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Introduction

We give an exposition of various ideas and results related to the fundamental
results of [Tama1-2], [Mzk1-2] concerningGrothendieck's Conjecture of Anabelian
Geometry (which we refer to as the �Grothendieck Conjecture� for short; see
[Mzk2], Introduction, for a brief introduction to this conjecture). Many of these
ideas existed prior to the publication of [Tama1-2], [Mzk1-2], but were not dis-
cussed in these papers because of their rather elementary nature and secondary
importance (by comparison to the main results of these papers). Nevertheless, it
is the hope of the author that the reader will �nd this article useful as a supple-
ment to [Tama1-2], [Mzk1-2]. In particular, we hope that the discussion of this
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article will serve to clarify the meaning and motivation behind the main result
of [Mzk2].

Our main results are the following:

(1) In Section 1, we take the reverse point of view to the usual one (i.e., that
the Grothendieck Conjecture should be regarded as a sort of (anabelian) Tate
Conjecture) and show that in a certain case, the Tate Conjecture may be re-
garded as a sort of Grothendieck Conjecture (see Theorem 1.1, Corollary 1.2).
In particular, Corollary 1.2 is interesting in that it allows one to express the
fundamental phenomenon involved in the Tate and Grothendieck Conjectures
using elementary language that can, in principle, be understood even by high
school students (see the Introduction to Section 1; the Remarks following
Corollary 1.2).

(2) In Section 2, we show how the main result of [Mzk2] gives rise to a purely
algebro-geometric corollary (i.e., one which has nothing to do with Galois
groups, arithmetic considerations, etc.) in characteristic 0 (see Corollary 2.1).
Moreover, we give a partial generalization of this result to positive character-
istic (see Theorem 2.2).

(3) In Section 3, we discuss real analogues of anabelian geometry. Not surpris-
ingly, the real case is substantially easier than the case where the base �eld
is p-adic or a number �eld. Thus, we are able to prove much stronger results
in the real case than in the p-adic or number �eld cases (see Theorem 3.6,
Corollaries 3.7, 3.8, 3.10, 3.11, 3.13, 3.14, 3.15). In particular, we are able to
prove various real analogues of the so-called Section Conjecture of anabelian
geometry (which has not been proven, at the time of writing, for any varieties
over p-adic or number �elds)� see [Groth], p. 289, (2); [NTM], § 1.2, (GC3),
for a discussion of the Section Conjecture. Also, we note that the real case
is interesting relative to the analogy between the di�erential geometry that
occurs in the real case and certain aspects of the p-adic case (see [Mzk4], In-
troduction, § 0.10; the Introduction to Section 3 of this article). It was this
analogy that led the author to the proof of the main result of [Mzk2].

(4) In Section 4, we show that a certain isomorphism version (see Theorem 4.12)
of the main result of [Mzk2] can be proven over �generalized sub-p-adic �elds�
(see De�nition 4.11), which form a somewhat larger class of �elds than the
class of �sub-p-adic �elds� dealt with in [Mzk2]. This result is interesting in
that it is reminiscent of the main results of [Tama2], as well as of the rigidity
theorem of Mostow�Prasad for hyperbolic manifolds of real dimension 3 (see
the Remarks following the proof of Theorem 4.12).

Although we believe the results of Section 4 to be essentially new, we make no
claim of essential originality relative to the results of Sections 1�3, which may be
proven using well-known standard techniques. Nevertheless, we believe that it is
likely that, even with respect to Sections 1�3, the point of view of the discussion
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is likely to be new (and of interest relative to understanding the main result of
[Mzk2]).

Finally, before beginning our exposition, we pause to review the main result
of [Mzk2] (which is the central result to which the ideas of the present article
are related). To do this, we must introduce some notation. Let Σ be a nonempty
set of prime numbers. If K is a �eld, denote its absolute Galois group Gal(K/K)
(where K is some algebraic closure of K) by ΓK . If X is a geometrically con-
nected K-scheme, recall that its algebraic fundamental group π1(X) (for some
choice of base-point) �ts into a natural exact sequence

1 → π1(X ⊗K K) → π(X) → ΓK → 1.

Denote by ∆X the maximal pro-Σ quotient of π1(X⊗K K) (i.e., the inverse limit
of those �nite quotients whose orders are products of primes contained in Σ).
The pro�nite group ∆X is often referred to as the (pro-Σ) geometric fundamental
group of X. Note that since the kernel of π1(X ⊗K K) → ∆X is a characteristic
subgroup of π1(X ⊗K K), it follows that it is normal inside π1(X). Denote the
quotient of π1(X) by this normal subgroup by ΠX . The pro�nite group ΠX is
often referred to as the (pro-Σ) arithmetic fundamental group of X. (When it is
necessary to specify the set of primes Σ, we will write ∆Σ

X , ΠΣ
X .) Thus, we have

a natural exact sequence

1 → ∆X → ΠX → ΓK → 1.

In [Mzk2] we proved the following result:

Theorem A. Let K be a sub-p-adic �eld (i .e., a �eld isomorphic to a sub�eld
of a �nitely generated �eld extension of Qp), where p ∈ Σ. Let XK be a smooth
variety over K, and YK a hyperbolic curve over K. Let Homdom

K (XK , YK) be the
set of dominant K-morphisms from XK to YK . Let Homopen

ΓK
(ΠX , ΠY ) be the set

of open, continuous group homomorphisms ΠX → ΠY over ΓK , considered up
to composition with an inner automorphism arising from ∆Y . Then the natural
map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠX , ΠY )

is bijective.

Remark. Theorem A as stated above is a formal consequence of �Theorem A�
of [Mzk2]. In [Mzk2], only the cases of Σ = {p}, and Σ equal to the set of all
prime numbers are discussed, but it is easy to see that the case of arbitrary
Σ containing p may be derived from the case Σ = {p} by precisely the same
argument as that used in [Mzk2] (see [Mzk2], the Remark following Theorem
16.5) to derive the case of Σ equal to the set of all prime numbers from the case
of Σ = {p}.
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1. The Tate Conjecture as a Sort of Grothendieck Conjecture

In this section, we attempt to present what might be referred to as the most
fundamental �prototype result� among the family of results (including the Tate
and Grothendieck Conjectures) that states that maps between varieties are �es-
sentially equivalent� to maps between arithmetic fundamental groups. The result
given below, especially in the form Corollary 1.2, is interesting in that it allows
one to express the fundamental phenomenon involved using elementary language
that can, in principle, be understood even by high school students (see the Re-
mark following Corollary 1.2). In particular, it does not require a knowledge of
the notion of a Galois group or any another advanced notions, hence provides
a convincing example of how advanced mathematics can be applied to prove
results which can be stated in simple terms. Also, it may be useful for ex-
plaining to mathematicians in other �elds (who may not be familiar with Galois
groups or other notions used in arithmetic geometry) the essence of the Tate and
Grothendieck Conjectures. Another interesting feature of Corollary 1.2 is that it
shows how the Tate conjecture may be thought of as being of the �same genre� as
the Grothendieck Conjecture in that it expresses how the isomorphism class of
a curve (in this case, an elliptic curve) may be recovered from Galois-theoretic
information.

