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Abstract. We survey some constructive aspects of di�erential Galois the-
ory and indicate some analogies between ordinary Galois theory and di�er-
ential Galois theory in characteristic zero and nonzero.

Contents

Introduction

Classical Theory
1. Linear Di�erential Equations 427
2. Picard�Vessiot Extensions 431
3. Monodromy and the Riemann�Hilbert Problem 436
4. The Constructive Inverse Problem 440

Modular Theory
5. Iterative Di�erential Modules and Equations 446
6. Iterative Picard�Vessiot Theory 451
7. Local Iterative Di�erential Modules 455
8. Global Iterative Di�erential Modules 461

References

INTRODUCTION

The aim of this article is to survey some constructive aspects of di�erential
Galois theory and to indicate some analogies between ordinary Galois theory
and di�erential Galois theory in characteristic zero and nonzero. We hope it
may serve as an appetizer for people who work in ordinary Galois theory but are
not familiar with the di�erential analogue.

In the �rst part we start with a constructive foundation of the Picard�Vessiot
theory in characteristic zero mimicking Kronecker's construction of root �elds.
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This leads to a smallest di�erential �eld extension (with no new constants) con-
taining a full system of solutions of a (system of) linear di�erential equation(s)
with a linear algebraic group as di�erential Galois group. Then we explain the
Galois correspondence between the intermediate di�erential �elds of a Picard�
Vessiot extension and the Zariski closed subgroups of the di�erential Galois
group. On the way we deal with the question of solvability by elementary func-
tions, comparable to the question of solvability by radicals in ordinary Galois
theory. In Chapter 3 we describe the link between the di�erential Galois group
and the monodromy group over the complex numbers generalizing the e�ective
version of Riemann's existence theorem used in (ordinary) inverse Galois theory
[MM]. Further we recall the solution of the inverse di�erential Galois problem
over C in the case of monodromy groups (Riemann�Hilbert problem) given by
Plemelj (1908) and its completion by Tretko� and Tretko� [TT] for di�erential
Galois groups. Finally in Chapter 4 we outline the constructive solution of the
inverse problem for connected groups over general algebraically closed �elds of
characteristic 0 recently given by Mitschi and Singer [MS].

In the second part we develop a Picard�Vessiot theory in positive character-
istic. For this purpose ordinary derivations�these cause new constants in any
nonalgebraic extension�are replaced by a family of higher derivations, called
iterative derivations in the original paper of Hasse and Schmidt [HS]. They have
already been used earlier by Okugawa [Oku] to outline a Picard�Vessiot theory
in characteristic p > 0. Here we follow a new approach developed in [MP] based
on the study of iterative di�erential modules (ID-modules) and corresponding
projective systems. This allows us to construct (iterative) Picard�Vessiot ex-
tensions in the same formal way as in characteristic 0. We again obtain as ID-
Galois groups reduced linear algebraic groups de�ned over the �eld of constants
and we establish a Galois correspondence between the intermediate ID-�elds of
a Picard�Vessiot extension and the reduced closed subgroups of the correspond-
ing ID-Galois group. In Chapter 7 we determine the structure of ID-modules
and ID-Galois groups over local �elds� these are trigonalizable extensions of
connected solvable groups by �nite local Galois groups�and solve the inverse
problem for these groups. Finally in Chapter 8 we solve the inverse problem of
di�erential Galois theory over global �elds of positive characteristic and prove
an analogue of the Abhyankar conjecture for di�erential Galois extensions.

The main sources (sometimes used without a reference) are the introductory
texts of Magid [Mag] and the second author [Put2] for the classical part, for
the modular part there are the research paper [MP] combined with the notes
[Mat]. Di�erent approaches for di�erential equations in positive characteristic
have been developed, for example, by Katz [Kat2] and André [And].



CONSTRUCTIVE DIFFERENTIAL GALOIS THEORY 427

Acknowledgement. The authors thank the Mathematical Science Research
Institute in Berkeley (MSRI) for its hospitality and support during the research
program Galois Groups and Fundamental Groups, and for giving us the oppor-
tunity to present most of the results given in this article in a series of lectures at
the MSRI. Among other things, the solution of the inverse problem of ID-Galois
theory for connected groups over global �elds (Theorem 8.4) and the proof of the
connected di�erential Abhyankar conjecture (Corollary 8.5) have been achieved
during our stay in Berkeley.

CLASSICAL THEORY

1. Linear Di�erential Equations
1.1. Derivations. In this �rst section we collect some well-known facts on
derivations and di�erential rings. The proofs can be found, for example, in [Jac],
Chapter 8.15.

Let R be a commutative ring (always with unit element). A map ∂ : R → R

is called a derivation of R if

∂(a + b) = ∂(a) + ∂(b) and ∂(a · b) = ∂(a)b + a∂(b)

for all a, b ∈ R. An element c ∈ R with ∂(c) = 0 is a di�erential constant. The
set of di�erential constants forms a ring denoted here by C(R). Further a ring
R together with a derivation ∂ of R is called a di�erential ring (D-ring) (R, ∂).

From the de�nition we immediately obtain the formulas

∂
(a

b

)
=

1
b2

(∂(a)b− a∂(b)) in case b ∈ R×, (1�1)

∂k(ab) =
∑

i+j=k

(
k

i

)
∂i(a)∂j(b) (1�2)

for a, b ∈ R and i, j, k ∈ N.
Now let (R, ∂R) and (S, ∂S) be two D-rings. Then a ring homomorphism

ϕ ∈ Hom(R,S) is called a di�erential homomorphism (D-homomorphism) if
ϕ ◦ ∂R = ∂S ◦ ϕ. The set of all D-homomorphisms is denoted by HomD(R, S).
An ideal A of R with ∂R(A) ⊆ A is called a di�erential ideal (D-ideal). It can
be shown that in case R is a Ritt algebra, i.e., Q ≤ R, the nil radical of any
D-ideal again is a D-ideal. A corresponding statement does not hold anymore in
positive characteristic (see [Kap], I.4).

If (R, ∂R) is a D-ring and S ⊆ R a multiplicatively closed subset with 0 /∈ S

we have a canonical map λS : R → S−1R from R into the quotient ring S−1R.
Then by (1�1) there exists a uniquely determined derivation ∂S−1R of S−1R such
that ∂S−1R ◦ λS = λS ◦ ∂R. In particular, if R is an integral domain, ∂R can be
extended uniquely to its quotient �eld F = Quot(R). A �eld F with derivation
∂F is called a di�erential �eld (D-�eld).
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Finally, let E/F be a �nitely generated separable �eld extension of a D-�eld
(F, ∂F ) with separating transcendence basis x1, . . . , xr. Then for all y1, . . . , yr ∈
E there exists exactly one extension ∂E of ∂F on E with ∂E(xi) = yi for all i.
In particular, an extension of ∂F to a separably algebraic �eld extension E/F

always exists and is unique.

1.2. Linear di�erential operators. From now on, (F, ∂F ) denotes a D-�eld
of characteristic 0. Then ` :=

∑n
k=0 ak∂k with ak ∈ F and an 6= 0 is called a

linear di�erential operator of degree deg(`) = n over F (D-operator) and F [∂]
is the (noncommutative) ring of linear di�erential operators over F . Now let
(E, ∂E) be a D-�eld extension of F . Then an element y ∈ E is called a solution
of ` if y is a solution of the homogeneous linear di�erential equation

`(y) =
n∑

k=0

ak∂k(y) = 0. (1�3)

The set of all solutions of ` in E forms a vector space over the �eld of constants
C(E) of E and is named the solution space VE(`) of ` in E.
Proposition 1.1. Let (F, ∂F ) be a D-�eld of characteristic 0 and ` ∈ F [∂] a
D-operator . Then for all D-�eld extensions (E, ∂E) ≥ (F, ∂F ) the solution space
VE(`) of ` is a vector space over C(E) with dimC(E)(VE(`)) ≤ deg(`).
The proof of Proposition 1.1 relies on the fact that the Wronskian determinant

wr(y1, . . . , yn) := det(∂i−1(yj))n
i,j=1 (1�4)

of linearly independent elements yj ∈ E over C(E) is di�erent from zero (see
[Mag], Theorem 2.9).

In the special case of equality in Proposition 1.1, VE(`) is called a complete
solution space. The �rst fundamental question now concerns the existence of a
D-�eld extension E/F such that VE(`) is a complete solution space. However,
before answering this question we want to study some preliminary examples and
to introduce a slightly more general setting.

For the examples let F = C(t) be the �eld of rational functions over the
complex numbers C with derivation ∂ = ∂t := d/dt and E ≥ F the �eld of
analytic functions.
Example 1.2.1. Take ` = ∂1 − a ∈ F [∂] with a ∈ C×. Then `(y) = 0 if
∂(y) = ay. Therefore the solution space is given by VE(`) = C · exp(at) and
every nontrivial solution is transcendental over E.
Example 1.2.2. In the case ` = ∂1 − 1

nt with n ∈ N any solution of ` in E

belongs to VE(`) = C n
√

t and therefore is algebraic over F .
Example 1.2.3. A solution of the inhomogeneous di�erential equation ∂(y) =
f ∈ F× is also a solution of the degree 2 homogeneous di�erential equation
`(y) = ∂2(y) − f−1∂(f)∂(y) = 0. The solution space of the latter consists of
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VE(`) = C ⊕ Cg where g =
∫

fdt denotes a solution of the inhomogeneous
equation. This may be an element of F as for f = 1 or transcendental over F as
for f = 1

t .

These examples show that solutions and solution spaces of linear di�erential
equations may algebraically behave very di�erently.

1.3. Systems of linear di�erential equations. Any solution y ∈ E of
` ∈ F [∂] leads to a solution y = (y, ∂1(y), . . . , ∂n−1(y))tr ∈ En of the matrix
di�erential equation

∂(y) = A`y, where A` =




0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · · · · 0 1
−a0 · · · · · · −an−2 −an−1



∈ Fn×n,

and vice versa. Now we start with an arbitrary A ∈ Fn×n and de�ne the solution
space of A to be

VE(A) := {y ∈ En | ∂(y) = Ay}.

This again is a vector space over the constant �eld of E of dimension less than
or equal to n.

Two matrices A and B ∈ Fn×n are called di�erentially equivalent, or D-equiv-
alent, if every solution z ∈ VE(B) can be transformed into a solution y ∈ VE(A)
by a matrix C ∈ GLn(F ), i.e., if VE(A) = CVE(B). The latter is equivalent to
the matrix identity B = C−1AC − C−1∂(C).

Assume for a moment that A ∈ Fn×n admits a complete solution space over
some D-�eld extension E ≥ F , i.e., there exists a matrix Y ∈ GLn(E) with
∂E(Y ) = AY . Such a matrix is called a fundamental solution matrix of the
system of di�erential equations ∂(y) = Ay over E. If Y, Ỹ ∈ GLn(E) are two
fundamental solution matrices for the same A, then it is easy to verify that
these can only di�er by a matrix C ∈ GLn(C(E)), i.e., Ỹ = Y C. Using this
information, one obtains the following partial converse of the statement above.

Proposition 1.2. Let (F, ∂) be a nontrivial D-�eld of characteristic 0 and
A ∈ Fn×n. Assume that there exists a D-�eld extension E/F such that the
matrix di�erential equation de�ned by A has a complete solution space over E.
Then A is D-equivalent to a matrix A` ∈ Fn×n de�ned by a linear di�erential
operator ` ∈ F [∂].

A proof of Proposition 1.2 is presented in [Kat1]. In Section 2.1 we will see that
the assumption on the existence of a fundamental solution matrix over some
extension �eld is super�uous.
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1.4. Di�erential modules. Another very common way to describe linear
di�erential equations are di�erential modules. A di�erential module or D-module
for short is a module M over a D-ring (R, ∂R) together with a map ∂M : M → M

with the properties

∂M (x + y) = ∂M (x) + ∂M (y) and ∂M (ax) = ∂R(a)x + a∂M (x) (1�5)

for x,y ∈ M and a ∈ R. The solution space of M is de�ned by

V (M) = {x ∈ M | ∂M (x) = 0}.
M is called a trivial D-module if M ∼= V (M) ⊗C(R) R. In case (M, ∂M ) and
(N, ∂N ) are two D-modules over R, an element ϕ ∈ HomR(M,N) is called a
di�erential homomorphism (D-homomorphism) if ϕ ◦ ∂M = ∂N ◦ ϕ. Obviously
the D-modules over R together with the D-homomorphisms form an abelian
category denoted by DModR.

Now assume that R is a D-�eld F with �eld of constants K. Then it is easy to
verify that DModF with the tensor product over F becomes a tensor category
over K. Here the tensor product M ⊗F N is provided with the derivation

∂M⊗N (x⊗ y) = ∂M (x)⊗ y + x⊗ ∂N (y) (1�6)

and the dual vector space M∗ = Hom(M, F ) with

(∂M∗(f))(x) = ∂F (f(x))− f(∂M (x)) (1�7)

for x ∈ M,y ∈ N and f ∈ M∗. Then (F, ∂F ) is the unit element of DModF

with EndDModF
(F, ∂F ) = K. If in addition K is algebraically closed, DModF

even forms a Tannakian category using the forgetful functor

Ω : DModF → VectF , (M,∂M ) 7→ M

from the category DModF into the category of vector spaces over F (see [Del]).
However, this will not be used in the sequel.

