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Constructive Differential Galois Theory
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ABsTrRACT. We survey some constructive aspects of differential Galois the-
ory and indicate some analogies between ordinary Galois theory and differ-
ential Galois theory in characteristic zero and nonzero.
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INTRODUCTION

The aim of this article is to survey some constructive aspects of differential
Galois theory and to indicate some analogies between ordinary Galois theory
and differential Galois theory in characteristic zero and nonzero. We hope it
may serve as an appetizer for people who work in ordinary Galois theory but are
not familiar with the differential analogue.

In the first part we start with a constructive foundation of the Picard—Vessiot
theory in characteristic zero mimicking Kronecker’s construction of root fields.
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This leads to a smallest differential field extension (with no new constants) con-
taining a full system of solutions of a (system of) linear differential equation(s)
with a linear algebraic group as differential Galois group. Then we explain the
Galois correspondence between the intermediate differential fields of a Picard-
Vessiot extension and the Zariski closed subgroups of the differential Galois
group. On the way we deal with the question of solvability by elementary func-
tions, comparable to the question of solvability by radicals in ordinary Galois
theory. In Chapter 3 we describe the link between the differential Galois group
and the monodromy group over the complex numbers generalizing the effective
version of Riemann’s existence theorem used in (ordinary) inverse Galois theory
[MM]. Further we recall the solution of the inverse differential Galois problem
over C in the case of monodromy groups (Riemann—Hilbert problem) given by
Plemelj (1908) and its completion by Tretkoff and Tretkoff [TT] for differential
Galois groups. Finally in Chapter 4 we outline the constructive solution of the
inverse problem for connected groups over general algebraically closed fields of
characteristic 0 recently given by Mitschi and Singer [MS].

In the second part we develop a Picard—Vessiot theory in positive character-
istic. For this purpose ordinary derivations —these cause new constants in any
nonalgebraic extension —are replaced by a family of higher derivations, called
iterative derivations in the original paper of Hasse and Schmidt [HS]. They have
already been used earlier by Okugawa [Oku] to outline a Picard—Vessiot theory
in characteristic p > 0. Here we follow a new approach developed in [MP] based
on the study of iterative differential modules (ID-modules) and corresponding
projective systems. This allows us to construct (iterative) Picard—Vessiot ex-
tensions in the same formal way as in characteristic 0. We again obtain as ID-
Galois groups reduced linear algebraic groups defined over the field of constants
and we establish a Galois correspondence between the intermediate ID-fields of
a Picard—Vessiot extension and the reduced closed subgroups of the correspond-
ing ID-Galois group. In Chapter 7 we determine the structure of ID-modules
and ID-Galois groups over local fields—these are trigonalizable extensions of
connected solvable groups by finite local Galois groups —and solve the inverse
problem for these groups. Finally in Chapter 8 we solve the inverse problem of
differential Galois theory over global fields of positive characteristic and prove
an analogue of the Abhyankar conjecture for differential Galois extensions.

The main sources (sometimes used without a reference) are the introductory
texts of Magid [Mag] and the second author [Put2] for the classical part, for
the modular part there are the research paper [MP] combined with the notes
[Mat]. Different approaches for differential equations in positive characteristic
have been developed, for example, by Katz [Kat2] and André [And].
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CLASSICAL THEORY

1. Linear Differential Equations

1.1. Derivations. In this first section we collect some well-known facts on
derivations and differential rings. The proofs can be found, for example, in [Jac],
Chapter 8.15.

Let R be a commutative ring (always with unit element). A map 0 : R — R
is called a derivation of R if

d(a+b)=09(a)+9(b) and O9(a-b)=093(a)b+ ad(b)

for all a,b € R. An element ¢ € R with 9(c) = 0 is a differential constant. The

set of differential constants forms a ring denoted here by C(R). Further a ring

R together with a derivation 0 of R is called a differential ring (D-ring) (R, 0).
From the definition we immediately obtain the formulas

0(%) = biz(a(a)b —ad(®)  incase b e R, (1-1)
0% (ab) = > (f) 9'(a)d (b) (1-2)
it+j=k

for a,b € R and 4,5,k € N.

Now let (R,0r) and (S5,0s) be two D-rings. Then a ring homomorphism
¢ € Hom(R,S) is called a differential homomorphism (D-homomorphism) if
wodr = Jg o p. The set of all D-homomorphisms is denoted by Homp (R, 5).
An ideal A of R with Or(A) C A is called a differential ideal (D-ideal). Tt can
be shown that in case R is a Ritt algebra, i.e., Q@ < R, the nil radical of any
D-ideal again is a D-ideal. A corresponding statement does not hold anymore in
positive characteristic (see [Kap], 1.4).

If (R,0r) is a D-ring and S C R a multiplicatively closed subset with 0 ¢ S
we have a canonical map g : R — S™!R from R into the quotient ring S~ R.
Then by (1-1) there exists a uniquely determined derivation dg-1x of S™1R such
that 0g-1p 0 Ag = Ag 0 Og. In particular, if R is an integral domain, Jr can be
extended uniquely to its quotient field F' = Quot(R). A field F with derivation
O 1is called a differential field (D-field).
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Finally, let E/F be a finitely generated separable field extension of a D-field
(F, Or) with separating transcendence basis x1, ..., x,. Then for all y1,...,y, €
E there exists exactly one extension 0g of r on E with dg(z;) = y; for all i.
In particular, an extension of dr to a separably algebraic field extension E/F
always exists and is unique.

1.2. Linear differential operators. From now on, (F,0r) denotes a D-field
of characteristic 0. Then ¢ := ZZ:O a0 with ar, € F and a,, # 0 is called a
linear differential operator of degree deg(¢) = n over F (D-operator) and F[0]
is the (noncommutative) ring of linear differential operators over F. Now let
(E,0g) be a D-field extension of F. Then an element y € E is called a solution
of £ if y is a solution of the homogeneous linear differential equation

) =Y ard(y) = 0. (1-3)
k=0

The set of all solutions of ¢ in E forms a vector space over the field of constants
C(E) of E and is named the solution space Vg (¢) of ¢ in E.

PROPOSITION 1.1. Let (F,0r) be a D-field of characteristic 0 and ¢ € F[0] a
D-operator. Then for all D-field extensions (E,0g) > (F,0r) the solution space
VE(L) of £ is a vector space over C(E) with dime(gy(Ve(£)) < deg(¥).

The proof of Proposition 1.1 relies on the fact that the Wronskian determinant

WI(Y1, -5 Yn) = det(ai_l(yj))ﬁjd (1-4)

of linearly independent elements y; € E over C(F) is different from zero (see
[Mag], Theorem 2.9).

In the special case of equality in Proposition 1.1, Vg(£) is called a complete
solution space. The first fundamental question now concerns the existence of a
D-field extension E/F such that Vg () is a complete solution space. However,
before answering this question we want to study some preliminary examples and
to introduce a slightly more general setting.

For the examples let F = C(t) be the field of rational functions over the
complex numbers C with derivation 8 = 0; := d/dt and E > F the field of
analytic functions.

EXAMPLE 1.2.1. Take ¢ = 0' —a € F[9] with a € C*. Then {(y) = 0 if
d(y) = ay. Therefore the solution space is given by Vg(¢) = C - exp(at) and
every nontrivial solution is transcendental over F.

EXAMPLE 1.2.2. In the case { = 0' — -1 with n € N any solution of £ in E
belongs to Vg (¢) = C ¥/t and therefore is algebraic over F.

ExamMPLE 1.2.3. A solution of the inhomogeneous differential equation d(y) =
f € F* is also a solution of the degree 2 homogeneous differential equation
y) = 9*(y) — f~O(f)0(y) = 0. The solution space of the latter consists of
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Ve(l) = C & Cg where g = [ fdt denotes a solution of the inhomogeneous
equation. This may be an element of F' as for f = 1 or transcendental over F' as
for f = 1.

t

These examples show that solutions and solution spaces of linear differential
equations may algebraically behave very differently.

1.3. Systems of linear differential equations. Any solution y € F of
¢ € F[0] leads to a solution y = (y,d'(y),...,0" " (y))* € E™ of the matrix
differential equation

0o 1 0 - 0
y) = Agy, where Ag=| : . . . 0 X,
Cap e e —aye —ayy

and vice versa. Now we start with an arbitrary A € F™*™ and define the solution
space of A to be

Ve(A) ={y € E" | d(y) = Ay}.

This again is a vector space over the constant field of F of dimension less than
or equal to n.

Two matrices A and B € F™*™ are called differentially equivalent, or D-equiv-
alent, if every solution z € Vg(B) can be transformed into a solution y € Vg (A)
by a matrix C € GL,(F), i.e., if Vg(A4) = CVg(B). The latter is equivalent to
the matrix identity B = C~1AC — C~19(C).

Assume for a moment that A € F™*™ admits a complete solution space over
some D-field extension E > F, i.e., there exists a matrix ¥ € GL,(FE) with
Og(Y) = AY. Such a matrix is called a fundamental solution matriz of the
system of differential equations d(y) = Ay over E. If Y,Y € GL,(E) are two
fundamental solution matrices for the same A, then it is easy to verify that
these can only differ by a matrix C € GL,(C(FE)), i.e., Y = YC. Using this
information, one obtains the following partial converse of the statement above.

PROPOSITION 1.2. Let (F,0) be a nontrivial D-field of characteristic 0 and
A € F"*"™ Assume that there exists a D-field extension E/F such that the
matrix differential equation defined by A has a complete solution space over E.
Then A is D-equivalent to a matriz Ay € F"*" defined by a linear differential
operator £ € F[0)].

A proof of Proposition 1.2 is presented in [Katl]. In Section 2.1 we will see that
the assumption on the existence of a fundamental solution matrix over some
extension field is superfluous.
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1.4. Differential modules. Another very common way to describe linear
differential equations are differential modules. A differential module or D-module
for short is a module M over a D-ring (R, Or) together with a map 9y : M — M
with the properties

Om(x+y)=0m(x)+0u(y) and On(ax)=0r(a)x+adu(x) (1-5)
for x,y € M and a € R. The solution space of M is defined by
V(M) ={x€ M| dy(x)=0}

M is called a trivial D-module if M = V(M) ®c(ry R. In case (M,0y) and
(N,0n) are two D-modules over R, an element ¢ € Hompg(M,N) is called a
differential homomorphism (D-homomorphism) if ¢ o 0y = Oy o . Obviously
the D-modules over R together with the D-homomorphisms form an abelian
category denoted by DModpg.

Now assume that R is a D-field F' with field of constants K. Then it is easy to
verify that DModr with the tensor product over F' becomes a tensor category
over K. Here the tensor product M ®r N is provided with the derivation

OMgNn(x®yYy)=0u(x)y +x®JIn(y) (1-6)
and the dual vector space M* = Hom(M, F') with
(Onr- () (%) = Or (f (%)) = f(On(x)) (1-7)

for x € M,y € N and f € M*. Then (F,0r) is the unit element of DMod g
with Endpmoed, (F,Or) = K. If in addition K is algebraically closed, DMod g
even forms a Tannakian category using the forgetful functor

Q:DModF—>VectF, (M,a]w) — M

from the category DModr into the category of vector spaces over F' (see [Del]).
However, this will not be used in the sequel.

The link between D-modules and systems of linear differential equations is
given in the following way. Let M = &, _, b;F be a finite-dimensional D-
module over F' with basis {by,...,b,}. Then by (1-5) the action of 9 is uniquely
determined by

8M(bj) = Zbial—j with a;; € F. (1*8)
i=1
Thus for Y. | b;y; = By € M with B=(bs,...,b,) and y=(y1,...,yn) € F"
the two statements
By e V(M) and 0p(y) = —Ay
where A = (a;;) € F™*" are equivalent because of

Oy (By) = 0y (B)y + Bor(y) = B(Ay + 0r(y)).
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Therefore a D-module M with representing matrix A € F™*™ of J); leads to a
system of linear differential equations over F' with matrix —A. In particular, the
solution space V(M) of M coincides with V' (A) and thus is a vector space over
K with dimg (V(M)) < dimp(M).