1.1. The Tate conjecture for non-CM elliptic curves. Let K be a number
�eld (i.e., a �nite extension of Q). If E is an elliptic curve over K, and N is a
natural number, write

K(E[N ])

for the minimal �nite extension �eld of K over which all of the N -torsion points
are de�ned. Note that the extension K(E[N ]) will always be Galois. Then we
have the following elementary consequence of the �Tate Conjecture for abelian
varieties over number �elds� proven in [Falt]:

Theorem 1.1. Let K be a number �eld . Let E1 and E2 be elliptic curves over K

such that neither E1 nor E2 admits complex multiplication over Q. Then E1 and
E2 are isomorphic as elliptic curves over K if and only if K(E1[N ]) = K(E2[N ])
for all natural numbers N .
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Remark. The equality K(E1[N ]) = K(E2[N ]) is to be understood in the sense
of sub�elds of some �xed algebraic closure of K. The substance of this expression
is independent of the choice of algebraic closure precisely because both �elds in
question are Galois extensions of K.

Proof. If E1
∼= E2 over K, then it is clear that K(E1[N ]) = K(E2[N ]) for all

natural numbers N . Thus, assume that K(E1[N ]) = K(E2[N ]) for all natural
numbers N , and prove that E1

∼= E2 over K. In this proof, we use the notation
and results of Section 1.2 below. Since we assume that K(E1[N ]) = K(E2[N ]),
we denote this �eld by K[N ]. Also, if p is a prime number, then we write K[p∞]
for the union of the K[pn], as n ranges over the positive integers. Finally, for
n ≥ 0, we denote the Galois group Gal(K[p∞]/K[pn]) by Γ[pn]; the center of
Γ[pn] by ZΓ[pn]; and the quotient Γ[pn]/ZΓ[pn] by PΓ[pn].

Let p be a prime number. Then by the semisimplicity of the Tate module,
together with the Tate conjecture (both proven in general in [Falt]; see also
[Ser2], IV), the fact that neither E1 nor E2 admits complex multiplication over Q
implies that there exists an integer n ≥ 1 such that the Galois representation on
the p-power torsion points of E1 (respectively, E2) induces an isomorphism β1 :
Γ[pn] ∼= GL[n]

2 (Zp) (respectively, β2 : Γ[pn] ∼= GL[n]
2 (Zp)), where GL[n]

2 (Zp) ⊆
GL2(Zp) is the subgroup of matrices that are ≡ 1 modulo pn. Since the kernel
of GL[n]

2 (Zp) → PGL[n]
2 (Zp) is easily seen to be equal to the center of GL[n]

2 (Zp),
it thus follows that β1, β2 induce isomorphisms

α1 : PΓ[pn] ∼= PGL[n]
2 (Zp), α2 : PΓ[pn] ∼= PGL[n]

2 (Zp).

Thus, in particular, by Lemma 1.3 of Section 1.2 below, we obtain that (after
possibly increasing n) the automorphism α

def= α1 ◦α−1
2 of PGL[n]

2 (Zp) is de�ned
by conjugation by an element of PGL2(Zp). In particular, we obtain that there
exists a Zp-linear isomorphism

ψ : Tp(E1) ∼= Tp(E2)

between the p-adic Tate modules of E1 and E2 with the property that for
σ ∈ Γ[pn], we have ψ(σ(t)) = λσσ(ψ(t)) (∀t ∈ Tp(E1)), for some λσ ∈ Zp

×

which is independent of t. On the other hand, since the determinant of ψ is
clearly compatible with the Galois actions on both sides (given by the cyclo-
tomic character), it thus follows (by taking determinants of both sides of the
equation ψ(σ(t)) = λσσ(ψ(t))) that λ2

σ = 1. Since the correspondence σ 7→ λσ

is clearly a homomorphism (hence a character of order 2), we conclude:

(∗) There exists a �nite extension K ′ of K over which the Gal(K/K ′)-
modules Tp(E1) and Tp(E2) become isomorphic.

(Here, K ′ is the extension of K[pn] (of degree ≤ 2) de�ned by the kernel of σ 7→
λσ. In fact, if p > 2, then this extension is trivial (since Γ[pn] is a pro-p-group).)
Thus, by the Tate Conjecture proven in [Falt], we obtain that HomK′(E1, E2)⊗Z
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Zp contains an element that induces an isomorphism on p-adic Tate modules. On
the other hand, since HK′

def= HomK′(E1, E2) (the module of homomorphisms
(E1)K′ → (E2)K′ over K ′) is a �nitely generated free Z-module of rank ≤ 1
(since E1, E2 do not have complex multiplication over Q), we thus obtain that
HK′ is a free Z-module of rank 1. Let ε ∈ HK′ be a generator of HK′ . Then ε

necessarily corresponds to an isogeny E1 → E2 that induces an isomorphism on
p-power torsion points.

Now write HK
def= HomK(E1, E2). Then the above argument shows that HK

is a free Z-module of rank 1 with a generator ε that induces an isomorphism
on p-power torsion points for every prime number p. But this implies that
ε : (E1)K → (E2)K is an isomorphism, i.e., that E1 and E2 become isomorphic
over K.

Thus, it remains to check that E1 and E2 are, in fact, isomorphic over K.
Let p ≥ 5 be a prime number which is su�ciently large that: (i) K is absolutely
unrami�ed at p; (ii) the Galois representations on the p-power torsion points of
E1 and E2 induce isomorphisms

β1 : Γ[p0] ∼= GL2(Zp); β2 : Γ[p0] ∼= GL2(Zp)

(the existence of such p follows from the �modulo l versions� (for large l) of the
semisimplicity of the Tate module, together with the Tate conjecture in [Mord],
VIII, § 5 ; see also [Ser2], IV). Now we would like to consider the extent to which
the automorphism β

def= β1 ◦ β−1
2 of GL2(Zp) is de�ned by conjugation by an

element of GL2(Zp). Note that by what we did above, we know that the mor-
phism induced by β on PGL[n]

2 (Zp) (for some large n) is given by conjugation by
some element A ∈ GL2(Zp). Let γ : GL2(Zp) → GL2(Zp) be the automorphism
of GL2(Zp) obtained by composing β with the automorphism given by conju-
gation by A−1. Thus, γ induces the identity on PGL[n]

