,¢', G, K, R) XP(RZ;O), compatible with
its orbifold structure.

Spaces H(g,¢',G, K, R) arise as finite quotients of Hurwitz spaces H(G, R),
made of genus h compact Riemann surfaces with an holomorphic action of G
of ramification data R, defined up to G-equivariant biholomorphism. A space
H1 (G, R) generally splits up into many connected components, each one being
the quotient of a Teichmiiller space.

All these Hurwitz spaces are closely related to moduli spaces. Firstly, forget-
ting group actions, we have a map from H,(G, R) into M. See [11] [15] for
this viewpoint. Secondly, H (G, R) projects onto moduli spaces of punctured
Riemann surfaces (map a Riemann surface with group action onto the quotient
Riemann surface with its set of branch points as punctures).
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Since Harer—Kontsevich’s theorem is useful in explicit calculations of coho-
mological invariants of moduli spaces [3] [20], we hope that Theorem 1.1 can be
useful in this direction, for example integrating cohomology classes on Hurwitz
spaces. Actually, this is already the case for pullback of classes defined on the
moduli space of punctured Riemann surfaces.

The first motivation is in fact a conjecture of E. Witten [27] which deals with
intersection numbers defined on moduli spaces of punctured Riemann surfaces
with spin, closely related to Hurwitz spaces of Galois coverings with cyclic groups.

Section 2 is devoted to Hurwitz spaces. It contains a complete treatment of
Hurwitz spaces for non Galois coverings. In Section 3, we show how to adapt
Strebel’s theorem to coverings and to stable Riemann surfaces. Section 4 is first
a review on fat-graphs; then we give the graphical construction of holomorphic
maps between compact Riemann surfaces to obtain the main theorem in the non-
compactified setting (Theorem 4.8). In Section 5, we prove the continuity and
describe the cellular decomposition of decorated Hurwitz spaces. The cellular
decomposition is compatible with the orbifold structure. The continuity involves
a non trivial construction of quasiconformal homeomorphisms. As consequence
of the cellular decomposition, we obtain a combinatorial characterization of their
connected components. In Section 6 we show how to extend the setting to
suitable compactifications, and finish the proof of Theorem 1.1. We conclude in
the last section by the analogy between Hurwitz spaces of Galois cyclic coverings
and moduli spaces of spin curves.

Acknowledgments. The author expresses his gratitude to Professor J. Bertin.

2. Hurwitz Spaces

In this section, we recall how to define Hurwitz spaces and their orbifold
structure, coming from Teichmiiller theory. For the sake of clearness, we first
consider Hurwitz spaces of Galois coverings. The main and most natural discrete
invariant is the ramification data associated to a group and to any holomorphic
action of it on a compact Riemann surface. Used by A. Kuribayashi [22], W. J.
Harvey [15] in the context of Teichmiiller spaces, the ramification data is also
useful in the context of arithmetic geometry after M. Fried [8], see also [5]. We
conclude by a study of Hurwitz spaces for non Galois coverings, they arise as
finite quotients of Galois Hurwitz spaces.

DEFINITION 2.1. Let G be a finite group. Then an abstract ramification data of
G is a formal sum R = Z§=1 r;C; where r; € N*Vi € {1,...,t},and (C;)icq1,....¢)
is a set of non-trivial and pairwise distinct conjugacy classes of G. The degree
of Ris 35, 7.

Let C' be a compact Riemann surface, and ¢ : G — Aut(C) an effective bi-
holomorphic action of a finite group (finiteness is automatic if g(C) > 2 by the
Hurwitz theorem). We only consider actions with some fixed points.
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Denote by p the branched cover C' — C/¢(G). Let x be a fixed point of some
element of G, and y = p(x). There exist local coordinates (U, z) and (U, z’)
such that z(z) = 0, 2’(y) = 0, and 2z’ op = 2°=. The integer e, is called the
multiplicity of . The stabilizer G, of x is a cyclic group of order e,. We
consider the privileged generator 7,, of G, defined by 7,(z) = exp (if—f) z. This
generator is independent of z since it is the unique element of G, which acts on

the holomorphic tangent space of C' at = in multiplying by exp (2;—:)

If y=g-x, then 7, = g7, g~ !. We say that the conjugacy class C(7;) of 7, is
the color of  (and of its orbit). Two distinct orbits can possess the same color.
Let {O;,bi}ieq1,... 1y be the colored orbits of fixed points with multiplicities, and
C(7;) be the colors.

Then to the action ¢ is associated the ramification data:
t
R(p) = b:C(m).
i=1
Note that a G-equivariant biholomorphism h : (C,¢) — (C’,¢’) preserves the
colors, but can permute two orbits of the same color.

DEFINITION 2.2. Let G be a fixed finite group with a fixed ramification data
R. Then a (G, R)—Hurwitz space Hy(G, R) consists in equivalence classes of
couples (C, ) made of a compact Riemann surface C' of genus g together with
an action ¢ : G — Aut(C) such that R(p) = R. Two couples are equivalent if
they differ by a G-equivariant biholomorphism.

Looking at the action of a stabilizer G, on the complexified real tangent space
T, ® C shows that orientation preserving equivariant diffeomorphisms preserve
the ramification data.

An important tool for studying Hurwitz spaces is Riemann’s existence theorem
[8] [9] [10], which furnishes a condition of existence for coverings. We state here a
Galois and modular version of this theorem. In the following, it is not necessary
to specify the base point for fundamental groups.

THEOREM 2.3. Fix R = b;Cy + -+ + b:C; a degree b ramification data. There
is a bijective correspondence between H,(G, R) and the set of classes [S—Y, ] ,
where S is a compact Riemann surface of genus g', Y a finite subset of S shared
into t colors, ¥ : m (S —Y) — G an epimorphism with {(v) € C; if v is a
canonical loop around some point of color i; [S —Y,¢] = [S"=Y',4¢'] if and only
if there exist a biholomorphism h : S — S with h(Y) =Y’ (preserving the set
of colors) and 0 € Int(G) such that 6 o 1) =1’ o h,.

For convenience, we recall the correspondence:

The map from H,(G, R) associates to [C, ¢] the quotient surface S = C/¢(G),
and Y is the set of branch points. The genus ¢(S) = ¢’ is given by Riemann—
Hurwitz. The epimorphism ¢ is built as follows: given v € m(S — Y, Q), we
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consider its lift & on C' from a given point of the fiber over ). Then we associate
to v the unique element of G which sends «(0) on «(1).

Conversely, given [S — Y, 4], we build C as the universal covering S of S
quotiented by ker(3). Then § € G acts on [z] € C by 6 - [z] = [v~1(0) - z].

If [S,Y, 9] corresponds to [C, ¢], then the centralizer of p(G) in Aut(C) quo-
tiented by the center Z(G) is isomorphic to the subgroup of Aut(S — Y) made
of the elements h satisfying 6 o ¢ = ¢ o h, for 6 € Int(G).

ExaMpPLE 1. We consider the case of cyclic coverings of compact Riemann
surfaces of genus ¢’. Put G = Z/n; we fix the ramification data R = 22:1 bi[m;]
of degree b, where [m;] € Z/n\{[0]}, and [m;] # [m;] if ¢ # j. If e; is the
order of m;, then the Riemann—-Hurwitz formula determines the genus g of such
coverings: 2g — 2 =n(2¢' — 2) + 22:1 nb;(1 —1/e;).

If [C,¢] € Hy(Z/n,R), and o = ¢([1]), then we set S = C/(0). Let Q =
(Q1,...,Qp) be the set of branch points of 7 : C' — S, {P; ;}, the preimages of
Qi, and d; = #{P, ;}, such that e; = n/d;. The stabilizers G; ; of all preimage
points of @); are equal to the unique subgroup of order ¢; generated by o%:.

If o4k (with (e;, k;) = 1) is the generator of G; ; which acts on the tangent
space Tp, ;(S) by exp(2im/e;), then we have R(p) = »_, b;[d;k;], and R(¢) = R
means m; = d;k; and b; = b}.

Riemann’s existence theorem implies that >'_, b;[d;k;] = 0(n) (in particular
b > 2). Since [C, ¢] is given by an epimorphism 71 (S\Q) — Z/n, the condition
is implied by the surface relation satisfied by 71 (S\Q): the image of the product
of commutators made of homological loops is trivial.

Using the Theorem 2.3, it is easy to see that the natural projection H,(G, R) —
Mgyi (by,....b,) Which sends [C, ¢] to [C/o(G),Y], where Y is the branch locus, is
in general a ramified covering. The fiber over [S,Y] is in 1-1 correspondence
with the set of epimorphisms 71 (S —Y) — G with ramification data R, up to
conjugacy, and up to automorphisms of [S,Y] which do not act trivially on the
fundamental group. Generically, there is no such automorphisms, and excep-
tional Riemann surfaces with such automorphisms make the locus of branching.
It may happen that every [S,Y] possess such automorphisms (think to the hy-
perelliptic involution), then the branch locus is made of exceptional Riemann
surfaces with more automorphisms.

In the previous example, if the surjectivity is ensured by the ramification
data, then images of homological loops are free, and the degree of H,(Z/n, R) —
Mg’7(b1,...7bt) is 7129/.

We recall how to define the topology of H,(G, R) coming from the Teich-
miiller theory. It turns out that these spaces possess in general many connected
components, each one being a quotient of a Teichmiiller space.

REMARK. There is a nice description of this by W. J. Harvey [15], in the context
of Fuchsian groups. Instead of Teichmiiller spaces of Fuchsian groups, we use
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Teichmiiller spaces of marked Riemann surfaces. This is because, in our context,
Riemann surfaces arise as explicit complex structures on smooth surfaces.

DEFINITION 2.4. Let (C, ) be a compact Riemann surface with a biholomorphic
action of G. Then the Hurwitz space Ha(C, ¢) of topological type (C, ) is
the subset of Hyc)(G, R(¢)) made of couples (T, p) such that there is a G-
equivariant diffeomorphism between 7" and C.

We recall that in each Hurwitz space H, (G, R), the number h,(G, R) of distinct
topological types (sometimes called the Hurwitz number) is finite. Take [p; :
Ci — (S,Y)]i=1,2y two elements of H,(G, R), and let ¢; : m(S —Y) — G
the corresponding epimorphisms (Theorem 2.3). Then the existence of a G-
equivariant diffeomorphism f : C; — C5 such that ps o f = p; amounts to
the existence of an element % in Diff*(S,Y) (the subgroup of Diff"(S) which
preserves Y and its partition in colors), which satisfies 15 o k. = 11, up to
conjugation. This relies on the theorem on lift of mappings.

Using now Nielsen’s theorem (Theorem 1 of [16]), every element of Diff " (S,Y)
comes from an automorphism of the fundamental group of S —Y which preserves
the conjugacy class of loops around points of the same color.