The link between D-modules and systems of linear di�erential equations is
given in the following way. Let M =

⊕
i=1 biF be a �nite-dimensional D-

module over F with basis {b1, . . . ,bn}. Then by (1�5) the action of ∂ is uniquely
determined by

∂M (bj) =
n∑

i=1

biaij with aij ∈ F. (1�8)

Thus for
∑n

i=1 biyi =By∈M with B =(b1, . . . ,bn) and y =(y1, . . . , yn)tr ∈Fn

the two statements

By ∈ V (M) and ∂F (y) = −Ay

where A = (aij) ∈ Fn×n are equivalent because of

∂M (By) = ∂M (B)y + B∂F (y) = B(Ay + ∂F (y)).



CONSTRUCTIVE DIFFERENTIAL GALOIS THEORY 431

Therefore a D-module M with representing matrix A ∈ Fn×n of ∂M leads to a
system of linear di�erential equations over F with matrix −A. In particular, the
solution space V (M) of M coincides with V (A) and thus is a vector space over
K with dimK(V (M)) ≤ dimF (M).

2. Picard�Vessiot Extensions

2.1. Picard�Vessiot rings and �elds. Now we are coming back to the
questions raised in Section 1.2: For a linear di�erential equation ∂(y) = Ay over
a D-�eld F of characteristic 0 with (algebraically closed) �eld of constants K,
does there always exist a D-�eld E with dimK(V (M ⊗F E)) = dimE(M ⊗F E)?
(The latter number equals dimF (M).) For this purpose we de�ne a Picard�
Vessiot ring (PV-ring) R for A to be a di�erential ring (R, ∂R) ≥ (F, ∂F ) with
the following properties:

(2�1) R is a simple D-ring, i.e., R only contains trivial D-ideals.
(2�2) There exists a fundamental solution matrix over R, i.e., there exists a

Y ∈ GLn(R) such that ∂R(Y ) = A · Y .
(2�3) R is generated over F by the coe�cients yij of Y =(yij)n

i,j=1 and det(Y )−1.

It is easy to verify that a �nitely generated simple D-ring is always an integral
domain and that R and even Quot(R) do not contain new constants. The next
proposition is basic for all that follows.

Proposition 2.1. Let (F, ∂F ) be a D-�eld with algebraically closed �eld of
constants K of characteristic 0 and A ∈ Fn×n. Then for the di�erential equation
∂(y) = Ay there exists a Picard�Vessiot ring (R, ∂R) over F and it is unique up
to D-isomorphism.

The construction of R is similar to Kronecker's construction of root �elds in
the case of polynomial equations. Let X = (xij)n

i,j=1 be a matrix with over
F algebraically independent elements xij . Then by Section 1.1 we can extend
∂F uniquely to F [xij ]ni,j=1 by ∂U (X) = A ·X, i.e., ∂U (xij) =

∑
k=1 aikxkj , and

to U := F [GLn] = F [xij ,det(xij)−1]ni,j=1. Then (U, ∂U ) is a D-ring over F . By
Zorn's Lemma there exists a maximal D-ideal P £U . The quotient R := U/P is a
simple D-ring containing a fundamental solution matrix Y := κP (X), where κP

denotes the canonical map κP : U → R = U/P . Obviously, R is generated over F

by the coe�cients yij of Y and by det(Y )−1 such that by de�nition R is a Picard�
Vessiot ring. It �nally remains to be checked that two PV-rings belonging to the
same matrix A are D-isomorphic. This can be done by elementary computations
(see [Put2], Proposition 3.4).

The quotient �eld E := Quot(R) of a PV-ring is called a Picard�Vessiot �eld
for A. It can be characterized without using R.
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Proposition 2.2. Let F and A ∈ Fn×n be as in Proposition 2.1 and let
(E, ∂E) ≥ (F, ∂F ) be a D-�eld extension. Then E/F is a Picard�Vessiot ex-
tension for A if and only if

(a) the constant �elds of E and F coincide,
(b) there exists a Y ∈ GLn(E) with ∂E(Y ) = A · Y ,
(c) E is generated over F by the coe�cients yij of Y .

A proof is given in [Put2], Proposition 3.5. These characterizing properties
correspond to the classical de�nition of PV-�elds (compare [Kap], III.11 and
[Mag], De�nition 3.2).

2.2. The di�erential Galois group. As before, let R be a PV-ring and
E = Quot(R) a PV-�eld over a D-�eld F of characteristic 0 with algebraically
closed �eld of constants. Then an automorphism γ of R/F or E/F , respectively,
is called a di�erential automorphism (D-automorphism) if ∂◦γ = γ◦∂. The group
of all D-automorphisms is called the di�erential Galois group (D-Galois group)
of R/F or E/F , respectively, and is denoted by GalD(R/F ) = GalD(E/F ).

Since GalD(E/F ) acts faithfully on the solution space VE(A), it is a subgroup
of GLn(K). It can be characterized in the following way.

Proposition 2.3. Let F be a D-�eld of characteristic 0 with algebraically closed
�eld of constants and let R/F be a PV-ring for A ∈ Fn×n with fundamental
solution matrix Y = (yij) ∈ GLn(R). Then

GalD(R/F ) = {C ∈ GLn(K) | q(Y · C) = 0 for all q ∈ P}
where P denotes the annulator ideal

P = {q ∈ F [GLn] | q(yij) = 0}.
A proof can be found for example in [Mag], Corollary 4.10. Since P is �nitely
generated, GalD(R/F ) consists of the K-rational points of a Zariski closed sub-
group of GLn(K) ([Eis], Section 15.10.1) and therefore of a reduced linear alge-
braic group G over K. This already proves the �rst part of the next proposition.

Proposition 2.4. Let F be a D-�eld of characteristic 0 with algebraically closed
�eld of constants K and E/F a PV-extension. Then there exists a reduced linear
algebraic group G over K with GalD(E/F ) ∼= G(K). In addition the �xed �eld
EG(K) coincides with F .

The last statement follows from the fact that for each z ∈ E\F a γ ∈ GalD(E/F )
can be constructed that moves z (see [Put2], Proposition 3.6). Now we return
to our examples in Section 1.2. Again (F, ∂) denotes the D-�eld (C(t), ∂t).

Example 2.2.1. Let ` = ∂−a ∈ F [∂] with a ∈ C×. Then by Example 1.2.1 the
PV-�eld for ` is given by E = F (y) and VE(`) = Cy for y = exp(at). The D-
Galois group GalD(E/F ) equals Gm(C) = GL1(C) since any c ∈ GL1(C) = C×

de�nes a D-automorphism because of ∂(cy) = c∂(y).
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Example 2.2.2. In the case ` = ∂ − 1
nt we obtain E = F (y) for y = n

√
t and

GalD(E/F ) = Cn is the cyclic group of order n.
Example 2.2.3. For ` = ∂2 + 1

t ∂ the PV-�eld E is F (y) with y = log(t) and
VE(`) = C ⊕ Cy. Because of (γ ◦ ∂)(y) = 1

t = ∂(y), for any γ ∈ GalD(E/F )
there exists a c ∈ C with γ(y) = y + c. This proves GalD(E/F ) = Ga(C) = C.

2.3. Torsors and Kolchin's Theorem. In order to prove a Galois corre-
spondence between the intermediate D-�elds of a PV-extension E/F and the
Zariski closed subgroups of GalD(E/F ) = G(K) we need a structural theorem
due to Kolchin which shows that after a �nite �eld extension F̃ /F a de�ning
PV-ring R inside E becomes isomorphic to the coordinate ring of GF̃ = G ×K F̃ ,
i.e., R ⊗F F̃ ∼= F̃ [GF ]. This is a consequence of the fact that the a�ne scheme
X = Spec(R) over F is a GF -torsor or a principal homogeneous space for GF ,
respectively. This means that GF acts on X via

Γ : X ×F GF → X , (x, g) 7→ x · g (2�4)

and in addition

Id×Γ : X ×F GF → X ×F X , (x, g) 7→ (x, x · g) (2�5)

is an isomorphism of a�ne schemes over F (see [Put2], Section 6.2). Such a
torsor X is called a trivial GF -torsor if X ∼= GF where the action is given by
the multiplication. The latter is equivalent to X (F ) 6= ∅ where as usual X (F )
denotes the set of F -rational points of X .
Theorem 2.5 (D-Torsor Theorem). Let F be a D-�eld of characteristic 0
with algebraically closed �eld of constants, A ∈ Fn×n and R a PV-ring for A

over F . Further let G denote the reduced linear algebraic group over K with
G(K) = GalD(R/F ) and GF := G ×K F . Then Spec(R) is a GF -torsor .
For the proof see for example [Put2], Section 6.2. Since the GF -torsor Spec(R) be-
comes trivial after a �nite �eld extension F̃ /F , the following version of Kolchin's
theorem is an immediate consequence of the D-Torsor Theorem.
Corollary 2.6 (Kolchin). With the same assumptions as in Theorem 2.5,
and setting X := Spec(R):
(a) There exists a �nite �eld extension F̃ /F with X ×F F̃ ∼= GF ×F F̃ .
(b) X is smooth and connected over F .
(c) The degree of transcendence of Quot(R)/F equals dim(G) (over K).

2.4. The di�erential Galois correspondence. Now we are ready to explain
the di�erential Galois correspondence. This can be stated as follows:
Theorem 2.7 (D-Galois Correspondence). Let F be a D-�eld of char-
acteristic 0 with algebraically closed �eld of constants K, A ∈ Fn×n and E a
PV-extension for A. Denote by G the reduced linear algebraic group over K with
G(K) = GalD(E/F ). Then:
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(a) There exists an anti-isomorphism between the lattices

H := {H(K) | H(K) ≤ G(K) closed} and L := {L | F ≤ L ≤ E D-�eld}
given by

Ψ : H → L, H(K) 7→ EH(K) and Ψ−1 : L → H, L 7→ GalD(E/L).

(b) If thereby H(K) is a normal subgroup, then L := EH(K) is a PV-extension
of F with GalD(L/F ) ∼= G(K)/H(K).

(c) Denote by G0 the identity component of G and F 0 := EG0(K). Then F 0/F

is a �nite Galois extension with Galois group GalD(F 0/F ) ∼= G(K)/G0(K).

Besides Proposition 2.4, for (a) we have to use that for all Zariski closed sub-
groups H � G the �xed �eld EH(K) is di�erent from F . For the proof of this
fact as well as for the proof of (b) Kolchin's theorem has to be used (compare
[Put2], Section 6.3).

As an application, we obtain a result comparable to the classical solution of
polynomial equations by radicals. To this end we de�ne a PV-extension E/F to
be a Liouvillean extension if it contains a tower of intermediate D-�elds

F = F0 ≤ F1 ≤ . . . ≤ Fn = E with Fi = Fi−1(yi)

and ∂(yi)
yi

∈ Fi−1 or ∂(yi) ∈ Fi−1 or yi is algebraic over Fi−1. Further a linear
algebraic group G is called virtually solvable or solvable-by-�nite if the connected
component G0 is a solvable group. Since in this case the composition factors of
G0 are isomorphic either to Gm or to Ga and D-Galois extensions of this type
can be generated by solutions of ∂(y) = fy or ∂(y) = f with f ∈ F we �nd from
Theorem 2.7:

Corollary 2.8. A PV-extension E/F is Liouvillean if and only if its D-Galois
group is virtually solvable.

For a more complete proof and further applications concerning integration in
�nite terms see for example [Mag], Chapter 6. As in the polynomial case, linear
di�erential equations with non (virtually) solvable Galois groups exist. We want
to verify this statement with the Airy equation. For this purpose we �rst explain
an analogue of the square-discriminant criterion in ordinary Galois theory which
is useful to reduce D-Galois group considerations to unimodular groups.

Proposition 2.9. Let F be a D-�eld of characteristic 0 with algebraically closed
�eld of constants K, ` =

∑n
k=0 ak∂k ∈ F [∂] a monic di�erential operator and

E/F a PV-extension de�ned by ` or A`, respectively . Then the linear di�erential
equation over F

∂(w) + an−1w = 0 (2�6)
has a solution w in E with the properties

(a) F (w)/F is a PV-extension with GalD(F (w)/F ) ≤ Gm(K),
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(b) GalD(E/F (w)) ∼= GalD(E/F ) ∩ SLn(K).

For the proof let {y1, . . . , yn} denote a K-basis of VE(`). Then any y ∈ VE(`)
satisi�es

`(y) = wr(y1, . . . , yn, y) · wr(y1, . . . , yn)−1. (2�7)
In particular, for the �rst derivative of the Wronskian determinant w := wr(y1,

. . . , yn) we obtain equation (2�6). Now any γ ∈ GalD(E/F ) acts on the fun-
damental solution matrix Y = (∂i−1(yj))n

i,j=1 of E/F via γ(Y ) = Y Cγ with
Cγ ∈ GLn(K) and on w via γ(w) = w det(Cγ). Hence w is left invariant by γ if
and only if det(Cγ) = 1.

With the help of Proposition 2.9 we are able to compute the Galois group of
the Airy equation.

Example 2.4.1. By Corollary 3.2 below the Airy equation ∂2(y) = ty has no
algebraic solution over the D-�eld (F, ∂F ) = (C(t), ∂t). Hence by Proposition
2.9 its Galois group G = G(C) is a connected closed subgroup of SL2(C). In case
G 6= SL2(C) the linear algebraic group G would be reducible and VE(`) would
contain a G-invariant line Cy. But then z := ∂(y)y−1 would be invariant under
G and therefore belong to F . Obviously no element z of F = C(t) satisi�es

∂(z) = ∂2(y)y−1 − ∂(y)2y−2 = t− z2.

as can be seen from the reduced expression of z as a quotient of polynomials.

2.5. Characterization of PV-rings and PV-�elds. The theorem of Kolchin
allows us to characterize the PV-ring R inside Quot(R).