2 (Zp). But this implies
(by Lemma 1.4 below) that γ induces the identity on PGL2(Zp). In particu-
lar, it follows that there exists a homomorphism λ : GL2(Zp) → Zp

× such that
γ(σ) = λ(σ) · σ (∀σ ∈ GL2(Zp)). Next, recall that since p ≥ 5, the topologi-
cal group SL2(Zp) has no abelian quotients (an easy exercise). Thus, λ factors
through the determinant map GL2(Zp) → Zp

×. Moreover, (see the argument
at the beginning of the proof involving arbitrary p) since the composites of β1,
β2 with the determinant map are given by the cyclotomic character, we obtain
that λ2 = 1. In particular, we obtain that λ is trivial on the index 2 subgroup of
GL2(Zp) of elements whose determinant is a square. Put another way, if we write
Kp for the quadratic extension of K determined by composing the cyclotomic
character Gal(K/K) → Zp

× (which is surjective since K is absolutely unram-
i�ed at p) with the unique surjection Zp

× ³ Z/2Z, then over Kp, the Tate
modules Tp(E1), Tp(E2) become isomorphic as Galois modules, which implies
that HomKp(E1, E2) 6= 0. But this implies that E1 and E2 become isomorphic
over Kp.
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On the other hand, for distinct primes p, p′ as above, Kp, Kp′ form linearly
disjoint quadratic extensions of K (as can be seen by considering the rami�cation
at p, p′). Thus, the fact that both Gal(K/Kp) and Gal(K/Kp′) act trivially
on HomK(E1, E2) implies that Gal(K/K) acts trivially on HomK(E1, E2), so
E1

∼= E2 over K, as desired. ¤

Remark. The above proof bene�ted from discussions with A. Tamagawa and
T. Tsuji.
Remark. In the preceding proof (see also the arguments of Section 1.2 below),
we use in an essential way the strong rigidity properties of the simple p-adic Lie
group PGL2(Zp). Such rigidity properties are not shared by abelian Lie groups
such as Zp; this is why it was necessary to assume in Theorem 1.1 that the
elliptic curves in question do not admit complex multiplication.
Corollary 1.2. There is a �nite set CM ⊆ Z such that if E1 and E2 are
arbitrary elliptic curves over Q whose j-invariants j(E1), j(E2) do not belong
to CM, then E1 and E2 are isomorphic as elliptic curves over Q if and only if
Q(E1[N ]) = Q(E2[N ]) for all natural numbers N .
Proof. In light of Theorem 1.1, it su�ces to show that there are only �nitely
many possibilities (all of which are integral� see, e.g., [Shi], p. 108, Theorem
4.4) for the j-invariant of an elliptic curve over Q which has complex multipli-
cation over Q. But this follows from the �niteness of the number of imaginary
quadratic extensions of Q with class number one (see, e.g., [Stk]), together with
the theory of [Shi] (see [Shi], p. 123, Theorem 5.7, (i), (ii)). (Note that we
also use here the elementary facts that: (i) the class group of any order surjects
onto the class group of the maximal order; (ii) in a given imaginary quadratic
extension of Q, there are only �nitely many orders with trivial class group.) ¤

Remark. According to an (apparently) unpublished manuscript of J.-P. Serre
([Ser3]) whose existence was made known to the author by Y. Ihara, the set
CM of Corollary 1.2, i.e., the list of rational j-invariants of elliptic curves with
complex multiplication, is as follows:

d = 1, f = 1 =⇒ j = j(i) = 26 · 33

d = 1, f = 2 =⇒ j = j(2i) = (2 · 3 · 11)3

d = 2, f = 1 =⇒ j = j(
√−2) = (22 · 5)3 ([Weber], p. 721)

d = 3, f = 1 =⇒ j = j(−1+
√−3
2 ) = 0

d = 3, f = 2 =⇒ j = j(
√−3) = 24 · 33 · 53 ([Weber], p. 721)

d = 3, f = 3 =⇒ j = j(−1+3
√−3

2 ) = −3 · 215 · 53 ([Weber], p. 462)

d = 7, f = 1 =⇒ j = j(−1+
√−7
2 ) = −33 · 53 ([Weber], p. 460)

d = 7, f = 2 =⇒ j = j(
√−7) = (3 · 5 · 17)3 ([Weber], p. 475)

d = 11, f = 1 =⇒ j = j(−1+
√−11
2 ) = −215 ([Weber], p. 462)
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d = 19, f = 1 =⇒ j = −(25 · 3)3 ([Weber], p. 462)

d = 43, f = 1 =⇒ j = −(26 · 3 · 5)3 ([Weber], p. 462)

d = 67, f = 1 =⇒ j = −(25 · 3 · 5 · 11)3 ([Weber], p. 462)

d = 163, f = 1 =⇒ j = −(26 · 3 · 5 · 23 · 29)3 ([Weber], p. 462)

Here Q(
√−d) is the imaginary quadratic extension of Q containing the order in

question, f is the conductor of the order, and the reference given in parentheses
is for the values of the invariants �f � and �f1� of [Weber], which are related to
the j-invariant as follows: j = (f24 − 16)3/f24 = (f24

1 + 16)3/f24
1 .

Remark. Thus, if one de�nes elliptic curves over Q using cubic equations,
constructs the group law on elliptic curves by considering the intersection of
the cubic with various lines, and interprets the notion of isomorphism of ellip-
tic curves (over Q) to mean �being de�ned by the same cubic equation, up to
coordinate transformations,� then Corollary 1.2 may be expressed as follows:

Except for the case of �nitely many exceptional j-invariants, two elliptic
curves E1, E2 over Q are isomorphic if and only if for each natural number
N , the coordinates (∈ C) necessary to de�ne the N -torsion points of E1

generate the same �sub�eld of C� � i .e., �collection of complex numbers
closed under addition, subtraction, multiplication, and division� �as the
coordinates necessary to de�ne the N -torsion points of E2.

(Here, of course, the j-invariant is de�ned as a polynomial in the coe�cients
of the cubic.) In this form, the essential phenomenon at issue in the Tate or
Grothendieck Conjectures may be understood even by high school students or
mathematicians unfamiliar with Galois theory.

