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Introduction

This volume is the outcome of the MSRI special semester on Galois Groups
and Fundamental Groups, held in the fall of 1999. Respecting the famous Greek
requirements of unity of place, time, and action, the semester was an unfor-
gettable, four-month-long occasion for all mathematicians interested in and re-
sponsible for the developments of the connections between Galois theory and the
theory of fundamental groups of curves, varieties, schemes and stacks to interact,
via a multitude of conferences, lectures and conversations.

Classical Galois theory has developed a number of extensions and rami�ca-
tions into more speci�c theories, which combine it with other areas of mathe-
matics or restate its main problems in di�erent situations. Three of the most
important of these extensions are geometric Galois theory, di�erential Galois
theory, and Lie Galois theory, all of which have undergone very rapid develop-
ment in recent years. Each of these theories can be developed in characteristic
zero, over the �eld C of complex numbers, over number �elds or p-adic �elds,
or in characteristic p > 0; various versions of the classical and inverse Galois
problems can be posed in each situation. The purpose of this introduction is to
give a brief overview of these three themes, which form the framework for all the
articles contained in this book.

The main focus of study of geometric Galois theory is the theory of curves
and the many objects associated to them: curves with marked points, their �elds
of moduli and their fundamental groups, covers of curves with their rami�cation
information and their �elds of moduli, and the �nite quotients of the fundamental
group which are the Galois groups of the covers, as well as the moduli spaces
and Hurwitz spaces which parametrize all these objects.

To consider a curve X topologically is tantamount to considering it over the
�eld of complex numbers C. As an abstract group, the topological fundamental
group of the curve depends only on the genus g and the number n of marked
points chosen on the curve; it can be identi�ed with the group of homotopy
classes of loops on the curve based at a �xed (not marked) base point, and is
presented by standard generators a1, . . . , ag, b1, . . . , bg, c1, . . . , cn subject to the
unique relation

[a1, b1] · · · [ag, bg]c1 · · · cn = 1. (∗)
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Note that when n ≥ 1, this group is actually free. The Galois covers of the curve
correspond to the �nite quotients of this group, which are exactly the �nite
groups generated by generators ai, bi and cj satisfying (∗), so they are perfectly
understood. The algebraic fundamental group of the curve is the Galois group of
the compositum of all function �elds of �nite étale covers of the curve over the
function �eld of the curve itself; in fact, it is exactly the pro�nite limit of the
�nite quotients of the topological fundamental group.

This simple situation leads or generalizes very naturally into new regions that
contain all kinds of very di�cult problems. We sketch some of them:

1. Fundamental groups in characteristic p. When a curve X is de�ned
over a �eld in characteristic p, all relations between its fundamental group and
any topological notion of `loops' must be forgotten. Over an algebraically closed
�eld, one de�nes the algebraic fundamental group directly, exactly as above; it is
the pro�nite limit of the Galois groups (monodromy groups) of �nite étale covers
of the curve. However, in this situation, for (g, n) di�erent from (0, 0) and (1, 0),
it is extremely di�cult to determine the structure of the fundamental group,
or even the weaker question of which �nite groups can occur as its quotients.
Indeed, this is one of the fundamental problems of geometric Galois theory in
characteristic p. In the a�ne case (n ≥ 1), the complete solution to the weaker
problem was conjectured by Abhyankar; this conjecture was proved over the
a�ne line by M. Raynaud, and the proof extended to all curves by D. Harbater.
However, the situation remains completely mysterious in the case of complete
curves (n = 0, g > 1).

Things are better if one considers only the quotients of order prime to p; then
a result due to Grothendieck states that the groups of order prime to p which
can occur are exactly the �nite quotients of order prime to p of the topological
fundamental group of type (g, n) de�ned in (∗), and that in fact the prime-
to-p quotients of the fundamental groups over C and in characteristic p are
isomorphic. In characteristic p, this group is a quotient of the tame fundamental
group, which is the largest quotient of the fundamental group having inertia
subgroups of order prime to p; this group (which is equal to the fundamental
group when n = 0) is easier to work with than the full group for various purposes.
But the structure of the tame fundamental group and the set of its �nite quotients
are absolutely unknown, except in the non-hyperbolic cases (g, n) = (0, 0), (0, 1),
(0, 2) and (1, 0).

The articles by R. Guralnick, A. Tamagawa, and F. Pop and M. Saïdi all
work in the situation of curves de�ned over an algebraically closed �eld of char-
acteristic p. Guralnick works on the problem of determining which groups can
occur as Galois groups (or their composition factors) of �nite separable covers
f : Y → X, where Y is of �xed genus g, and seeks groups which can specif-
ically be excluded. Tamagawa shows that given the tame fundamental group,
it is possible to recover the type (g, n) of the curve (if (g, n) 6= (0, 0) or (0, 1)).
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Results in this and other papers by Tamagawa even tend to imply that in some
cases, the tame fundamental group may determine the isomorphism class of the
curve completely. This shows how di�erent the characteristic p case is from the
characteristic 0 case, in which as we saw, curves of many di�erent types may
have isomorphic fundamental groups (for instance, the fundamental groups of
curves of type (2, 2) and (1, 4) are both free of rank 5). Finally, Pop and Saïdi
address similar questions, proving, under certain hypotheses on the Jacobians,
that at most a �nite number of curves can have isomorphic fundamental groups.