2. Picard—Vessiot Extensions

2.1. Picard—Vessiot rings and fields. Now we are coming back to the
questions raised in Section 1.2: For a linear differential equation 0(y) = Ay over
a D-field F' of characteristic 0 with (algebraically closed) field of constants K|
does there always exist a D-field E with dimg (V(M ®p E)) = dimg(M ®p E)?
(The latter number equals dimp(M).) For this purpose we define a Picard—
Vessiot ring (PV-ring) R for A to be a differential ring (R,0r) > (F,dr) with
the following properties:

(2-1) R is a simple D-ring, i.e., R only contains trivial D-ideals.

(2-2) There exists a fundamental solution matrix over R, i.e., there exists a
Y € GL,,(R) such that 0r(Y)=A-Y.

(2-3) Ris generated over F by the coefficients y;; of Y = (y;;)};—; and det(Y)~".

It is easy to verify that a finitely generated simple D-ring is always an integral
domain and that R and even Quot(R) do not contain new constants. The next
proposition is basic for all that follows.

PrROPOSITION 2.1. Let (F,0r) be a D-field with algebraically closed field of
constants K of characteristic 0 and A € F™*™. Then for the differential equation
O(y) = Ay there exists a Picard—Vessiot ring (R,0r) over F and it is unique up
to D-isomorphism.

The construction of R is similar to Kronecker’s construction of root fields in
the case of polynomial equations. Let X = (z;;);—; be a matrix with over
F' algebraically independent elements x;;. Then by Section 1.1 we can extend
Or uniquely to F[xijmj=1 by 0u(X) = A- X, ie., Ou(xij) = Y p_; GikZkj, and
to U := F[GLy] = Flzj,det(zi;) ']} ;=;. Then (U,dy) is a D-ring over F. By
Zorn’s Lemma there exists a maximal D-ideal P<U. The quotient R := U/Pis a
simple D-ring containing a fundamental solution matrix Y := kp(X), where xp
denotes the canonical map kp : U — R = U/P. Obviously, R is generated over F'
by the coefficients y;; of Y and by det(Y) ™! such that by definition R is a Picard—
Vessiot ring. It finally remains to be checked that two PV-rings belonging to the
same matrix A are D-isomorphic. This can be done by elementary computations
(see [Put2], Proposition 3.4).

The quotient field E := Quot(R) of a PV-ring is called a Picard—Vessiot field
for A. It can be characterized without using R.
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PROPOSITION 2.2. Let F' and A € F™ ™ be as in Proposition 2.1 and let
(E,0g) > (F,0F) be a D-field extension. Then E/F is a Picard—Vessiot ex-
tension for A if and only if

(a) the constant fields of E and F coincide,
(b) there exists a Y € GL,(E) with O0g(Y) =AY,
(¢) E is generated over F' by the coefficients y;; of Y.

A proof is given in [Put2], Proposition 3.5. These characterizing properties
correspond to the classical definition of PV-fields (compare [Kap], III.11 and
[Mag], Definition 3.2).

2.2. The differential Galois group. As before, let R be a PV-ring and
E = Quot(R) a PV-field over a D-field F of characteristic 0 with algebraically
closed field of constants. Then an automorphism v of R/F or E/F, respectively,
is called a differential automorphism (D-automorphism) if doy = yod. The group
of all D-automorphisms is called the differential Galois group (D-Galois group)
of R/F or E/F, respectively, and is denoted by Galp(R/F) = Galp(E/F).

Since Galp (E/F) acts faithfully on the solution space Vg (A), it is a subgroup
of GLy,(K). It can be characterized in the following way.

PROPOSITION 2.3. Let F be a D-field of characteristic 0 with algebraically closed
field of constants and let R/F be a PV-ring for A € F™" with fundamental
solution matriz Y = (y;;) € GL,(R). Then

Galp(R/F) ={C € GL,(K) | q(Y -C)=0 for all g € P}
where P denotes the annulator ideal
P ={q € F[GLy] | q(yi;) = 0}.

A proof can be found for example in [Mag], Corollary 4.10. Since P is finitely
generated, Galp(R/F') consists of the K-rational points of a Zariski closed sub-
group of GL,,(K) ([Eis|, Section 15.10.1) and therefore of a reduced linear alge-
braic group G over K. This already proves the first part of the next proposition.

PROPOSITION 2.4. Let F be a D-field of characteristic 0 with algebraically closed
field of constants K and E/F o PV-extension. Then there exists a reduced linear
algebraic group G over K with Galp(F/F) = G(K). In addition the fized field
E9) coincides with F.

The last statement follows from the fact that for each z € E\F a~y € Galp(E/F)
can be constructed that moves z (see [Put2], Proposition 3.6). Now we return
to our examples in Section 1.2. Again (F, ) denotes the D-field (C(t), O;).

EXAMPLE 2.2.1. Let £ = 0 —a € F[0] with a € C*. Then by Example 1.2.1 the
PV-field for ¢ is given by F = F(y) and Vg(¢) = Cy for y = exp(at). The D-
Galois group Galp(E/F) equals G,,(C) = GL;(C) since any ¢ € GL;(C) = C*
defines a D-automorphism because of d(cy) = cd(y).
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EXAMPLE 2.2.2. In the case { = 9 — -1 we obtain E = F(y) for y = {/t and

Galp (E/F) = C,, is the cyclic group of order n.

ExAMPLE 2.2.3. For £ = §? + 19 the PV-field E is F(y) with y = log(t) and
Ve() = C @ Cy. Because of (yod)(y) = + = d(y), for any v € Galp(E/F)
there exists a ¢ € C with y(y) = y + ¢. This proves Galp(E/F) = G4(C) = C.
2.3. Torsors and Kolchin’s Theorem. In order to prove a Galois corre-
spondence between the intermediate D-fields of a PV-extension E/F and the
Zariski closed subgroups of Galp(E/F) = G(K) we need a structural theorem
due to Kolchin which shows that after a finite field extension F/F a defining
PV-ring R inside £ becomes isomorphic to the coordinate ring of Gz = G x g F,
ie., R®p F = F[Gp]. This is a consequence of the fact that the affine scheme
X = Spec(R) over F is a Gpr-torsor or a principal homogeneous space for Gp,
respectively. This means that Gr acts on X" via

I XxpGr—X, (z,9)—z-g (2-4)
and in addition
IdxT: X xpGr > X xp X, (z,9) (z,z-9) (2-5)

is an isomorphism of affine schemes over F' (see [Put2], Section 6.2). Such a
torsor X is called a trivial Gp-torsor if X = G where the action is given by
the multiplication. The latter is equivalent to X (F') # @ where as usual X' (F)
denotes the set of F-rational points of X.

THEOREM 2.5 (D-TORSOR THEOREM). Let F' be a D-field of characteristic 0
with algebraically closed field of constants, A € F™*™ and R a PV-ring for A
over F. Further let G denote the reduced linear algebraic group over K with
G(K) = Galp(R/F) and G :== G xx F. Then Spec(R) is a Gp-torsor.

For the proof see for example [Put2], Section 6.2. Since the Gp-torsor Spec(R) be-
comes trivial after a finite field extension F'/F, the following version of Kolchin’s
theorem is an immediate consequence of the D-Torsor Theorem.

COROLLARY 2.6 (KOLCHIN). With the same assumptions as in Theorem 2.5,
and setting X := Spec(R):
(a) There exists a finite field extension F/F with X xp F = Gp xp F.

(b) X is smooth and connected over F'.
(¢) The degree of transcendence of Quot(R)/F equals dim(G) (over K).

2.4. The differential Galois correspondence. Now we are ready to explain
the differential Galois correspondence. This can be stated as follows:

THEOREM 2.7 (D-GALoIS CORRESPONDENCE). Let F' be a D-field of char-
acteristic 0 with algebraically closed field of constants K, A € F"*"™ and E a
PV-extension for A. Denote by G the reduced linear algebraic group over K with
G(K) = Galp(E/F). Then:
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(a) There exists an anti-isomorphism between the lattices
9 :={H(K) | H(K) < G(K) closed} and £:={L | F < L < E D-field}
given by
U:9H— L HK)— E"S and 971 ¢ - §, L Galp(E/L).

(b) If thereby H(K) is a normal subgroup, then L := E™) s q PV-extension
of F' with Galp(L/F) = G(K)/H(K).

(c) Denote by G° the identity component of G and F© := E9" ) Then F°/F
is a finite Galois extension with Galois group Galp(F°/F) = G(K)/G°(K).

Besides Proposition 2.4, for (a) we have to use that for all Zariski closed sub-
groups H < G the fixed field EM) is different from F. For the proof of this
fact as well as for the proof of (b) Kolchin’s theorem has to be used (compare
[Put2], Section 6.3).

As an application, we obtain a result comparable to the classical solution of
polynomial equations by radicals. To this end we define a PV-extension E/F to
be a Liouvillean extension if it contains a tower of intermediate D-fields

F=IKh<mh<..<F,=F WithFi:Fi_l(yqj)

and %y) € F;_1 or d(y;) € F;_1 or y; is algebraic over F;_;. Further a linear
algebréic group G is called virtually solvable or solvable-by-finite if the connected
component G° is a solvable group. Since in this case the composition factors of
GO are isomorphic either to G,, or to G, and D-Galois extensions of this type
can be generated by solutions of d(y) = fy or 9(y) = f with f € F we find from

Theorem 2.7:

COROLLARY 2.8. A PV-extension E/F is Liouvillean if and only if its D-Galois
group s virtually solvable.

For a more complete proof and further applications concerning integration in
finite terms see for example [Mag], Chapter 6. As in the polynomial case, linear
differential equations with non (virtually) solvable Galois groups exist. We want
to verify this statement with the Airy equation. For this purpose we first explain
an analogue of the square-discriminant criterion in ordinary Galois theory which
is useful to reduce D-Galois group considerations to unimodular groups.

PROPOSITION 2.9. Let F be a D-field of characteristic 0 with algebraically closed
field of constants K, { = Y_}'_,a,0% € F[J] a monic differential operator and
E/F a PV-extension defined by £ or Ay, respectively. Then the linear differential
equation over F

O(w) + ap—1w =0 (2-6)
has a solution w in E with the properties

(a) F(w)/F is a PV-extension with Galp(F(w)/F) < G, (K),
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(b) Galp(E/F(w)) = Galp(E/F) N SL,, (K).

For the proof let {y1,...,yn} denote a K-basis of Vg(¢). Then any y € Vg(¢)
satisifies
g(y) :Wr(yla"'vynay) ’Wr(yla-“ayn)il' (277)
In particular, for the first derivative of the Wronskian determinant w := wr(y;,
..,Yn) we obtain equation (2-6). Now any v € Galp(E/F) acts on the fun-
damental solution matrix ¥ = (0"~ '(y;))};=, of E/F via v(Y) = YC, with
C, € GL,(K) and on w via y(w) = wdet(C,). Hence w is left invariant by ~ if
and only if det(C,) = 1.

With the help of Proposition 2.9 we are able to compute the Galois group of
the Airy equation.

EXAMPLE 2.4.1. By Corollary 3.2 below the Airy equation 9*(y) = ty has no
algebraic solution over the D-field (F,0r) = (C(t),0:). Hence by Proposition
2.9 its Galois group G = G(C) is a connected closed subgroup of SLy(C). In case
G # SLy(C) the linear algebraic group G would be reducible and Vg(¢) would
contain a G-invariant line Cy. But then z := d(y)y !
G and therefore belong to F. Obviously no element z of F' = C(t) satisifies

Az) =y ' -0’y > =t—2"

would be invariant under

as can be seen from the reduced expression of z as a quotient of polynomials.

2.5. Characterization of PV-rings and PV-fields. The theorem of Kolchin
allows us to characterize the PV-ring R inside Quot(R).

ProproSITION 2.10. Let F be a D-field of characteristic 0 with algebraically
closed field of constants K and R a PV-ring over F with quotient field E and
Galois group G := Galp(R/F) = G(K). Then for z € E are equivalent:

(a) z € R, (b) dimg(K(Gz)) < o0, (¢) dimp(F(0"(2))ren) < o0.