1.2. Some pro-p group theory. Let n ≥ 1 be an integer. In this section
we denote by PGL2 the algebraic group (de�ned over Z) obtained by forming
the quotient of GL2 by Gm (where Gm ↪→ GL2 is the standard embedding by
scalars), and by

PGL[n]
2 (Zp) ⊆ PGL2(Zp)

the subgroup of elements which are ≡ 1 modulo pn. Write pgl2(Zp) for the
quotient of the Lie algebra M2(Zp) (of 2 by 2 matrices with Zp coe�cients)
by the scalars Zp ⊆ M2(Zp). Thus, pgl2(Zp) ⊆ pgl2(Zp) ⊗Zp Qp = pgl2(Qp).
Write pgl[n]

2 (Zp) ⊆ pgl2(Zp) for the submodule which is the image of matrices
in M2(Zp) which are ≡ 0 modulo pn. Thus, for n su�ciently large, pgl[n]

2 (Zp)
maps bijectively onto PGL[n]

2 (Zp) via the exponential map (see [Ser1], Chapter
V, § 7).
Lemma 1.3. Let α : PGL[n]

2 (Zp) → PGL[n]
2 (Zp) be an automorphism of the

pro�nite topological group PGL[n]
2 (Zp) such that α(PGL[m]

2 (Zp)) = PGL[m]
2 (Zp)

for all m ≥ n. Then there exists an element A ∈ PGL2(Zp) such that for some
m ≥ n, the restriction α|

PGL
[m]
2 (Zp)

is given by conjugation by A.
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Proof. Write
A : pgl2(Qp) → pgl2(Qp)

for the morphism on Lie algebras induced by α. By [Ser1], Chapter V, § 7, 9,
after possibly replacing n by a larger n, we may assume that α is the homomor-
phism obtained by exponentiating A. Moreover, by the well-known theory of
the Lie algebra pgl2(Qp), it follows that A may be obtained by conjugating by
some A′ ∈ PGL2(Qp). (Indeed, this may be proven by noting that A induces
an automorphism of the �variety of Borel subalgebras of pgl2(Qp).� Since this
variety is simply P1

Qp
, we thus get an automorphism of P1

Qp
, hence an element

of PGL2(Qp), as desired.) On the other hand, it follows immediately from the
structure theory of �nitely generated Zp-modules that A′ may be written as a
product

A′ = C1 ·A′′ · C2,

where C1, C2 ∈ PGL2(Zp), and A′′ is de�ned by a matrix of the form
(

λ1 0
0 λ2

)
,

where λ1, λ2 ∈ Qp
×.

Now observe that the fact that A arises from an automorphism of PGL[n]
2 (Zp)

implies that A induces an automorphism of pgl[n]
2 (Zp) (see the discussion at

the beginning of this section). Since conjugation by C1 and C2 clearly induces
automorphisms of pgl[n]

2 (Zp), it thus follows that conjugation by A′′ induces an
automorphism of pgl[n]

2 (Zp). Now, by considering, for instance, upper triangular
matrices with zeroes along the diagonal, one sees that A′′ can only induce an
automorphism of pgl[n]

2 (Zp) if λ1 = λ2 · u, where u ∈ Zp
×. Let A

def= λ−1
1 · A′.

Then clearly A ∈ PGL2(Zp), and conjugation by A induces A. Thus, by using
the exponential map, we obtain that for some m ≥ n, the restriction α|

PGL
[m]
2 (Zp)

is given by conjugation by A, as desired. ¤

The following lemma was pointed out to the author by A. Tamagawa:

Lemma 1.4. Let α : PGL2(Zp) → PGL2(Zp) be an automorphism of the pro�-
nite topological group PGL2(Zp) such that for some integer m ≥ 1, the restriction
α|

PGL
[m]
2 (Zp)

is the identity . Then α itself is the identity .

Proof. First let us show that α is the identity on the image in PGL2(Zp)
of matrices of the form

(
1
0

λ
1

)
, where λ ∈ Zp. For m ≥ 0 an integer, write

Um ⊆ PGL2(Zp) for the subgroup of images in PGL2(Zp) of matrices of the
form

(
1
0

λ
1

)
, where λ ∈ pm · Zp. Since, by hypothesis, α preserves Um for some

m, it follows that α preserves the centralizer Z(Um) of Um in PGL2(Zp). On
the other hand, one checks easily that Z(Um) = U0. Thus, α preserves U0, i.e.,
induces an automorphism of the topological group U0

∼= Zp which is the identity
on pm · Zp. Since Zp is torsion free, it thus follows that α is the identity on U0,
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as desired. Moreover, let us observe that since conjugation commutes with the
operation of taking centralizers, one sees immediately that the above argument
implies also that α is the identity on all conjugates of U0 in PGL2(Zp).

Next, observe that α is the identity on the subgroup B ⊆ PGL2(Zp) consisting
of images of matrices of the form

(
µ1 λ

0 µ2

)

(where λ ∈ Zp, µ1, µ2 ∈ Zp
×). Indeed, since B is generated by U0 and the

subgroup T ⊆ PGL2(Zp) of images of matrices of the form
(

µ
0

0
1

)
, it su�ces to

see that α is the identity on T . But T acts faithfully by conjugation on U0,
and α is the identity on U0. This implies that α is the identity on T , hence
on B. Moreover, as in the previous paragraph, this argument implies that α is
the identity on all conjugates of B in PGL2(Zp). Since PGL2(Zp) is generated
by the union of the conjugates of B, it thus follows that α is the identity on
PGL2(Zp). ¤

2. Hyperbolic Curves As Their Own
�Anabelian Albanese Varieties�

In this section, we present an application (Corollary 2.1) of the main theorem
of [Mzk2] which is interesting in that it is purely algebro-geometric, i.e., it makes
no mention of Galois actions or other arithmetic phenomena.

2.1. A corollary of the Main Theorem of [Mzk2]. We �x a nonempty set
of prime numbers Σ, and use the notation of the discussion of Theorem A in the
Introduction. Now Theorem A has the following immediate consequence:
Corollary 2.1. Let K be a �eld of characteristic 0. Let C be a hyperbolic curve
over K, and let ψ : X → Y be a morphism of (geometrically integral) smooth va-
rieties over K which induces an isomorphism ∆X

∼= ∆Y . Write �Homdom
K (−, C)�

for the set of dominant K-morphisms from �−� to C. Then the natural morphism
of sets

Homdom
K (Y, C) → Homdom

K (X,C)

induced by ψ : X → Y is a bijection.
Proof. By a standard technique involving the use of sub�elds of K which are
�nitely generated over Q, we reduce immediately to the case where K is �nitely
generated over Q. (We recall for the convenience of the reader that the essence
of this technique lies in the fact that since we are working with K-schemes of
�nite type, all schemes and morphisms between schemes are de�ned by �nitely
many polynomials with coe�cients in K, hence may be de�ned over any sub�eld
of K that contains these coe�cients�of which there are only �nitely many!)