Proposition 2.10. Let F be a D-�eld of characteristic 0 with algebraically
closed �eld of constants K and R a PV-ring over F with quotient �eld E and
Galois group G := GalD(R/F ) = G(K). Then for z ∈ E are equivalent :

(a) z ∈ R, (b) dimK(K〈Gz〉) < ∞, (c) dimF (F 〈∂k(z)〉k∈N) < ∞.

Here K〈Gz〉 denotes the K-vector space generated by the G-orbit of z and
F 〈∂k(z)〉k∈N is the F -vector space generated by all derivatives ∂k(z) of z. The
critical step is the one from (a) to (b). By the D-Torsor Theorem we may, after a
�nite extension, assume R = F [G]. Then the result follows from the fact that the
action of G(F ) on F [G] is locally �nite, i.e., F [G] is a union of �nite-dimensional
G-stable subspaces ([Spr], Proposition 2.3.6).

It is quite natural to call an element z ∈ E with property (c) in Proposi-
tion 2.10 di�erentially �nite (D-�nite). For such an element there exists, by
de�nition, a nonconstant linear di�erential operator `z ∈ F [∂] monic of mini-
mum degree with `z(z) = 0. We call `z a minimal di�erential operator of z.
Given a basis z1, . . . , zn of K〈Gz〉, it can be constructed by

`z(y) =
wr(z1, . . . , zn, y)
wr(z1, . . . , zn)

, (2�8)
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where wr denotes the Wronskian determinant de�ned in (1�4). In this notation,
Proposition 2.10 tells us that the PV-ring R is characterized inside a PV-�eld
E = Quot(R) as the ring of D-�nite elements. In the particular case of �-
nite D-extensions E/F the PV-ring R coincides with E. Another implication of
Proposition 2.10 is the following characterization of PV-�elds.

Theorem 2.11. Let F ≤ E be D-�elds of characteristic 0 with algebraically
closed �eld of constants. Then E is a PV-extension of F if and only if

(a) E/F is �nitely generated by D-�nite elements,
(b) E and F share the same �eld of constants K,
(c) for all D-�nite z ∈ E yields dimK(VE(`z)) = deg(`z), where `z ∈ F [∂] is the

minimal D-operator of z.

An elementary proof is presented for example in [Put2], Proposition 6.11.

3. Monodromy and the Riemann�Hilbert Problem

3.1. Regular and singular points. Let F = K(C) be the function �eld of a
smooth projective curve C over an algebraically closed �eld K of characteristic
zero with a nontrivial derivation ∂F . Then C(F ) = K. Further for x ∈ C the
completion of F with respect to the valuation de�ned by x is denoted by Fx. It
is isomorphic to the �eld of Laurent series K((t)) where t ∈ F denotes a local
parameter at x. Now let E/F be a PV-extension de�ned by A ∈ Fn×n. Then
a point x ∈ C is called a regular point for E/F if A is D-equivalent to a matrix
over Fx without poles, i.e., there exists a matrix B ∈ GLn(Fx) such that

B−1AB −B−1∂(B) ∈ K[[t]]n×n. (3�1)

This property can also be characterized by having a fundamental solution matrix
over Fx = K((t)) :

Proposition 3.1. Let F = K(C) as above and A ∈ Fn×n. Then x ∈ C is a
regular point for the PV-extension E/F de�ned by A if and only if the D-equation
∂(y) = Ay possesses a fundamental solution matrix Y ∈ GLn(Fx).

This result immediately implies

Corollary 3.2. Let E/F be as in Proposition 3.1 with GalD(E/F ) = G(K)
and let L be the �xed �eld of G0(K). Then the �nite Galois extension L/F is
unrami�ed in all regular points x ∈ C for E/F .

In the particular case C = P1 (projective line), the Galois group of a PV-extension
E/F with at most one non regular point is connected. This applies, for example,
to the Airy equation ∂2(y) = ty in Example 2.4.1 since all �nite points are
regular.
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Non regular points x ∈ C for E/F are called singular points and the set of all
singular points is called the singular locus SE/F of E/F . A point x ∈ SE/F is
called tamely (weakly, regular) singular if there exists a B ∈ GLn(Fx) such that

B−1AB −B−1∂(B) ∈ 1
t
K[[t]]n×n, (3�2)

otherwise it is a wild (strong, singular) singularity. For tame singularities, an
even stronger characterization can be given.

Proposition 3.3. Let F = K(C) as above, A ∈ Fn×n and E/F a PV-extension
de�ned by A. Then x ∈ C is tamely singular if and only if there exists a B ∈
GLn(Fx) and a constant matrix D ∈ Kn×n such that B−1AB−B−1∂(B) = 1

t D.

For a sketch of proof see for example [Put2], Exercise 7.
For later use we add a characterization of regular and tamely singular points

in the language of D-modules which immediately follows from the de�nitions
(3�1) and (3�2) above.

Corollary 3.4. Let (M,∂) be a D-module over F = K(C), x ∈ C, Mx :=
M ⊗F Fx and let t ∈ F be a local parameter for x such that Fx = K((t)).

(a) A point x ∈ C is regular if and only if Mx contains a ∂-invariant K[[t]]-lattice.
(b) x ∈ C is tamely singular if and only if Mx contains a δ-invariant K[[t]]-lattice

where δ := t∂.

3.2. The monodromy group. In the case of K = C the matrix B in Propo-
sition 3.3 can be chosen to have coe�cients in the sub�eld F conv

x ≤ Fx = K((t))
of convergent Laurent series (see [Put2], Exercise 7 or [For], § 11.12). This allows
us to analyze the local behaviour.

Theorem 3.5. Let F = C(C), A ∈ Fn×n and E/F a PV-extension for A.
Assume x ∈ C is a tame singularity and denote by t a local parameter at x.

(a) Then ∂(y) = Ay possesses a local fundamental solution matrix of the form
Y = B exp(C log(t)) with B ∈ GLn(F conv

x ) and C ∈ Cn×n.

(b) Via analytic continuation along a loop σ around x we obtain σ(Y ) = Y ·Mσ

with Mσ = exp(2πiC).

For a proof see for example [For], § 11. The matrix Mσ ∈ GLn(C) is called a local
monodromy matrix and is determined inside GLn(C) only up to conjugation.

In order to simplify the notation we now restrict ourselves to the projective
line C = P1(C). Then F = C(P1) = C(t) is the �eld of rational functions
over C. Let S ⊆ P1(C) be a nonempty set of cardinality ]S = s < ∞ and let
U := P1(C) \ S. Then the fundamental group of U with respect to a base point
x0 ∈ U is known to be

π1(U ; x0) = 〈σ1, . . . , σs | σ1 · · ·σs = 1〉 (3�3)
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where the σi are loops starting from x0 counterclockwise around the points xi ∈ S
(compare [Ful], Chapter 19).

Applying Theorem 3.5 and analytic continuation we obtain a homomorphism
(the monodromy map)

µ : π1(U ;x0) → GLn(C), σ 7→ Mσ (3�4)

where the image is called the monodromy group Mon(E/F ) of E/F . Again
Mon(E/F ) is only determined up to conjugacy inside GLn(C).

Since Mσ ∈ GLn(C) acts on the solution space VE(A) spanned by the columns
of Y it induces an automorphism γσ of E/F compatible with the di�erentiation
on E. Consequently

γ : Mon(E/F ) → GalD(E/F ), Mσ 7→ γσ (3�5)

de�nes a homomorphism from Mon(E/F ) to the D-Galois group of E/F , which
in fact is a monomorphism. This already gives the �rst part of the next theorem.
Theorem 3.6. (a) Let F = C(t) and E/F be a PV-extension. Then Mon(E/F )

is (isomorphic to) a subgroup of GalD(E/F ).
(b) If in addition the singular locus SE/F is tame, then Mon(E/F ) is Zariski

dense in GalD(E/F ).
The proof of (b) relies on the fact that systems of linear di�erential equations with
only tame singularities by Propositions 3.1 and 3.3 only admit locally meromor-
phic solutions and that meromorphic functions on P1(C) (�xed by Mon(E/F ))
are rational ([For], Corollary 2.9).

In Example 2.4.1 of the Airy equation ∂2(y) = ty we have SE/F = {∞}.
Therefore π1(P1(C) \ S) = π1(A1(C)) = 1 and Mon(E/F ) is trivial. But
GalD(E/F ) = SL2(C), hence ∞ is a wild singularity.

3.3. The Riemann�Hilbert Problem. We have seen that in the case of a
tame singular locus the D-Galois group coincides with the Zariski closure of the
monodromy group. Therefore it is a fundamental question if every homomorphic
image of π1(U ; x0) already appears as the monodromy group of a linear system
of di�erential equations possibly even with only tame singularities. This prob-
lem is named the Riemann�Hilbert problem for tame (regular) systems and is
number 21 among the famous Hilbert problems. A positive solution has already
been presented by Plemelj (1908) in the following form.
Theorem 3.7 (Plemelj). For any �nite set S = {x1, . . . , xs} ⊆ P1(C) and any
set of matrices Mi ∈ GLn(C) with

∏s
i=1 Mi = 1 there exists a tamely singular

system of linear D-equations ∂(y) = Ay over C(t) with monodromy matrices
Mi = Mσi around xi.
This theorem can be seen as a di�erential analogue and generalization of the
algebraic version of Riemann's existence theorem (see for example [Voe], Theo-
rem 2.13). A modern proof is given in [AB], Theorem 3.2.1. It relies on the
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theorem of Birkho� and Grothendieck on the triviality of complex holomorphic
vector bundles. A simpli�ed version for noncompact Riemann surfaces, for ex-
ample A1(C), can be found in [For], § 30 and § 31. Here is an easy consequence
of Theorem 3.7:

Corollary 3.8. Every �nitely generated subgroup G ≤ GLn(C) can be realized
as the monodromy group of a system of homogeneous linear di�erential equations
over C(t) with tame singular locus.

3.4. The inverse problem over the complex numbers. The solution
of the Riemann�Hilbert problem is also the main ingredient for the solution of
the inverse D-Galois problem over C(t). Namely by Theorem 3.6 it is enough
to observe that all linear algebraic groups over C have �nitely generated dense
subgroups. This �nal step of the solution of the inverse problem was settled by
Tretko� and Tretko� only in 1979.

Proposition 3.9. Any Zariski closed subgroup of GLn(C) possesses �nitely
generated dense subgroups.

For the proof see [TT], Proposition 1. Together with Theorem 3.7, Proposi-
tion 3.9 solves the inverse D-Galois problem over C(t) even with tame singular-
ities.

Theorem 3.10. Every linear algebraic group over C can be realized as a di�er-
ential Galois group over C(t) with tame singular locus.

Unfortunately the above general solution of the inverse D-Galois problem over
C relies on nonconstructive topological and cohomological considerations. In
contrast to the case of �nite groups it does not even carry over to algebraically
closed �elds of constants di�erent from C due to the lack of a D-analogue of
Grothendieck's Specialization Theorem.

For connected groups the situation looks more pleasant. There is a new con-
structive solution of the inverse D-Galois problem due to Mitschi and Singer
which is valid for all D-�elds with algebraically closed �eld of constants of char-
acteristic 0. This will be outlined in the next section.

Before that, however, we want to indicate a theorem of Ramis concerning
realizations with restricted singular locus.

Theorem 3.11 (Ramis). A linear algebraic group over C can be realized as a
di�erential Galois group over C(t) with at most one singular point if and only if
it is generated by its maximal tori .

More generally a linear algebraic group G(C) over C can be realized as a D-Galois
group over C(t) with singular locus inside S if and only if the same is true for
the quotient by its maximal closed normal subgroup generated by tori. A proof
is elaborated in [Ram].
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4. The Constructive Inverse Problem
4.1. The logarithmic derivative. As before, let (F, ∂F ) be an arbitrary D-
�eld of characteristic 0 with algebraically closed �eld of constants K. Then the
F -algebra

D := F [X]/(X)2 = F + Fe, where e2 = 0,

is called the algebra of dual numbers over F . It has the advantage that the map

δ : F → D, a 7→ a + ∂F (a)e

de�ned by the non-multiplicative derivation ∂F is a K-homomorphism. For a
linear algebraic group G ≤ GLn,F over F the Lie algebra of G can be de�ned to
be the F -vector space

LieF (G) := {A ∈ Fn×n | 1 + eA ∈ G(F [e])}
provided with the Lie bracket

[·, ·] : LieF (G)× LieF (G) → LieF (G), (A,B) 7→ [A,B] := AB −BA.

It can be shown that in fact the Lie algebra as de�ned above is isomorphic to
the tangent space of G at the unit point and therefore only depends on G and
not on the chosen embedding G ≤ GLn,F .

Proposition 4.1. Let G ≤ GLn,F be a linear algebraic group de�ned over a D-
�eld F of characteristic 0 with derivation ∂F and with algebraically closed �eld
of constants. Then

λ : G(F ) → LieF (G), A 7→ ∂F (A)A−1

is a map from G(F ) to the Lie algebra of G over F . It has the property

λ(A ·B) = λ(A) + Aλ(B)A−1.

The proof of Proposition 4.1 is immediate (compare [Kov], Section 1). The map
λ is usually called the logarithmic derivative. One of its nice features also stated
in [Kov] is that it gives an upper bound for the D-Galois group.

Proposition 4.2. Let (F, ∂F ) be a D-�eld as above with �eld of constants K, G
a linear algebraic group over K and A ∈ LieF (G). Then the D-Galois group of a
PV-extension E/F de�ned by ∂(y) = Ay is isomorphic to a subgroup of G(K).