If we denote the quotient of this subgroup by the inner automorphisms by
Out(m1(S —Y),Y), and by Epip(m (S —Y),G) the set of epimorphims from
7m1(S—Y") onto G with image of loops around points of Y fixed by the ramification
data R, then

hg(G, R) = # Out(mi (S —Y), Y)\Epig(m (S - Y),G)/G.

To see an element of Epip (71 (S—Y), G) as a collection of elements of G satisfying
certain relations (see [8]) allows the computation of hy(G, R) in some particular
case. As an example, the reader can verify that it is one for G abelian and genus
zero or one for quotient surfaces. See [6] for examples with two topological types.

Now, Hurwitz spaces with fixed topological type arise as quotients of some
Teichmiiller spaces.

DEFINITION 2.5. Let G be a fixed finite group, and (C, ) a reference couple
made of a compact Riemann surface C' and of a biholomorphic action ¢ of G
on C. The Teichmiiller space 74 (C,¢) of C relative to the action ¢, consists
in classes of 3-tuple (7', p, f), where T is a compact Riemann surface, p : G —
Aut(T) is a monomorphism, and f : C' — T is a G-equivariant quasiconformal
homeomorphism. Then (73, pi, fi)i=1,2 are equivalent if and only if f2 o fi Lis
homotopic to a G-equivariant biholomorphism h : 77 — T5.

To illustrate this definition, note that [T p, f] = [T, p, f o (g~ 1)] if g € Z(G)
(the center of G). The following lemma justifies the use of quasiconformal home-
omorphisms in the previous definition and gives a metric on 7¢(C, ). See [22],
Proposition 3.12, for a proof. The author limits itself to cyclic groups, but the
proof remains valid for an arbitrary group.
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LEMMA 2.6. Let [T3, pi, fili=1,2 be two points of Ta(C,p). Then there exist
G-equivariant quasiconformal homeomorphisms homotopic to f o fl_1 Among
them, there is a single one fy, for which the infimum of the mazimal dilatations
is reached, almost everywhere on the surface. Moreover its dilatation Ky, is a
constant.

The distance is then defined by d([T71, p1, f1], [T2, p2, f2]) = In(K ).

The relative modular group of a couple (C, ¢), denoted by Modg(C, ¢), is the
quotient

ZG(Ca 90)
Za(C, ¢) NDiff (C)’

where Zg(C, ) is itself the quotient of the centralizer of ¢(G) in Diff ; (C) by
©(Z(G)). An element f of Modg(C, ¢) acts on 7¢(C, @) by f-[T, p,h] = [T, p, ho
f71]. As said above:

LEMMA 2.7. The quotient of T¢(C, @) by the action of Modg(C,p) is in bijec-
tion with the Hurwitz space Hg(C, ). The stabilizer of some fized point [T, p, h]
under the action of the relative mapping class group is in bijection with the com-
mutant of p(G) in Aut(T) quotiented by Z(G).

PRrROOF. Let [C;, ¢, fi] map to [C;, ;] for i = 1,2 and assume that f : C; — Cy
is a G-equivariant biholomorphism. Then m = f; Yo f=10o fy is an element of
the relative modular group Modg(C, ¢), and [C1, 1, f1] = [C2, p2, f2om™1] in
TG(Oa <,0) . U

The Hurwitz space Ha(C, ¢) is endowed with the quotient topology. Further-
more, the action of Modg(C, ) on Teichmiiller space is a discontinuous one
(see [16]); hence H¢(C,¢) acquires the structure of an orbifold. On H,4(G, R)
we put the natural topology so that its subsets Hg(C, ¢) become its connected
components.

THEOREM 2.8. Let C be a compact Riemann surface equipped with a biholo-
morphic action ¢ : G — Aut(C), and P be the set of branch points of the
quotient surface. Then the Teichmiiller spaces Tq(C,¢) and T(C/o(G), P) are
analytically equivalent.

It is a classical theorem, see Corollary 3 of [15], Proposition 8 of [16].

Note however that Teichmiiller spaces considered here are slightly different
from the ones in [15] and [16], since we consider group actions up equivariance
instead of global conjugacy. However, using the lemma in §2.3 of [7], it is easy
to adapt their proof. For, this lemma of C. J. Earle ensures that an orientation
preserving diffeomorphism homotopic to the identity map which normalizes the
action of GG, commutes with the action of G.

In [11], the authors describe the normalization of the locus in the moduli
space M, of points with automorphism group G. They also work with fixed
topological type. This normalization is the quotient of a Teichmiiller space by
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a relative modular group. Since their relative modular group is a normalizer
rather than a centralizer, the Hurwitz spaces Hg(C, ) defined here are finite
Galois coverings of these normalizations (with Galois group Out(G)).

In this work, we restrict ourself to the topological setting on Teichmiiller
spaces. However, it will be worthwhile to study whether the combinatorial study
of Teichmiiller spaces (see §5) extends to the analytic setting.

We now turn to the general case, and define a Hurwitz space for non Galois
coverings with fixed monodromy action. Again, we need a version of Riemann’s
existence theorem [8] [9] [10].

THEOREM 2.9. There is a 1-1 correspondence between H(g,g’,d) and the space
of following couples [S —Y,4]: S is a compact Riemann surface of genus g', Y
is a finite subset of S, ¥ : m (S —Y,q) — Sq is a group homomorphism with
transitive image, defined up to base point change; and [S' —Y' 4] =[S — Y, 9]
if and only if there exist some biholomorphism h : S — S’ sendingY onY’', and
0 € Int(Sq), such that 6 o1p =) o h,.

As usually, the image G of 1 is called the monodromy group of the corresponding
covering. Let [p : T — S] € H(g,¢',d) and ¢ : m(S —Y,q) — G — Sy
the corresponding homomorphism. Another important data is the conjugacy
class of the stabilizer K under the monodromy action of any point in the fiber
over the base point g. This is a subgroup of G, of index d, which satisfies:
Nicat Kt ={ea}-

Note that the natural action of G on the coset G/K of right classes (G acts
by (h, Kg) — Kgh™!), and the identification between right classes and the set
{1,...,d}, furnish the embedding G < S;: faithfulness of the action is implied
by the property of K.

DEFINITION 2.10. We fix G and K a subgroup of index d such that (JgKg~ ' =
{ec}. Let i : G — S, the embedding given by the action of G on G/K.

e Let [p: T — S]in H(g,g',d) with the corresponding ¢ : 71(S — Y, q) — Sq.
Then the branched covering p is said to have a monodromy of type (G, K)
if there exists an isomorphism « between Im(¢)) and G such that i o « is
the identity on Im(t) (the corresponding permutation representations are
isomorphic).

e H(g,q',G, K) is the subset of H(g,¢’,d) made of elements with monodromy
of type (G, K).

For an element of H(g,¢’, G, K), the stabilizer K; of any point x; in the fiber
over the base point ¢ is then conjugated to K via a. We set ’(/NJ =qo1.

We cannot define the ramification data in this setting, due to the fact that
the equivalence relation involved is the conjugation in the symmetric group, not
in G. The solution comes from the operation of Galois closure [10].
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Let us consider the embeddings p : 71 (T — X, z;) — m1(S — Y, q), and H; =
pi(m (T — X, z;)). Then these are conjugated subgroups of 71(S — Y, q), K; =
¥(H;) and ker(y) = N; H;.

Now 1[) = « o 7 furnishes, via the theorem 2.3, a Riemann surface C' with
a well-defined holomorphic action ¢ of G on C such that S = C/p(G), with a
ramification data induced by ). Clearly, the restriction ¢ Hy — K; gives T
isomorphic to C/p(K;).

The Galois covering C' — S is called a Galois closure of p : " — S, this is a
minimal Galois covering factorizing by p. We note that if [y, a]ic 1, Q}represents
two elements of H(g,¢',G K) in the same class, then ¢, = ay0foaj o for 0
in Int(S,), and az 0foa; " is an element of Aut(G, K), the subgroup of Aut(G)
whose elements preserve the conjugacy class of K.

Thus a Galois closure [C, ¢] with ramification data R is defined only modulo
the action of Out(G, K) (since Int(G) acts trivially).

Let Out(G, K, R) be the subgroup whose elements also preserve the ramifica-
tion data R.

PROPOSITION 2.11. Let (G, K) be as in the previous definition, R a ramification
data of G, and h an integer. There is a bijection

, _ MG R)
Mg 60— Il Guerm
R/Out(G,K)

PRrROOF. There is a well-defined map from H; (G, R) to H(g, ¢, d) sending [C, ¢]
to the branched covering [C/p(K) — C/p(G)].

If ¢ : m(S —Y,q) — G is the corresponding epimorphism, then using the
action of G on G/K, we also have an homomorphism 1 : 71(S — Y,q) — Sy
with monodromy group G and isotropy group K. Thus we have in fact a map
Hn(G,R) — H(g,¢',G, K). Note that since the monodromy is determined, we
can calculate the genus g, since ¢’ is known from h and R.

This map factorize by the quotient of H,(G,R) by Out(G,K,R). If 0 is
an element of Out(G, K, R), then we can extend it to § € Int(Sy). Assuming
0(K) = K, 0 is the conjugation by the bijection Kg +— K0(g).

We now prove that the map is injective. Assume that [C;, ;] — [C;/vi(K) —
C;/pi(G)] such that

[p1: C1/p1(K) — C1/p1(G)] = [p2 : Ca/p2(K) — C2/p2(G)],

i.e., there exist [ : C1/p1(K) — Ca/pa(K) and h : C1/p1(G) — Co/p2(G) such
that po o f = hop;. This means that 6 o1); = 1) 0 h, for some 6 € Int(S;). Thus
we can lift f onto k : (C1,¢1) — (Ca,¢2) such that ko (p1 060'(g)) = pa(g) o k
for ' € Out(G, K) induced by 6. It remains to show that §’(R) = R. But & is
an equivariant map between [Ca, @] and [C1, 1 08'] so that R(p2) = R(p106").
Since R(p1) = R(p2), we are done.
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Finally, the discussion preceding the proposition shows that every element
of H(g,q',G, K) comes exactly from one element of H(G, R)/Out(G, K, R),
provided that R is taken modulo Out(G, K). O

The image of Hy(G, R)/Out(G, K, R) into H(g,¢',G,K) will be denoted by
H(g,4¢',G, K, R); this is the space involved in our main theorem. We will say
that an element of H(g,¢’, G, K, R) possess a monodromy of type (G, K, R), but
will keep in mind that R is defined modulo Out(G, K).