Next, observe that since the morphism ψ : X → Y induces an isomorphism
between the respective geometric fundamental groups, it follows from the exact
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sequences reviewed in the Introduction that it induces an isomorphism ΠX
∼=

ΠY . By Theorem A of the Introduction, it thus follows that the morphism of
sets under consideration� i.e., Homdom

K (Y, C) → Homdom
K (X, C)�is naturally

isomorphic to the morphism of sets given by

Homopen
ΓK

(ΠY , ΠC) → Homopen
ΓK

(ΠX , ΠC)

which is bijective. ¤

Remark. As stated above, Corollary 2.1 is interesting in that it is a purely
algebro-geometric application of Theorem A, i.e., it makes no mention of Galois
actions or other arithmetic phenomena. The observation that Corollary 2.1 holds
�rst arose in discussions between the author and A. Tamagawa. Typical examples
of morphisms ψ : X → Y as in Corollary 2.1 are:

(1) the case where X → Y is a �ber bundle in, say, the étale topology, with
proper, simply connected �bers;

(2) the case where Y ⊆ Pn
k is a closed subvariety of dimension ≥ 3 in some

projective space, and X is obtained by intersecting Y with a hyperplane in Pn
k .

In these cases, the fact that the resulting morphism on geometric fundamental
groups is an isomorphism follows from the long exact homotopy sequence of
a �ber bundle in the �rst case (see [SGA1], X, Corollary 1.4), and Lefshetz-
type theorems (see [SGA2], XII, Corollary 3.5) in the second case. Since this
consequence of Theorem A (i.e., Corollary 2.1) is purely algebro-geometric, it is
natural to ask if one can give a purely algebro-geometric proof of Corollary 2.1.
In Section 2.2 below, we give a partial answer to this question.

2.2. A partial generalization to �nite characteristic. Let k be an alge-
braically closed �eld. Let C be a proper hyperbolic curve over k. Suppose that
we are also given a connected, smooth closed subvariety

Y ⊆ Pn
k

of projective space, of dimension ≥ 3, together with a hyperplane H ⊆ Pn
k such

that the scheme-theoretic intersection X
def= H

⋂
Y is still smooth. Note that X

is necessarily connected (see [SGA2], XII, Corollary 3.5) and of dimension ≥ 2.
If k is of characteristic p > 0, and S is a k-scheme, then let us write ΦS : S → S

for the Frobenius morphism on S (given by raising regular functions on S to the
power p). If k is of characteristic 0, then we make the convention that ΦS : S → S

denotes the identity morphism. If T is a k-schemes, we de�ne

HomΦ(T,C)

to be the inductive limit of the system

Homdom
k (T,C) → Homdom

k (T, C) → · · · → Homdom
k (T, C) → · · · ,
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where the arrows are those induced by applying the functor Homdom
k (−, C) to the

morphism ΦT . Thus, in particular, if k is of characteristic 0, then HomΦ(T, C) =
Homdom

k (T, C).
Now we have the following partial generalization of Corollary 2.1 of Section

2.1 to the case of varieties over a �eld of arbitrary characteristic:

Theorem 2.2. Let k, C, X, and Y be as above. Then the natural morphism

HomΦ(Y, C) → HomΦ(X, C)

induced by the inclusion X ↪→ Y is a bijection.

Proof. Denote by AX , AY , and AC the Albanese varieties of X, Y , and C,
respectively. We refer to [Lang], Chapter II, § 3, for basic facts concerning Al-
banese varieties. Thus, the inclusion X ↪→ Y induces a morphism AX → AY .
I claim that this morphism is a purely inseparable isogeny. Indeed, by various
well-known Leftshetz theorem-type results (see, [SGA2], XII, Corollary 3.5), the
inclusion X ↪→ Y induces an isomorphism π1(X) ∼= π1(Y ); since (by the univer-
sal property of the Albanese variety as the �minimal abelian variety to which the
original variety maps�) we have surjections π1(X) ³ π1(AX), π1(Y ) ³ π1(AY ),
we thus obtain that π1(AX) ³ π1(AY ) is a surjection. Moreover, since X → AX ,
Y → AY induce isomorphisms on the respectively étale �rst cohomology groups
with Zl-coe�cients (where l is prime to the characteristic of k), we thus obtain
that π1(AX) ³ π1(AY ) is a surjection which is an isomorphism on the respective
maximal pro-l quotients. Now it follows from the elementary theory of abelian
varieties that this implies that AX → AY is a isogeny of degree a power of p.
Finally, applying again the fact that π1(AX) ³ π1(AY ) is surjective (i.e., even
on maximal pro-p quotients), we conclude (again from the elementary theory of
abelian varieties) that this isogeny has trivial étale part, hence is purely insepa-
rable, as desired. Note that since AX → AY is an isogeny, it follows in particular
that it is faithfully �at.

Now let γX : X → C be a dominant k-morphism. Write αX : AX → AC for
the induced morphism on Albanese varieties. If γX arises from some γY : Y → C,
then this γY is unique. Indeed, γY is determined by its associated αY , and the
composite of αY with AX → AY is given by αX (which is uniquely determined
by γX). Thus, the fact that αY is uniquely determined follows from the fact that
AX → AY is faithfully �at. This completes the proof of the claim, and hence of
the injectivity portion of the bijectivity assertion in Theorem 2.2.

Now suppose that γX is arbitrary (i.e., does not necessarily arise from some
γY ). The surjectivity portion of the bijectivity assertion in Theorem 2.2 amounts
to showing that, up to replacing γX by the composite of γX with some power of
ΦX , γX necessarily arises from some γY : Y → C. Now although αX : AX → AC

itself might not factor through AY , since AX → AY is purely inseparable, it
follows that the composite of αX with some power of ΦAX will factor through
AY . Thus, if we replace γX by the composite of γX with some power of ΦX , then
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αX will factor (uniquely) through AY . Denote this morphism by αY : AY → AC .
Thus, in order to complete the proof of surjectivity, it su�ces to show:

The restriction αY |Y of αY to Y (relative to the natural morphism Y →
AY ) maps into the subvariety C ⊆ AC .

Before continuing, we make some observations:

(1) The assertion (∗) for characteristic zero k follows immediately from the as-
sertion (∗) for k of �nite characteristic. Indeed, this follows via the usual
argument of replacing k �rst by a �nitely generated Z-algebra, and then re-
ducing modulo various primes. Thus, in the following, we assume the k is of
characteristic p > 0.

(2) The assertion (∗) will follow if we can show that the restriction αY |Ŷ (where
we write Ŷ for the completion of Y along X) maps into C ⊆ AC .

Now we show that (up to possibly composing γX again with a power of Frobe-
nius), γX extends to Ŷ . If I is the sheaf of ideals on Y that de�nes the closed
subscheme X ⊆ Y , then let us write Yn

def= V (In) ⊆ Y for the n-th in�nitesimal
neighborhood of X in Y , and J def= I|X ∼= OX(−1). Write T for the pull-back of
the tangent bundle of C to X via γX . Since T −1 is generated by global sections,
it thus follows that T −1⊗J−1 is ample, hence, by Serre duality (see, e.g., [Harts],
Chapter III, Theorem 7.6), together with the fact that dim(X) ≥ 2, that there
exists a natural number N such that

H1(X, T ⊗pN ⊗ J⊗pN

) = 0.