For the proof we only have to observe that A ∈ LieF (G) implies that the de�ning
ideal I £ F [GLn] of GF is a D-ideal. Hence the maximal D-ideal P £ F [GLn]
de�ning the PV-ring R ≤ E contains a conjugate of I. By Proposition 2.3 this
already entails the assertion.

In the case where the �eld F in question has cohomological dimension cd(F ) ≤
1 there is a partial converse of Proposition 4.2. This relies on the famous Theorem
of Springer and Steinberg ([Ser], III, § 2.3). Among the �elds with this property
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are, for example, all �elds of transcendence degree 1 over an algebraically closed
�eld (Theorem of Tsen, [Ser], II, § 3.3).
Theorem 4.3 (Springer and Steinberg). Let F be a perfect �eld with
cd(F ) ≤ 1. Then for every connected linear algebraic group G over F

H1(GF ,G(F alg)) = 0 where GF = Gal(F alg/F ).

Here F alg denotes the algebraic closure of F and hence GF the absolute Galois
group of F . Now let F be a D-�eld with cd(F ) ≤ 1 and with algebraically closed
�eld of constants K. Since H1(GF ,G(F alg)) classi�es the GF -torsors, with the
assumptions of Theorem 4.3 all GF -torsors are trivial. Hence by the D-Torsor
Theorem 2.5 then any PV-ring R over F with connected D-Galois group G(K) is
isomorphic to the coordinate ring F [G] of G. Another consequence of Theorem
4.3 of Springer and Steinberg is the following converse of Proposition 4.2 (see for
example [Put2], Theorem 4.4).

Corollary 4.4. Let (F, ∂F ) be a D-�eld of characteristic 0 with algebraically
closed �eld of constants K and cd(F ) ≤ 1, H ≤ GLn,K a connected closed
subgroup, A ∈ LieF (H) ⊆ Fn×n and E/F a PV-extension de�ned by A with
connected Galois group Gal(E/F ) = G(K). Then there exists a B ∈ H(F ) such
that

B−1AB −B−1∂F (B) ∈ LieF (G).

In this case E/F can be generated by a di�erential equation ∂(y) = Ay with
A ∈ LieF (G). D-Galois extensions of this speci�c type are called e�ective PV-
extensions in this article. Obviously the existence of e�ective PV-extensions is
restricted to connected groups.

4.2. Chevalley modules. Before tackling the inverse problem for connected
groups, we have to recall some basic notions and general structure theorems for
linear algebraic groups G. The maximal connected solvable normal subgroup of G
is called the radical of G and its maximal connected unipotent normal subgroup
the unipotent radical of G. These are denoted by R(G) and U(G), respectively.
Further G is called semisimple if R(G) = 1 and reductive if U(G) = 1. For a
connected linear algebraic group we have the following structure theorem (see
[Bor], IV, 11.22 and [Spr], Proposition 7.3.1 and 8.1.6).

Theorem 4.5. Let G be a connected linear algebraic group over an algebraically
closed �eld K of characteristic 0.

(a) Then G is isomorphic to a semidirect product U o P of its unipotent radical
U = U(G) and a maximal reductive subgroup P ≤ G (Levi complement).

(b) The group P is the product T · H of a torus T = R(P) ∼= Gr
m and the

connected semisimple group H = (P,P). More precisely , there exists a �nite
subgroup H = H ∩ T such that P ∼= (T ×H)/H.
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This already suggests a strategy for solving the inverse problem for connected
groups. The �rst step would be to realize tori and semisimple groups and the
second to solve embedding problems with unipotent kernel. For the realization
of connected semisimple groups we need some strengthening of the following
theorem of Chevalley.

Theorem 4.6 (Chevalley). Let G be a linear algebraic group over K. Then for
all closed subgroups H ≤ G there exist a K-vector space V , a linear representation
%H : G → GL(V ) and a one-dimensional subspace W ≤ V such that

H(K) = {h ∈ %H(G) | h(W ) ⊆ W}.
For the proof see [Spr], Theorem 5.5.3. From this theorem it is fairly easy to
deduce the following statement ([MS], Lemma 3.1).

Corollary 4.7. Let G be a connected semisimple linear algebraic group over
an algebraically closed �eld K of characteristic 0. Then there exist a K-vector
space V and a faithful linear representation % : G → GL(V ) with the following
properties:

(a) V contains no one-dimensional %(G)-submodule.
(b) Any connected closed subgroup H of G leaves a one-dimensional subspace of

V invariant .

Such a module is called a Chevalley module for G in [MS]. Obviously the natural
2-dimensional representation of SL2(K) already de�nes a Chevalley module for
this group. In general, Chevalley modules are obtained by composing represen-
tations of the type of Theorem 4.6 and therefore are not of this simple structure.

4.3. Realization of connected reductive groups. The key lemma for the
realization of semi-simple groups as di�erential Galois groups over F = K(t) is
the following.

Proposition 4.8. Let F = K(t) be a �eld of rational functions over an al-
gebraically closed �eld K of characteristic 0, G be a semisimple linear algebraic
group over K with Chevalley module V and without loss of generality G ≤ GL(V ).
Let A := A0+tA1 ∈ LieF (G) with constant matrices A0, A1 ∈ LieK(G), and E/F

a PV-extension for A. Then GalD(E/F ) is a proper subgroup of G(K) if and
only if there exists a vector w ∈ V ⊗K K[t] and a polynomial f ∈ K[t] of degree
at most 1 with

(A− ∂)w = fw.

Obviously by Proposition 4.2 the group GalD(E/F ) is isomorphic to a subgroup
H(K) of G(K). In case H(K) 6= G(K) by Corollary 4.4 there exists a B ∈ G(F )
such that Ã := B−1AB − B−1∂(B) ∈ LieF (H). Since V is a Chevalley module
there exists in addition a v ∈ V, v 6= 0, such that Ãv ∈ Fv. But then for w := Bv

one obtains (A− ∂)w = fw ∈ Fw with deg(f) ≤ 1.
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Hence, one only has to �nd constant matrices A0 and A1 such that (A−∂)w =
fw has no solution. For the construction of such matrices we need the root space
decomposition of L := LieK(G). This is given by

L = L0 ⊕
(⊕

α

Lα

)

where L0 denotes the Cartan subalgebra and the one-dimensional spaces Lα =
KXα are the eigenspaces for the adjoint action of L0 on G corresponding to the
non-zero roots α ∈ L∗0, i.e., α : L0 → K. More precisely the adjoint action of
L0 on L0 is trivial, and for any root α 6= 0 one has [C, Xα] = α(C)Xα for all
C ∈ L0.

The action of L0 on the Chevalley module V produces a similar decomposition
V =

⊕
β Vβ into eigenspaces for a collection of linear maps β ∈ L∗0. These are

called the weights of V .
Now we choose

A0 :=
∑

α 6=0

Xα. (4�0)

In order to ful�ll the assumptions of Proposition 4.8, for A1 we choose an element
in L0 satisfying the following conditions:

(4�1) The α(A1) are non-zero and distinct for the non-zero roots α of L.
(4�2) The β(A1) are non-zero and distinct for the non-zero weights of V .
(4�3) The linear operator

∑

α 6=0

−1
α(A1)

X−αXα

does not have positive integers as eigenvalues.

Obviously the set of A1 ∈ L0 satisfying (4�1) and (4�2) is Zariski dense. Con-
dition (4�3) can be ful�lled using a suitable multiple of A1. Now Mitschi and
Singer have proved the following result in [MS]:

Proposition 4.9. With matrices A0 and A1 satisfying (4�0) to (4�3), the PV-
extension E/F in Proposition 4.8 generated by A = A0 + tA1 has the di�erential
Galois group G(K).

In particular, any connected semi-simple linear algebraic group can be realized
e�ectively as a di�erential Galois group over F = K(t). The next step is the
realization of tori T = Gm(K)r, r ∈ N, as di�erential Galois groups over F .
This follows from the next result:

Proposition 4.10. Let F = K(t) as in Proposition 4.8 and c1, . . . , cr ∈ K

linearly independent over Q. Then the PV-extension E/F generated by A =
diag(c1, . . . , cr) ∈ LieK(Gr

m) has the di�erential Galois group Gr
m(K).
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Obviously by Proposition 4.2 and Corollary 3.2 GalD(E/F ) is a connected sub-
group of Gr

m(K). Hence the result follows from the fact that the solutions
yj = exp(cjt) of ∂(y) = cjy are algebraically independent over F for j = 1, . . . , r.

Since any connected reductive group is a quotient of a direct product of a
connected semi-simple group and a torus by a �nite group, from Proposition 4.9
and 4.10 we immediately obtain

Theorem 4.11. Every connected reductive linear algebraic group over an alge-
braically closed �eld K of characteristic 0 can be realized e�ectively as di�erential
Galois group over F = K(t).

4.4. Embedding problems with unipotent kernel. In order to solve the
inverse problem of di�erential Galois theory for arbitrary connected groups over
F = K(t) by Theorem 4.11 it remains to solve di�erential embedding problems
with unipotent kernel.

Here a di�erential embedding problem is de�ned in the following way. Let
L/F be a PV-extension with D-Galois group GalD(L/F ) ∼= H(K) and let

1 → A(K) → G(K)
β→ H(K) → 1 (4�4)

be an exact sequence of linear algebraic groups (in characteristic zero). Then the
corresponding di�erential embedding problem (D-embedding problem), denoted
by E(α, β), asks for the existence of a PV-extension E/F with E ≥ L and a
monomorphism γ which maps GalD(E/F ) onto a closed subgroup of G(K) such
that the diagram

Gal(E/F ) ....res
- Gal(L/F )

1 - A(K) - G(K)

γ

?

................
β - H(K)

∼= α

?
- 1

(4�5)

commutes. The kernelA(K) is also called the kernel of E(α, β) and the monomor-
phism γ a solution of E(α, β). We say γ is a proper solution if γ is an epimorphism.
Further the D-embedding problem is called a split embedding problem if the exact
sequence splits (i.e., G(K) as an algebraic group is a semidirect product of A(K)
with H(K)) and a Frattini embedding problem if G is the only closed supplement
of A in G (i.e., any U ≤ G which satis�es AU = G already equals G). Finally
we say the embedding problem is an e�ective embedding problem, if L/F is an
e�ective PV-extension (according to Section 4.1).

The unipotent radical U of a linear algebraic group G possesses a closed com-
plement H which is a reductive linear algebraic group (Levi complement). Thus
(G/U)(K) ∼= H(K) already can be realized e�ectively as D-Galois group over
F . Hence to realize G(K) as D-Galois group it su�ces to solve an e�ective split
embedding problem with unipotent kernel U(K). Dividing by the commutator
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subgroup U ′(K) of U(K) this embedding problem decomposes into an e�ective
split embedding problem with abelian unipotent kernel

1 → U(K)/U ′(K) → G(K)/U ′(K) → H(K) → 1 (4�6)

and a Frattini embedding problem belonging to

1 → U ′(K) → G(K) → G(K)/U ′(K) → 1. (4�7)

For the �rst of these embedding problems we can use a recent result of Oberlies
([Obe], Proposition 2.4) based on a theorem of Ostrowski.

Proposition 4.12. Every e�ective split D-embedding problem with (minimal)
unipotent abelian kernel has an e�ective proper solution over K(t), where K is
algebraically closed of characteristic 0.

Here the assumption of minimality can be neglected by direct decomposition of
the kernel (compare [Obe], Reduction). The solvability of the second embedding
problem already goes back to Kovacic ([Kov], Proposition 11). In our terminology
it can be stated in the following way.

Proposition 4.13. Every e�ective Frattini D-embedding problem has an e�ec-
tive proper solution over K(t), where K is algebraically closed of characteristic 0.

For a sketch of the proof, denote dβ : LieF (G) → LieF (H) the surjective Lie
algebra map induced by β : G → H and A ∈ LieF (H) a matrix de�ning an
e�ective PV-extension L/F with isomorphism α : Gal(L/F ) → H(K). Then
any inverse image B ∈ LieF (G) of A by dβ, i.e., dβ(B) = A, de�nes a PV-
extension E/F with GalD(E/F ) ≤ G(K) by Proposition 4.2 and E ≥ L. Hence
by the Frattini property there exists an isomorphism γ : GalD(E/F ) → G(K)
with in addition α ◦ res = β ◦ γ, i.e., γ is an e�ective proper solution of E(α, β).

Combining Proposition 4.12 and 4.13 above with Theorem 4.11 we get a con-
structive solution of the inverse problem for connected groups (see [MS]).

Theorem 4.14 (Mitschi�Singer). Every connected linear algebraic group
over an algebraically closed �eld K of characteristic 0 can be realized e�ectively
as di�erential Galois group over F = K(t).

A nonconstructive variant of proof had already been presented in [Sin].

Added in Proof. A solution of the inverse problem in di�erential Galois theory
over K(t) for nonconnected groups has recently been obtained by J. Hartmann
in her thesis [Har].
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MODULAR THEORY

5. Iterative Di�erential Modules and Equations

5.1. Iterative derivations. When trying to set up a di�erential Galois the-
ory in positive characteristic, one is confronted with the problem that the usual
di�erentiation, extended to transcendental extensions of a di�erential �eld, au-
tomatically causes new constants. This problem can be overcome using iterative
derivations (also called higher derivations of in�nite rank in [Jac], 8.15). These
were introduced for the �rst time by H. Hasse and F. K. Schmidt [HS].