ExXAMPLE 2. We look at the case of degree d simple coverings, for which the
monodromy around each branch point is given by a single transposition of Sy.
Thus the preimage of a branch point consists in d — 2 points of index one, and
one point of index two. The ramification data is R = br where b is the number of
branch points and 7 is the conjugacy class of transpositions. In this case (see [9]
for more details) the monodromy group is Sy, and K = S;_1, so that Out(Sg, K)
is the trivial group. Also, the spaces Hp(Sq4, R) are connected [9].

3. Strebel Differentials

We recall the main ingredient of cellular decomposition of moduli spaces of
pointed Riemann surfaces, i.e., Strebel’s theorem [25], and show how to adapt it
to the study of Hurwitz spaces.

Let C be a compact Riemann surface of genus g with a set of n punctures
X = {z1,...,2,}. Let us consider the set St(C, X) of holomorphic quadratic
differentials ¢ on C'\ X with the following properties:

(1) Its critical graph covers a set of measure zero (q is a Jenkins—Strebel differ-
ential).

(2) Each puncture z; is a double pole with a real negative coefficient —p?.

(3) Its characteristic ring domains are n disks punctured at the x;, described by
the closed trajectories.

The elements of St(C, X) are often called Strebel differentials.

Recall that the critical graph I'; is the union of non closed trajectories, and
that the perimeter of a closed trajectory is its length measured with the metric
induced by the quadratic differential.

The second condition means that the perimeter of a closed trajectory around
x; is p;- The third condition says that the critical graph cuts the surface into n
punctured disks described by the closed trajectories. In this case, I'; consists in
segments joining zeroes of the differential. Moreover, all its vertices are at least
trivalent. Indeed, vertices are zeroes of ¢, and this excludes monovalent vertices
(corresponding to first order poles) and bivalent vertices (corresponding to some
regular points).

THEOREM 3.1. [25] Let C be a compact Riemann surface of genus g with a set
X = (x1,...,2,) of n punctures such that 29 —2+n > 0 and n > 0. Then
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any n-tuple (p1,...,pn) € RY, of perimeters determines a single element w of
St(C, X) such that the perimeter around x; is p;.

The following proposition shows that Strebel differentials behave well under lift-
ing through ramified coverings.

PROPOSITION 3.2. Let [p: C — S] be some class of ramified coverings between
two compact Riemann surfaces. Let Y be the set of branch points, b its cardinal,
and X be the set of ramification points. Denote by e, the multiplicity of v €
X. Then each b-tuple (p1,...,pp) of strictly positive real numbers determines a
unique couple of Strebel differentials we € St(C,X) and wg € St(S,Y), such
that p*(ws) = we, and the perimeter of a closed trajectory of we around x € X
which maps onto y; €Y is exp;.

PRrROOF. We first apply Strebel’s theorem to the surface S endowed with the b-
tuple (p;)jeq1,....b}3- We obtain a unique element wg of St(S,Y’) such that ws =
—(pj)?(dz;/z;)? around y; € Y. Then consider the pullback p* (ws) = ®(2)(d2)?.
For local coordinates such that p(2) = z, it is defined by p*(w,) = ®(2)(dz)?.
If precisely z = 2%, then (dz/2)? = e2(d2/2)?, so that the only poles of order
two of p*(wy;) are the ramification points. Moreover perimeters of p*(w;) are the
exp;- The critical graph of p*(wg) is the pullback of T'y,., and its characteristic
ring domains are necessarily disks punctured at the ramification points, so that
p*(wg) € St(C,X). Uniqueness is obtained by a new application of Strebel’s
theorem. d

If we take [C, ¢] € H4(G, R), then the same arguments yield a Strebel differential
q relative to C and to fixed points, invariant under ¢(G). Moreover, the action
of ¢(G) on ¢ induce a free isometric action on its critical graph.

We also need a more precise version of Strebel’s theorem for the case of Rie-
mann surfaces with nodes. Let T be a compact Riemann surface with n > 1 punc-
tures P = (Py,...,P,), and m ties Q = (Q1, ..., Qm) (some other distinguished
points, distinct from the punctures). Then we consider the set St'(T, P, Q) of
quadratic differential, holomorphic on T\ (P U @), with the properties 1,2 and 3
stated out above (replace z; by P;), but we also demand that ties are vertices or
middles of edges of the critical graph. Hence, they are possibly monovalent or
bivalent vertices of the critical graph.

THEOREM 3.3. Let T be a compact Riemann surface of genus g, with a set of
n > 1 punctures P = (Py,...,P,), and a set of m ties Q = (Q1,...,Qm), such
that 29 —2+n+m >0 andn > 2 if g = 0. Then each b-tuple (p1,...,pn) €
RZ, determines a unique element of St'(T,P,(Q) with perimeters equal to p;
around P;.

PROOF. Assume that m = 2k. Using the Riemann’s existence theorem (theorem
2.3), we take a double covering p : R — T ramified only at the ties. The
surface R is endowed with the unique complex structure such that the projection
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becomes holomorphic. Put (S},S5?) = p~!(P;) and T} = p~!(Q;). We have
g(R) = 2g — 1 + k by Riemann-Hurwitz, and the stability condition asserts that
2g(R) — 2 4+ 2n > 0. We apply Strebel’s theorem to R: there exists a unique
element w of St(R, (S}, S?);) with perimeters equal to (p1, p1, P2, D2, - - -, Pn, Pn)-

Let « be the order two deck transformation of the covering. Then a(S}) = 52,
and uniqueness in Strebel’s theorem tells us that o*(w) = w. Furthermore, o
induces an isometry of the critical graph I',,; and since «(7}) = T, these points
belong to I'y,. Thus, they are vertices of even valency (possibly bivalent) of T,.

Since a*(w) = w, we get a quadratic differential ¢ on T such that p*(¢) = w.
The punctures P; are its poles of order two, the perimeters are given by the p;,
and clearly g € St'(T, P, Q). If the valency of the vertex T is 2v then the valency
of Q); is v, possibly equal to one. Uniqueness of w gives uniqueness of g.

If m = 2¢+ 1, we take a double covering ramified only in @1, ..., Q2 to bring
us back to the previous case. U

4. Graphical Construction of Coverings

DEFINITION 4.1. [18] [3] A fat-graph T is given by a finite set A(T") (of oriented
edges) and by two permutations oy and o of this set, where o7 is an involution
without fixed points.

All fat-graphs will be connected: we assume that the group generated by oy
and o (the so-called cartographic group) acts transitively on the set of oriented
edges.

The geometric edges are the orbits of o1(T'), and the vertices are those of
oo(I'). We denote by A,(T") and V(T') these sets, and by a(I') and v(I") their
cardinals. Note that I' is a graph. If a € A(T"), we denote by a(0) its origin and
by a(1) its end. We take the convention that a(1) is the og-orbit of a and a(0)
is the op-orbit of o1(a). For convenience, we often put a = o1(a).

We define 03(T") = 01(I')ao(T") 7, such that ogoy02 = 1. The orbits of oo(T)
are called the faces of I'. We denote the set of faces by F(I') and its cardinal
by f(I'). The length of a cycle of o¢(I') (resp. o2(I')) is the valency of the
corresponding vertex (resp. face).

Every face is an oriented loop, for, if b = o2(a) then b(0) = a(1).

As an example, a graph I embedded in a compact oriented surface is a topolog-
ical realization of a fat-graph. The permutation og of I is given by the projection
of the neighborhoods of the vertices on the tangent planes at these points.

The genus g(I") of the fat-graph T is then defined by the Euler formula:

2=29(I') = v(I') = a(l") + £(I).

A morphism f : ' — I” between two fat-graphs is a map f : A(T') — A(I")
which satisfies to foo; = o) o f for € {0,1,2}. If f is bijective, then f is an
isomorphism. In this definition of an isomorphism, we assume that faces can
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be exchanged. If we specify some colors on the set of faces, then we ask that
isomorphisms respect these colors. The (full) automorphism group Aut(T") is the
centralizer of o7 and o9 in the group of all permutations of A(T").

Figure 1 shows a fat-graph of genus one described by its cartographic group
00(A) = (abdc)(abed), o1(A) = (aa)(bb)(ce)(dd), o2(A) = (acbadb)(cd).

Figure 1. A fat-graph A of genus one.

Let I be a fat-graph. A metric m on I' is given by a map m : Ay(T') —
P(R‘;(g )); we say that m(e) is the length of the geometric edge e. We note
(T,m) a fat-graph endowed with a metric, and we call it a Riemannian fat-
graph. The perimeter p(F) of a face F' = (aq,...,ax) of (I',m) is defined by
p(F) = S m({ai,a}).

An isomorphism between two Riemannian fat-graphs is called an isometry if
it preserves lengths of edges. We denote by Aut(I',m) the group of isometric
automorphisms of (I, m).

Given I', we can realize its faces as oriented polygons in the plane, and fill
in by punctured disks. Then gluing them with o; give an orientable compact
surface F(T') minus f(T') points (one for each face), together with an embedding
i:|I'| — F(T') such that i(|I'|) is a retract by deformation of F(I'). We will see
that some metric on I" determines some complex structure on F'(T).

From the induced isomorphism between first homotopy groups 71 (|I'|) and
m1(F(T)) we deduce that g(T') = g(F(T")). For, on one hand, 71 (F(T")) is a free
group of rank 2g(F'(I"))+ f(I')—1, and on the other hand, 7 (|I'|) is isomorphic to
the fundamental group of T" which is free of rank a(T")—v(T")+1 = 2¢(T")+ f(T")—1.

Faces of a fat-graph I" provide some particular elements of the fundamental
group 71 (T,p) of T. Let (a1,as,...,ax) a face of T', with a; = o5 '(a;). Join
a1(0) to the base vertex p by an oriented path «, and consider the homotopy class
of the oriented loop v = aay - - - aa&. Note that another choice of « leads to a con-
jugate loop. And if the face is given by (a;,...,a;—1) with ¢ > 1, we get the ori-



290 MICHEL IMBERT

ented loop Sa; - - - a;_1/3, homotopic to (Ba; ---a;)(ay ---a;_1a;---a;)(a - - - a; 3),
which is a conjugate loop of 7.

Therefore to each face is associated a well defined conjugacy class of elements
of 71 (T, p), which will be called a loop-face.

Fat-graphs whose vertices are at least trivalent are called smooth fat-graphs.

DEFINITION 4.2. A covering of fat-graphs p : I' — A is a morphism of fat-
graphs which satisfies the existence and uniqueness property of lifting oriented
paths. The cardinal of vertex’s fiber is then constant: this is the degree. A cov-
ering of Riemannian fat-graphs is a covering where lengths edges are preserved.
Define H™b (g, ¢’, d) to be equivalence classes of degree d coverings of smooth
Riemannian fat-graphs [p: ' — A] with g(T') = g and g(I'") = ¢'.