Here K(Gz) denotes the K-vector space generated by the G-orbit of z and
F(0%(2))ren is the F-vector space generated by all derivatives 9%(z) of 2. The
critical step is the one from (a) to (b). By the D-Torsor Theorem we may, after a
finite extension, assume R = F[G]. Then the result follows from the fact that the
action of G(F) on F[G] is locally finite, i.e., F'[G] is a union of finite-dimensional
G-stable subspaces ([Spr], Proposition 2.3.6).

It is quite natural to call an element z € E with property (¢) in Proposi-
tion 2.10 differentially finite (D-finite). For such an element there exists, by
definition, a nonconstant linear differential operator £, € F[J] monic of mini-
mum degree with £.(z) = 0. We call £, a minimal differential operator of z.
Given a basis 21, ..., z, of K{Gz), it can be constructed by

Kz( )_ W]."(Zl,nwzn)

; (2-8)
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where wr denotes the Wronskian determinant defined in (1-4). In this notation,
Proposition 2.10 tells us that the PV-ring R is characterized inside a PV-field
E = Quot(R) as the ring of D-finite elements. In the particular case of fi-
nite D-extensions E/F the PV-ring R coincides with E. Another implication of
Proposition 2.10 is the following characterization of PV-fields.

THEOREM 2.11. Let F < E be D-fields of characteristic 0 with algebraically
closed field of constants. Then E is a PV-extension of F' if and only if

(a) E/F is finitely generated by D-finite elements,

(b) E and F share the same field of constants K,

(¢) for all D-finite z € E yields dimg (Vg (£.)) = deg(L,), where £, € F[0] is the
minimal D-operator of z.

An elementary proof is presented for example in [Put2], Proposition 6.11.

3. Monodromy and the Riemann—Hilbert Problem

3.1. Regular and singular points. Let F' = K(C) be the function field of a
smooth projective curve C over an algebraically closed field K of characteristic
zero with a nontrivial derivation Op. Then C(F) = K. Further for = € C the
completion of F' with respect to the valuation defined by z is denoted by F. It
is isomorphic to the field of Laurent series K((¢)) where t € F denotes a local
parameter at . Now let E/F be a PV-extension defined by A € F™*". Then
a point = € C is called a regular point for E/F if A is D-equivalent to a matrix
over F, without poles, i.e., there exists a matrix B € GL,,(F,) such that

B™'AB — B7'a(B) € K[t]™*". (3-1)

This property can also be characterized by having a fundamental solution matrix
over Fp, = K((t)) :

PROPOSITION 3.1. Let F = K(C) as above and A € F"*". Then x € C is a
regqular point for the PV-extension E/F defined by A if and only if the D-equation
O(y) = Ay possesses a fundamental solution matriz Y € GL,,(Fy).

This result immediately implies

COROLLARY 3.2. Let E/F be as in Proposition 3.1 with Galp(E/F) = G(K)
and let L be the fized field of G°(K). Then the finite Galois extension L/F is
unramified in all reqular points x € C for E/F.

In the particular case C = P* (projective line), the Galois group of a PV-extension
E/F with at most one non regular point is connected. This applies, for example,
to the Airy equation 9%(y) = ty in Example 2.4.1 since all finite points are
regular.
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Non regular points « € C for E/F are called singular points and the set of all
singular points is called the singular locus Sgp/p of E/F. A point x € Sg/p is
called tamely (weakly, regular) singular if there exists a B € GL,,(F;) such that

1
B™'AB-B'9(B) ¢ ZK[[t]]"xn, (3-2)

otherwise it is a wild (strong, singular) singularity. For tame singularities, an
even stronger characterization can be given.

PROPOSITION 3.3. Let F = K(C) as above, A € F"*" and E/F a PV-extension
defined by A. Then x € C is tamely singular if and only if there exists a B €
GL,(F,) and a constant matriz D € K™ " such that B"*AB—B~'0(B) = 1 D.

For a sketch of proof see for example [Put2], Exercise 7.

For later use we add a characterization of regular and tamely singular points
in the language of D-modules which immediately follows from the definitions
(3-1) and (3-2) above.

COROLLARY 3.4. Let (M,0) be a D-module over F = K(C), z € C, M, :=
M ®F Fy and let t € F be a local parameter for x such that F, = K((¢)).

(a) A point x € C is reqular if and only if M, contains a O-invariant K [t]-lattice.
(b) = € C is tamely singular if and only if M, contains a d-invariant K [t]-lattice
where § := t0.

3.2. The monodromy group. In the case of K = C the matrix B in Propo-
sition 3.3 can be chosen to have coeflicients in the subfield F°" < F, = K((t))
of convergent Laurent series (see [Put2], Exercise 7 or [For|, §11.12). This allows
us to analyze the local behaviour.

THEOREM 3.5. Let ' = C(C), A € F™" and E/F a PV-extension for A.
Assume x € C is a tame singularity and denote by t a local parameter at x.

(a) Then O(y) = Ay possesses a local fundamental solution matriz of the form
Y = Bexp(Clog(t)) with B € GL,,(F°™) and C € C"*".

(b) Via analytic continuation along a loop o around x we obtain o(Y) =Y - M,
with M, = exp(2miC).

For a proof see for example [For|, § 11. The matrix M, € GL,(C) is called a local
monodromy matriz and is determined inside GL,,(C) only up to conjugation.

In order to simplify the notation we now restrict ourselves to the projective
line C = P'(C). Then F = C(P') = C(t) is the field of rational functions
over C. Let S € P*(C) be a nonempty set of cardinality 1S = s < co and let
U :=P(C)\'S. Then the fundamental group of U with respect to a base point
zo € U is known to be

m(U;xg) = (01,...,05 |01 0, =1) (3-3)
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where the o; are loops starting from zy counterclockwise around the points z; € S
(compare [Ful], Chapter 19).

Applying Theorem 3.5 and analytic continuation we obtain a homomorphism
(the monodromy map)

w:m(U;x0) = GL,(C), o+~ M, (34)

where the image is called the monodromy group Mon(E/F) of E/F. Again
Mon(E/F) is only determined up to conjugacy inside GL,,(C).

Since M, € GL,(C) acts on the solution space Vg(A) spanned by the columns
of Y it induces an automorphism 7, of E/F compatible with the differentiation
on F. Consequently

v :Mon(E/F) — Galp(E/F), My — v, (3-5)

defines a homomorphism from Mon(E/F) to the D-Galois group of E/F, which
in fact is a monomorphism. This already gives the first part of the next theorem.

THEOREM 3.6. (a) Let F' = C(t) and E/F be a PV-extension. Then Mon(E/F)
is (isomorphic to) a subgroup of Galp(E/F).

(b) If in addition the singular locus Sp/p is tame, then Mon(E/F) is Zariski
dense in Galp(E/F).

The proof of (b) relies on the fact that systems of linear differential equations with
only tame singularities by Propositions 3.1 and 3.3 only admit locally meromor-
phic solutions and that meromorphic functions on P*(C) (fixed by Mon(E/F))
are rational ([For], Corollary 2.9).

In Example 2.4.1 of the Airy equation 9*(y) = ty we have Sg/p = {oo}.
Therefore 71 (P*(C) \ S) = 7 (AY(C)) = 1 and Mon(E/F) is trivial. But
Galp(E/F) = SLy(C), hence oo is a wild singularity.

3.3. The Riemann—Hilbert Problem. We have seen that in the case of a
tame singular locus the D-Galois group coincides with the Zariski closure of the
monodromy group. Therefore it is a fundamental question if every homomorphic
image of m (U;zo) already appears as the monodromy group of a linear system
of differential equations possibly even with only tame singularities. This prob-
lem is named the Riemann—-Hilbert problem for tame (regular) systems and is
number 21 among the famous Hilbert problems. A positive solution has already
been presented by Plemelj (1908) in the following form.

THEOREM 3.7 (PLEMELJ). For any finite set S = {x1,...,x,} CPY(C) and any
set of matrices M; € GL,(C) with [[]_, M; = 1 there ezists a tamely singular
system of linear D-equations O(y) = Ay over C(t) with monodromy matrices
M; = M,, around z;.

This theorem can be seen as a differential analogue and generalization of the
algebraic version of Riemann’s existence theorem (see for example [Voe|, Theo-
rem 2.13). A modern proof is given in [AB], Theorem 3.2.1. It relies on the
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theorem of Birkhoff and Grothendieck on the triviality of complex holomorphic
vector bundles. A simplified version for noncompact Riemann surfaces, for ex-
ample A'(C), can be found in [For|, §30 and §31. Here is an easy consequence
of Theorem 3.7:

COROLLARY 3.8. Ewery finitely generated subgroup G < GL,,(C) can be realized
as the monodromy group of a system of homogeneous linear differential equations
over C(t) with tame singular locus.

3.4. The inverse problem over the complex numbers. The solution
of the Riemann—Hilbert problem is also the main ingredient for the solution of
the inverse D-Galois problem over C(¢). Namely by Theorem 3.6 it is enough
to observe that all linear algebraic groups over C have finitely generated dense
subgroups. This final step of the solution of the inverse problem was settled by
Tretkoff and Tretkoff only in 1979.

PROPOSITION 3.9. Any Zariski closed subgroup of GL,,(C) possesses finitely
generated dense subgroups.

For the proof see [TT], Proposition 1. Together with Theorem 3.7, Proposi-
tion 3.9 solves the inverse D-Galois problem over C(t) even with tame singular-
ities.

THEOREM 3.10. FEvery linear algebraic group over C can be realized as a differ-
ential Galois group over C(t) with tame singular locus.

Unfortunately the above general solution of the inverse D-Galois problem over
C relies on nonconstructive topological and cohomological considerations. In
contrast to the case of finite groups it does not even carry over to algebraically
closed fields of constants different from C due to the lack of a D-analogue of
Grothendieck’s Specialization Theorem.

For connected groups the situation looks more pleasant. There is a new con-
structive solution of the inverse D-Galois problem due to Mitschi and Singer
which is valid for all D-fields with algebraically closed field of constants of char-
acteristic 0. This will be outlined in the next section.

Before that, however, we want to indicate a theorem of Ramis concerning
realizations with restricted singular locus.

THEOREM 3.11 (RAMIS). A linear algebraic group over C can be realized as a
differential Galois group over C(t) with at most one singular point if and only if
it is generated by its mazximal tori.

More generally a linear algebraic group G(C) over C can be realized as a D-Galois
group over C(t) with singular locus inside S if and only if the same is true for
the quotient by its maximal closed normal subgroup generated by tori. A proof
is elaborated in [Ram)].
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4. The Constructive Inverse Problem

4.1. The logarithmic derivative. As before, let (F,0r) be an arbitrary D-
field of characteristic 0 with algebraically closed field of constants K. Then the
F-algebra
D:=F[X]/(X)? = F+ Fe, wheree® =0,
is called the algebra of dual numbers over F. It has the advantage that the map
0:F—D, a—a+0r(a)e

defined by the non-multiplicative derivation Or is a K-homomorphism. For a
linear algebraic group G < GL,, r over F' the Lie algebra of G can be defined to
be the F-vector space

Liep(G) :={A € F"*" |1+ eA € G(Fle])}
provided with the Lie bracket
[,-] : Liep(G) x Lier(G) — Lier(G), (A,B)+— [A,B]:= AB — BA.

It can be shown that in fact the Lie algebra as defined above is isomorphic to
the tangent space of G at the unit point and therefore only depends on G and
not on the chosen embedding G < GL,, .

ProPOSITION 4.1. Let G < GL,, r be a linear algebraic group defined over a D-
field F of characteristic 0 with derivation Op and with algebraically closed field
of constants. Then

A:G(F) — Liep(G), A 0p(A)A™?
is a map from G(F) to the Lie algebra of G over F. It has the property
AMA-B) = MA) + AN(B)A™.

The proof of Proposition 4.1 is immediate (compare [Kov], Section 1). The map
A is usually called the logarithmic derivative. One of its nice features also stated
in [Kov] is that it gives an upper bound for the D-Galois group.

PROPOSITION 4.2. Let (F,0r) be a D-field as above with field of constants K, G
a linear algebraic group over K and A € Lier(G). Then the D-Galois group of a
PV-extension E/F defined by O(y) = Ay is isomorphic to a subgroup of G(K).