As before, let R be a commutative ring. A family ∂∗ = (∂(k))k∈N of maps
∂(k) : R → R with ∂(0) = idR is called an iterative derivation of R if

∂(k)(a + b) = ∂(k)(a) + ∂(k)(b), ∂(k)(a · b) =
∑

i+j=k

∂(i)(a)∂(j)(b),

∂(i) ◦ ∂(j) =
(

i + j

j

)
∂(i+j) (5�1)

for all a, b ∈ R and i, j, k ∈ N. (Observe the modi�ed product rule!) The
pair (R, ∂∗) is then called an iterative di�erential ring or ID-ring for short. An
element c ∈ R is a di�erential constant if ∂(k)(c) = 0 for all k > 0. Again the set
of all di�erential constants forms a ring denoted by C(R).

In case (R, ∂) is a di�erential ring containing Q, i.e., a Ritt algebra, the maps
∂(k) = 1

k!∂
k de�ne an iterative derivation on R. (This observation has also led

to the name divided powers.) In the case of positive characteristic p, the last
condition in (5�1) implies (∂(1))p = 0, i.e., iterative derivations always have
trivial p-curvature.

The following example shows that in positive characteristic extensions of iter-
ative derivations to transcendental extensions may maintain the constant rings
in contrast to ordinary derivations. For this purpose let F = K(t) be a �eld of
rational functions. Then ∂(k)(tn) =

(
n
k

)
tn−k de�nes an iterative derivation on

F denoted by ∂∗t . Thus with the iterative derivation ∂∗t , the ring of di�erential
constants remains K in any characteristic.

Iterative derivations can also be characterized by the behaviour of their Taylor
series. An iterative Taylor series of a ∈ R is de�ned by

Ta(T ) :=
∑

k∈N
∂(k)(a)T k (5�2)

with the higher derivations ∂(k) instead of ∂k. The following result was found
by F. K. Schmidt ([HS], Satz 3):

Proposition 5.1. A commutative ring R together with a family of maps ∂(k) :
R → R for k ∈ N is an ID-ring if and only if
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(a) the Taylor map T : R → R[[T ]], a 7→ Ta(T ) is a ring homomorphism with
I ◦T = idR for I : R[[T ]] → R, Θ(T ) 7→ Θ(0),

(b) the extended map

T̃ : R[[T ]rightarrowR[[T ]],
∑

i∈N
aiT

i 7→
∑

i∈N

∑

j∈N
∂(j)(ai)T i+j

is a ring homomorphism with ∂
(k)
T ◦ T̃ = T̃ ◦ ∂(k).

Using iterative Taylor series it is easy to extend an iterative derivation ∂∗R of R

to quotient rings S−1R by expanding Ta/b(T ) := Ta(T )/Tb(T ). Obviously this
extension is unique. In particular, an iterative derivation of an integral domain R

uniquely extends to its quotient �eld F = Quot(R) ([HS], Satz 5). For separable
�eld extensions, the following result is given in [HS], Satz 6 and Satz 7.

Proposition 5.2. Let (F, ∂∗F ) be an ID-�eld and E/F a �nitely generated
separable �eld extension. Then ∂∗F extends to an iterative derivation ∂∗E of E.
In case E/F is �nite this extension is unique.

Corollary 5.3. The ring of di�erential constants K of an ID-�eld (F, ∂∗) is
a �eld which is separably algebraically closed in F .

5.2. The Wronskian determinant. In positive characteristic the Wronskian
determinant as de�ned in the classical case may vanish even if the functions
involved are linearly independent. Fortunately the iterative Taylor series preserve
linear independency.

Proposition 5.4. Let (F, ∂∗F ) be an ID-�eld with �eld of constants K. Then for
elements x1, . . . , xn ∈ F linearly independent over K the iterative Taylor series
Tx1 , . . . ,Txn are linearly independent over F .

The proof can be found in [Sch]. From this result one obtains the existence
of elements di ∈ N with det(∂(di)(xj))n

i,j=1 6= 0. The set D = {d1, . . . , dn}
of natural numbers, which are the smallest (in lexicographical order) with this
property is called the set of derivation orders of x1, . . . , xn. The corresponding
determinant

wrD(x1, . . . , xn) := det(∂(di)(xj))n
i,j=1 (5�3)

is called theWronskian determinant of x1, . . . , xn. Obviously the set of derivation
orders only depends on the K-module spanned by the xj . With this modi�ed
Wronskian determinant we now obtain the following result familiar from char-
acteristic zero.

Corollary 5.5. Let (F, ∂∗F ) be an ID-�eld with �eld of constants K. Then
elements x1, . . . , xn ∈ F with set of derivation orders D are linearly independent
over K if and only if wrD(x1, . . . , xn) 6= 0.

In characteristic 0 the set of derivation orders always coincides with {0, . . . , n−1}
which is closed by ≤. On the contrary, in characteristic p > 0 each subset D ⊆ N
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which is closed by the relation ≤p may appear as a set of derivation orders. Here
k≤pl stands for the property that all coe�cients of the p-expansion of k are
less than or equal to the corresponding coe�cients of l. This can be veri�ed
for example with (F, ∂∗F ) = (K(t), ∂∗t ) and {x1, . . . , xn} = {td1 , . . . , tdn} for
D = {d1, . . . , dn}. In particular, in characteristic p ≥ n the set of derivation
orders is always the same as in the classical case.

5.3. Iterative di�erential modules. In positive characteristic it is more
suitable to de�ne di�erential equations by introducing di�erential modules �rst
(compare Section 1.4). For this purpose let (R, ∂∗R) be an ID-ring with ring
of constants S and M be an R-module. A family ∂∗M = (∂(k)

M )k∈N of maps
∂

(k)
M : M → M with ∂

(0)
M = idM satisfying

∂
(k)
M (x + y) = ∂

(k)
M (x) + ∂

(k)
M (y), ∂

(k)
M (a · x) =

∑

i+j=k

∂
(i)
R (a)∂(j)

M (x),

and ∂
(i)
M ◦ ∂

(j)
M =

(
i + j

i

)
∂

(i+j)
M

for all a ∈ R, x, y ∈ M and i, j, k ∈ N is called an iterative derivation on M , and
(M,∂∗M ) is called an iterative di�erential module or ID-module for short. The
S-module

V (M) =
⋂

k>0

Ker(∂(k)
M )

is called the solution space of M . Further M is called a trivial ID-module if
M ∼= V (M)⊗S R.

Given ID-modules (M, ∂∗M ) and (N, ∂∗N ) over R, an element ϕ ∈ HomR(M, N)
is called an iterative di�erential homomorphism (ID-homomorphism) if ϕ◦∂(k)

M =
∂

(k)
N ◦ϕ for all k ∈ N. The category of ID-modules over R with ID-homomorphisms

as morphisms is denoted by IDModR.
It is easy to check that in case R is a �eld F , i.e., (F, ∂∗F ) is an ID-�eld,

IDModF is an abelian category. It becomes a tensor category over the �eld of
constants K using the tensor product M ⊗F N with the iterative derivation

∂
(k)
M⊗N (x⊗ y) =

∑

i+j=k

∂
(i)
M (x)⊗ ∂

(j)
N (y) (5�4)

and the dual M∗ = HomF (M, F ) with

∂
(k)
M∗(f) =

∑

i+j=k

(−1)j∂
(i)
F ◦ f ◦ ∂

(j)
M (5�5)

for all x ∈ M , y ∈ N , f ∈ M∗ and i, j, k ∈ N. Then (F, ∂∗F ) is the unit element
of IDModF with EndIDModF

(F, ∂∗F ) = K. If in addition K is algebraically
closed then IDModF together with the forgetful functor

Ω : IDModF → VectF , (M,∂∗M ) 7→ M
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is even a Tannakian category. As in the classical case we will not make use of
this property in the sequel.

From Corollary 5.5 we immediately obtain the following formal analogue of
Proposition 1.1.

Proposition 5.6. Let (F, ∂∗F ) be an ID-�eld with constant �eld K and M ∈
IDModF an ID-module over F . Then for the solution space V (M) of M we
have

dimK(V (M)) ≤ dimF (M).

5.4. Projective systems. ID-modules over �elds of positive characteristic can
be described by projective systems of vector spaces. To explain this connection,
let (M,∂∗M ) be an ID-module over an ID-�eld (F, ∂∗F ) of characteristic p > 0.
Then

Ml :=
⋂

j<l

Ker(∂(pj)
M ) (5�6)

is a vector space over the �eld Fl :=
⋂

j<l Ker(∂(pj)
F ). Indeed, Ml is even an

ID-module over Fl with respect to the iterative derivations (∂(kpl)
M )k∈N and

(∂(kpl)
F )k∈N , respectively. Further the embedding ϕl : Ml+1 → Ml is an Fl+1-

linear map and de�nes a projective system (Ml, ϕl)l∈N . Moreover each ϕl can
be extended uniquely to an isomorphism ϕ̃l : Ml+1 ⊗Fl+1 Fl → Ml. In order
to prove dimFl+1(Ml+1) = dimFl

(Ml) for the last statement one has to use the
triviality of the p-curvature (∂(pl)

M )p = 0 on Ml (compare [Mat], Proposition 2.7).
In fact ID-modules are characterized by the above properties.

Theorem 5.7. Let (F, ∂∗F ) be an ID-�eld of characteristic p > 0. Then the
category IDProjF of projective systems (Nl, ψl)l∈N over F with the properties

(a) Nl is an Fl-vector space of �nite dimension and ψl is Fl+1-linear ,
(b) each ψl extends to an isomorphism ψ̃l : Nl+1 ⊗Fl+1 Fl → Nl

is equivalent to the category IDModF .

This equivalence is even compatible with the structure of Tannakian categories.
The critical point in the proof is the de�nition of an iterative derivation on
M := N0. De�ning Ml := (ψ0 ◦ · · · ◦ ψl−1)(Nl) we get Ml ⊆ Ml−1 ⊆ . . . ⊆ M .
By property (b) an Fl-basis Bl = {b1, . . . ,bn} of Ml also is an F -basis of M . So
for all x ∈ M we can �nd coe�cients ai ∈ F such that x =

∑n
i=1 biai = Bl · a

for a = (a1, . . . , an)tr. Since by induction Bl ⊆ Ml ⊆
⋂

k<pl Ker(∂(k)
M ), for all

k < pl we can de�ne

∂
(k)
M (x) =

n∑

i=1

bi∂
(k)
F (ai) = Bl∂

(k)
F (a). (5�7)
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Obviously this de�nition is independent of the choice of the bases Bl of Ml. The
above step in the proof leads to the following formula for the iterative derivation
which is basic for the introduction of iterative di�erential equations.
Corollary 5.8. Let (M,∂∗M ) be an ID-module over an ID-�eld (F, ∂∗F ) of
characteristic p > 0 with corresponding projective system (Ml, ϕl)l∈N . Then

∂
(k)
M = ϕ̃0 ◦ · · · ◦ ϕ̃l ◦ ∂

(k)
F ◦ ϕ̃l

−1 ◦ · · · ◦ ϕ̃0
−1 for all k < pl+1.

5.5. Iterative di�erential equations. As before, M denotes an ID-module
over an ID-�eld F of characteristic p > 0 with projective system (Ml, ϕl)l∈N .
Let Bl = {bl1, . . . ,bln} be a basis of Ml and Dl the representing matrix of ϕl

with respect to Bl+1 and Bl, i.e., Bl+1 = BlDl for Bl = (bl1, . . . ,bln) etc. Then
Corollary 5.8 leads to the formula

∂
(k)
M (B0) = B0D0 · · ·Dl∂

(k)
F (D−1

l · · ·D−1
0 ) for k < pl+1 (5�8)

because of B0 = Bl+1D
−1
l · · ·D−1

0 and ∂
(k)
M (B0) = Bl+1∂

(k)
M (D−1

l · · ·D−1
0 ). From

(5�8) we get the following characterization of the solution space of an ID-module.
Proposition 5.9. Assume the characteristic is p > 0. Let (M,∂∗M ) be an ID-
module over an ID-�eld (F, ∂∗F ) with corresponding projective system (Ml, ϕl)l∈N ,
basis {b1, . . . ,bn} of M , and B = (b1, . . . ,bn). Then for y = (y1, . . . , yn)tr ∈
Fn, the following statements are equivalent :
(a) By =

∑n
i=1 biyi ∈ V (M) =

⋂
l∈N Ml,

(b) yl := D−1
l−1 · · ·D−1

0 y ∈ Fn
l for all l ∈ N,

(c) ∂
(pl)
F (yl) = A◦l yl for all l ∈ N where A◦l = ∂

(pl)
F (Dl)D−1

l ,
(d) ∂

(pl)
F (y) = Aly for all l ∈ N where Al = ∂

(pl)
F (D0 · · ·Dl)(D0 · · ·Dl)−1.

Here the equivalence of (a) and (b) directly follows from the de�nition of Ml

and (5�8). The equivalence with (c) and (d) is derived from

∂
(pl)
F (yl) = ∂

(pl)
F (Dlyl+1) = ∂

(pl)
F (Dl)yl+1 = ∂

(pl)
F (Dl)D−1

l yl

and the corresponding equation for y = D0 · · ·Dlyl+1.
The families of higher di�erential equations in Proposition 5.9, (c) and (d)

associated to the ID-module M are called an iterative di�erential equation (IDE)
(in its relative and its absolute version, respectively). In terms of the logarithmic
derivative associated to ∂

(pl)
F

λl : GLn(F ) → Fn×n = Lie(GLn(F )), D 7→ ∂
(pl)
F (D)D−1 (5�9)

these read as

∂
(pl)
F (yl) = λl(Dl)yl with λl(Dl) ∈ Fn×n

l ,

∂
(pl)
F (y) = λl(D0 · · ·Dl)y with λl(D0 · · ·Dl) ∈ Fn×n. (5�10)

We close the section with two typical examples:
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Example 5.5.1. Let (F, ∂∗F ) = (K(t), ∂∗t ) be an ID-�eld of characteristic p > 0
and M = Fb a one-dimensional vector space over F . Suppose Dl = (talp

l

) ∈
GL1(Fl). Then Al = ∂

(pl)
F (D0 · · ·Dl)(D0 · · ·Dl)−1 = (alt

−pl

) and the corre-
sponding IDE is given by

∂(pl)(y) = alt
−pl

y for l ∈ N.