2. Anabelian theory. We saw above that the isomorphism class of the topo-
logical or the algebraic fundamental group is very far from determining even
the most basic information about a curve in characteristic 0, such as its type
(g, n), whereas in characteristic p it determines much more if not all of the in-
formation about the speci�c curve. However, one can also consider the algebraic
fundamental group equipped with its canonical outer Galois action, which should
provide more information. Indeed, any variety (scheme, stack) de�ned over an
algebraically closed �eld can actually be considered as de�ned over a sub�eld K,
given by the coe�cients of the equations of a de�ning model, say, and which is
�nitely generated over the prime �eld and not algebraically closed. Then there
is an exact sequence

1 → π1(X ⊗K) → π1(X) → Gal(K/K) → 1, (∗∗)
where π1(X⊗K) denotes the algebraic fundamental group. The anabelian prob-
lem, which was posed by Grothendieck in his famous letter to G. Faltings, asks
which varieties are entirely determined by the group π1(X⊗K) together with the
action Gal(K/K) → Out(π1(X ⊗K)). Grothendieck called varieties which are
thus determined anabelian varieties, and explicitly stated that hyperbolic curves
should be anabelian. This is related to the hitherto unproven section conjecture
for a hyperbolic curve X, which states that the sections

Gal(K/K) → π1(X)

of (∗∗) are in bijection with the rational points of X if X is complete, and this
set together with the tangential base points if X is not complete.

S. Mochizuki proved that hyperbolic curves de�ned over sub-p-adic �elds,
that is, �elds which are sub�elds of �elds �nitely generated over the p-adics,
are indeed anabelian. In his article in this volume, he discusses various results
related to this theorem, including a partial generalization to characteristic p and
a discussion of the section conjecture over the �eld of real numbers.

3. Galois action on fundamental groups. In his Esquisse d'un Programme,
completing the letter to Faltings, Grothendieck suggested that not only hyper-
bolic curves, but also the moduli spaces Mg,n of curves of type (g, n) should be
examples of anabelian varieties, and that explicitly investigating the Galois ac-
tion on their fundamental groups should provide information of an entirely new
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type about the elements of Gal(Q/Q); this is known as Grothendieck-Teichmüller
theory. The �rst non-trivial moduli space Mg,n is the case (g, n) = (0, 4); we
have M0,4 = P1 − {0, 1,∞}. Following the direction initiated by Grothendieck,
the Galois action on the fundamental group of this space (the pro�nite free group
F̂2 on two generators) has been studied in a theory known as dessins d'enfants.
The study has focused on coding the conjugacy classes of �nite index subgroups
of π̂1(P1 − {0, 1,∞}), corresponding to the �nite étale covers of P1 − {0, 1,∞},
as combinatorial objects (the dessins d'enfants), and using the combinatorics to
look for invariants identifying the Galois orbits of these covers.

The only other moduli space of dimension 1 is M1,1, the moduli space of
elliptic curves (genus one curves with one distinguished point). This space is
the quotient of the Poincaré upper half-plane by the proper and discontinuous
(but not free) action of SL2(Z). Finite-index subgroups of SL2(Z) correspond to
covers of M1,1. As in the case of M0,4, many speci�c families of these subgroups
have been studied in detail, most familiarly the modular subgroups Γ(N). Using
graphs in the spirit of the theory of dessins d'enfants, F. Bogomolov and Y.
Tschinkel characterize another family of very special �nite-index subgroups of
SL2(Z), namely those corresponding to elliptic �brations.

Before passing from these two curves to what can be said in the case of general
moduli spaces Mg,n, let us make a brief foray out of the geometric situation into
the domain of Lie Galois theory, a subject that originates in the geometric
situation but has been linearized by focusing on graded Lie algebras associated
to the pro�nite fundamental groups rather than the groups themselves. A great
deal of work has been done in this subject, mainly by Y. Ihara and his school,
but we restrict ourselves here to discussing one conjecture which is a paradigm
for the manner in which the problems in the domain arise in geometry, but raise
their own interesting arithmetic questions.

Since as above, we have π1(P1−{0, 1,∞}) ' F̂2, the exact sequence (∗∗) gives
a canonical homomorphism

GQ → Out(F̂2). (∗∗∗)
As an initial step, the passage from the geometric situation to the Lie situation
involves replacing the pro�nite completions of fundamental groups by their pro-`
completions, that is, the completions with respect to all �nite quotients which
are `-groups for a �xed prime `. Denote the pro-` completion of F2 by F

(`)
2 . This

completion is a quotient of the pro�nite completion by a characteristic subgroup,
so that (∗∗∗) yields a homomorphism GQ → Out(F (`)

2 ). Following Ihara, de�ne
a �ltration on GQ by setting

ImGQ = Ker{GQ → Out(F (`)
2 /Lm+1)}

where Lm denotes the m-th term of the lower central series of F
(`)
2 , and set

GrmGQ = ImGQ/Im+1GQ .