For the proof we only have to observe that A € Lier(G) implies that the defining
ideal I < F[GL,] of G is a D-ideal. Hence the maximal D-ideal P < F[GL,]
defining the PV-ring R < E contains a conjugate of I. By Proposition 2.3 this
already entails the assertion.

In the case where the field F in question has cohomological dimension cd(F) <
1 there is a partial converse of Proposition 4.2. This relies on the famous Theorem
of Springer and Steinberg ([Ser|, III, §2.3). Among the fields with this property
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are, for example, all fields of transcendence degree 1 over an algebraically closed
field (Theorem of Tsen, [Ser], TI, §3.3).

THEOREM 4.3 (SPRINGER AND STEINBERG). Let F' be a perfect field with
cd(F) < 1. Then for every connected linear algebraic group G over F

HYGp,G(F*#) =0 where Gp = Gal(F¥&/F).

Here F28 denotes the algebraic closure of F' and hence G the absolute Galois
group of F. Now let F' be a D-field with cd(F') < 1 and with algebraically closed
field of constants K. Since H'(Gr,G(F*#)) classifies the Gp-torsors, with the
assumptions of Theorem 4.3 all Gp-torsors are trivial. Hence by the D-Torsor
Theorem 2.5 then any PV-ring R over F with connected D-Galois group G(K) is
isomorphic to the coordinate ring F[G] of G. Another consequence of Theorem
4.3 of Springer and Steinberg is the following converse of Proposition 4.2 (see for
example [Put2], Theorem 4.4).

COROLLARY 4.4. Let (F,0r) be a D-field of characteristic 0 with algebraically
closed field of constants K and cd(F) < 1, H < GL,, x a connected closed
subgroup, A € Liep(H) C F™*"™ and E/F a PV-extension defined by A with
connected Galois group Gal(E/F) = G(K). Then there exists a B € H(F) such
that

B™'AB — B™'0p(B) € Liep(G).

In this case E/F can be generated by a differential equation d(y) = Ay with
A € Lier(G). D-Galois extensions of this specific type are called effective PV-
extensions in this article. Obviously the existence of effective PV-extensions is
restricted to connected groups.

4.2. Chevalley modules. Before tackling the inverse problem for connected
groups, we have to recall some basic notions and general structure theorems for
linear algebraic groups G. The maximal connected solvable normal subgroup of G
is called the radical of G and its maximal connected unipotent normal subgroup
the unipotent radical of G. These are denoted by R(G) and U(G), respectively.
Further G is called semisimple if R(G) = 1 and reductive if U(G) = 1. For a
connected linear algebraic group we have the following structure theorem (see
[Bor], IV, 11.22 and [Spr], Proposition 7.3.1 and 8.1.6).

THEOREM 4.5. Let G be a connected linear algebraic group over an algebraically
closed field K of characteristic 0.

(a) Then G is isomorphic to a semidirect product U X P of its unipotent radical
U =U(G) and a mazimal reductive subgroup P < G (Levi complement).

(b) The group P is the product T - H of a torus T = R(P) = G}, and the
connected semisimple group H = (P, P). More precisely, there exists a finite
subgroup H = HNT such that P = (T x H)/H.
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This already suggests a strategy for solving the inverse problem for connected
groups. The first step would be to realize tori and semisimple groups and the
second to solve embedding problems with unipotent kernel. For the realization
of connected semisimple groups we need some strengthening of the following
theorem of Chevalley.

THEOREM 4.6 (CHEVALLEY). Let G be a linear algebraic group over K. Then for
all closed subgroups H < G there exist a K -vector space V', a linear representation
01 : G — GL(V) and a one-dimensional subspace W <V such that

H(K) ={h € on(G) | (W) € W}

For the proof see [Spr], Theorem 5.5.3. From this theorem it is fairly easy to
deduce the following statement ([MS], Lemma 3.1).

COROLLARY 4.7. Let G be a connected semisimple linear algebraic group over
an algebraically closed field K of characteristic 0. Then there exist a K-vector
space V and a faithful linear representation o : G — GL(V) with the following
properties:

(a) V contains no one-dimensional o(G)-submodule.
(b) Any connected closed subgroup H of G leaves a one-dimensional subspace of
V invariant.

Such a module is called a Chevalley module for G in [MS]. Obviously the natural
2-dimensional representation of SLy(K') already defines a Chevalley module for
this group. In general, Chevalley modules are obtained by composing represen-
tations of the type of Theorem 4.6 and therefore are not of this simple structure.

4.3. Realization of connected reductive groups. The key lemma for the
realization of semi-simple groups as differential Galois groups over F = K(t) is
the following.

PROPOSITION 4.8. Let F = K(t) be a field of rational functions over an al-
gebraically closed field K of characteristic 0, G be a semisimple linear algebraic
group over K with Chevalley module V' and without loss of generality G < GL(V).
Let A := Ayg+tA; € Liep(G) with constant matrices Ag, A1 € Liex(G), and E/F
a PV-extension for A. Then Galp(E/F) is a proper subgroup of G(K) if and
only if there exists a vector w € V @ K|t] and a polynomial f € K[t] of degree
at most 1 with

(A—-0)w = fw.

Obviously by Proposition 4.2 the group Galp(F/F) is isomorphic to a subgroup
H(K) of G(K). In case H(K) # G(K) by Corollary 4.4 there exists a B € G(F)
such that A := B~'AB — B~19(B) € Liep(H). Since V is a Chevalley module
there exists in addition a v € V,v # 0, such that Av € Fv. But then for w := Buv

one obtains (A — 0)w = fw € Fw with deg(f) < 1.
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Hence, one only has to find constant matrices Ag and A; such that (A—0)w =
fw has no solution. For the construction of such matrices we need the root space
decomposition of £ := Liex(G). This is given by

e=g0 (Pe.)

where £y denotes the Cartan subalgebra and the one-dimensional spaces £, =
K X, are the eigenspaces for the adjoint action of £y on G corresponding to the
non-zero roots a € £f, i.e., a : £9 — K. More precisely the adjoint action of
£o on £y is trivial, and for any root « # 0 one has [C, X,] = a(C)X,, for all
C e L.

The action of £y on the Chevalley module V' produces a similar decomposition
V=6 5 Vp into eigenspaces for a collection of linear maps 8 € £5. These are
called the weights of V.

Now we choose

AQ = Z Xa~ (470)
a#0

In order to fulfill the assumptions of Proposition 4.8, for A; we choose an element
in £y satisfying the following conditions:

(4-1) The a(A;) are non-zero and distinct for the non-zero roots o of £.
(4-2) The (A1) are non-zero and distinct for the non-zero weights of V.
(4-3) The linear operator
-1
X X,
;:O a(A)

does not have positive integers as eigenvalues.

Obviously the set of A; € £y satisfying (4-1) and (4-2) is Zariski dense. Con-
dition (4-3) can be fulfilled using a suitable multiple of A4;. Now Mitschi and
Singer have proved the following result in [MS]:

PROPOSITION 4.9. With matrices Ay and Ay satisfying (4-0) to (4-3), the PV-
extension E/F in Proposition 4.8 generated by A = Ao +tAy has the differential
Galois group G(K).

In particular, any connected semi-simple linear algebraic group can be realized
effectively as a differential Galois group over F' = K(t). The next step is the
realization of tori 7 = G,,(K)", r € N, as differential Galois groups over F.
This follows from the next result:

PROPOSITION 4.10. Let F = K(t) as in Proposition 4.8 and c1,...,¢, € K
linearly independent over Q. Then the PV-extension E/F generated by A =
diag(cy,...,¢,) € Lieg (GY)) has the differential Galois group G! (K).
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Obviously by Proposition 4.2 and Corollary 3.2 Galp(E/F) is a connected sub-
group of GJ (K). Hence the result follows from the fact that the solutions
y; = exp(c;t) of O(y) = ¢,y are algebraically independent over F for j =1,...,7r.

Since any connected reductive group is a quotient of a direct product of a
connected semi-simple group and a torus by a finite group, from Proposition 4.9
and 4.10 we immediately obtain

THEOREM 4.11. Every connected reductive linear algebraic group over an alge-
braically closed field K of characteristic 0 can be realized effectively as differential
Galois group over F = K(t).

4.4. Embedding problems with unipotent kernel. In order to solve the
inverse problem of differential Galois theory for arbitrary connected groups over
F = K(t) by Theorem 4.11 it remains to solve differential embedding problems
with unipotent kernel.

Here a differential embedding problem is defined in the following way. Let
L/F be a PV-extension with D-Galois group Galp(L/F) = H(K) and let

1 — A(K) — G(K) 2 H(K) -1 (4-4)

be an exact sequence of linear algebraic groups (in characteristic zero). Then the
corresponding differential embedding problem (D-embedding problem), denoted
by £(a, ), asks for the existence of a PV-extension E/F with E > L and a
monomorphism  which maps Galp (E/F) onto a closed subgroup of G(K') such
that the diagram

Gal(E/F) - Gal(L/F)

(4-5)

R
Q

v

1 AK) — g(}() — LK) 1

commutes. The kernel A(K) is also called the kernel of £(«, 3) and the monomor-
phism v a solution of £(«, 3). We say 7 is a proper solution if 7 is an epimorphism.
Further the D-embedding problem is called a split embedding problem if the exact
sequence splits (i.e., G(K) as an algebraic group is a semidirect product of A(K)
with H(K)) and a Frattini embedding problem if G is the only closed supplement
of Ain G (ie., any U < G which satisfies AU = G already equals G). Finally
we say the embedding problem is an effective embedding problem, if L/F is an
effective PV-extension (according to Section 4.1).

The unipotent radical U of a linear algebraic group G possesses a closed com-
plement H which is a reductive linear algebraic group (Levi complement). Thus
(G/U)(K) = H(K) already can be realized effectively as D-Galois group over
F'. Hence to realize G(K) as D-Galois group it suffices to solve an effective split
embedding problem with unipotent kernel ¢/ (K). Dividing by the commutator



CONSTRUCTIVE DIFFERENTIAL GALOIS THEORY 445

subgroup U'(K) of U(K) this embedding problem decomposes into an effective
split embedding problem with abelian unipotent kernel

1—-UK)U(K)— GK)U(K)— HK)—1 (4-6)
and a Frattini embedding problem belonging to
1-U(K)— G(K)— G(K)/U(K)—1. (4-7)

For the first of these embedding problems we can use a recent result of Oberlies
([Obe], Proposition 2.4) based on a theorem of Ostrowski.

PROPOSITION 4.12. Every effective split D-embedding problem with (minimal)
unipotent abelian kernel has an effective proper solution over K(t), where K is
algebraically closed of characteristic 0.

Here the assumption of minimality can be neglected by direct decomposition of
the kernel (compare [Obe], Reduction). The solvability of the second embedding
problem already goes back to Kovacic ([Kov], Proposition 11). In our terminology
it can be stated in the following way.

PRrROPOSITION 4.13. Every effective Frattini D-embedding problem has an effec-
tive proper solution over K (t), where K is algebraically closed of characteristic 0.

For a sketch of the proof, denote df : Liep(G) — Lier(H) the surjective Lie
algebra map induced by 5 : G — H and A € Lierp(H) a matrix defining an
effective PV-extension L/F with isomorphism « : Gal(L/F) — H(K). Then
any inverse image B € Lier(G) of A by df3, i.e., d3(B) = A, defines a PV-
extension E/F with Galp(E/F) < G(K) by Proposition 4.2 and E > L. Hence
by the Frattini property there exists an isomorphism v : Galp(E/F) — G(K)
with in addition cores = B o1, i.e., 7 is an effective proper solution of £(«, 3).

Combining Proposition 4.12 and 4.13 above with Theorem 4.11 we get a con-
structive solution of the inverse problem for connected groups (see [MS]).

THEOREM 4.14 (MITSCHI-SINGER). FEvery connected linear algebraic group
over an algebraically closed field K of characteristic 0 can be realized effectively
as differential Galois group over F = K (t).

A nonconstructive variant of proof had already been presented in [Sin].