Note that this implies that for all n ≥ pN , we have:

H1(X, T ⊗pN ⊗ J⊗n) = 0.

(Indeed, it su�ces to assume that n > pN . Then since J−1 ∼= OX(1) is very
ample, it follows that there exists a section s ∈ Γ(X,OX(1)) whose zero locus
Z

def= V (s) ⊆ X is smooth of dimension ≥ 1. Thus, s de�nes an exact sequence

0 → T ⊗pN ⊗ J⊗n → T ⊗pN ⊗ J⊗n−1 → T ⊗pN ⊗ J⊗n−1|Z → 0,

whose associated long exact cohomology sequence yields

H0(Z, T ⊗pN ⊗ J⊗n−1|Z) → H1(X, T ⊗pN ⊗ J⊗n) → H1(X, T ⊗pN ⊗ J⊗n−1)

But H0(Z, T ⊗pN ⊗ J⊗n−1|Z) = 0 since T ⊗pN ⊗ J⊗n−1|Z is the inverse of an
ample line bundle on a smooth scheme of dimension ≥ 1, while H1(X, T ⊗pN ⊗
J⊗n−1) = 0 by the induction hypothesis.)

Next, observe that ΦN
YpN

: YpN → YpN factors through X (since ΦN
YpN

is
induced by raising functions to the pN -th power). Thus, if we compose γX :
X → C with ΦN

X , we see that this composite extends to a morphism YpN → C.
Moreover, since the pull-back to X via this composite of the tangent bundle on
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C is given by T ⊗pN , it follows that the obstruction to extending this composite
to Yn+1 for n ≥ pN is given by an element of the cohomology group

H1(X, T ⊗pN ⊗ J⊗n),

which (by the above discussion concerning cohomology groups) is zero. Thus, in
summary, if we replace the given γX by its composite with ΦN

X , the resulting γX

extends to a morphism Ŷ → C. This completes the proof of (∗), and hence of
the entire proof of Theorem 2.2. ¤

Remark. The above proof bene�ted from discussions with A. Tamagawa.

Remark. The other case discussed in the remark at the end of Section 2.1, i.e.,
the case of a �ber bundle with proper, simply connected �bers also admits a
purely algebro-geometric proof: namely, it follows immediately from the theory
of Albanese varieties that there do not exist any nonconstant morphisms from a
simply connected smooth proper variety to an abelian variety.

Remark. The role played by the Albanese variety in the proof of Theorem 2.2
given above suggests that the property proven in Corollary 2.1 and Theorem 2.2
might be thought of as asserting that a hyperbolic curve is, so to speak, its own
�anabelian Albanese variety.� This is the reason for the title of Section 2.

3. Discrete Real Anabelian Geometry
The original motivation for the p-adic result of [Mzk2] came from the (dif-

ferential) geometry of the upper half-plane uniformization of a hyperbolic curve.
This point of view�and, especially, the related idea that Kähler geometry at
archimedean primes should be regarded as analogous to Frobenius actions at
p-adic primes� is discussed in detail in [Mzk4], Introduction (especially Section
0.10; see also the Introduction of [Mzk3]). In the present section, we attempt
to make this motivation more rigorous by presenting the real analogues of vari-
ous theorems/conjectures of anabelian geometry. The substantive mathematics
here� i.e., essentially the geometry of the Siegel upper half-plane and Teich-
müller space� is not new, but has been well-known to topologists, Teichmüller
theorists, and symmetric domain theorists for some time. What is (perhaps)
new is the formulation or point of view presented here, namely, that these geo-
metric facts should be regarded as real analogues of Grothendieck's conjectured
anabelian geometry.

3.1. Real complex manifolds. We begin with the following purely analytic
de�nition: Let X be a complex manifold and ι an antiholomorphic involution
(i.e., automorphism of order 2) of X.

Definition 3.1. A pair such as (X, ι) will be referred to as a real complex
manifold. If X has the structure of an abelian variety whose origin is �xed by
ι, then (X, ι) will be referred to as a real abelian variety. If dimC(X) = 1, then
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(X, ι) will be referred to as a real Riemann surface. A real Riemann surface
(X, ι) will be called hyperbolic if the universal covering space of X is isomorphic
(as a Riemann surface) to the upper half-plane H

def= {z ∈ C | Im(z) > 0}.
Remark. If XR is a smooth algebraic variety over R, then XR(C) equipped
with the antiholomorphic involution de�ned by complex conjugation de�nes a
real complex manifold (X, ι). Moreover, one checks easily that XR is uniquely
determined by (X, ι). Conversely, any real complex manifold (X, ι) such that
X is projective arises from a unique algebraic variety XR over R. Indeed, this
follows easily from �Chow's Theorem� (that any projective complex manifold is
necessarily algebraic) and the (related) fact that any holomorphic isomorphism
between projective algebraic varieties (in this case, the given X and its complex
conjugate) is necessarily algebraic. Thus, in summary, one motivating reason for
the introduction of De�nition 3.1 is that it allows one to describe the notion of a
(proper , smooth) algebraic variety over R entirely in terms of complex manifolds
and analytic maps.

Remark. In the case of one complex dimension, one does not even need to
assume projectivity: That is, any real Riemann surface (X, ι) such that X is
algebraic arises from a unique algebraic curve XR over R. Indeed, this follows
easily by observing that any holomorphic isomorphism between Riemann surfaces
associated to complex algebraic curves is necessarily algebraic. (This may be
proven by noting that any such isomorphism extends naturally to the �one-
point compacti�cations� of the Riemann surfaces (which have natural algebraic
structures), hence is necessarily algebraizable.) It is not clear to the author
whether or not this can be generalized to higher dimensions.

In the following, we shall consider various groups G with natural augmentations
G → Gal(C/R). In this sort of situation, we shall denote the inverse image of the
identity element (respectively, the complex conjugation element) in Gal(C/R)
by G+ (respectively, G−).