As in the case of Riemann surfaces (Theorem 2.9) we have:

THEOREM 4.3. There is a bijection between H™(g, ¢’, d) and the set of classes
[A, 1, 9] where (A1) is a genus g’ smooth Riemannian fat-graph, and 1 is a group
homomorphism 71 (A) — Sgq with transitive image; [A, 1, ] = [A’, ', 4)'] if there
exists an isometry h : (A1) — (A',l') and 0 € Int(Sq) such that 6 o = 1)’ o h,.

It will become clear after Theorem 4.8 that both theorems 2.9 and 4.3 are equiva-
lent, using the fact that Riemannian fat-graphs are deformation retract of punc-
tured Riemann surfaces. In fact, it is not difficult to give a direct proof of
4.3. Furthermore, we have the notions of monodromy groups and monodromy
actions. Thus we define Hg‘?;?b(G, K) in perfect analogy with H(g,¢’, G, K).

We now focus on the case of Galois coverings. Let I be a fat-graph, and G be
some finite group. We denote by ¢ : G — Aut(T") an action of G on I'. We call
it quasifree if o(G) acts freely on the underlying graph (on geometric edges and
vertices), but with non trivial isotropy group for each face of " (these actions
will provide some actions of G on surfaces with fixed points). Then the quotient
fat-graph is well defined. In fact, the quotient graph is well defined by freeness of
©(G) on edges. And since edges incident on a vertex of the quotient graph are in
bijection with edges incident on any vertex of its fiber, we put the induced cyclic
ordering. The projection p : I' — TI'/p(G) is a Galois covering of fat-graphs.
Two couples (T, p) and (I, ¢’) are equivalent if they differ by a G-equivariant
isomorphism.

Inspired by the setting of Riemann surfaces (see the previous section), we
look at stabilizers G of faces F'. Let o2 r be the cycle defining F', of order vp.
Then g € Gr means that ¢(g)os, re(g~") = 02 r. Hence ¢(g) = U%’F on F, for
i € Z/v(F'), and we have an embedding ¢r : Gp — (o2,r) = Z/v(F). Set ep
the order of Gr. Then w}l(a;fF/ ") is a privileged generator of G, which we
denote by 7r. As before, we say that F' and its orbit are colored by C(7F), the
conjugacy class of 7p.

Let {Os,b;i}icqa,...,
and C(7;) be the conjugacy classes of privileged generators.

¢} be the set of colored orbits of faces with multiplicities,
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Then the ramification data R(p) associated to ¢ is given by

¢
R(p) = Z biC(7i).
i=1

If f:(T,9p) — (I',¢) is a G-equivariant isomorphism, then R(y) = R(¢’).
The degree of R is the number of face’s orbits, i.e., the number of faces of the
quotient fat-graph I'/o(G). Furthermore, note that if R = 2221 b;C;, and if
e; = Ord(C;) is the order of any element in the class C;, then we simply have
F0) = S0, bilG e

Writing the Euler—Poincaré formulas, we recover now the Riemann-Hurwitz
formula 29(T') — 2 = |G|(29(T/(G)) = 2) + 37, |G|(1 = 1/es)-

DEFINITION 4.4. Let G be a finite group, and R a ramification data of G. Then
Hgomb(G, R) is the set of equivalence classes [I',[,¢]| where (I',1) is a smooth
Riemannian fat-graph of genus g, and ¢ : G — Aut(I',) is a quasifree action
of G such that R(py) = R. Two elements are equivalent if they differ by a
G-equivariant isometry.

‘We state now a combinatorial version of Riemann’s existence theorem for Galois
coverings (Theorem 2.3).

THEOREM 4.5. The space Hgomb(G, R) is in 1-1 correspondence with a set made
of classes [A1,v : m(A) — G, where (A,l) is a smooth Riemannian fat-graph
of genus ¢', v is an epimorphism, defined up to conjugacy, sending loop-faces on
prescribed images (by the ramification data), and such that [A, 1] = [A, 1, 9]
if there exists an isometry h : (A1) — (A',1") such that » = 9 o h,.

If Aut(A, ) is the subgroup of Aut(A) made of elements h satisfying v =
¥ o hy, and if Autg(T, @) is the centralizer of ¢(G) in Aut(T"), then we have
Aut(A,v) 2 Aute(T, )/ Z(G).

Again, after Theorem 4.8, it will become clear that Theorems 2.3 and 4.5 are
equivalent.

We also have an analog of Proposition 2.11, which allows us to define the set
H;‘?;}b(G, K, R).

ExAMPLE 3. We give a covering of the genus one fat-graph A described previ-
ously. Given (A, ) we could build (T, ¢) such that A = I'/(G) as the universal
covering of A quotiented by ker(v)). Instead, we use the notion of the Cayley
graph, which gives a more tractable method to build (T', ¢) from (A, ).

First we choose a presentation of 7 (A, O). Take the edge (b, b) as a maximal
tree. Then 7,(A,0) = (04,0.,04) where 6, = ab, 6. = cb, 64 = db. Take
73 = (cd) and 4 = (acbadb) for loop-faces. An epimorphism 1 from (A, O)
to G must satisfy ¥(73) = 9¥(74)~!. Choose ¥(y3) = [1] and ¥(y4) = [2] as
ramification data.

This implies ¥(5.6;") = [1] and ¥(8,8, 6, 04) = [2]. We choose ¥(3,) =
1], ¥(6.) = [2], ¥(64) = [1]. Note that the corresponding element I'(¢)) of
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Figure 2. The covering I'(¥) — A.

HE™P(Z /3, R) possess two faces of stabilizers Z /3. Thus g = 3 by Riemann-
Hurwitz.

To build T'(¢)) (figure 2), we take three copies of the maximal tree, indexed
by [0], [1],[2]. Join the vertex (O,%) to the vertex (P, j) if [i] + ¢¥(ds) = [Jj] to
build edges projecting on (a,a). Idem for ¢ and d. Cyclic orderings around the

vertices are giving by these around O and P. The action of G on vertices of
I'(¢)is g-(0,i) = (0,g x i) (likewise for P).
We describe now the main combinatorial operation on fat-graphs: Whitehead

collapses. We generalize them in an obvious way to fat-graphs with a quasifree
action of a group G.

DEFINITION 4.6. Let (I',¢) a fat-graph with a quasifree action of the (possibly
trivial) group G, and e = (a,a) a geometric edge with a(0) # a(1). We denote
O(e) the orbit of e under ¢(G). We assume that O(e) do not contain any
loop of I'. The operation which consists in retracting O(e) and gluing O(a(0))
with O(a(1)) is called an equivariant Whitehead collapse along O(e). We note
Wo(e)(I') the new graph acquired in this way.

We group together in a lemma the first properties of this operation.

LeEMMA 4.7. (i) The graph Wo(.)(I') is a fat-graph.

(ii) The number of faces and the genus are invariant under equivariant White-
head collapses.

(iii) The quasifree action ¢ of G on T restricts to a quasifree action of G on
Wo(e)(I'). Moreover the ramification data is preserved.

PROOF. For the first point, we describe the cartographic group of Wy (I').

Let (a,...,a]) and (b),...,b]) for j € {1,...,|G|} be the G-orbit of a(0) and
a(1), such that {a]}; (resp. {b]};) is the orbit of @ (resp. a). Then retracting the
orbit O(e) give the new vertices s; = (aj, ..., al,b),...,b). The graph Wo(e)(T)
is the fat-graph with same o} private of O(e) = {(a],b])};, and same o except
for the orbits of a(0) and a(1) replaced by the new orbit {s;};.

As we can retract neither a loop, nor an orbit which contains some faces, we
have f(Wo)(I')) = f(I'). Since a(Wo()(I')) = a(I') — |G| and s(Wo(e)(I')) =
5(I') — |G|, we have g(Wp () (I')) = g(I') by Euler-Poincaré.
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The action of G on Wy .(I') is defined by restriction of ¢ on A(I")\(O(a) U
O(a)).

Let 021 be the cycle of o2(I") defining a face Fj, of order v;. The privileged
generator 7 of the stabilizer is defined such that

) Tlgvk/ek)—l(al) o T}E”k/ek)_l(

02k = (a1a2"'akalTk(al)Tk(GQ)" avrl))-

Retracting the orbit of a; do not disturb the action of 74, on 03 1, and thus the
ramification data is preserved. O

If [T',m, ] € Hgomb(G , R), then to each equivariant Whitehead collapses along
O(e), we associate [Wo(c)(I'),m,¢] € H™P(G, R), setting m(p(t)(e)) = 0 for
allt € G.

Recall that M;?,r?li,.--,bt) consist in isometry classes of smooth Riemannian
fat-graphs [, m] of genus ¢’, with b faces shared in ¢ colors, where isometries
respect these colors. We state our main theorem (without compactifications):

THEOREM 4.8. Let G be a finite group, R = b1C1 + --- + b,C; a degree b
ramification data, and K a subgroup of G such that (), tKt~! = {eg}.
Then we have the following commutative diagram

HomP (G, R) ——— Hy(G, R) x P(RY,)

lqcolnb QL

Heom(G, K, R) —> H(g,¢', G, K, R) x P(RY,)

lpcomb pl

mb
MG by == My (by,..0) X P(R)

t
Horizontal maps are homeomorphisms, and vertical ones are ramified coverings.

The vertical maps have been already defined: ¢([C, ¢]) = [C'/¢o(K) — C/p(G)],
and poq([C, ¢]) = [C/¢(G),Y]. The maps from the right to the left are given by
Theorem 3.1 and Proposition 3.2. Next theorem gives the inverse maps. At the
level of moduli spaces of punctured Riemann surfaces, the construction is known
since [13]. More details are given in [20] and [23]. The continuity is discussed in
the next section.

TueoreEM 4.9. Let [I'.1,¢] € HEMP (G, R). There erist a compact Riemann
surface ||| endowed with ¢ : G — Auwt(||T'||) and wpr € St(||T|],X), where
X ={x1,...,251)} is the set of fized points of $(G), such that:

(1) The critical graph of wr is the image of a topological realization of T’ by an
embedding ¢ : |T'| < ||T|| such that ||| — +(|T|) is a disjoint union of f(I)
disks, punctured at the x;. Moreover l,,.(t(|a]) = l(a), where l,,. is the metric
induced by wr.
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(2) p(g9)*(wr) = wr Vg € G, the action of $(G) on ((|T'|) is the realization of
the action of p(G) onT.

(3) If[S,v] is another element of Hp (G, R) with preceding properties for a Strebel
differential v, then there exists a single G-equivariant biholomorphism h : S —
|IT|| such that h*(wr) = v.

PrOOF. We first describe ||T'[| in terms of complex local coordinates (see [23]
for a discussion along the same lines). If a € A(T'), we denote by F(a) the
unique face in which it lies, and p, the perimeter of this face. We associate
to each a € A(T") the following closed strip embedded in the complex plane C:
B, = [0,pa] % [0,00[. Moreover we establish a bijection |F'(a)| — [0,pq] x {0}
such that |a| maps to [0,1(a)] x {0}, |o2(a)| maps to [I(a),i(a) + I(c2(a))], and
so onm. ..