Added in Proof. A solution of the inverse problem in differential Galois theory
over K (t) for nonconnected groups has recently been obtained by J. Hartmann
in her thesis [Har].
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MODULAR THEORY

5. Iterative Differential Modules and Equations

5.1. Iterative derivations. When trying to set up a differential Galois the-
ory in positive characteristic, one is confronted with the problem that the usual
differentiation, extended to transcendental extensions of a differential field, au-
tomatically causes new constants. This problem can be overcome using iterative
derivations (also called higher derivations of infinite rank in [Jac], 8.15). These
were introduced for the first time by H. Hasse and F. K. Schmidt [HS].

As before, let R be a commutative ring. A family 0* = (0*)),ey of maps
0®) : R — R with 09 = idp is called an iterative derivation of R if

9™ (a4 b) = 0¥ (a) + 0% (b), 0 (a-b)= > 9D(a)d(b),
i+j=k
5 6 9li) — (Z fj> Bli+9) (5-1)
J

for all a,b € R and i,j,k € N. (Observe the modified product rule!) The
pair (R, 0*) is then called an iterative differential ring or ID-ring for short. An
element c € R is a differential constant if 9*)(¢) = 0 for all k > 0. Again the set
of all differential constants forms a ring denoted by C(R).

In case (R, 0) is a differential ring containing Q, i.e., a Ritt algebra, the maps
ok = 0% define an iterative derivation on R. (This observation has also led
to the name divided powers.) In the case of positive characteristic p, the last
condition in (5-1) implies (9))? = 0, i.e., iterative derivations always have
trivial p-curvature.

The following example shows that in positive characteristic extensions of iter-
ative derivations to transcendental extensions may maintain the constant rings
in contrast to ordinary derivations. For this purpose let F' = K(t) be a field of
rational functions. Then 0™ (t") = (})¢"~* defines an iterative derivation on
F' denoted by 9;. Thus with the iterative derivation Jf, the ring of differential
constants remains K in any characteristic.

Iterative derivations can also be characterized by the behaviour of their Taylor
series. An iterative Taylor series of a € R is defined by

)= 0 ()" (5-2)

keN

with the higher derivations %) instead of 9*. The following result was found
by F. K. Schmids¢ ([HS], Satz 3):

PROPOSITION 5.1. A commutative ring R together with a family of maps 0% :
R — R for k € N is an ID-ring if and only if
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(a) the Taylor map T : R — R[T], a — T4(T) is a ring homomorphism with
[oT =idg for I : R[T] — R, ©(T) — ©(0),
(b) the extended map

T : R[T)rightarrowR[T], Z a;T" — Z Z 0 (a;) T

i€N €N jeN
is a ring homomorphism with a(T"’> oT =Todk.

Using iterative Taylor series it is easy to extend an iterative derivation 0% of R
to quotient rings S™'R by expanding Ty /;,(T") := To(T)/Ts(T). Obviously this
extension is unique. In particular, an iterative derivation of an integral domain R
uniquely extends to its quotient field F' = Quot(R) ([HS], Satz 5). For separable
field extensions, the following result is given in [HS], Satz 6 and Satz 7.

PROPOSITION 5.2. Let (F,0%) be an ID-field and E/F a finitely generated
separable field extension. Then O extends to an iterative derivation 0f of E.
In case E/F is finite this extension is unique.

COROLLARY 5.3. The ring of differential constants K of an ID-field (F,0*) is
a field which is separably algebraically closed in F.

5.2. The Wronskian determinant. In positive characteristic the Wronskian
determinant as defined in the classical case may vanish even if the functions
involved are linearly independent. Fortunately the iterative Taylor series preserve
linear independency.

PROPOSITION 5.4. Let (F,0%) be an ID-field with field of constants K. Then for
elements x1,...,x, € F linearly independent over K the iterative Taylor series
Ts,,..., Ty, are linearly independent over F.

The proof can be found in [Sch]. From this result one obtains the existence
of elements d; € N with det(a(di)(xj))zjzl # 0. The set D = {dy,...,d,}
of natural numbers, which are the smallest (in lexicographical order) with this
property is called the set of derivation orders of xy,...,x,. The corresponding
determinant

wWrp(x1,...,2,) = det(a(di)(xj))zjzl (5-3)
is called the Wronskian determinantof x1, ..., x,. Obviously the set of derivation
orders only depends on the K-module spanned by the x;. With this modified
Wronskian determinant we now obtain the following result familiar from char-

acteristic zero.

COROLLARY 5.5. Let (F,0}) be an ID-field with field of constants K. Then
elements x1,...,x, € F with set of derivation orders D are linearly independent
over K if and only if wrp(z1,...,2,) # 0.

In characteristic 0 the set of derivation orders always coincides with {0,...,n—1}
which is closed by <. On the contrary, in characteristic p > 0 each subset D C N
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which is closed by the relation <, may appear as a set of derivation orders. Here
k<,l stands for the property that all coefficients of the p-expansion of k are
less than or equal to the corresponding coefficients of [. This can be verified
for example with (F,05) = (K(¢),0;) and {x1,...,2,} = {t4, ...t} for
D = {di,...,d,}. In particular, in characteristic p > n the set of derivation
orders is always the same as in the classical case.

5.3. Iterative differential modules. In positive characteristic it is more
suitable to define differential equations by introducing differential modules first
(compare Section 1.4). For this purpose let (R,0%) be an ID-ring with ring
of constants S and M be an R-module. A family 0}, = (8](\?);@61\; of maps
O\ M — M with 80 = idy satisfying

o x+y) =0l +ol(y), 0 x =Y 07 x),
i+j=k

and 0 0 00) — ( ﬂ)ag%;ﬂ
1

foralla € R, x,y € M and i, j, k € N is called an iterative derivation on M, and
(M, 83,) is called an iterative differential module or ID-module for short. The
S-module
V(M) = (] Ker(d5)
k>0
is called the solution space of M. Further M is called a trivial ID-module if
M>~2V(M)®s R.

Given ID-modules (M, 9;,) and (N, 9% ) over R, an element ¢ € Hompg(M, N)
is called an iterative differential homomorphism (ID-homomorphism) if 3008%?) =
81(\];)090 for all k € N. The category of ID-modules over R with ID-homomorphisms
as morphisms is denoted by IDModp.

It is easy to check that in case R is a field F, i.e., (F,05) is an ID-field,
IDModr is an abelian category. It becomes a tensor category over the field of
constants K using the tensor product M ®r N with the iterative derivation

Bonxoy) =Y 0 (x) @Y (y) (5-4)
itj=k
and the dual M* = Homp (M, F) with
() = > (18 o fo o (5-5)
i+j=k

forallx e M,y € N, f € M* and i,j,k € N. Then (F,0}%) is the unit element
of IDModr with Endipmody (F,05) = K. If in addition K is algebraically
closed then IDModFr together with the forgetful functor

2 : IDModfr — Vectp, (M,03) — M
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is even a Tannakian category. As in the classical case we will not make use of
this property in the sequel.

From Corollary 5.5 we immediately obtain the following formal analogue of
Proposition 1.1.

PROPOSITION 5.6. Let (F,0%) be an ID-field with constant field K and M €
IDModpr an ID-module over F. Then for the solution space V(M) of M we
have

dimg (V(M)) < dimp(M).

5.4. Projective systems. ID-modules over fields of positive characteristic can
be described by projective systems of vector spaces. To explain this connection,
let (M, 03;) be an ID-module over an ID-field (F,0}) of characteristic p > 0.
Then

M; = () Ker(d) (5-6)
j<l
is a vector space over the field F} := [, Ker(@ﬁf’j)). Indeed, M; is even an

ID-module over F; with respect to the iterative derivations (51(5#))%1\1 and
(8g€pl))keN, respectively. Further the embedding ¢; : Myy1 — M; is an Fjyq-
linear map and defines a projective system (M, ¢;)ieny. Moreover each ¢; can
be extended uniquely to an isomorphism ¢; : Mi11 ®p,, Fi — M;. In order
to prove dimpg, , (M;41) = dimpg, (M;) for the last statement one has to use the
triviality of the p-curvature (6§\§l))p = 0 on M; (compare [Mat], Proposition 2.7).
In fact ID-modules are characterized by the above properties.

THEOREM 5.7. Let (F,0}) be an ID-field of characteristic p > 0. Then the
category IDProjp of projective systems (Ny,1;)ien over F with the properties

(a) N is an Fj-vector space of finite dimension and vy is Fi11-linear,
(b) each ¢y extends to an isomorphism vy : Niy1 ®p,,, Fi — N,

s equivalent to the category IDModp.

This equivalence is even compatible with the structure of Tannakian categories.
The critical point in the proof is the definition of an iterative derivation on
M := Ny. Defining M; := (¢go---oy_1)(Ny) we get M; C M1 C ... C M.
By property (b) an Fj-basis B; = {by,...,b,} of M; also is an F-basis of M. So
for all x € M we can find coefficients a; € F such that x = Z?:l b;a; = B; - a
for a = (a1,...,a,)". Since by induction B; € M; C ;. Ker(@z(\?), for all
k < p! we can define

0\ (x) =3 b0 (a;) = Bioy (a). (5-7)
=1
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Obviously this definition is independent of the choice of the bases B; of M;. The
above step in the proof leads to the following formula for the iterative derivation
which is basic for the introduction of iterative differential equations.

COROLLARY 5.8. Let (M,0%;) be an ID-module over an ID-field (F,0%) of
characteristic p > 0 with corresponding projective system (M;, ¢;)ien. Then

1

8g§):¢00-~-0g5l08§;‘k)o(}517 O~-~Og0~071 forallk;<pl+1.

5.5. Iterative differential equations. As before, M denotes an ID-module
over an ID-field F' of characteristic p > 0 with projective system (M, p;)en.
Let B; = {b1,..., b} be a basis of M; and D, the representing matrix of ¢,
with respect to Bi+1 and By, i.e., Bjy+1 = B D, for B; = (b1, ..., by,) etc. Then
Corollary 5.8 leads to the formula

" (By) = BoDy--- D@¥ (Dt - Dyt)  for k < pit! (5-8)
because of By = BlHDfl e Dal and (9](\?) (By) = BZHGJ(J;)(Dfl e Dgl). From
(5-8) we get the following characterization of the solution space of an ID-module.

PROPOSITION 5.9. Assume the characteristic is p > 0. Let (M,0},) be an ID-
module over an ID-field (F, 0%) with corresponding projective system (M, ¢1)ien,
basis {by,...,b,} of M, and B = (by,...,b,). Then fory = (y1,...,yn)" €
F", the following statements are equivalent:

(a) By =31 1 biy; € V(M) = ey My,
(b) yi:=D; Y, ---Dyly € F}* for alll €N,

(c) aﬁf”f (y1) = ASy, for all | € N where AP = al(;’”(Dl)Dfl,
(d) 0% (y) = Ay for alll € N where Ay = 0% (Dy---Dy)(Dy -+ D;)~2.

Here the equivalence of (a) and (b) directly follows from the definition of M,
and (5-8). The equivalence with (c¢) and (d) is derived from

1 1 l 1
0% (y1) = 0% (Diyi1) = 0% (Dy)yira = 0% (D) Dy

and the corresponding equation for y = Dg--- D;y41.

The families of higher differential equations in Proposition 5.9, (¢) and (d)
associated to the ID-module M are called an iterative differential equation (IDE)
(in its relative and its absolute version, respectively). In terms of the logarithmic

derivative associated to 354?[)
At GLo(F) — F™" = Lie(GL,(F)), D w— ¥ (D)D™' (5.9
these read as
O (y) = M(Dyyr with  A(Dy) € FT
O (y) = N(Do---Dy)y with N(Do---Dy) € F™". (5-10)

We close the section with two typical examples:
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EXAMPLE 5.5.1. Let (F,0%) = (K(t),0]) be an ID-field of characteristic p > 0
and M = Fb a one-dimensional vector space over F. Suppose D; = (t“lpl) €

GL(F}). Then A; = ag)l)(D0~--Dl)(Do-~-Dl)_1 = (alt_pl) and the corre-
sponding IDE is given by

a(pl)(y) = alt_ply for e N.