If X is a complex manifold, we shall denote by

Aut(X) → Gal(C/R)

the group of automorphisms of X which are either holomorphic or antiholomor-
phic, equipped with its natural augmentation (which sends holomorphic (respec-
tively, antiholomorphic) automorphisms to the identity (respectively, complex
conjugation element) in Gal(C/R)). Thus,

Aut+(X), Aut−(X) ⊆ Aut(X)

denote the subsets of holomorphic and antiholomorphic automorphisms, respec-
tively. In many cases, X will come equipped with a natural Riemannian metric
which is preserved by Aut(X). The principal examples of this situation are:
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Example 3.2 (the Siegel upper half-plane). Let g ≥ 1 be an integer. The
Siegel upper half-plane Hg is the set

Hg
def= {Z ∈ Mg(C) | Z = tZ; Im(Z) > 0},

where t denotes the transpose matrix, and > 0 means positive de�nite. (Thus,
H1 is the usual upper half-plane H.) We shall regard Hg as a complex manifold
(equipped with the obvious complex structure). Set

Jg
def=

(
0 Ig

−Ig 0

)
∈ M2g(R),

where Ig ∈ Mg(R) is the identity matrix. Write

GSp2g
def= {M ∈ M2g(R) | M · J · tM = η · J, η ∈ R×}

for the group of symplectic similitudes. Thus, we have a natural character

χ : GSp2g → Gal(C/R)

that maps an M ∈ GSp2g to the sign of η (where η is as in the above de�nition
of GSp2g). In particular, χ de�nes GSp+

2g, GSp−2g. Then we have a natural
homomorphism

φ : GSp2g → Aut(Hg)

given by letting M =
(

A
C

B
D

) ∈ GSp2g act on Z ∈ Hg by

Z 7→ (AZχ(M) + B)(CZχ(M) + D)−1.

Thus, φ is compatible with the augmentations to Gal(C/R). Now it is clear
that the kernel of φ is given by the scalars R× ⊆ GSp2g. In fact, φ is surjective.
Indeed, this is well-known when +'s are added to both sides (i.e., for holomorphic
automorphisms�see, e.g., [Maass], § 4, Theorem 2). On the other hand, since
φ is compatible with the augmentations to Gal(C/R), the surjectivity of φ thus
follows from the �5-Lemma.� Thus, in summary, we have a natural isomorphism

GSp2g/R
× ∼= Aut(Hg)

Moreover, the space Hg admits a natural Riemannian metric. Relative to this
metric, any two points Z1, Z2 of Hg can be joined by a unique geodesic (see
[Maass], § 3, Theorem). Moreover, this Riemannian metric is preserved by the
action of GSp2g on Hg. (Indeed, this follows from [Maass], § 4, Theorem 1, in
the holomorphic case. As for the antiholomorphic case, it su�ces to check that
the metric is preserved by a single antiholomorphic map. But this is clear from
[Maass], § 4, Theorem 1, for the map Z 7→ −Z̄.)
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Example 3.3 (Teichmüller space). Let g, r ≥ 0 be integers such that
2g − 2 + r > 0. Denote by Tg,r the Teichmüller space of genus g Riemann
surfaces with r marked points. Thus, Tg,r has a natural structure of complex
manifold. Moreover, Tg,r is equipped with a natural Kähler metric, called the
Weil�Petersson metric, whose associated Riemannian metric has the property
that any two points t1, t2 ∈ Tg,r may be joined by a unique geodesic (see [Wolp],
§ 5.1).

Write
Modg,r

for the full modular group, i.e., the group of homotopy classes of homeomorphisms
of a topological surface of type (g, r) onto itself. Note that Modg,r is equipped
with an augmentation Modg,r → Gal(C/R) given by considering whether or
not the homeomorphism preserves the orientation of the surface. The quotient
Tg,r/Mod+

g,r (in the sense of stacks) may be identi�ed with the moduli stack
Mg,r of hyperbolic curves of type (g, r) over C, and the Weil�Petersson metric
descends to Mg,r. Moreover, the Riemannian metric arising from the Weil�
Petersson metric on Mg,r is preserved by complex conjugation. Indeed, this
follows easily, for instance, from the de�nition of the Weil�Petersson metric in
terms of integration of the square of the absolute value of a quadratic di�erential
(on the Riemann surface in question) divided by the (1, 1)-form given by the
Poincaré metric (on the Riemann surface in question)�see, e.g, [Wolp], § 1.4.

If (g, r) is not exceptional (i.e., not equal to the cases (0, 3), (0, 4), (1, 1), (1, 2),
or (2, 0)), then it is known (by a theorem of Royden�see, e.g., [Gard], § 9.2,
Theorem 2) that one has a natural isomorphism

Modg,r
∼= Aut(Tg,r),

which is compatible with the natural augmentations to Gal(C/R). Now I claim
that (at least if (g, r) is nonexceptional, then) Aut(Tg,r) preserves (the Riemann-
ian metric arising from) the Weil�Petersson metric. Indeed, since Tg,r/Mod+

g,r =
Mg,r, and the Weil�Petersson metric descends to Mg,r, it thus follows that
Mod+

g,r preserves the Weil�Petersson metric. Thus, the claim follows from the
fact (observed above) that (the Riemannian metric arising from) the Weil�
Petersson metric on Mg,r is preserved by complex conjugation.

We now return to our discussion of an arbitrary real complex manifold (X, ι).
By analogy with the case when (X, ι) arises from a real algebraic variety (see
the Remark following De�nition 3.1), we will refer to the �xed point locus of ι

as the real locus of (X, ι), and use the notation

X(R)

for this locus. Observe that X(R) is necessarily a real analytic submanifold
of X of real dimension equal to the complex dimension of X. (Indeed, this
follows immediately by considering the local structure of ι at a point x ∈ X(R).)
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Moreover, at any x ∈ X(R), the involution ι induces a semi-linear (i.e., with
respect to complex conjugation) automorphism ιx of order 2 of the complex
vector space Tx(X) (i.e., the tangent space to the complex manifold X at x).
That is to say, ιx de�nes a real structure Tx(X)R ⊆ Tx(X)R ⊗R C = Tx(X) on
Tx(X). Put another way, this real structure Tx(X)R is simply the tangent space
to the real analytic submanifold X(R) ⊆ X.

Since ι acts without �xed points on X\X(R), it follows that the quotient of
X\X(R) by the action of ι de�nes a real analytic manifold over which X\X(R)
forms an unrami�ed double cover. In the following, in order to analyze the action
of ι on all of X, we would like to consider the quotient of X by the action of ι

in the sense of real analytic stacks. Denote this quotient by Xι. Thus, we have
an unrami�ed double cover

X → Xι

which extends the cover discussed above over X\X(R).
The Galois group of this double cover (which is isomorphic to Z/2Z) may be

identi�ed with the Galois group Gal(C/R). Thus, this double cover induces a
short exact sequence of fundamental groups

1 → π1(X) → π1(Xι) → Gal(C/R) → 1

where we omit base-points, since they are inessential to the following discussion.
(Here, by �π1� we mean the usual (discrete) topological fundamental group in
the sense of algebraic topology.)