Define F(I') = ([],c A(T) B,)/ ~, where ~ stands for the following identifica-
tions:
(1) (0,¢) ~ (pa,t) Vt € [0,00[ (Form half-cylinders).

(2) Let b = o%(a) € F(a) and o = Z;;}) 1(c}(a)).
Then (z,t) ~ (z — a,t) Vo € [a,pg], and (z,t) ~ (po — @ + z,t) Vo €
[0, ], Vt € [0, 00].
(3) {(z,0) € By} ~ {(i(a) — z,0) € Bs} Vx € [0,l(a)] (glue the cylinders

with o7).

So F(T') is a compact orientable surface with f(T') punctures: points at infinity
of each half-cylinder. It is endowed with ¢ : [T'| — F(T'), a canonical embedding
of T'.

The injection BY — F(I'), of image U,, gives a natural local coordinate
ug 1 Uy — BY. If b € F(a), then U, N U, consists in the disjoint union of two
strips, and the transition function is a translation.

Let V, C F(T') be the image of the infinite strip ]0,1(a)[ X |—o0, +o0[. We
define the local coordinate by v, = u, on V, N Uq, and v, = p(F(a)) — Ug,(a)
on V, NU,,@)- These coordinates are clearly holomorphically compatible with
(Uq, ug). Moreover, in these coordinates, we have the flat quadratic differential
(dug)? = (dv,)?, denoted by wr.

Let now s € V(') be a k-valent vertex with & > 3, and (ai,...,a;) the
oriented edges pointing towards it such that og(a;) = a;41 fori € {1,...,k—1}
and Go(a,k) = daj. Note that 0'2(0,1‘) = Qj_1. Let

Pai :]_l(ai)v 0] X]_OO7 +OO[ U ]07 l(aifl)[x]ov +OO[
and let T, its image in F(T'). We define t,, : T,, — P,, by ta, = uq, — l(a;)
on the image of |—I(a;),!(a;—1)[ % |0, 4+o0[ and ¢,, = vy, — l(a;) on the image of
]—-1(a;), 0] x |—o00, +00].
Let £, = U§:1 Ta;, then the coordinate around s is &, : Fs; — C defined by
& = exp(2iﬂ'j/k‘)t3]/.k on T,,.



CELLULAR DECOMPOSITION OF COMPACTIFIED HURWITZ SPACES 295

Next we study the quadratic differential wp. Since & = ct?/* where ¢ is
a constant, we deduce that (dt)?> = (k/2c)2¢8=2(d¢,)?, that is to say k-valent
vertices are zeroes of order k — 2 of wp. Furthermore its closed trajectories are
images in ||T']| of the segments [(0,t); (pa,t)] for ¢ > 0, and «(|T'|) is its critical
graph. By construction, lengths of edges measured with the metric induced by
wr are these specified by the metric {. Finally, the change of coordinates from
10, pa[ %10, 0o[ onto a disk centered on the origin: u, — ¢ = exp(2imu,/p,) yields
the following form of wr near z,: (dug)? = — (g—;)Q (d¢/¢)%. To sum up, we have
wr € ST, @1, 2 p0y).

If f:(,1) — (To,lp) is an isometry, and as a consequence, lp = ¢l with
¢ € R+, then the homothety h, : BY — B?(a) gives a biholomorphism f : ||T'|| —

[ITo]|. Thus to every isometric automorphism ¢(g), we associate a biholomorphic
automorphism ¢(g). The action on the closed trajectories of level ¢ > 0 is defined
to be the same than the action on the graph. The action on the punctures is
specified by that on the corresponding faces. By construction, ¢(g)*(wr) =
wr Vg € G.

It remains to prove the uniqueness property. Drop group actions to simplify.
Let k : [T'| — S be the embedding of T such that k(|T"|) is the critical graph of v.
There is a single isotopy class of homeomorphisms f : ||T'|| — S satisfying for = k
(existence is trivial, and uniqueness comes from the Alexander’s lemma, which
ensures that two orientation preserving homeomorphisms between topological
disks which agree on the boundary of the first one are isotopic). Then we find
only one biholomorphism in this isotopy class. Indeed, let 1; be the puncture
of S corresponding to some face F; of I'. Let ||F}|| (resp. D;) be the pointed
disk by z; (resp. y;). Take &; : ||F}|| — D(0,1) a local coordinate as above, i.e.,
such that (duy)? = —p? (d&j/€;)?. By hypothesis, there exist a local coordinate
zj : Dj — D(0,1) such that v = —p3(dz;/z;). Then define f restricted to |||
by f = zj_l 0 &;. This is a biholomorphism. The local coordinates &; and z;
extend to the boundary with &; o ¢(|a|]) = z; o k(|a|), so that f is globally defined
with fo.=k. O
For non galoisian coverings, we have the following version of the theorem: to
each [p : (T,1) — (A, m)] € HP(G, K, R) is associated [p : T — Al €
Hy.¢ (G, K, R) such that wp = p*(wa).

ProOOF OF THEOREM 4.8. The geometrical realization map

[F,l,cp] = {[||F||a¢]a (plv s ’pb)}

(where p; is the perimeter in the orbit ¢) is well-defined, since a G-equivariant
isometry yield a G-equivariant biholomorphism. The fact that this is the in-
verse map is ensured by uniqueness in Strebel theorem, and uniqueness in the
geometrical realization (property 3 of the last theorem). Again, uniqueness in
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Strebel theorem gives the commutativity of the diagram. It remains to prove
the continuity; this is done in Theorem 5.2.

5. Cellular Decomposition

We now describe the cellular decomposition of decorated Hurwitz spaces. This
leads to a characterization of its connected components. Also, we show that the
computation of their orbifold characteristic relies on the computation of the
degree between Hurwitz spaces and moduli spaces.

DEFINITION 5.1. Let (T'o,lo,90) € H™ (G, R) and (T, $o) its geometri-
cal realization. The combinatorial relative Teichmiiller space ’Tcﬁomb(I’o, lo,®0)
is made of quadruplets (T, [, ¢, f), where (T',1,p) € ’}fﬁb(G,R), together with
a G-equivariant quasiconformal homeomorphism f : ||T'y|| — ||IT||. Two quadru-

plets (T';, L, @i, fi)i=1,2 are equivalent if and only if there exists a G-equivariant
isometry h : (T'y,11,01) — (Do, l2, @) such that f o f7* = h up to homotopy.

The relative modular group acts obviously on this Teichmiiller space. Denote by
HE™P (T, lg, o) the quotient space.

The bijection H{™™" (G, R) — Hy(G, R) x P(R%,) comes in fact from equi-
variant bijections 7™ (T, lo, ¢0) — Z(||Tolls Po) x P(R%,) with respect to the
actions of the relative modular group, ((A,m, v, f) maps to (||A|\,1/A1,f)), and
from the induced bijections HE™> (T, lo, o) — Hea (Lo, lo, o) X P(RY,).

Continuity. The following result gives control on variations of complex struc-
tures on ||T'||, with the variations of the metric .

THEOREM 5.2. If f: (T',1,¢) — (Do, lo, po) is composed of equivariant isomor-
phisms and equivariant Whitehead collapses, then there exists a G-equivariant
K-quasiconformal homeomorphism f : |T]| — ||[To|| such that K(f) — 1 when
‘l - l0| — 0.

PRrROOF. We can restrict ourself to the case where either f is an isomorphism
which alters only one edge’s length, or f is a Whitehead collapse on one edge,
keeping constant other lengths. For, in the general case, we decompose f, and use
the fact that goh is K (g) K (h)-quasiconformal if g (resp. ) is K (g)- (resp. K (h)-)
quasiconformal.

We use complex structures defined in the proof of Theorem 4.9, but with the
change of coordinates

p(F(a))

5 exp(2imu, /p(F(a))).

Zaq —

We will always use the power function like this: when the argument is fixed,
it consists in multiplying it with the exponent.
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First Case: Let e = (a,a) be the edge such that I(f(e)) = l(e) + € and F(a) =
(a1,ag,...,ar = a) be the face which contains a. Set I, = l(a), p = p(F(a)),
R=p/(27), R. = (p+¢€)/(2m). We first assume that k > 2.

Then we define fr : D(O,R) — D(O, R.) by

R £
fz#\zﬂm for 0 < arg(z) < 27w(p —lx)/p,

R, zree(te/ly) e p
fwﬁw X exp 2Z7Tp+ E (1 - E) for 27(p — ) /p < arg(z) < 2m.

This is well defined for arg(z) = 27 and arg(z) = 27 (p — ) /p-

We do the same construction for the face F'(a), and take identity for other
faces.

In the case k = 1, take fr(2) = (p + €)z/p, and note that F(a) can not be
monovalent.

We have a similar construction in the case where a and a belong to the same
face.

We have to check that the fr glue to defined f between |I'|| and ||To.

Firstly, the homeomorphisms f  extend on boundaries of disks, and vertices
maps onto vertices.

Without loss of generality, we consider the case where ¢ and @ do not belong
to the same face. If we set 6 = arg(z) and o = arg(fr(z)), we have

0
a=4~6 P or a = —p(l—}—s/lk)—ﬁ—c'
p+e p+e
with ¢ some constant. Since § = 27x/p, and « = 27y/(p + ¢), we deduce

that, with canonical coordinates, f r is the identity or an affine map (z — y =
(1 +¢/l;) + c) on the segment [0,p]. As values at the vertices are fixed, affine
maps induced by f r and f r equal on edges.

We have to calculate the dilatations K (f(z)). We can restrict the computation
to angular sectors where f is differentiable, and use following lemma, whose proof

is direct.

LEMMA 5.3. Let T the open set of the complex plane defined by 0 < a <
arg(z) < B <2m and 0 < |z| < 1. Let g : T — T’ be some diffeomorphism of the
form g(z) = cz%2%, where a,b,c are real numbers such that |a| > |b|. Then g is
K -quasiconformal with K = (|a]+|0|)/(Ja|—|b])-

In the case where a and @ do not belong to the same face, we obtain for example

K(f() = 225

for 0 < arg(z) < 27 (p — lx)/p,

pte

() =

Second case: Let (I',1) be a smooth Riemannian fat-graph and (W,(T'),!) the
smooth Riemannian fat-graph obtained by collapsing the edge ¢ = (a,a). Let

for 27(p — i) /p < arg(z) < 2.
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p be the perimeter of the face F'(a) = (a1,...,ar = a). We set a; = f(a;) for
i€ {l,....,k —1}. We assume [(a;) = l(a}), and denote it by I;; we also set
lk = l(ak).