EXAMPLE 5.5.2. Let again (F,05) = (K(t)l, 07) with char(F) = p > 0 and
p
let M = Fby ® Fby. For D; = (1 at ) € GLy(F;) we obtain 4; =

0 1
0 ag
0 0

8(pl)(y):(8 Cz)l)y where yz(i)

6. Iterative Picard—Vessiot Theory

MN(Do---Dp) = ( > Therefore the corresponding IDE simply is

6.1. Iterative PV-rings and fields. Surprisingly Picard—Vessiot rings and
fields in positive characteristic can formally be defined in the same way as in
characteristic zero. Let (F,0}) be an ID-field of characteristic p > 0 with alge-
braically closed field of constants K and

0% (y) = iy with A € F™*" for I € N (6-1)

an IDE over F as defined in the second line of (5-10). Let (R, 0}) be an ID-ring
with R > F and 0} extending 0%. Then Y € GL,(R) is called a fundamental
solution matriz for the IDE (6-1) if 8%’”(1’) = A)Y for all I € N. The ring R
is called an iterative Picard—Vessiot ring (IPV-ring) if it satisfies the following
conditions:

(6-2) R is a simple ID-ring, i.e., R contains no nontrivial ID-ideals,

(6-3) there exists a Y € GL,(R) with %) (Y) = A} for all | € N,
(6-4) R over F is generated by the coefficients of Y and det(Y) 1.

Again it is easy to verify that a finitely generated simple ID-ring is an integral
domain with no new constants. The quotient field of R is called an iterative
Picard-Vessiot field (IPV-field).

PROPOSITION 6.1. Let (F,0%) be an ID-field of characteristic p > 0 with alge-
braically closed field of constants K. Then for every IDE 8(pl)(y) = Ayy over F
there exists an iterative Picard—Vessiot ring which is unique up to an iterative
differential isomorphism.

By Section 5.5 the matrices A; have the form A; = A\/(Dg---D;) with D; =
D(¢1). Then U := F[GL,] = Flx;;,det(z;;)"]},—, can be given the structure
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of an ID-ring in the following way: First we define Jf; on the vector space
F(xl-jﬁj:l simply by

al(Jpl)(Xj) = Aix; for x; = (21, ., 205)" (6-5)

This corresponds to the projective system (NN;, ;) where N; = F;(X;) denotes
the Fj-vector space generated by the coefficients of X; = Df_ll -+ Dy X and
’(/)l the Fl+1—linear map defined by LZJ[ : Nl+1 — Nl, Xl+1 — Dle+1 = Xl.
Then by the product rule df; uniquely extends to an iterative derivation on the
polynomial ring Flz;;]7',—; and finally on F[GL,]. Now we can proceed as in
the classical case: Factoring U by a maximal ID-ideal P we obtain an IPV-ring
R with fundamental solution matrix ¥ = kp(X) which turns out to be uniquely
determined by A; up to ID-isomorphism ([MP], Lemma 3.4).

Again the IPV-field E = Quot(R) can be described without referring to R
(see [Mat], Proposition 4.8).

PRrROPOSITION 6.2. Let (F,0%) be an ID-field of characteristic p > 0 with al-
gebraically closed field of constants and Ay = \(Dg---D;) € F" ™. Then an
ID-field (E,03) > (F,0%) is an IPV-field for (A;)en if and only if

(a) E does not contain new constants,

(b) there exists an'Y € GL,,(E) with ag’”(Y) =AY foralll €N,
(¢) E is generated over F by the coefficients of Y.

Obviously Proposition 6.2 immediately implies the following minimality property
for the solution space of the underlying ID-module M.

COROLLARY 6.3. The IPV-extension E/F in Proposition 6.2 is a minimal field
extension of F' such that dimg (Vg(M)) = dimp M where Vg(M) = V(M ®rE).

6.2. The ID-Galois group. An automorphism of an IPV-extension R/F
or E/F is called an iterative differential automorphism (ID-automorphism) if
it commutes with 9% for all & € N. Correspondingly the group of all ID-
automorphisms of R/F (or E/F) is called the iterative differential Galois group
(ID-Galois group) of R/F or E/F and is denoted by Galip(R/F) = Galip (E/F).
This again is a maximal subgroup of GL, (K) respecting the maximal ID-ideal
P of F[GL,] used for the construction of R (compare Proposition 2.3). With
similar arguments as in the classical case we can deduce ([Mat], Theorem 3.10):

PROPOSITION 6.4. Let F' be an ID-field of characteristic p > 0 with algebraically
closed field of constants K and E/F an IPV-extension. Then there erists a
reduced linear algebraic group G defined over K such that Galip(E/F) = G(K).
Moreover the fized field of G(K) equals F.

From the preceding proposition it follows immediately that an IPV-extension
E/F with finite ID-Galois group is an ordinary finite Galois extension. On the
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other hand a finite Galois extension E/F of an ID-field (F,0%) is even an IPV-
extension since 0} uniquely extends to E and since every v € Gal(E/F') is an ID-
automorphism. To complete the proof we can use the following characterization
of IPV-extensions ([Mat], Proposition 3.11).

PRrOPOSITION 6.5. Let E > F be ID-fields of characteristic p > 0 over an
algebraically closed field of constants. Then E/F is an IPV-extension if and

only if
(a) there exists a finite-dimensional F-vector space V C E with E = F(V) and
(b) a group G of ID-automorphisms of E acting on V with E¢ = F.

COROLLARY 6.6. Finite Galois extensions of ID-fields of characteristic p > 0
with algebraically closed field of constants are IPV-extensions and vice versa.

We now return to our examples in Section 5.5 where (F,0%) = (K (t), 0F).

ExamMpPLE 6.2.1. Let D; = (talpl) as in Example 5.5.1 with corresponding IDE
8(pl)(y) = ait~?'y and IPV-extension E/F. Then for all y € Vg(M) and v €
Galip(E/F)

o) (7(1/)> o) (7(yz+1)) 0 for y =Dl DYy
) Yi+1

such that v(y) = cy with ¢ € K*, i.e., Galip(E/F) is a subgroup of G,,(K).

A formal solution of the IDE is given by y = [,y tar' — $Xienap' | Thig

represents an algebraic function if and only if the p-adic integer o := ), a;p’

belongs to Q, i.e., a = £ with a, n coprime. Then Galip(E/F) is cyclic of order

n, otherwise Gal(E/F) = G,,,(K) = K*.

EXAMPLE 6.2.2. From Example 5.5.2 we know that the IDE for

(1 alpl
Dl<0 1 >€GL2(F)

is given by

8(pl)(y) = Ajy, where A; = <O al) and y = <y1> )

0 0 Yo
Obviously y2 € K. Then the IPV-extension is generated by y1, i.e., E = F(y1).
For v € Galip(E/F) and y; € Vg(M) we have 8g’l)(’y(y1) —y1) = 0 such that
Y(y1) = y1 + ¢ with ¢ € K and Galip(E/F) < G,(K). A formal solution of the
IDE is given by y; = (ZleN altpl> yo with yo € K. This function is separably
algebraic over F' if and only if the sequence (a;);eny becomes periodic. Then the

ID-Galois group is a finite elementary abelian p-group, otherwise Galip(E/F) &
Ga(K).
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6.3. Kolchin’s Theorem and the Galois correspondence. Now we are
ready to explain the ID-Galois correspondence. Again it relies substantially on
Kolchin’s theorem based on the following ID-torsor theorem.

THEOREM 6.7 (ID-TORSOR THEOREM). Let F' be an ID-field of characteris-
tic p > 0 with algebraically closed field of constants K, R an IPV-ring over F
for some IDE with Galip(R/F) 2 G(K) and Gr :== G xg F. Then Spec(R) is a
Gr-torsor.

Here the proof given in [Put2], Section 6.2, in the classical case completely car-
ries over by replacing all statements used for D-structures by the corresponding
statements for ID-structures ([Mat], Theorem 4.4). Then Kolchin’s theorem as
stated in Corollary 2.6 is a formal consequence of it. As another consequence we
get the ID-Galois correspondence in the following form ([MP], Theorem 3.5).

THEOREM 6.8 (ID-GALOIS CORRESPONDENCE). Let F' be an ID-field of char-
acteristic p > 0 with algebraically closed field of constants K and E/F an IPV-
extension of some IDE with Galip(E/F) 2 G(K). Then:

(a) There exists an anti-isomorphism between the lattices
H={H(K) | H(K) < G(K) reduced closed} and £={L|F < L < E ID-field}
given by
U:9H—L HeE"S gnd 071 ¢ -9 L Galip(E/L).

(b) If thereby H(K) is a normal subgroup then L := EME) s an IPV-extension
of F with Galip(L/F) 2 G(K)/H(K).

The statement on finite ID-Galois extensions corresponding to Theorem 2.7(c)
is already contained in Corollary 6.6.

6.4. Characterization of IPV-rings and fields. It remains to carry over the
characterization theorems for PV-rings and PV-fields. Obviously the definition
of a D-finite element has to be adjusted. Let E/F be an IPV-extension. Then
z € F is called iterative differentially finite over F' (ID-finite) if

dimp(Wg(2)) < oo, where Wg(z) := F(0W (2))ken, (6-6)

with the iterative derivation 0y of E. Then Proposition 2.10 translates into

PROPOSITION 6.9. Let F be an ID-field of characteristic p > 0 with alge-
braically closed field of constants, R/F an IPV-ring and E = Quot(R) with
G := Galip(E/F). Then for z € E the following conditions are equivalent:

(a) z€R, (b) dimg(K(Gz)) < oo, (¢) dimp(Wg(2)) < co.
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In the classical case the proof relies on the use of the minimal D-operator of
z defined using the Wronskian wr(z1,...,2,) of a base of K(Gz). In positive
characteristic this has to be replaced by a family of higher D-operators

g(k)(y) - VVI‘(Dk:) (Zla R 27-,,7])
' WrD(Zla"'va)

)

where the classical Wronskian determinant is replaced by the F. K. Schmidt
Wronskian wrp defined in (5-3) with set of derivation orders D = {dy,...,d,}
and where Wrg) denotes the Wronskian with derivation orders dy,...,d, and
k. Then K(Gz) can be characterized as the K-vector space of solutions of
(¢%))ren in B, which is denoted by Vi (z). Using this we finally get the following
characterization of IPV-fields analogous to Theorem 2.11.

THEOREM 6.10. Let E > F be ID-fields of characteristic p > 0 with algebraically
closed field of constants. Then E is an IPV-extension of F' if and only if

(a) E/F is finitely generated by ID-finite elements,
(b) E and F share the same field of constants K,
(¢) for any ID-finite element z € E, dimp(Wg(z)) = dimg (Vg(z2)).

Complete proofs of Proposition 6.9 and Theorem 6.10 are presented in [Mat],
Section 4.3.

7. Local Iterative Differential Modules

7.1. Tamely singular ID-modules. For the definition of regular and tamely
singular ID-modules we use an ID-analogue of Corollary 3.4.

Let ' = K((t)) be the field of power series over an algebraically closed field K
of characteristic p > 0 with 0} = 9 and M an ID-module over F' with iterative
derivation 0y;. Then the members 8](\5) of the family 0}, generate a commutative
K-algebra denoted by

Dy = K[0\¥ |k € N]. (7-1)
Corresponding to Corollary 3.4 (a) we call M a regular local ID-module if and
only if M contains a Dp-invariant K [t]-lattice (of full rank).

In order to obtain an analogous definition for tamely singular local ID-modules
as in Corollary 3.4 we have to replace %) by §(*F) .= ¢tFg(k),

PRrROPOSITION 7.1. Let K be an algebraically closed field of characteristic p > 0,
F = K((t)) with 0% = 0f and M an ID-module over F. Then

DY, = K[0\W |k e N with 68 := o\
is a commutative K-algebra with the additional property

(8NP = 6% for ke N,
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Here the amazing second property immediately follows from

(8®NP () = (Z)pflz <Z)fl=(ﬂw(fw.

According to Corollary 3.4(b) a local ID-module M is called a tamely singular
ID-module if it contains a DY,-invariant K [t]-lattice. Obviously any regular local
ID-module is tamely singular. Moreover, all one-dimensional local ID-modules
are tamely singular by Example 5.5.1.