INTRODUCTION xiii

The following conjecture on the structure of the graded Lie algebra associated
to the �ltration ImGQ was stated (in fuller detail) by Ihara, who attributed it
to Deligne.

Conjecture. The Lie algebra
[ ⊕

m>0

GrmGQ

]
⊗Q`

is freely generated by generators s3, s5, s7, . . ., where sm ∈ GrmGQ is the so-called
Soulé element .

Part of this conjecture, namely the fact that the Lie algebra is actually gener-
ated by the si, was proved by Hain and Matsumoto. In their contribution to
this volume, they discuss the conjecture and show how to �t it into a motivic
framework.

Now let's return to the situation of geometry and consider the (conjecturally
anabelian) moduli spaces Mg,n. The geometry of these spaces has been described
by explicitly cutting them into simply connected regions called cells, enumerated
by objects known as fatgraphs, which are in fact equivalent to dessins d'enfant.
The Hurwitz spaces are similar to the moduli spaces, but they parametrize equiv-
alence classes of rami�ed coverings of Riemann surfaces, where two such coverings
f : Y → X and f ′ : Y ′ → X ′ are equivalent if a diagram

Y
f //

φ

²²

X

ψ

²²
Y ′ f ′ // X ′

commutes for two biholomorphisms φ and ψ. A cellulation of the compacti�-
cation of these spaces, analogous to that of the moduli spaces, is de�ned and
studied in the article by M. Imbert.

The Hurwitz spaces are closely related to special loci in the moduli spaces,
namely the loci of points in the moduli spaces corresponding to marked Rie-
mann surfaces admitting a particular group of automorphisms. The article by
L. Schneps studies these loci, showing that under certain conditions (which are
always ful�lled in genus zero), the special loci are themselves moduli spaces
of smaller type. The morphisms mapping these smaller moduli spaces to the
special loci of the larger ones are respected by the canonical Galois action on
the fundamental groups of the moduli spaces, so that the addition of these mor-
phisms to those previously studied in Grothendieck-Teichmüller theory adds new
combinatorial information on the elements of Gal(Q/Q).

4. Inverse Galois theory. One of the most fundamental problems of Galois
theory is that of determining which �nite groups can occur as Galois groups over
a given �eld K. This problem has been studied in many di�erent situations and
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by many di�erent methods; by various direct methods, by explicit computation
and solution of obstructions to embedding problems, and by geometry. The
geometry comes in when studying a �eld of the type K(t) for an indeterminate
t, and the main tools are curves, since the desired groups are exactly the Galois
groups of covers of the projective line over K.

When K = C, the inverse Galois problem is solved by Riemann's existence
theorem; every �nite group occurs. Although no completely general analog to
Riemann's existence theorem exists over arbitrary �elds, many partial analogs
have been developed in di�erent situations. The key notion is that of patching;
covers are constructed locally over disks, and the pieces are patched together
(agree) on the overlaps. Like the theories described above, the inverse Galois
problem exists in characteristic 0 and p > 0, necessitating the use of di�erent
techniques. Patching techniques have been developed using formal schemes (for-
mal patching) and non-archimedean disks (rigid patching) which yield partial or
complete solutions to the inverse Galois problem over many di�erent �elds (large
or algebraically closed �elds of any characteristic, fraction �elds of complete lo-
cal rings other than �elds, complete �elds, henselian �elds, and so on). In fact,
one can obtain stronger results, such as speci�c information on the structure of
the fundamental group for a�ne curves; in certain cases, it can even be shown
that the fundamental group is free, or that it has the property that every split
embedding problem has a proper solution. The contribution by D. Harbater
contains a comprehensive account of all these methods and results.

The domain of di�erential Galois theory is an adaptation of the classical
inverse Galois problem; instead of considering �nite groups as Galois groups
of Galois extensions of arbitrary �elds, one considers linear algebraic groups
as Galois groups of so-called Picard-Vessiot extensions of D-�elds, which are
�elds F equipped with a derivation ∂ : F → F . Over algebraically closed �elds
of characteristic 0, this problem has been completely solved by the combined
results of Ramis, Mitschi, Singer, van der Put and �nally Hartmann; any linear
algebraic group over such a �eld is the di�erential Galois group of a Picard-
Vessiot extension. In their contribution to this volume, Matzat and van der Put
develop a non-obvious analog of these results in the characteristic p situation;
they introduce iterated di�erential �elds and give a complete formulation and
solution to the inverse Galois problem over them.

Leila Schneps
Paris, November 2002