For brevity, we will give details only for k¥ > 3 and a ¢ F(a) (the procedure
is totally similar for other cases).

Again, we build f on each face, but firstly in disks of radii npp(F)/27 with
0 < mr < 1. Then we should define f on the complementary of these disks, a
ribbon which contains the geometric realization of the fat-graph.

In the disk corresponding to the face F(a), we define f F(a) DY

2
p—l 277 p—lp— k1
— for 0 <arg(z) <2r———,
p | 2|7~ p
Pl—1
_ lk Z(p_lk)(lk—1+1k) 2inln p—lp—lp_1 _lk_lk}—l
P o X € =T R for 271'])7 < arg(z) < 2m.

D , —

|2] @100 1¥0

This defines a homeomorphism onto its image, a disk of radius 1y (q)(p — Ix)/27.
We make the same construction for F'(a) and take the identity for other faces.

Using Lemma 5.3, the desired properties for K(f(z)) are immediate.
The transformation along closed trajectories with canonical coordinates is

T for0<z<p-—1I—lr_1,

T = xlp—1 le(p =l — le—1) (*)
forp — Iy —lp—1 <z <p.
le—1 + 1 le—1 + 1 PP T S =P

We define a closed neighborhood R of (a, @) which contains an open neighborhood
of vertices a(0) et a(1), and included in the ribbon defined upon.

Set by = 02_1((_1) and b; = o02(a), of lengths my and m;. Recall that a1 =
oy '(a) and a; = 0(a) of lengths I1 et I 1. Set p = p(F(a)) and p’ = p(F(a)).
For shortness we assume that a(0) et a(1) are trivalent. Then aj_1 = o2(b;)
and b, belong to a common face F3 of perimeter ps, and a; and by belong to
a common face Fy of perimeter ps. Let p €]0, min(mg, m1,l1,l,—1)[ be a real
number.

The closed set R is made of four glued quadrangles (R;)icq1.... 4} (see Figure 3).
The size of R is parametrized by I, 11, 7,7, 13, M4-

We send R on the corresponding set of |V (I')|| in a compatible way with the
definition of f on the boundary; see formula ().

We choose as image of the edge e a segment of vertical trajectory, and whose
length is 2¢(ly), where c(l;) goes to zero as [, goes to zero.

The image of the (R;);cq1,....4) are the polygons (P;)ieq1,....4y of figure 3.

To estimate the dilatation K; of f on R;, we can use the notion of modulus
of A(T') for a family of piecewise smooth paths describing an open disk of the
plane, defined by L. V. Ahlfors in chapter I, § D of [2].
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(i)l —1 3
L f

(1=n")(p"—1x)

(n+lx)mo
lp+mo

Figure 3. Homeomorphism in a neighborhood of the collapsed edge.
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For R; and R3 we choose paths between the sides of lengths 2 + I, and 24,
respectively. We put P; between rectangles to estimate A(P;). We calculate for
example

A(R3) (1 —m3)p3
< K: = .
APs) =7 T (1= na)ps — c(ln)
If A(Pl) > A(Rl), then
A(P) <K, = (U + le—1) (2p + 1) [(1 = m)p + c(li)] 0
A(R1) — [l + 2l—1) + Uelg—1](1 =n)p
This also concludes the proof of Theorem 4.8. O

Using Harer’s techniques [13], we could define a bijection from Tg’mb (To, o, o)
to a subset of a simplicial complex so that the topology on this space is (roughly
speaking) the following: two points (I';, l;, s, fi)i={1,2) are very close if and only
if there exists a map f between (I'1,l1, 1) and (I'2,l2, ¢2) composed of equi-
variant Whitehead collapses and equivariant isomorphisms with small changes
of metric. Then we can find an isotopy between f (defined in Theorem 5.2)
and f; ! o fo, to obtain (using Lemma 2.6) the continuity at level of Teichmiiller
spaces.

Cellular decomposition

DEFINITION 5.4. Let J,, : Te:(|[Tol[, ¢0) X P(R2 o) — T52™P (Do, lo, ¢o) the inverse

map of the geometrical realization, given by the equivariant Strebel theorem.
Let (T,m, ) € HP (G, R(po)) and suppose f = (|Toll, o) — ([ITllm, @) is

a G-equivariant homeomorphism. Then we define C (T, f, ) as the subset of

Ta(|IToll, $o0) X IP’(RZ;O) made of elements [R, v, g, (p;):] satisfying

Jtp(Rawmga (pl)l) = (F7la ©, 7A' © f)7

where [ is any metric on I" such that the action of G is isometric, and i : (T, 1, ¢) —
(T',m, ¢) is the canonical G-equivariant isomorphism.

Note that C(T', ¢, f) does not depend on the choice of the metric m, since we can
always compose by an equivariant isomorphism. These subsets cut the decorated
relative Teichmiiller space into (open) cells, homeomorphic to P(R‘;(g )/ ‘GI).

THEOREM 5.5. The stratification of To(|[To |, po) x P(R% ) is a cellular decompo-
sition. The relative modular group Modg(||Tol|, $o) acts in a cellular way. The
stabilizer of a cell C(T, p, h) is isomorphic to the quotient of the automorphism
group Autq (T, ) by Z(G).

ProOOF. Let K, be the m-skeleton made of cells C(T', ¢, h) with a(T')/|G| <
m + 1, and take such a cell with a(I")/|G| = m + 1. We build the attachment
map of this cell. Let I = (l4,...,l) a metric on I', where /; is the constant
length in the orbit of a geometrical edge e;, and ), I; = 1. We now allow /; = 0,
except for orbits those quotient edge is a loop.
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Ifl; > 0Vi € {1,...,m}, then we map [ to the corresponding element of
C(T,p,h).

If I; = 0 for some i, we map [ to the corresponding element of C(Wo ., (I'), ¢,
wo h), where ; is the induced action of G, and w : (I',, ¢) — (Wo(e,y ('), 1, ;)
is the equivariant Whitehead collapse.

This defines a continuous map [];" 10, 1[ x [T~ . [0,1[— K,,, which maps
[T:%,]0, 1] homeomorphically onto C(T', ¢, k), and its complementary in K,,_1.

The cellular action of the relative modular group is [0, C(T', ¢, h)] — C(T', ¢,
ho6~1).

We consider the center e(T, o, h) of the cell. This is the point defined by
the unitary metric: I(e) = 1 Ve € A4(I"). For this special metric, all the auto-
morphisms are isometric. The center consists in a compact Riemann surface R

marked by f : ||To|| — R, equipped with an action of G and a Strebel differen-
tial gr stable under this action. The critical graph of ¢r is an embedding of T"
which realizes the unitary metric. Thus we have Autg (T, ¢) = Autg(R,qr) =
Aut(e(T, , h)).

But if § € Modg(||[Tol, Po), then 6 - e(T, ¢, h) = e(T',p,h o 6~1), so that
Aut(e(T, ¢, h))/Z(G) = Stab(C (T, ¢, h)), from which we deduce the result. O

On the decorated Hurwitz space He(|[Tol[, $o) x P(R%,), we obtain the induced
cellular decomposition.

The cellular decomposition is compatible with the orbifold structure in the
sense of Thurston: the finite groups associated to each point of the orbifold
are constant along each cell. We also emphasize that the notion of cellular
decomposition used here coincide with the classical one only for compact spaces.

Cells C(T', p) are parametrized by metrics on the quotient fat-graph. Thus
they are homeomorphic to C(I'/¢(G)). Moreover, C(I, ¢') is in the boundary of
C(T, ) if and only if (I, ¢') is obtained from (T', ¢) by equivariant Whitehead
collapses. Then C(I'/¢'(@)) is in the boundary of C'(I'/¢(G)). Thus, in a way,
the projection H,(G,R) — Mgy ,,..p,) is a cellular one; the same fact holds
for the natural morphisms between Hurwitz spaces obtained by restriction to a
subgroup, or by quotient by a normal subgroup.

Top-dimensional cells of moduli spaces and Hurwitz spaces are yielded by
trivalent fat-graphs (maximal number of edges).

Generalizing the notion of flip, we show that equivariant flips characterize
connected components of H,(G, R), described in §2. Two top-dimensional cells
C(T, ) and C(I”,¢’) share a codimension one cell C(T'y, o) if and only if there
exists e € Ag(I") and e’ € Ay(I") such that W) (I')] = [Lo, wo] = [Wo(erT’)].
We say that (T, ¢) differs from (IV,¢’) by an equivariant flip.

The flips are sometimes referred as elementary moves [24], or as Whitehead
moves, the result of a Whitehead collapse and a Whitehead inflation.

PROPOSITION 5.6. Two points of Hy(G, R) lie in the same connected component
if and only if they belong to the adherence of top-dimensional cells indexed by
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trivalent fat-graphs, endowed with a quasifree action of G of ramification data
R, which differ one from the other by a finite sequence of equivariant flips.

PRrROOF. The condition is sufficient since equivariant Whitehead collapses give
equivariant homeomorphisms which preserve the topological type.

The condition is necessary: let C'(I'y, 1) and C(I'2, ¢2) be two top dimen-
sional cells of H¢ (S0, o), a connected component of H,(G, R). Let a; be an
adherent point of C(T';, ;). Join a; to a point b; of C(T';, ¢;) if necessary. Then
join by to by by a path intersecting only cells of codimension zero and one. Then
(T'1, ¢1) differs from (T'a, p2) by a finite sequence of equivariant flips. O

To illustrate the fact that the combinatorial description of Hurwitz spaces en-
codes their orbifold structure, we link their orbifold Euler characteristic, to those
of moduli spaces.

W. Thurston has extended the notion of Euler characteristic to orbifolds O
which possess some cellular decomposition (C;); compatible with its orbifold

structure. Then
(_ 1 ) dim(C;)

Xorb(o) = Z IG(C’L)| 5

where G(C;) is the finite group associated to each cell.
Here, using Theorem 5.5, we have

(=1)*@1 % |Z(G))|
|Auta (T, ;)]

Xorb(Hg (G, R) x P(RL () = >

(T5,5]
where A; = T'j/¢;. Then, since xorb(P(R%)) = (—1)°~1, using the Euler for-
mula, we deduce:

—1)*4%9) x 1Z(G)]
[Auta(T'y, ;)|

Yo (Hy(G, R) = 3

[Tj,05]

We resum on the isomorphism classes [I'; /¢; = A;] indexing the cellular decom-
position of My 3, .. 1,), and then we use the relation between automorphisms
groups (Theorem 4.5) to obtain

1)5(&) |Aut(A

Xorb(Hg Z |Aut )] Z [Aut(A 1/)

where the 1) describe the set of conjugacy classes of epimorphisms from 7 (A)
onto G with images of loop-faces fixed by the ramification data. But

Z |Aut
|Aut(A 1/1

is the class equation for the action of Aut(A) on this set. Thus this set is
independent from A. Denote it by Epig,(G, R), and let do1, be its cardinal. We
have proved:
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PROPOSITION 5.7. Xorb(Hg(G, R)) = dorb X Xorb(Mgr (by,....00))-

This means that Hurwitz spaces are less singular than moduli spaces. The ra-
tional number Xorh (Mg (5,,....5,)) is calculated in [14] (see also [3] [20]).