In case DY, acts on a finite-dimensional K-vector space V by Proposition 7.1
the §(*) are commuting diagonalizable endomorphisms. Hence V possesses a
basis of common eigenvectors for DY,. This already explains the first part of

COROLLARY 7.2. Let V be a K-vector space of dimension n € N which is a
DY, -algebra. Then the following hold:

(a) There exists a direct sum decomposition V = @, Vi where each V; is DY, -
stable of dimension 1.
(b) For each V; = Kv, there exists an o; € Z,, such that

I o
3% (vi) = —( l>Vz'

p

«

where denotes the residue in IFy,.

Here the second statement follows from the fact that by the rule ((51(\5))1’ =
1 1
51(\?) the elements a;; € K with (5](\1/;)(Vi) = —a;v; belong to F,. Hence «; :=
Y oleN agp' € Zp has the desired property. By abuse of language we call V =
., Vi an eigenspace decomposition and o; € Z,, eigenvalues of the whole family
* k
oy = (55\4))1@61\1-
Using an induction process the eigenspace decomposition in Corollary 7.2 can
be lifted to tamely singular ID-modules over F' = K((t)). The result is the
following ([MP], Proposition 6.1)

THEOREM 7.3. Let K be an algebraically closed field of characteristic p > 0,
F = K((t)) be an ID-field with 0y = 0; and let M be a tamely singular local
ID-module over F of dimension n.

(a) There ezist a; € Z,, and a decomposition M = @;_, M, of M into a direct
sum of one-dimensional ID-submodules M; = Fb; with

! o
58 (b, <l>m.
M ( ) pl

(b) The ID-Galois group of the corresponding IPV-ring R/F is the mazimal
closed subgroup of G, (K)" preserving the Z-relations between the eigenvalues
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(678 i.e.,
Gal(R/F) = {(c1,....cn) € E)"|[[ e =1 if Y dioi € Z,d; € Z}.
i=1 i=1

In particular, if the «; are Z-linearly independent Gal(R/F) is the full group
G (K)™. Here part (b) relies on the fact that algebraic relations over F' between
solutions y; of M; are of the simple form Hle yf’i =t with d; € Z.

From Theorem 7.3 we further obtain the following characterization of regular
and tamely singular local ID-modules by their ID-Galois groups.

COROLLARY 7.4. Let (F,0%), M and R be as in Theorem 7.3.

(a) M is tamely singular if and only if Galip(R/F) is diagonalizable.
(b) M is regular if and only if Galip(R/F) is trivial.

Part (a) follows directly from Theorem 7.3, thanks to the fact that all one-
dimensional local ID-modules are tamely singular. Then (b) follows from (a) by
observing that in the regular case all eigenvalues equal zero.

7.2. The structure of local ID-modules. By Theorem 7.3 one-dimensional
ID-modules M over F' = K((t)) are determined by their eigenvalues a € Z,, and
any a € Z leads to the trivial ID-module. To be more precise, the isomorphism
class of a one-dimensional ID-module is characterized by the congruence class
a of its eigenvalue o« modulo Z. Using tensor products, the set of isomorphism
classes IDMod}, of ID-modules of dimension 1 becomes a group (IDModj., ®)
where in the parameter space Z,/Z the group law translates into the addition.
This proves

PROPOSITION 7.5. Let F = K((t)) be an ID-field with 0% = 0] over an alge-
braically closed field K of characteristic p > 0. Then

(IDModj, ®) = (Z,/Z, +).

If the dimension of a local ID-module M is greater than 1 then inside M we can
always find a nontrivial tamely singular ID-submodule and thus by Theorem 7.3 a
nontrivial one-dimensional ID-submodule. Hence by induction on the dimension
of M we obtain the first half of the following

THEOREM 7.6. Let F = K((t)) be an ID-field over an algebraically closed field
K of characteristic p > 0 with 05 = 0;f, M an ID-module over F' and R an
IPV-ring for M. Then:

(a) M is a repeated extension of one-dimensional ID-modules.
(b) Gal(R/F) = G(K) is trigonalizable and there exists and eract sequence of
finite groups
1-P—-GK)/G(K)—Z—1

where P is a p-group and Z is a cyclic group of order prime to p.
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The first assertion in (b) is a direct consequence of (a) since G(K) can be embed-
ded into the standard Borel subgroup B, (K), and the exact sequence for G/G°
follows from Hilbert theory. A complete proof can be found in [MP], Proposi-
tion 6.3 and Corollary 6.4.

7.3. The connected local inverse problem. The question remains if every
linear algebraic group with the two properties in Theorem 7.6 (b) appears as
ID-Galois group over F. Before giving the solution in the connected case we
have to explain the meaning of effectivity in the context of [PV-extensions. It is
based on the following analogue of Proposition 4.2:

PROPOSITION 7.7. Let F be an ID-field of characteristic p > 0 with alge-
braically closed field of constants K and G a reduced connected linear algebraic
group over K. Let M be an ID-module over F with associated projective system
(M, @1)ien and representing matrices Dy (with respect to suitable bases of M;).
Assume that D) € G(F)); then for the corresponding IPV-extension E/F we have
Galip (E/F) < G(K).

As in the classical case the proof relies on the fact that the defining ideal I <
F[GL,] of GF is an ID-ideal with respect to the iterative derivation on F[GL,,]
given by A; = X\j(Dy - - - D;) according to Section 6.1 (see [MP], Proposition 5.3,
or [Mat], Theorem 5.1).

In the case of equality Galip(E/F) = G(K) the field extension E/F in Propo-
sition 7.7 is called an effective IPV-extension. This further leads to the notion
of an effective embedding problem as defined in Section 4.4 etc. In case the
field F' has cohomological dimension cd(F') < 1 it follows from the Theorem 4.3
of Springer and Steinberg that all IPV-extensions E/F with connected Galois
group are effective. More precisely in analogy to Corollary 4.4 we obtain ([Mat],
Thm 5.9)

COROLLARY 7.8. Let F' be an ID-field of characteristic p > 0 with cd(F) <1 and
with algebraically closed field of constants K, H < GL,, k a reduced connected
closed subgroup and M an ID-module over F with projective system (M, p1)ien
and D; € H(F;). Assume the ID-Galois group G(K) of M is connected. Then
there exist C; € H(F}) such that ClDllel € G(F).

Now we come back to the inverse problem. In the case of connected groups this
problem restricts to the realization of reduced connected solvable linear algebraic
groups over K. Such a group G is a semidirect product U x 7 of a unipotent
normal subgroup U and a torus 7. According to Proposition 7.5 7(K) can
effectively be realized as ID-Galois group over F' = K((t)) by a direct sum of
one-dimensional ID-modules M = @;_, M; with eigenvalues «; € Z,, linearly in-
dependent over Z. Since any connected solvable group with nontrivial unipotent
radical possesses a normal subgroup A isomorphic to G, ([Spr|, Lemma 6.3.6)
it remains to solve effective embedding problems with kernel G,.
In analogy to Proposition 4.12 and 4.13 we obtain in positive characteristic:
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PROPOSITION 7.9. FEvery effective split ID-embedding problem with kernel G,
has an effective proper solution over F, where F = K(t) or F = K((t)) and K
is algebraically closed of characteristic p > 0.

PROPOSITION 7.10. FEvery effective Frattini ID-embedding problem has an effec-
tive proper solution over F', where F = K (t) or F = K((t)) and K is algebraically
closed of characteristic p > 0.

The next theorem is an immediate consequence of these two propositions.

THEOREM 7.11. Let K be an algebraically closed field of characteristic p > 0.
Then for every reduced connected solvable linear algebraic group G over K there
exists an effective IPV-extension E/K((t)) with ID-Galois group G(K).

7.4. The nonconnected local inverse problem. In order to solve the
general inverse problem we still have to solve embedding problems with connected
kernel and finite cokernel. With the following theorem of Borel-Serre [BoS] and
Platonov (see [Weh], Lemma 10.10) this problem can be reduced to the solution
of split embedding problems.

THEOREM 7.12. Let G be a linear algebraic group over an algebraically closed
field K. Then the connected component G° of G possesses a finite supplement.

In the case of potential local ID-Galois groups we can prove in addition that the
finite supplement H can be chosen to be of the form H = P x Z with P and Z as
in Theorem 7.6(b) ([Mat], Proposition 8.4). From the inverse problem of ordinary
Galois theory over K ((t)) we know that finite groups of this type appear as Galois
groups and hence as ID-Galois groups over F := K((t)) (compare [Bo™|, 14.2).
Therefore there exists an IPV-extension L/F with Galip(L/F) = H.

Now we want to realize the semidirect product G°(K) x H with the obvious
action of H on G°(K) as an ID-Galois group over F. This leads to the following
split embedding problem &£(a, 3) with homomorphic regular section o.

res

Gal(E/F) wwr Gal(L/F)

IR
Q
—
o
\V]
~

vi

H
GO(K) — G (K)n H 2— H .1

o

1

In other words, we have to find an IPV-extension E/L with connected Galois
group Galip(E/L) = G°(K) such that E/F is an IPV-extension and in addition
Galip(E/F) =2 G°(K) x H (via an isomorphism v with a o res = 80 +). This
problem can be attacked by the following criterion proved in [Mat], Theorem 8.2:

PROPOSITION 7.13. Let G = G° x H be a linear algebraic group defined over
an algebraically closed field K of characteristic p > 0 with reqular homomorphic
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section 0 : H — G(K). Further, let F' be an ID-field with field of constants K
and cd(F) < 1.

(a) Let L/F be a finite Galois extension with Galois group isomorphic to H via
a. Let

x:=coa:Gal(L/F)—o(H)<GK), n—C,

be the composite isomorphism. Then for all | € N there exist elements Z; €
GL, (L) satisfying n(Z) = Z,C, for all n € H = Gal(L/F). Moreover,
L = F(Z) with Z = Zy.

(b) Let E/L be an IPV-extension with Galois group isomorphic to G°(K) via an
isomorphism

vr : Gal(E/L) — GY(K) 9 G(K), &+ C..

Then there exist elements Y; € GO(E;) satisfying (V;) = Y,C- for all € €
Gal(E/L) and D; € G°(L;) such that Y11 = D;'Y;. Moreover, E = L(Y)
with Y :=Yj,.

(c) Suppose in addition that the following equivariance condition is satisfied:

n(Dy) = C,'DiC, foralll €N,y e H.

Then E/F is an IPV-extension with ID-Galois group isomorphic to G(K) and
fundamental solution matriz ZY . Further, the isomorphism 1, in (b) can be
extended to an isomorphism

~v:Galip(E/F) — G(K) with resoa = o-.

In order to solve the embedding problem &(«, 3) above we thus have to construct
an ID-module M over L having a system of representing matrices D; € G°(L;)
as defined in Section 5.5 fulfilling the equivariance condition in (c). The latter
can be transformed into D; = Cyn(D;)C; ', ie., Dy belongs to the group of F-
rational points of the L/F-form gg of G° with the twisted Galois action given
by

nxD =Cym(D)C = x(mn(D)x(n™") (7-3)
(compare [Spr], 12.3.7). This is the key observation for the proof of

PROPOSITION 7.14. For a potential local Galois group G(K) (as described in
Theorem 7.6) the derived split ID-embedding problem E(a, B) given by (7-2) has
a proper solution.

For the proof we first show that the L/F-form GY of G° is F-split ([Mat], proof
of Proposition 8.3). Then the proof of Theorem 7.11 can be recycled to realize
GY(K) as an ID-Galois group over L with matrices D; € GY(F). Applying
Proposition 7.13 yields the result.