Example 5.5.2. Let again (F, ∂∗F ) = (K(t), ∂∗t ) with char(F ) = p > 0 and
let M = Fb1 ⊕ Fb2. For Dl =

(
1 alt

pl

0 1

)
∈ GL2(Fl) we obtain Al =

λl(D0 · · ·Dl) =
(

0 al

0 0

)
. Therefore the corresponding IDE simply is

∂(pl)(y) =
(

0 al

0 0

)
y where y =

(
y1

y2

)
.

6. Iterative Picard�Vessiot Theory

6.1. Iterative PV-rings and �elds. Surprisingly Picard�Vessiot rings and
�elds in positive characteristic can formally be de�ned in the same way as in
characteristic zero. Let (F, ∂∗F ) be an ID-�eld of characteristic p > 0 with alge-
braically closed �eld of constants K and

∂(pl)(y) = Aly with Al ∈ Fn×n for l ∈ N (6�1)

an IDE over F as de�ned in the second line of (5�10). Let (R, ∂∗R) be an ID-ring
with R ≥ F and ∂∗R extending ∂∗F . Then Y ∈ GLn(R) is called a fundamental
solution matrix for the IDE (6�1) if ∂

(pl)
R (Y ) = AlY for all l ∈ N. The ring R

is called an iterative Picard�Vessiot ring (IPV-ring) if it satis�es the following
conditions:

(6�2) R is a simple ID-ring, i.e., R contains no nontrivial ID-ideals,
(6�3) there exists a Y ∈ GLn(R) with ∂

(pl)
R (Y ) = AlY for all l ∈ N,

(6�4) R over F is generated by the coe�cients of Y and det(Y )−1.

Again it is easy to verify that a �nitely generated simple ID-ring is an integral
domain with no new constants. The quotient �eld of R is called an iterative
Picard�Vessiot �eld (IPV-�eld).

Proposition 6.1. Let (F, ∂∗F ) be an ID-�eld of characteristic p > 0 with alge-
braically closed �eld of constants K. Then for every IDE ∂(pl)(y) = Aly over F

there exists an iterative Picard�Vessiot ring which is unique up to an iterative
di�erential isomorphism.

By Section 5.5 the matrices Al have the form Al = λl(D0 · · ·Dl) with Dl =
D(ϕl). Then U := F [GLn] = F [xij ,det(xij)−1]ni,j=1 can be given the structure
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of an ID-ring in the following way: First we de�ne ∂∗U on the vector space
F 〈xij〉ni,j=1 simply by

∂
(pl)
U (xj) = Alxj for xj = (x1j , . . . , xnj)tr. (6�5)

This corresponds to the projective system (Nl, ψl) where Nl = Fl(Xl) denotes
the Fl-vector space generated by the coe�cients of Xl = D−1

l−1 · · ·D−1
0 X and

ψl the Fl+1-linear map de�ned by ψl : Nl+1 → Nl, Xl+1 7→ DlXl+1 = Xl.
Then by the product rule ∂∗U uniquely extends to an iterative derivation on the
polynomial ring F [xij ]ni,j=1 and �nally on F [GLn]. Now we can proceed as in
the classical case: Factoring U by a maximal ID-ideal P we obtain an IPV-ring
R with fundamental solution matrix Y = κP (X) which turns out to be uniquely
determined by Al up to ID-isomorphism ([MP], Lemma 3.4).

Again the IPV-�eld E = Quot(R) can be described without referring to R

(see [Mat], Proposition 4.8).

Proposition 6.2. Let (F, ∂∗F ) be an ID-�eld of characteristic p > 0 with al-
gebraically closed �eld of constants and Al = λl(D0 · · ·Dl) ∈ Fn×n. Then an
ID-�eld (E, ∂∗E) ≥ (F, ∂∗F ) is an IPV-�eld for (Al)l∈N if and only if

(a) E does not contain new constants,
(b) there exists an Y ∈ GLn(E) with ∂

(pl)
E (Y ) = AlY for all l ∈ N,

(c) E is generated over F by the coe�cients of Y .

Obviously Proposition 6.2 immediately implies the following minimality property
for the solution space of the underlying ID-module M .

Corollary 6.3. The IPV-extension E/F in Proposition 6.2 is a minimal �eld
extension of F such that dimK(VE(M)) = dimF M where VE(M) = V (M⊗F E).

6.2. The ID-Galois group. An automorphism of an IPV-extension R/F

or E/F is called an iterative di�erential automorphism (ID-automorphism) if
it commutes with ∂(k) for all k ∈ N. Correspondingly the group of all ID-
automorphisms of R/F (or E/F ) is called the iterative di�erential Galois group
(ID-Galois group) of R/F or E/F and is denoted by GalID(R/F ) = GalID(E/F ).
This again is a maximal subgroup of GLn(K) respecting the maximal ID-ideal
P of F [GLn] used for the construction of R (compare Proposition 2.3). With
similar arguments as in the classical case we can deduce ([Mat], Theorem 3.10):

Proposition 6.4. Let F be an ID-�eld of characteristic p > 0 with algebraically
closed �eld of constants K and E/F an IPV-extension. Then there exists a
reduced linear algebraic group G de�ned over K such that GalID(E/F ) ∼= G(K).
Moreover the �xed �eld of G(K) equals F .

From the preceding proposition it follows immediately that an IPV-extension
E/F with �nite ID-Galois group is an ordinary �nite Galois extension. On the
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other hand a �nite Galois extension E/F of an ID-�eld (F, ∂∗F ) is even an IPV-
extension since ∂∗F uniquely extends to E and since every γ ∈ Gal(E/F ) is an ID-
automorphism. To complete the proof we can use the following characterization
of IPV-extensions ([Mat], Proposition 3.11).

Proposition 6.5. Let E ≥ F be ID-�elds of characteristic p > 0 over an
algebraically closed �eld of constants. Then E/F is an IPV-extension if and
only if

(a) there exists a �nite-dimensional F -vector space V ⊆ E with E = F (V ) and
(b) a group G of ID-automorphisms of E acting on V with EG = F .

Corollary 6.6. Finite Galois extensions of ID-�elds of characteristic p > 0
with algebraically closed �eld of constants are IPV-extensions and vice versa.

We now return to our examples in Section 5.5 where (F, ∂∗F ) = (K(t), ∂∗t ).

Example 6.2.1. Let Dl = (talp
l

) as in Example 5.5.1 with corresponding IDE
∂(pl)(y) = alt

−pl

y and IPV-extension E/F . Then for all y ∈ VE(M) and γ ∈
GalID(E/F )

∂
(pl)
E

(
γ(y)

y

)
= ∂

(pl)
E

(
γ(yl+1)

yl+1

)
= 0 for yl+1 = D−1

l · · ·D−1
0 y

such that γ(y) = cy with c ∈ K×, i.e., GalID(E/F ) is a subgroup of Gm(K).
A formal solution of the IDE is given by y =

∏
l∈N talp

l

= t
P

l∈N alp
l . This

represents an algebraic function if and only if the p-adic integer α :=
∑

l∈N alp
l

belongs to Q, i.e., α = a
n with a, n coprime. Then GalID(E/F ) is cyclic of order

n, otherwise Gal(E/F ) = Gm(K) = K×.

Example 6.2.2. From Example 5.5.2 we know that the IDE for

Dl =
(

1 alp
l

0 1

)
∈ GL2(F )

is given by

∂(pl)(y) = Aly, where Al =
(

0 al

0 0

)
and y =

(
y1

y2

)
.

Obviously y2 ∈ K. Then the IPV-extension is generated by y1, i.e., E = F (y1).
For γ ∈ GalID(E/F ) and y1 ∈ VE(M) we have ∂

(pl)
E (γ(y1) − y1) = 0 such that

γ(y1) = y1 + c with c ∈ K and GalID(E/F ) ≤ Ga(K). A formal solution of the
IDE is given by y1 =

(∑
l∈N alt

pl
)

y2 with y2 ∈ K. This function is separably
algebraic over F if and only if the sequence (al)l∈N becomes periodic. Then the
ID-Galois group is a �nite elementary abelian p-group, otherwise GalID(E/F ) ∼=
Ga(K).
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6.3. Kolchin's Theorem and the Galois correspondence. Now we are
ready to explain the ID-Galois correspondence. Again it relies substantially on
Kolchin's theorem based on the following ID-torsor theorem.

Theorem 6.7 (ID-Torsor Theorem). Let F be an ID-�eld of characteris-
tic p > 0 with algebraically closed �eld of constants K, R an IPV-ring over F

for some IDE with GalID(R/F ) ∼= G(K) and GF := G ×K F . Then Spec(R) is a
GF -torsor .

Here the proof given in [Put2], Section 6.2, in the classical case completely car-
ries over by replacing all statements used for D-structures by the corresponding
statements for ID-structures ([Mat], Theorem 4.4). Then Kolchin's theorem as
stated in Corollary 2.6 is a formal consequence of it. As another consequence we
get the ID-Galois correspondence in the following form ([MP], Theorem 3.5).

Theorem 6.8 (ID-Galois Correspondence). Let F be an ID-�eld of char-
acteristic p > 0 with algebraically closed �eld of constants K and E/F an IPV-
extension of some IDE with GalID(E/F ) ∼= G(K). Then:

(a) There exists an anti-isomorphism between the lattices

H = {H(K) | H(K) ≤ G(K) reduced closed} and L = {L | F ≤ L ≤ E ID-�eld}

given by

Ψ : H → L, H 7→ EH(K) and Ψ−1 : L → H, L 7→ GalID(E/L).

(b) If thereby H(K) is a normal subgroup then L := EH(K) is an IPV-extension
of F with GalID(L/F ) ∼= G(K)/H(K).

The statement on �nite ID-Galois extensions corresponding to Theorem 2.7(c)
is already contained in Corollary 6.6.

6.4. Characterization of IPV-rings and �elds. It remains to carry over the
characterization theorems for PV-rings and PV-�elds. Obviously the de�nition
of a D-�nite element has to be adjusted. Let E/F be an IPV-extension. Then
z ∈ E is called iterative di�erentially �nite over F (ID-�nite) if

dimF (WE(z)) < ∞, where WE(z) := F 〈∂(k)
E (z)〉k∈N , (6�6)

with the iterative derivation ∂∗E of E. Then Proposition 2.10 translates into

Proposition 6.9. Let F be an ID-�eld of characteristic p > 0 with alge-
braically closed �eld of constants, R/F an IPV-ring and E = Quot(R) with
G := GalID(E/F ). Then for z ∈ E the following conditions are equivalent :

(a) z ∈ R, (b) dimK(K〈Gz〉) < ∞, (c) dimF (WE(z)) < ∞.
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In the classical case the proof relies on the use of the minimal D-operator of
z de�ned using the Wronskian wr(z1, . . . , zr) of a base of K〈Gz〉. In positive
characteristic this has to be replaced by a family of higher D-operators

`(k)(y) :=
wr(k)

D (z1, . . . , zr, y)
wrD(z1, . . . , zr)

,

where the classical Wronskian determinant is replaced by the F. K. Schmidt
Wronskian wrD de�ned in (5�3) with set of derivation orders D = {d1, . . . , dr}
and where wr(k)

D denotes the Wronskian with derivation orders d1, . . . , dr and
k. Then K〈Gz〉 can be characterized as the K-vector space of solutions of
(`(k))k∈N in E, which is denoted by VE(z). Using this we �nally get the following
characterization of IPV-�elds analogous to Theorem 2.11.

Theorem 6.10. Let E ≥ F be ID-�elds of characteristic p > 0 with algebraically
closed �eld of constants. Then E is an IPV-extension of F if and only if

(a) E/F is �nitely generated by ID-�nite elements,
(b) E and F share the same �eld of constants K,
(c) for any ID-�nite element z ∈ E, dimF (WE(z)) = dimK(VE(z)).

Complete proofs of Proposition 6.9 and Theorem 6.10 are presented in [Mat],
Section 4.3.

7. Local Iterative Di�erential Modules

7.1. Tamely singular ID-modules. For the de�nition of regular and tamely
singular ID-modules we use an ID-analogue of Corollary 3.4.

Let F = K((t)) be the �eld of power series over an algebraically closed �eld K

of characteristic p > 0 with ∂∗F = ∂∗t and M an ID-module over F with iterative
derivation ∂∗M . Then the members ∂

(k)
M of the family ∂∗M generate a commutative

K-algebra denoted by
DM := K[∂(k)

M |k ∈ N]. (7�1)
Corresponding to Corollary 3.4 (a) we call M a regular local ID-module if and
only if M contains a DM -invariant K[[t]]-lattice (of full rank).

In order to obtain an analogous de�nition for tamely singular local ID-modules
as in Corollary 3.4 we have to replace ∂(k) by δ(k) := tk∂(k).