The computation of do1, is a non trivial one. The cardinal of Homy (G, R)
(replace epimorphisms by homomorphisms) is calculated in [19] (see also [12]),
it only depends on the irreducible complex representations of G. For symmetric
groups, these cardinals appear as coefficient of a generating series coming from
a matrix model [21], closely related to Yang—Mills theory for surfaces [12].

We conclude with the non-galoisian case. We also have a cellular decom-
position of H(g,¢',G, K, R) x P(R%,) into cells C(p), where [p : I' — A] is
an equivalence class of degree d covering with a monodromy of type (G, K, R).
These cells are parametrized by edges’ lengths of A. Performing Whitehead col-
lapses along e on A, and thus Whitehead collapses along p~!(e) on T, give a cell
C(q) incident on C(p), where q : Wj,-1(¢)(I') — We(A).

Furthermore, we see that Out(G, K, R) acts cellularly on M, (G, R) x P(R%)
by 6-C(T,¢) =C(T,p06~ ). Hence

Xorb(H (9, ¢, K, G, R)) = Xorb(Hn(G, R))/Out(G, K, R).

REMARK. An important step in Kontsevich results [20] is the explicit compu-
tation of cohomology classes on the cellular decomposition of moduli space of
punctured Riemann surfaces. The cohomology classes are first Chern classes of
line bundles over moduli spaces, whose fibers are the cotangent spaces at the
i-th puncture.

It follows from our work, that the pullback of these classes on Hurwitz spaces,
can be computed in the same way.

6. Compactification

The convenient tool to describe compactifications of moduli spaces, or of Hur-
witz spaces, is again a graphical one: the modular graph (terminology of Y.
Manin). To avoid any confusion, we keep the Greek letters for fat-graphs. For
a graph E, we denote by V(E) the set of vertices, v(E) the number of ver-
tices, vs the valency of the vertex s, a(F) the number of edges, and h!'(E) =
a(E) —v(E) + 1.

Moduli spaces

DEFINITION 6.1. A modular graph FE of type (¢’, ) is a connected graph together
with two maps g : V(E) - N and P: V(E) — P({1,...,b}) such that

. {1,...,b} = HUP(U),
o 2g(s) —2+wvs +#P(s) >0Vs € V(E),
* 9 =2 cvmls) + h'(E).
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Two such modular graphs (E, g, P) and (H, h,(Q) are isomorphic if there exists
an isomorphism of graphs ¢: £ — H withiog=hoiandto P =Qo:.

We have the following well-known description of the Deligne—-Mumford-Knudsen
compactification of moduli spaces: My, =[] g Mg »(E), where E runs over
the modular graphs of type (¢',b), and M ,(E) consists in all stable Riemann
surfaces built as follows:

e Associate to each vertex s a compact Riemann surface R, of genus g(s), with
#P(s) punctures and vy ties.
e Associate to each edge an identification of the corresponding ties.

Such objects are connected compact Riemann surfaces C' with punctures
and singular points, called nodes, obtained by identification of ties. We denote
them by (C,i¢c), where ic is the identification of ties.

e Associate to each isomorphism, an homeomorphism h : C — C’ such that
h oic = ics o h, biholomorphic when restricted to each component.

Each element of /\_/lg/,b comes from pinching some boundary curves of a pants
decomposition of a smooth surface [4].

Then the neighborhood of a node looks like {(y : U — D)x (2 : V — D)/yz =
0}, where U and V are some disks in the surface pointed by the node N, D is
the unit disk of the complex plane, D is the same disk but with the conjugate
complex structure, and y(N) = z(N) =0 [4].

In our context of marked Riemann surfaces, we define the topology of M,
with quasiconformal deformations.

First we have the following definition of L. Bers [4]. Let S; and S> be two
stable curves of type (¢’,b), and N; be the set of nodes of S;. A deformation f :
S — Sy is a surjective map with f(N1) C Na, such that the preimage of a node
is either a node or a Jordan curve (non null-homotopic, non homotopic to some
puncture), and such that f is an homeomorphism component by component,
when restricted to S; — f~1(Nz).

Then after the work of W. Abikoff (see §1.3 and Theorem 1 of [1]), S} is close
to Sy if =1 is (1 + )-quasiconformal on each component of S; — K with K a
compact neighborhood of Ns.

Maybe some components of such a stable Riemann surface do not have any
puncture. These components cannot be parametrized by means of fat-graphs,
and this leads M. Kontsevich [20] to take a quotient of M ;: homeomorphisms
h:(C,ic) — (D,ip) restricted to any component without puncture may be just
an homeomorphism instead of a biholomorphism. Kontsevich’s compactification
/W’%b is then the quotient of M, ;, by the closure (of the graph) of this new
equivalence relation.

At the level of modular graphs, this means that we can retract any edge a
joining two vertices s; and sy with P(s;) = & into a new single vertex s, setting
g(s) = g(s1) + g(s2) if 51 # s2 and g(s) = g(s1) + 1 if a is a loop.
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Thus, in ./\_/l’g,7b, if a stable Riemann surface possess a component Cs without
punctures, we can forget Cs, but keep as data in the modular graph its genus
and the number of ties.

If ~ is a simple loop which separates a Riemann surface into two stable com-
ponents C; and C5 such that C; is without punctures, then, from a topological
viewpoint in /\_/l’g,,b, pinching v to a point is the same as collapsing C; into a
point.

We now precise the intricate definition of /W;?E‘b given in [20]. The role of
ties is played by distinguished vertices.

DEFINITION 6.2. A stable fat-graph of type (¢’,b) is made of a modular graph
(E, g, P) of type (¢’,b) such that:

e To each vertex s with P(s) # & is associated a Riemannian fat-graph Iy, with
#P(s) faces, genus g(s), and v, distinguished vertices (maybe monovalent or
bivalent, the other ones at least trivalent.)

e To each edge joining vertices s; with P(s;) # @ is associated an identification
of the corresponding distinguished vertices.

Two stable fat-graphs (E, g, P, (T')s) and (F,[,Q, (A)s) are equivalent if there
exist h: (F,g,P) — (F,1,Q) or (F,1,Q) — (E, g, P) composed of isomorphisms
and retraction of edges joining vertices s; with P(s;) = &, such that I'; and
Aps) are isometric if P(s) # @.

We now have to precise how smooth fat-graphs of type (¢’,b) degenerates into
stable fat-graphs of same type. We have to distinguish two cases.

Firstly, we can perform Whitehead’s collapses on loops which do not bound
any face. Let e such a loop incident on a vertex v in a fat-graph I'. After the
retraction, we disconnect the graph on v to produce two distinguished vertices.
Precisely, if e = (a,a), such that o2(a) # a and o9(a) # a, then, as a og-orbit,

v = (a1,...,a5,a,b1,...,b5,a) with j,k > 1 (because for example og(a) = a
implies o9(a) = a, which is forbidden). Then the new distinguished vertices are
(a1,...,a;5) and (b1,...,bs). They are possibly monovalent or bivalent.

At the level of modular graphs we create an edge and a new vertex, or a loop,
with appropriate data.

Secondly, we can collapse a subgraph A of I' into a vertex which becomes
distinguished (provided that the number of faces keeps constant). At the level of
modular graphs, we create an edge and a monovalent vertex s with g(s) = g(A)
and P(s) = 2.

Then, we have Kontsevich’s theorem, which furnishes a cellular decomposition
of the whole space M/, , x P(RY,).

THEOREM 6.3. There is an homeomorphism /W;?f};b — /\_A;/,b X IE”(RZO)

PrOOF. Fix a modular graph (F,g, P). The map from right to left is given
by the Theorem 3.3 applied to each component associated to a vertex s with
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P(s) # @. For the inverse map, we have to say something about monovalent
and bivalent vertices.

If s is a bivalent vertex of a Riemannian fat-graph (I',[), with edges @ and b
incident on it, then ||I'|| is biholomorphic to ||IV||, where I is the Riemannian
fat-graph obtained from (T", 1) in canceling s, edges a and b becoming a new edge
of length I(a) + I(b).

Let s be a monovalent vertex of (I', 1), and a be the unique edge incident on it.
If Dy is a small disk centered in s, then (Ds N U,,u2) is a local coordinate at s,
holomorphically compatible with the other ones, and s becomes a first order pole
of wr-

Continuity can be sketched as follows. We associate to each edge’s retraction
a deformation whose dilation is controlled in function of edge’s length (as in
Theorem 5.2). d

Hurwitz spaces. From now on, we fix R = bC; + -+ + b,C; a degree b
ramification data of a finite group G. We first have to extend the ramified
covering H;, (G, R) — Mgy (,,...,} to a suitable compactification Hi (G, R).

Since every stable Riemann surface of M ¢/, {b1,....b;} 1 obtained by retraction
of some loops on a smooth Riemann surface of Mg 1, .. 5,3, we build elements
of Hy(G, R) from smooth ones in retracting some orbits of loops. The following
result is important since it gives the stability condition for actions of G on stable
Riemann surfaces.

PROPOSITION 6.4. Let [C, @] € Hj(G, R). Then the stabilizer G(L) of a loop L
is either cyclic or dihedral.

PrROOF. Assume that G(L) is non trivial. Then G(L) stabilizes a small part
of cylinder whose fundamental group is generated by L. Using uniformization,
we can choose C' biholomorphic to a regular ring {z € C: r < |z| < 1} so that
L becomes the circle of radius /r. Using uniformization again, the finite order
automorphisms of this ring stabilizing L are rotations of finite order, and the
symmetry z — /2. O

Note that rotations do not possess fixed points in the ring, and stabilizes each
part of this ring. On the contrary, the symmetry exchanges both parts and
possess two fixed points at diametrically opposite points of L. In fact, if G(L) =
D,, the dihedral group of order 2n, there is 2n fixed points on L. We assimilate
the case where G(L) is the cyclic group generated by the symmetry described
just upon to the case of dihedral stabilizers (thus we exclude this case when we
talk of cyclic stabilizer).

Hence, we cannot retract loops with dihedral stabilizers if we want to keep
constant the ramification data. The phenomenon of collision of ramification
points is also relevant in the context of algebraic geometry [5].