The next theorem now follows almost immediately from Proposition 7.14:
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THEOREM 7.15. Let K be an algebraically closed field of characteristic p > 0.
Then every trigonalizable reduced linear algebraic group G over K with G/G° =
PxZ and P, Z as in Theorem 7.6 is the ID-Galois group of some IPV-extension
E/K((t))-

Let G be as in Theorem 7.15. Then G has a finite supplement H of type P x Z.
As remarked above, H can be realized as ID-Galois group of a finite extension
L/F. By Proposition 7.14 we can solve the split embedding problem &(a, )
for G°(K) x H by v : Gal(E/F) = GY(K) x H. Using the regular (morphic)
homomorphism

v:G°(K)xH—G(K), (D,C)— D-C (7-4)

the fixed field E := EXer(¥°%) of ¢ 0 4 defines an IPV-extension E/F with

8. Global Iterative Differential Modules

8.1. The singular locus. In this chapter let F//K be an algebraic function field
of one variable over an algebraically closed field K of characteristic p > 0, i.e.,
the function field F = K(C) of a smooth projective curve C over K. Let M be
an ID-module over F' with projective system (M, ¢;) and E/F a corresponding
IPV-extension. Then a point x € C is called a regular point of M (or of E/F
respectively) if there exists a local parameter ¢ for =, an open neighborhood
VCCofzanda 8}Lt—stable O(V)-lattice A C M, where

1 1

i =Poo---0@od oo 0y (8-1)
according to Corollary 5.8. The points which are not regular are called singular
points and the set Sy C C of singular points of M is referred to as the singular
locus of M. The iterative chain rule guarantees that the notion of a regular point
does not depend on the choice of the local parameter .

The following proposition is immediate and connects the regularity of points
with the regularity of local ID-modules introduced in the last chapter.

PROPOSITION 8.1. Let F = K(C) be a function field over an algebraically closed
field K of characteristic p > 0 and x € C be a regular point of an ID-module M
over F. Then F, @r M is a reqular local ID-module over the completion F, of
F atzx.

Unfortunately this local property of regular points cannot be used for the def-
inition as the following example shows. Let C = P!(K) be the projective line
and F = K(t) its field of rational functions with 0% = 0;. Further, let M be a
one-dimensional ID-module over F' with D; = (¢t — al)pl € G, (F)) for pairwise
distinct a;. Then we obtain an IDE by

0 (1) = M(Di)yy = (t — ar) ™'y
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which has the symbolic solution y = [,y (t—al)pl. The differential Galois group
lies inside G, (K) and is in fact the full multiplicative group by the considerations
made in Section 6.2. Obviously every point z € P}(K)\S with S = {a;] | € N} is
regular. For x € S, we can assume without loss of generality that © = ao. Then
F, = K((t — ag)) and thus y again defines an element in M,. Consequently, M,
is regular for all x € P!(K). In particular, all local ID-Galois groups are trivial,
and Galip(E/F) is not generated by the Galois groups of the localized modules.

8.2. Realization of connected groups. As explained in Section 7.3, a
solvable connected group G = U X T can be realized over F' = K (t) starting from
an effective realization of 7 (K) over F' by solving effective embedding problems
with kernel G,(K). As in the local case 7 (K) can be realized effectively by a
direct sum of one-dimensional ID-modules over F' with p-adic eigenvalues linearly
independent over Z. Hence from Propositions 7.9 and 7.10 we obtain also in the
global case:

PROPOSITION 8.2. For every reduced connected solvable linear algebraic group
G over an algebraically closed field K of characteristic p > 0 the group of K-
rational points G(K) can be realized effectively as ID-Galois group over K (t).

In the nonsolvable case first we have to find a substitute for Propositions 4.8
and 4.9 in the classical case. This is given by

PRrROPOSITION 8.3. Let G be a reduced connected linear algebraic group over an
algebraically closed field K of characteristic p > 0, let A be either G, or G,, and
set S = K[tpl] or S; = K[tpl,t_pl], respectively. Suppose M is an ID-module
over F' = K (t) with projective system (M, ¢;1)1en and representing matrices Dy of
o1 (with respect to a given basis of M;). Assume further the following properties
are satisfied:

(a) For alll € N there exist v, € Mor(A,G) such that D; = 'yl(tpl) € G(S)) and
Y(Lax)) = 1g(x).-

(b) For all m € N the set {7 (A(K))| l > m} generates G(K) as an algebraic
group.

(¢) There exists a number d € N such that the degree of v, is bounded by d for
all I € N.

(d) Iflo < ly < ... is the sequence of natural numbers l; for which v, # 1, then
hmlﬁoo (liJrl — lz) = Q.

Then the IPV-field E for M is effective over F' with Galip(E/F) = G(K).

Here in (c) the degree deg(7;) is defined as the maximum of the degrees of the
numerator and the denominator of the reduced expression of 7; (with respect to
' ). The proof of Proposition 8.3 is rather technical and can not be reproduced in
this survey (compare [MP], Lemma 7.4, and [Mat], Theorem 7.14). But observe
that the gap condition (d) mimicking the condition for Liouvillean transcendental
numbers excludes all nonconnected subgroups.
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As a consequence of Proposition 8.3 we obtain the solution of the connected
inverse problem.

THEOREM 8.4. Let F = K(t) be an ID-field over an algebraically closed field
K of characteristic p > 0 with 05 = 0f and G be a reduced connected linear
algebraic group over K. Then G(K) can effectively be realized as an ID-Galois
group over F.

For the proof one observes first that a maximal unipotent subgroup U(K) of
G(K) can be realized via some M € IDMody with projective system (M, ¢;)
satisfying conditions (a) to (c) of Proposition 8.3. A suitable choice of the se-
quences (a;) appearing in Example 6.2.2 for the chief factors A;(K) of U(K)
of type G,(K) also guarantees property (d). (Take for example a;; € F, and
o = ZleN ai,lpl € Z, algebraic independent over Q). In the general case let
7 (K) be a maximal torus of G(K). Then G(K) is generated as an algebraic
group by a finite number of conjugates of U(K) and 7 (K). By Proposition 8.2
7T (K) has an effective realization via some N € IDModp with projective sys-
tem (Ny, 1) satisfying conditions (a) to (d) in Proposition 8.3. Combining dif-
ferent conjugates of ¢; and 1 we obtain an ID-module M which again satis-
fies the four conditions. Hence the corresponding IPV-field E is effective with
Gal(E/F) = G(K). Because of D(¢;) € G(K[t"']) and D(¢;) € G(K[t*',t7'))
from the proof we obtain in addition:

COROLLARY 8.5. If G(K) in Theorem 8.4 above is generated by unipotent sub-
groups, it can be realized with at most one singular point at co. In the general
case, G(K) can be realized with singular points at most in {0, 00}.

8.3. Realization of nonconnected groups. In order to solve the noncon-
nected inverse problem we need a version of Proposition 8.3 which not only works
over F' = K (t), but also over finite Galois extensions of F'.

PRrROPOSITION 8.6. Let K be an algebraically closed field of characteristic p > 0
and let L = K (s,t) be a finite Galois extension of F = K(t) with 0% = 0f. Let
C be an affine model of L/K defined by f(s,t) = 0 such that o = (0,0) € C is
a regular point. Then L; = v = K(spl,tpl) has an affine model C; defined by
some fl(spl,tpl) = 0. Let G be a reduced connected linear algebraic group over
K and let G, be an L/F-form of G defined by a regular homomorphic section
X : H:=Gal(L/F) — G x H as in (7-3) with G (F}) < G(L;). Let M be an
ID-module over L with projective system (M, v;)ien and representing matrices
D;. Suppose the following properties are satisfied:

(a) For all | € N there exists a rational map v : C; — Gy such that D; =
l 1
Yi(s? ) € Gy (F1) and vi(0) = 1g(k).
(b) For all m € N the algebraic group over L generated by {v,(C;) | I > m}
contains G(K).
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(¢) There exists a number d € N such that the degree of v, is bounded by d for
alll € N.

(d) Iflo <l < ... is the sequence of natural numbers l; for which v, # 1, then
hl’Ili_>oo(lH_1 — ll) = Q.

Then M defines an effective IPV-extension E/L with Galip(F/L) = G(K).

Here in (c) the degree deg(y;) denotes the maximum of the degrees of the nu-
merator and the denominator of the divisors of the matrix entries of D; in L,
(compare to Proposition 8.3). From Proposition 8.6 we can derive

PRrOPOSITION 8.7. Let K be an algebraically closed field of characteristic p > 0.
Then every ID-embedding problem over K(t) with connected kernel and finite
cokernel has a proper solution.

By the Theorem 7.12 of Borel-Serre and Platonov the problem can be reduced
to a split [D-embedding problem of the same type. Hence, thanks to Propo-
sition 7.13, we only need to find a sequence of matrices D; € GY(F;) which
satisfy the conditions of Proposition 8.6. The group gg is generated as an alge-
braic group by finitely many F-split unipotent subgroups and F-tori (essentially
from [Spr], Corollary 13.3.10). For any such unipotent subgroup the matrices
needed may be found as in the proof of Theorem 8.4. By [Tit], III, Proposi-
tion 1.6.4 a single element suffices to generate a dense subgroup of an F-torus,
and such an element may be normed to satisfy condition (a) in Proposition &.6.
Finally, we splice these matrices together into a sequence satisfying the gap condi-
tion (d) in Proposition 8.6. Then we obtain an effective IPV-extension £/L with
Galip(E/L) = G°(K) by Proposition 8.6 and Galip(E/F) = G(K) by Proposi-
tion 7.13. Obviously Proposition 8.7 implies the solution of the nonconnected
inverse problem.

THEOREM 8.8. Let G be a reduced linear algebraic group over an algebraically
closed field K of characteristic p > 0. Then G(K) appears as an ID-Galois group
of an IPV-extension E/K(t) with 0y ) = 0;.

8.4. The differential Abhyankar conjecture. In Corollary 8.5 we have seen
that reduced connected linear algebraic groups which are generated by their
closed unipotent subgroups can be realized as ID-Galois groups over F' = K(t)
with at most one singular point. This statement resembles the Abhyankar con-
jecture stated in [Abh] and proved by Raynaud [Ray]: Every finite group which is
generated by its p-Sylow groups can be realized as a Galois group over F' = K (t)
unramified outside {oco}. Such groups are usually called quasi-p groups.

In order to reduce an ID-embedding problem with connected unipotently gen-
erated kernel and finite quasi-p cokernel to split embedding problems of the same
type we have to use the following variant of Theorem 7.12 ([Mat], Proposition
8.12).
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PROPOSITION 8.9. Let G be a unipotently generated linear algebraic group over
an algebraically closed field K of characteristic p > 0. Then G°(K) has a finite
supplement which is a quasi-p group.

Next we have to adapt Proposition 8.6.

PROPOSITION 8.10. If the Galois extension L/ F in Proposition 8.6 is unramified
outside {oo} and G, is a connected unipotent F-split group, the IPV-extension
E/L can be constructed unramified outside the places of L above {oc}.

With these preparations we are able to prove the following differential analogue
of the Abhyankar conjecture in the nonconnected case.

THEOREM 8.11. Let K be an algebraically closed field of characteristic p > 0
and let F = K(t) an ID-field with 0y, = 0f. Let G be a unipotently generated
reduced linear algebraic group defined over K. Then G(K) can be realized as an
ID-Galois group over F with at most one singularity.

By Proposition 8.9 the connected component G°(K) has a finite supplement H
in G(K) which is a quasi-p group. Hence it suffices to consider the corresponding
split ID-embedding problem. By the classical Abhyankar conjecture proved by
Raynaud |Ray| there exists a finite Galois extension L/F with Gal(L/F) = H
which is unramified outside {oco}. The composite x : Gal(L/F)>H — G(K)
defines a twisted form Qg of GY as used in Proposition 8.6. It can be shown that
gg is F-quasi-split and contains a maximal closed F-split unipotent subgroup
U ([Mat], proof of Theorem 8.14). Since G)(F) is dense in G(L) = G°(L),
the group gg is generated by finitely many QE(F)—conjugates of Y. Thanks to
Proposition 8.10 these conjugates may be generated as algebraic groups over L
by equivariant matrices with singular locus above {oo}. Using Proposition 7.13
(c), these matrices may be combined into a sequence which realizes G(K) as
ID-Galois group over F with singular locus inside {o0}.

At the end we want to call the reader’s attention to the parallelism between
the differential Abhyankar conjecture in characteristic p > 0 as presented in
Theorem 8.11 and the Theorem 3.11 of Ramis. It generalizes one of the Ramis—
Raynaud analogies between finite Galois extensions in characteristic p > 0 and
PV-extensions in characteristic 0. More specific links, particularly those concern-
ing tame and wild ramifications and singularities respectively, are collected in
the Ramis—Raynaud dictionary presented in the Bourbaki lecture notes [Putl].
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