Proposition 7.1. Let K be an algebraically closed �eld of characteristic p > 0,
F = K((t)) with ∂∗F = ∂∗t and M an ID-module over F . Then

D0
M := K[δ(k)

M |k ∈ N] with δ
(k)
M := tk∂

(k)
M

is a commutative K-algebra with the additional property

(δ(k))p = δ(k) for k ∈ N.
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Here the amazing second property immediately follows from

(δ(k))p(tn) =
(

n

k

)p

tn =
(

n

k

)
tn = δ(k)(tn).

According to Corollary 3.4(b) a local ID-module M is called a tamely singular
ID-module if it contains a D0

M -invariant K[[t]]-lattice. Obviously any regular local
ID-module is tamely singular. Moreover, all one-dimensional local ID-modules
are tamely singular by Example 5.5.1.

In case D0
M acts on a �nite-dimensional K-vector space V by Proposition 7.1

the δ(k) are commuting diagonalizable endomorphisms. Hence V possesses a
basis of common eigenvectors for D0

M . This already explains the �rst part of

Corollary 7.2. Let V be a K-vector space of dimension n ∈ N which is a
D0

M -algebra. Then the following hold :

(a) There exists a direct sum decomposition V =
⊕n

i=1 Vi where each Vi is D0
M -

stable of dimension 1.
(b) For each Vi = Kvi there exists an αi ∈ Zp such that

δ
(pl)
M (vi) = −

(
αi

pl

)
vi

where ��� denotes the residue in Fp.

Here the second statement follows from the fact that by the rule (δ(pl)
M )p =

δ
(pl)
M the elements ail ∈ K with δ

(pl)
M (vi) = −ailvi belong to Fp. Hence αi :=∑

l∈N ailp
l ∈ Zp has the desired property. By abuse of language we call V =⊕n

i=1 Vi an eigenspace decomposition and αi ∈ Zp eigenvalues of the whole family
δ∗M = (δ(k)

M )k∈N .
Using an induction process the eigenspace decomposition in Corollary 7.2 can

be lifted to tamely singular ID-modules over F = K((t)). The result is the
following ([MP], Proposition 6.1)

Theorem 7.3. Let K be an algebraically closed �eld of characteristic p > 0,
F = K((t)) be an ID-�eld with ∂∗F = ∂∗t and let M be a tamely singular local
ID-module over F of dimension n.

(a) There exist αi ∈ Zp and a decomposition M =
⊕n

i=1 Mi of M into a direct
sum of one-dimensional ID-submodules Mi = Fbi with

δ
(pl)
M (bi) = −

(
αi

pl

)
bi.

(b) The ID-Galois group of the corresponding IPV-ring R/F is the maximal
closed subgroup of Gm(K)n preserving the Z-relations between the eigenvalues
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αi, i .e.,

Gal(R/F ) = {(c1, . . . , cn) ∈ (K×)n|
n∏

i=1

cdi
i = 1 if

n∑

i=1

diαi ∈ Z, di ∈ Z}.

In particular, if the αi are Z-linearly independent Gal(R/F ) is the full group
Gm(K)n. Here part (b) relies on the fact that algebraic relations over F between
solutions yi of Mi are of the simple form

∏n
i=1 ydi

i = td0 with di ∈ Z.
From Theorem 7.3 we further obtain the following characterization of regular

and tamely singular local ID-modules by their ID-Galois groups.

Corollary 7.4. Let (F, ∂∗F ), M and R be as in Theorem 7.3.

(a) M is tamely singular if and only if GalID(R/F ) is diagonalizable.
(b) M is regular if and only if GalID(R/F ) is trivial .

Part (a) follows directly from Theorem 7.3, thanks to the fact that all one-
dimensional local ID-modules are tamely singular. Then (b) follows from (a) by
observing that in the regular case all eigenvalues equal zero.

7.2. The structure of local ID-modules. By Theorem 7.3 one-dimensional
ID-modules M over F = K((t)) are determined by their eigenvalues α ∈ Zp, and
any α ∈ Z leads to the trivial ID-module. To be more precise, the isomorphism
class of a one-dimensional ID-module is characterized by the congruence class
ᾱ of its eigenvalue α modulo Z. Using tensor products, the set of isomorphism
classes IDMod1

F of ID-modules of dimension 1 becomes a group (IDMod1
F ,⊗)

where in the parameter space Zp/Z the group law translates into the addition.
This proves

Proposition 7.5. Let F = K((t)) be an ID-�eld with ∂∗F = ∂∗t over an alge-
braically closed �eld K of characteristic p > 0. Then

(IDMod1
F ,⊗) ∼= (Zp/Z,+).

If the dimension of a local ID-module M is greater than 1 then inside M we can
always �nd a nontrivial tamely singular ID-submodule and thus by Theorem 7.3 a
nontrivial one-dimensional ID-submodule. Hence by induction on the dimension
of M we obtain the �rst half of the following

Theorem 7.6. Let F = K((t)) be an ID-�eld over an algebraically closed �eld
K of characteristic p > 0 with ∂∗F = ∂∗t , M an ID-module over F and R an
IPV-ring for M . Then:

(a) M is a repeated extension of one-dimensional ID-modules.
(b) Gal(R/F ) = G(K) is trigonalizable and there exists and exact sequence of

�nite groups
1 → P → G(K)/G0(K) → Z → 1

where P is a p-group and Z is a cyclic group of order prime to p.
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The �rst assertion in (b) is a direct consequence of (a) since G(K) can be embed-
ded into the standard Borel subgroup Bn(K), and the exact sequence for G/G0

follows from Hilbert theory. A complete proof can be found in [MP], Proposi-
tion 6.3 and Corollary 6.4.

7.3. The connected local inverse problem. The question remains if every
linear algebraic group with the two properties in Theorem 7.6 (b) appears as
ID-Galois group over F . Before giving the solution in the connected case we
have to explain the meaning of e�ectivity in the context of IPV-extensions. It is
based on the following analogue of Proposition 4.2:
Proposition 7.7. Let F be an ID-�eld of characteristic p > 0 with alge-
braically closed �eld of constants K and G a reduced connected linear algebraic
group over K. Let M be an ID-module over F with associated projective system
(Ml, ϕl)l∈N and representing matrices Dl (with respect to suitable bases of Ml).
Assume that Dl ∈ G(Fl); then for the corresponding IPV-extension E/F we have
GalID(E/F ) ≤ G(K).
As in the classical case the proof relies on the fact that the de�ning ideal I E
F [GLn] of GF is an ID-ideal with respect to the iterative derivation on F [GLn]
given by Al = λl(D0 · · ·Dl) according to Section 6.1 (see [MP], Proposition 5.3,
or [Mat], Theorem 5.1).

In the case of equality GalID(E/F ) = G(K) the �eld extension E/F in Propo-
sition 7.7 is called an e�ective IPV-extension. This further leads to the notion
of an e�ective embedding problem as de�ned in Section 4.4 etc. In case the
�eld F has cohomological dimension cd(F ) ≤ 1 it follows from the Theorem 4.3
of Springer and Steinberg that all IPV-extensions E/F with connected Galois
group are e�ective. More precisely in analogy to Corollary 4.4 we obtain ([Mat],
Thm 5.9)
Corollary 7.8. Let F be an ID-�eld of characteristic p > 0 with cd(F ) ≤ 1 and
with algebraically closed �eld of constants K, H ≤ GLn,K a reduced connected
closed subgroup and M an ID-module over F with projective system (Ml, ϕl)l∈N
and Dl ∈ H(Fl). Assume the ID-Galois group G(K) of M is connected . Then
there exist Cl ∈ H(Fl) such that ClDlC

−1
l+1 ∈ G(Fl).

Now we come back to the inverse problem. In the case of connected groups this
problem restricts to the realization of reduced connected solvable linear algebraic
groups over K. Such a group G is a semidirect product U o T of a unipotent
normal subgroup U and a torus T . According to Proposition 7.5 T (K) can
e�ectively be realized as ID-Galois group over F = K((t)) by a direct sum of
one-dimensional ID-modules M =

⊕r
i=1 Mi with eigenvalues αi ∈ Zp linearly in-

dependent over Z. Since any connected solvable group with nontrivial unipotent
radical possesses a normal subgroup A isomorphic to Ga ([Spr], Lemma 6.3.6)
it remains to solve e�ective embedding problems with kernel Ga.

In analogy to Proposition 4.12 and 4.13 we obtain in positive characteristic:
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Proposition 7.9. Every e�ective split ID-embedding problem with kernel Ga

has an e�ective proper solution over F , where F = K(t) or F = K((t)) and K
is algebraically closed of characteristic p > 0.

Proposition 7.10. Every e�ective Frattini ID-embedding problem has an e�ec-
tive proper solution over F , where F = K(t) or F = K((t)) and K is algebraically
closed of characteristic p > 0.

The next theorem is an immediate consequence of these two propositions.

Theorem 7.11. Let K be an algebraically closed �eld of characteristic p > 0.
Then for every reduced connected solvable linear algebraic group G over K there
exists an e�ective IPV-extension E/K((t)) with ID-Galois group G(K).

7.4. The nonconnected local inverse problem. In order to solve the
general inverse problem we still have to solve embedding problems with connected
kernel and �nite cokernel. With the following theorem of Borel�Serre [BoS] and
Platonov (see [Weh], Lemma 10.10) this problem can be reduced to the solution
of split embedding problems.

Theorem 7.12. Let G be a linear algebraic group over an algebraically closed
�eld K. Then the connected component G0 of G possesses a �nite supplement .

In the case of potential local ID-Galois groups we can prove in addition that the
�nite supplement H can be chosen to be of the form H = P oZ with P and Z as
in Theorem 7.6(b) ([Mat], Proposition 8.4). From the inverse problem of ordinary
Galois theory over K((t)) we know that �nite groups of this type appear as Galois
groups and hence as ID-Galois groups over F := K((t)) (compare [Bo+], 14.2).
Therefore there exists an IPV-extension L/F with GalID(L/F ) ∼= H.

Now we want to realize the semidirect product G0(K) oH with the obvious
action of H on G0(K) as an ID-Galois group over F . This leads to the following
split embedding problem E(α, β) with homomorphic regular section σ.

Gal(E/F ) ........res
- Gal(L/F )

1 - G0(K) - G0(K)oH

γ

?

...............
β

←−
σ

- H

∼= α

?
- 1

(7�2)

In other words, we have to �nd an IPV-extension E/L with connected Galois
group GalID(E/L) ∼= G0(K) such that E/F is an IPV-extension and in addition
GalID(E/F ) ∼= G0(K) o H (via an isomorphism γ with α ◦ res = β ◦ γ). This
problem can be attacked by the following criterion proved in [Mat], Theorem 8.2:

Proposition 7.13. Let G ∼= G0 o H be a linear algebraic group de�ned over
an algebraically closed �eld K of characteristic p > 0 with regular homomorphic
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section σ : H → G(K). Further , let F be an ID-�eld with �eld of constants K

and cd(F ) ≤ 1.

(a) Let L/F be a �nite Galois extension with Galois group isomorphic to H via
α. Let

χ := σ ◦ α : Gal(L/F ) → σ(H) ≤ G(K), η 7→ Cη

be the composite isomorphism. Then for all l ∈ N there exist elements Zl ∈
GLn(Ll) satisfying η(Zl) = ZlCη for all η ∈ H ∼= Gal(L/F ). Moreover ,
L = F (Z) with Z := Z0.

(b) Let E/L be an IPV-extension with Galois group isomorphic to G0(K) via an
isomorphism

γL : Gal(E/L) → G0(K) E G(K), ε 7→ Cε.

Then there exist elements Yl ∈ G0(El) satisfying ε(Yl) = YlCε for all ε ∈
Gal(E/L) and Dl ∈ G0(Ll) such that Yl+1 = D−1

l Yl. Moreover , E = L(Y )
with Y := Y0.

(c) Suppose in addition that the following equivariance condition is satis�ed :

η(Dl) = C−1
η DlCη for all l ∈ N, η ∈ H.

Then E/F is an IPV-extension with ID-Galois group isomorphic to G(K) and
fundamental solution matrix ZY . Further , the isomorphism γL in (b) can be
extended to an isomorphism

γ : GalID(E/F ) → G(K) with res ◦α = β ◦ γ.

In order to solve the embedding problem E(α, β) above we thus have to construct
an ID-module M over L having a system of representing matrices Dl ∈ G0(Ll)
as de�ned in Section 5.5 ful�lling the equivariance condition in (c). The latter
can be transformed into Dl = Cηη(Dl)C−1

η , i.e., Dl belongs to the group of F -
rational points of the L/F -form G0

χ of G0 with the twisted Galois action given
by

η ∗D = Cηη(D)C−1
η = χ(η)η(D)χ(η−1) (7�3)

(compare [Spr], 12.3.7). This is the key observation for the proof of

Proposition 7.14. For a potential local Galois group G(K) (as described in
Theorem 7.6) the derived split ID-embedding problem E(α, β) given by (7�2) has
a proper solution.

For the proof we �rst show that the L/F -form G0
χ of G0 is F -split ([Mat], proof

of Proposition 8.3). Then the proof of Theorem 7.11 can be recycled to realize
G0(K) as an ID-Galois group over L with matrices Dl ∈ G0

χ(F ). Applying
Proposition 7.13 yields the result.

The next theorem now follows almost immediately from Proposition 7.14:



CONSTRUCTIVE DIFFERENTIAL GALOIS THEORY 461

Theorem 7.15. Let K be an algebraically closed �eld of characteristic p > 0.
Then every trigonalizable reduced linear algebraic group G over K with G/G0 ∼=
PoZ and P , Z as in Theorem 7.6 is the ID-Galois group of some IPV-extension
E/K((t)).
Let G be as in Theorem 7.15. Then G has a �nite supplement H of type P oZ.
As remarked above, H can be realized as ID-Galois group of a �nite extension
L/F . By Proposition 7.14 we can solve the split embedding problem E(α, β)
for G0(K) oH by γ : Gal(E/F )

∼=−→ G0(K) oH. Using the regular (morphic)
homomorphism

ψ : G0(K)oH → G(K), (D,C) 7→ D · C (7�4)

the �xed �eld Ẽ := EKer(ψ◦γ) of ψ ◦ γ de�nes an IPV-extension Ẽ/F with
GalID(Ẽ/F ) ∼= G(K).