We can say something more in the case of cyclic stabilizers. Let C; and C5 be
the components attached by the node N, obtained by retraction of L. Denote
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by N;i (resp. N3) the corresponding ties, and by &; (resp. &) the privileged
generators of stabilizer G(N;) (resp. G(N2)) (here, the privileged generator has
the same meaning than in §2). Then & = & Yin G (just recall the description
of the neighborhood of a node).

DEFINITION 6.5. e An admissible symmetric subsurface decomposition D of
[C, @] € Hi(G, R) is a subsurface decomposition of C'— X (where X is the set
of fixed points), symmetric with respect to the holomorphic action of G, and
such that every curve of the decomposition does not intersect the set X. Such
a decomposition is called maximal if the quotient decomposition of C/¢(G)
is a pants decomposition.

e Let (C,ic) be a compact Riemann surface with nodes. An action ¢ : G —
homeo(C, i¢) is said to be stable if ¢(G) acts holomorphically on each com-
ponent, if the node stabilizers are all cyclic, with the preceding property on
stabilizers of ties, and if 2g; — 2+ F; + L; > 0 (L; is the cardinal of nodes on
the i-th component, F; is the cardinal of smooth fixed points).

e H,(G, R) is the set of equivalence classes of [(C,ic),¢] where (C,ic) is a
genus g compact Riemann surface with nodes, and ¢ is a stable action with
R(¢) = R. Two elements define the same class if they differ by a G-equivariant
homeomorphism which is biholomorphic on each component.

Then every element [C,¢] of Hj; (G, R) with nodes come from pinching curves
orbits of an admissible symmetric and maximal subsurface decomposition of a
smooth [Cy, ¢¢]. The condition 2g; — 2 + F; + L; > 0 correspond to the fact
that curves of the decomposition are not homotopic to a smooth point (fixed
or not). The cyclicity of node’s stabilizers corresponds to the fact that curves
of the decomposition do not contain any fixed point, since curves with dihedral
stabilizers contain fixed points.

With this definition, H;,(G,R) — My (5,,..s,) is a ramified covering, thus
Hn (G, R) is a compact space. The map is well-defined, because 2g; —2+ F; + L; =
|Gi|(2g; — 2+ f; + 1;) by Riemann-Hurwitz, where G; is the stabilizer of C;, f;
is the number of branch points (resp. ties) on C;/¢(G;).

Again, elements of H; (G, R) are well-described in terms of modular graphs
(F,g, P), equipped with a G-action. A map P from V(F) orbits to P({1,...,b})
gives the spreading of ramification data. We put (forgetting the multiplicities)
Rp(s) = 2iep(s) Ci-

Hypothesis of stability for the group actions on Riemann surfaces with nodes
impose conditions on modular graphs. Denote by G5 and G, the stabilizer of s €
V(F) and a € A(F), respectively. The groups G, are cyclic. We have excluded
elements 0 such that 6(a) = a, so that G, = G5 and G, — G40), Ga — Ga(1)-
Moreover, if we consider ties stabilizers, and a distinguished generator (which
acts on the tangent plane in multiplying by a fixed root of unity), then we can
assign to each oriented edge e this generator g., and gz = g.-1.
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Now Hy(G,R) = Ur,.p,Hncr(F, g, P, p) where (F,g, P, p) runs over iso-
morphism classes of decorated modular graphs of genus h with an action p : G —
Aut(F, g, P) with preceding properties, and such that R = ) Rp(s). The deco-
ration consists in assigning to each oriented edge e a generator g. of G, such that
gz = ge—1. The stratum Hp ¢ r(F, g, P, p) is made of all stable Riemann surfaces
with stable actions whose associated decorated modular graph is (F, g, P, p).

DEFINITION 6.6. H) (G, R) is the quotient of (G, R) by the closure of the
following equivalence relation: two elements are identified if they differ by an
equivariant homeomorphism which is biholomorphic only when restricted to com-
ponents with smooth fixed points.

Again, this means that we can retract edges in the modular graph, in fact, orbits
of edges joining vertices s with P(s) = &.
We now define the suitable extension H{°™P (G, R) of H°™P (G, R).

DEFINITION 6.7. An element of H{™P(G, R) of topological type (F,g, P, p) is
made as follows:

e Associate to each vertex s of F' with P(s) # &, a Riemannian fat-graph I'; of
genus ¢(s), with v, distinguished vertices, endowed with ¢, : G5 — Aut(T';),
quasifree, except for distinguished vertices, and such that R(p,) = Rp(s).

e A distinguished vertex v € V(T'y) given by an edge a incident on s has sta-
bilizer G,. Edges of F' yield the identification of distinguished vertices. If 6,
(resp. ) are the privileged generators of G, (resp. G;), then we ask that
0, = 605"

o If p(0)(s) = t, then ¢(f) : Ty — T'; must be an equivariant isometry if
P(s) # @.

As in the case of moduli spaces, these stable fat-graphs are all obtained by
retractions of edges, in fact retractions of orbits which do not contain any face,
or by equivariant retraction of subgraphs.

We obtain the analog of Theorem 6.3 in the case of Galois coverings.
THEOREM 6.8. There is an homeomorphism H;*™ (G, R) — H), (G, R) xP(R%,)

Proor. Fix a modular graph (F,g, P, p). Then we apply Theorem 4.8 compo-
nent by component, with the same discussion than for theorem 6.3. O

We define H(g, ¢’, G, K, R) as the coverings of stable Riemann surfaces got from
elements of H(g,¢’, G, K, R) by retraction of loops on the base (resp. orbits of
loops on the total space) which do not contain any branch points (resp. ramifi-
cation points). We could describe its elements by coverings of modular graphs.
Then H'(g,¢’, G, K, R) is the quotient by the closure of the equivalence relation
where coverings need to be holomorphic only on components with ramification
points.

Similarly, ﬁ;?;?b(G , K, R) is defined as coverings of stable fat-graphs obtained
by retraction on the base either of loops which do not bound any face or of
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subgraphs which do not contain any face, and by suitable retraction of fibers on
the total space.

END OF PROOF OF THEOREM 1.1. The action of Out(G, K, R) on H;(G, R)
extends on H) (G, R). For, a stable Riemann surface (with action of G) of
H,,(G, R) is obtained from a Riemann surface (with action of G) of Hy,(G, R) by
pinching some curves orbits of an admissible maximal and symmetric subsurface
decomposition (Definition 6.5).

Thus we have an homeomorphism from the quotient H}, (G, R)/Out(G, K, R)
to H'(g,9’, G, K, R). The map is surjective: an element (pg : 7o — Sp) comes
from a smooth (p; : T3 — S;) got from (Cy, ¢:) in Hp (G, R) (Proposition 2.11).
Then (po : To — Sp) is the image of (Cp, p). Similarly, the injectivity is deduced
from injectivity in the smooth case.

Now the same fact holds for combinatorial spaces, so that theorem 6.8 gives
Theorem 1.1. O

7. Moduli Spaces of Curves with Cyclic Group Actions

We now emphasize on Hurwitz spaces H,(Z/n, R), a special case of own inter-
est, due to their striking analogy with moduli space of curves with spin ([17] [27]).

Let G be a fixed finite group, together with a fixed ramification data R.
Consider the Hurwitz space H,(G, R), assumed to be non empty. Let [C,¢] €
Hy(G,R), and 7 : [C,¢] — S = C/p(G), the associated ramified covering.

Denote by O¢ the sheaf of holomorphic functions on C, and let 7.(O¢) the
image direct sheaf. This is a locally free sheaf of G-module, with dimension |G|.
If G denotes the set of the irreducible complex representations of G, x : G —
GL(Vy), then 7, (O¢) = EBXEG L, ®V,, where L, is the y-isotopic subbundle,
with rank deg(x) = dim(V,), and V), is the constant bundle with fiber V.

Assume now that G is the cyclic group Z/n. We refer to the example 1 in § 2.
Put £ = exp(2im/n) and o = ¢([1]). Then 7.(O¢) = @371 Ly, where Ly, is the
line bundle of holomorphic germs corresponding to the eigenvalue £*. We have
Lo = Og.

Describing the image of LY™ < L involves the ramification data R(p). More
precisely, we have:

PropoOSITION 7.1. If G = Z/n, and R = Z}{[mi] with [m;] # [my] for i # j,
then LY™ = Og(— Zl{ mix;).

ProoF. We study the line bundle L; in a neighborhood U of a branch point
Q. We refer to the notations of example 1 in §2. Let us drop the index 7. Set
d = (m,n), e = n/d, and k = m/d. By definition, m,(Oc)(U) = Oc(r~*(U)).
Since 7 is a covering, we choose 7~ }(U) = [I;Vj. Let {P1,...,Ps1} be the
fiber over ), and z; a local coordinate at P; with Z;(P;) = 0 and such that
(Pj,zj) = 07(Py, 20). Take also a local coordinate u at @ such that u(Q) = 0

and u = z;
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Furthermore, we have o%?(zy) = ¢9(z), or 0%(z9) = &%z if v denotes the
inverse of £ modulo e.

Extend each z; on [[ Vi by z; =0 on V; if k # j. We have to decompose in
proper subspaces the space of holomorphic germs defined on [ V.

We use the notation (ik) for ik modulo e.

Recall that the function X; = zéik) + f_izfm +F f_(d_l)izfli_ki is a frame
of L; and (X;)icqo,... n—1} is a frame of 7.(O¢).

Then for ¢ = 1, we have X; = zg ekt ff(dfl)zfj_l, and X{ =
BP9k 4 4 e @0iF  (since zj = 0 on Vj, for k # j, products zjz;
are zero).

Set jk = [jk/ele + (jk), with [jk/e] the integral part of jk modulo e; then we
obtain X7 = X; x ul/*/l %), and in particular X} = u™. O

Moduli spaces of genus g and b-pointed curves with data (n, (m;);c1,..p}) are
defined to be equivalence classes of couples made of a Riemann surface S and of
a line bundle L on S satisfying L®™ = K(— Y m;z;), where K is the canonical
line bundle. As a corollary, if the quotient surfaces are punctured torus, then the
Hurwitz space Hy(Z/n, R) is isomorphic to a moduli space of genus one curves
with spin.

But the main point in the striking analogy in any genus between both spaces,
for example by restriction to a subgroup, or considering the behavior of their
compactification.

To emphasize, we conclude by a remark (without proof) on the analogy be-
tween the compactification of Hurwitz spaces described here, and compactifica-
tions of moduli space of curves with spins defined in [27] and [17].

The boundary of the compactification of H4(Z/n, R) divides into two parts,
depending on locally freeness of a n-th root L of O(— >  m;x;) at a node. The
case where L is locally free (resp. non locally free) at a node g corresponds to
the case where every node in the preimage of ¢ by a stable covering has trivial
(resp. non trivial) stabilizer.

These parts should be called Ramond-Ramond and Neveu-Schwarz, as in
reference [27].
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