8. Global Iterative Di�erential Modules
8.1. The singular locus. In this chapter let F/K be an algebraic function �eld
of one variable over an algebraically closed �eld K of characteristic p > 0, i.e.,
the function �eld F = K(C) of a smooth projective curve C over K. Let M be
an ID-module over F with projective system (Ml, ϕl) and E/F a corresponding
IPV-extension. Then a point x ∈ C is called a regular point of M (or of E/F

respectively) if there exists a local parameter t for x, an open neighborhood
V ⊆ C of x and a ∂∗M,t-stable O(V)-lattice Λ ⊆ M , where

∂
(pl)
M,t = ϕ̃0 ◦ · · · ◦ ϕ̃l ◦ ∂

(pl)
t ◦ ϕ̃−1

l ◦ · · · ◦ ϕ̃−1
0 (8�1)

according to Corollary 5.8. The points which are not regular are called singular
points and the set SM ⊆ C of singular points of M is referred to as the singular
locus of M . The iterative chain rule guarantees that the notion of a regular point
does not depend on the choice of the local parameter t.

The following proposition is immediate and connects the regularity of points
with the regularity of local ID-modules introduced in the last chapter.
Proposition 8.1. Let F = K(C) be a function �eld over an algebraically closed
�eld K of characteristic p > 0 and x ∈ C be a regular point of an ID-module M

over F . Then Fx ⊗F M is a regular local ID-module over the completion Fx of
F at x.
Unfortunately this local property of regular points cannot be used for the def-
inition as the following example shows. Let C = P1(K) be the projective line
and F = K(t) its �eld of rational functions with ∂∗F = ∂∗t . Further, let M be a
one-dimensional ID-module over F with Dl = (t − al)pl ∈ Gm(Fl) for pairwise
distinct al. Then we obtain an IDE by

∂
(pl)
F (yl) = λl(Dl)yl = (t− al)−pl

yl
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which has the symbolic solution y =
∏

l∈N(t−al)pl . The di�erential Galois group
lies insideGm(K) and is in fact the full multiplicative group by the considerations
made in Section 6.2. Obviously every point x ∈ P1(K)\S with S = {al| l ∈ N} is
regular. For x ∈ S, we can assume without loss of generality that x = a0. Then
Fx = K((t− a0)) and thus y again de�nes an element in Mx. Consequently, Mx

is regular for all x ∈ P1(K). In particular, all local ID-Galois groups are trivial,
and GalID(E/F ) is not generated by the Galois groups of the localized modules.

8.2. Realization of connected groups. As explained in Section 7.3, a
solvable connected group G = UoT can be realized over F = K(t) starting from
an e�ective realization of T (K) over F by solving e�ective embedding problems
with kernel Ga(K). As in the local case T (K) can be realized e�ectively by a
direct sum of one-dimensional ID-modules over F with p-adic eigenvalues linearly
independent over Z. Hence from Propositions 7.9 and 7.10 we obtain also in the
global case:
Proposition 8.2. For every reduced connected solvable linear algebraic group
G over an algebraically closed �eld K of characteristic p > 0 the group of K-
rational points G(K) can be realized e�ectively as ID-Galois group over K(t).
In the nonsolvable case �rst we have to �nd a substitute for Propositions 4.8
and 4.9 in the classical case. This is given by
Proposition 8.3. Let G be a reduced connected linear algebraic group over an
algebraically closed �eld K of characteristic p > 0, let A be either Ga or Gm and
set Sl = K[tp

l

] or Sl = K[tp
l

, t−pl

], respectively . Suppose M is an ID-module
over F = K(t) with projective system (Ml, ϕl)l∈N and representing matrices Dl of
ϕl (with respect to a given basis of Ml). Assume further the following properties
are satis�ed :
(a) For all l ∈ N there exist γl ∈ Mor(A,G) such that Dl = γl(tp

l

) ∈ G(Sl) and
γl(1A(K)) = 1G(K).

(b) For all m ∈ N the set {γl(A(K))| l ≥ m} generates G(K) as an algebraic
group.

(c) There exists a number d ∈ N such that the degree of γl is bounded by d for
all l ∈ N.

(d) If l0 < l1 < . . . is the sequence of natural numbers li for which γli 6= 1, then
limi→∞(li+1 − li) = ∞.

Then the IPV-�eld E for M is e�ective over F with GalID(E/F ) ∼= G(K).
Here in (c) the degree deg(γl) is de�ned as the maximum of the degrees of the
numerator and the denominator of the reduced expression of γl (with respect to
tp

l). The proof of Proposition 8.3 is rather technical and can not be reproduced in
this survey (compare [MP], Lemma 7.4, and [Mat], Theorem 7.14). But observe
that the gap condition (d) mimicking the condition for Liouvillean transcendental
numbers excludes all nonconnected subgroups.
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As a consequence of Proposition 8.3 we obtain the solution of the connected
inverse problem.

Theorem 8.4. Let F = K(t) be an ID-�eld over an algebraically closed �eld
K of characteristic p > 0 with ∂∗F = ∂∗t and G be a reduced connected linear
algebraic group over K. Then G(K) can e�ectively be realized as an ID-Galois
group over F .

For the proof one observes �rst that a maximal unipotent subgroup U(K) of
G(K) can be realized via some M ∈ IDModF with projective system (Ml, ϕl)
satisfying conditions (a) to (c) of Proposition 8.3. A suitable choice of the se-
quences (al) appearing in Example 6.2.2 for the chief factors Ai(K) of U(K)
of type Ga(K) also guarantees property (d). (Take for example ai,l ∈ Fp and
αi =

∑
l∈N ai,lp

l ∈ Zp algebraic independent over Q). In the general case let
T (K) be a maximal torus of G(K). Then G(K) is generated as an algebraic
group by a �nite number of conjugates of U(K) and T (K). By Proposition 8.2
T (K) has an e�ective realization via some N ∈ IDModF with projective sys-
tem (Nl, ψl) satisfying conditions (a) to (d) in Proposition 8.3. Combining dif-
ferent conjugates of ϕl and ψl we obtain an ID-module M̃ which again satis-
�es the four conditions. Hence the corresponding IPV-�eld E is e�ective with
Gal(E/F ) ∼= G(K). Because of D(ϕl) ∈ G(K[tp

l

]) and D(ψl) ∈ G(K[tp
l

, t−pl

])
from the proof we obtain in addition:

Corollary 8.5. If G(K) in Theorem 8.4 above is generated by unipotent sub-
groups, it can be realized with at most one singular point at ∞. In the general
case, G(K) can be realized with singular points at most in {0,∞}.
8.3. Realization of nonconnected groups. In order to solve the noncon-
nected inverse problem we need a version of Proposition 8.3 which not only works
over F = K(t), but also over �nite Galois extensions of F .

Proposition 8.6. Let K be an algebraically closed �eld of characteristic p > 0
and let L = K(s, t) be a �nite Galois extension of F = K(t) with ∂∗F = ∂∗t . Let
C be an a�ne model of L/K de�ned by f(s, t) = 0 such that o = (0, 0) ∈ C is
a regular point . Then Ll = Lpl

= K(spl

, tp
l

) has an a�ne model Cl de�ned by
some fl(spl

, tp
l

) = 0. Let G be a reduced connected linear algebraic group over
K and let Gχ be an L/F -form of G de�ned by a regular homomorphic section
χ : H := Gal(L/F ) → G o H as in (7�3) with Gχ(Fl) ≤ G(Ll). Let M be an
ID-module over L with projective system (Ml, ϕl)l∈N and representing matrices
Dl. Suppose the following properties are satis�ed :

(a) For all l ∈ N there exists a rational map γl : Cl → Gχ such that Dl =
γl(spl

, tp
l

) ∈ Gχ(Fl) and γl(o) = 1G(K).
(b) For all m ∈ N the algebraic group over L generated by {γl(Cl) | l ≥ m}

contains G(K).
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(c) There exists a number d ∈ N such that the degree of γl is bounded by d for
all l ∈ N.

(d) If l0 < l1 < . . . is the sequence of natural numbers li for which γli 6= 1, then
limi→∞(li+1 − li) = ∞.

Then M de�nes an e�ective IPV-extension E/L with GalID(E/L) ∼= G(K).

Here in (c) the degree deg(γl) denotes the maximum of the degrees of the nu-
merator and the denominator of the divisors of the matrix entries of Dl in Ll

(compare to Proposition 8.3). From Proposition 8.6 we can derive

Proposition 8.7. Let K be an algebraically closed �eld of characteristic p > 0.
Then every ID-embedding problem over K(t) with connected kernel and �nite
cokernel has a proper solution.

By the Theorem 7.12 of Borel�Serre and Platonov the problem can be reduced
to a split ID-embedding problem of the same type. Hence, thanks to Propo-
sition 7.13, we only need to �nd a sequence of matrices Dl ∈ G0

χ(Fl) which
satisfy the conditions of Proposition 8.6. The group G0

χ is generated as an alge-
braic group by �nitely many F -split unipotent subgroups and F -tori (essentially
from [Spr], Corollary 13.3.10). For any such unipotent subgroup the matrices
needed may be found as in the proof of Theorem 8.4. By [Tit], III, Proposi-
tion 1.6.4 a single element su�ces to generate a dense subgroup of an F -torus,
and such an element may be normed to satisfy condition (a) in Proposition 8.6.
Finally, we splice these matrices together into a sequence satisfying the gap condi-
tion (d) in Proposition 8.6. Then we obtain an e�ective IPV-extension E/L with
GalID(E/L) ∼= G0(K) by Proposition 8.6 and GalID(E/F ) ∼= G(K) by Proposi-
tion 7.13. Obviously Proposition 8.7 implies the solution of the nonconnected
inverse problem.

Theorem 8.8. Let G be a reduced linear algebraic group over an algebraically
closed �eld K of characteristic p > 0. Then G(K) appears as an ID-Galois group
of an IPV-extension E/K(t) with ∂∗K(t) = ∂∗t .

8.4. The di�erential Abhyankar conjecture. In Corollary 8.5 we have seen
that reduced connected linear algebraic groups which are generated by their
closed unipotent subgroups can be realized as ID-Galois groups over F = K(t)
with at most one singular point. This statement resembles the Abhyankar con-
jecture stated in [Abh] and proved by Raynaud [Ray]: Every �nite group which is
generated by its p-Sylow groups can be realized as a Galois group over F = K(t)
unrami�ed outside {∞}. Such groups are usually called quasi-p groups.

In order to reduce an ID-embedding problem with connected unipotently gen-
erated kernel and �nite quasi-p cokernel to split embedding problems of the same
type we have to use the following variant of Theorem 7.12 ([Mat], Proposition
8.12).
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Proposition 8.9. Let G be a unipotently generated linear algebraic group over
an algebraically closed �eld K of characteristic p > 0. Then G0(K) has a �nite
supplement which is a quasi-p group.

Next we have to adapt Proposition 8.6.

Proposition 8.10. If the Galois extension L/F in Proposition 8.6 is unrami�ed
outside {∞} and Gχ is a connected unipotent F -split group, the IPV-extension
E/L can be constructed unrami�ed outside the places of L above {∞}.
With these preparations we are able to prove the following di�erential analogue
of the Abhyankar conjecture in the nonconnected case.

Theorem 8.11. Let K be an algebraically closed �eld of characteristic p > 0
and let F = K(t) an ID-�eld with ∂∗F = ∂∗t . Let G be a unipotently generated
reduced linear algebraic group de�ned over K. Then G(K) can be realized as an
ID-Galois group over F with at most one singularity .

By Proposition 8.9 the connected component G0(K) has a �nite supplement H

in G(K) which is a quasi-p group. Hence it su�ces to consider the corresponding
split ID-embedding problem. By the classical Abhyankar conjecture proved by
Raynaud [Ray] there exists a �nite Galois extension L/F with Gal(L/F ) = H

which is unrami�ed outside {∞}. The composite χ : Gal(L/F )→̃H ↪→ G(K)
de�nes a twisted form G0

χ of G0 as used in Proposition 8.6. It can be shown that
G0

χ is F -quasi-split and contains a maximal closed F -split unipotent subgroup
U ([Mat], proof of Theorem 8.14). Since G0

χ(F ) is dense in G0
χ(L) = G0(L),

the group G0
χ is generated by �nitely many G0

χ(F )-conjugates of U . Thanks to
Proposition 8.10 these conjugates may be generated as algebraic groups over L

by equivariant matrices with singular locus above {∞}. Using Proposition 7.13
(c), these matrices may be combined into a sequence which realizes G(K) as
ID-Galois group over F with singular locus inside {∞}.

At the end we want to call the reader's attention to the parallelism between
the di�erential Abhyankar conjecture in characteristic p > 0 as presented in
Theorem 8.11 and the Theorem 3.11 of Ramis. It generalizes one of the Ramis�
Raynaud analogies between �nite Galois extensions in characteristic p > 0 and
PV-extensions in characteristic 0. More speci�c links, particularly those concern-
ing tame and wild rami�cations and singularities respectively, are collected in
the Ramis�Raynaud dictionary presented in the Bourbaki lecture notes [Put1].
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