Now write X̃ → X for the universal covering space of X. Thus, X̃ also
has a natural structure of complex manifold, and ι induces an antiholomorphic
automorphism ι̃ (not necessarily of order 2!) of X̃, which is uniquely determined
up to composition with the covering transformations of X̃ → X. Since X̃ is
also the universal cover of the real analytic stack Xι, it thus follows that by
considering the covering transformations of the covering X̃ → Xι, we get a
natural homomorphism

π1(Xι) → Aut(X̃)

which is compatible with the natural projections of both sides to Gal(C/R).
Thus, if, for instance, (X, ι) is a hyperbolic real Riemann surface, then by

Example 3.2, there is a natural isomorphism Aut(X̃) ∼= PGL2(R) = GSp2/R
×

(well-de�ned up to conjugation by an element of PGL+
2 (R)). Thus, we obtain a

natural representation
ρX : π1(Xι) → PGL2(R)

which is compatible with the natural projections of both sides to Gal(C/R).

Definition 3.4. Let (X, ι) be a hyperbolic real Riemann surface. Then the
representation

ρX : π1(Xι) → PGL2(R)
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just constructed (which is de�ned up to composition with conjugation by an
element of PGL+

2 (R)) will be referred to as the canonical representation of (X, ι).

Remark. The point of view of De�nition 3.4 is discussed in [Mzk3], § 1, �Real
Curves,� although the formulation presented there is somewhat less elegant.

3.2. Fixed points of antiholomorphic involutions. Let T be a (nonempty)
complex manifold which is also equipped with a smooth Riemannian metric.
Assume also that the Riemannian metric on T satis�es the following property:

(∗) For any two distinct points t1, t2 ∈ T , there exists a unique geodesic
joining t1 and t2.

Then we have the following result, which is fundamental to the theory of the
present Section 3:

Lemma 3.5. Let T be a (nonempty) complex manifold equipped with a
smooth Riemannian metric satisfying the condition (∗). Let ιT : T → T

be an antiholomorphic involution of T which preserves this Riemannian metric.
Then the �xed point set FιT

def= {t ∈ T | ιT (t) = t} of ιT is a nonempty ,
connected real analytic submanifold of T of real dimension equal to the complex
dimension of T .

Proof. By the discussion of Section 3.1, it follows that it su�ces to prove
that ιT is nonempty and connected. First, we prove nonemptiness. Let t1 ∈ T

be any point of T , and set t2
def= ιT (t1). If t1 = t2, then t1 ∈ FιT , so we are

done. If t1 6= t2, then let γ be the unique geodesic joining t1, t2. Then since
the subset {t1, t2} is preserved by ιT , it follows that γ is also preserved by ιT .
Thus, it follows in particular that the midpoint t of γ is preserved by ιT , i.e.,
that t ∈ FιT

, so FιT
is nonempty as desired. Connectedness follows similarly: If

t1, t2 ∈ FιT , then the unique geodesic γ joining t1, t2 is also clearly �xed by ιT ,
i.e., γ ⊆ FιT , so FιT is pathwise connected. ¤

Remark. The idea for this proof (using the Weil�Petersson metric in the case
of Teichmüller space) is essentially due to Wolpert ([Wolp]), and was related to
the author by C. McMullen. We remark that this idea has been used to give a
solution of the Nielsen Realization Problem (see the Introduction of [Wolp]). It
is easiest to see what is going on by thinking about what happens in the case
when T = H (the upper half-plane) equipped with the Poincaré metric dx2+dy2

y2 .
Also, we remark that in the case when T = P1

C , both the hypothesis and the
conclusion of Lemma 3.5 are false! (That is, the hypothesis is false because there
will always exist �conjugate points,� and the conclusion is false because it is easy
to construct examples of antiholomorphic involutions without �xed points.)

Now assume that (X, ι) is any real complex manifold equipped with a smooth
Riemannian metric (i.e., X is equipped with a smooth Riemannian metric pre-
served by ι) such that the induced Riemannian metric on the universal cover
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T
def= X̃ satis�es (∗). Let Y ⊆ X(R) be a connected component of the real an-

alytic manifold X(R). Then since ι acts trivially on Y , the quotient of Y by
the action of ι forms a real analytic stack Y ι whose associated coarse space is Y

itself, and which �ts into a commutative diagram:
Y → Y ι

↓ ↓
X → Xι

Moreover, the mapping Y ι → Y (where we think of Y as the coarse space
associated to the stack Y ι) de�nes a splitting of the exact sequence

1 → π1(Y ) → π1(Y ι) → Gal(C/R) → 1,

hence a homomorphism Gal(C/R) → π1(Y ι). If we compose this homomorphism
with the natural homomorphism π1(Y ι) → π1(Xι), then we get a morphism

αY : Gal(C/R) → π1(Xι)

naturally associated to Y , which is well-de�ned up to composition with an inner
autormorphism of π1(X). In particular, the image of complex conjugation under
αY de�nes a conjugacy class of involutions ιY of π1(Xι). Thus, to summarize,
we have associated to each connected component Y ⊆ X(R) of the real locus of
(X, ι) a conjugacy class of involutions ιY in π1(Xι).

Now we have the following immediate consequence of Lemma 3.5:

Theorem 3.6 (General Discrete Real Section Conjecture). Let (X, ι)
be a real complex manifold equipped with a smooth Riemannian metric (i .e.,
X is equipped with a smooth Riemannian metric preserved by ι) such that the
induced Riemannian metric on the universal cover X̃ satis�es (∗). Then the
correspondence Y 7→ ιY de�nes a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))

from the set of connected components of the real locus X(R) to the set of conju-
gacy classes of sections of π1(Xι) → Gal(C/R) (or , equivalently , involutions in
π1(Xι)). Moreover , the centralizer of an involution ιY ∈ π1(Xι) is the image of
π1(Y ι) in π1(Xι).

Proof. Indeed, let ιT ∈ π1(Xι) be an involution. Then ιT may be thought
of as an antiholomorphic involution of T

def= X̃. By Lemma 3.5, the �xed point
locus FιT of ιT is nonempty and connected. Thus, FιT maps into some connected
component Y ⊆ X(R). (In fact, the morphism FιT → Y is a covering map.)
By functoriality (consider the map of triples (T, ιT , FιT ) → (X, ι, Y )!), it follows
that ιY = ιT . Thus, every involution in π1(Xι) arises as some ιY . Next, let us
show uniqueness. If ιT arises from two distinct Y1, Y2 ⊆ X(R), then it would
follow that the �xed point locus FιT contains at least two distinct connected
components (corresponding to Y1, Y2), thus contradicting Lemma 3.5. Finally,
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if α ∈ π1(Xι) commutes with ιY , then α preserves FιY
, hence induces an auto-

morphism of FιY
over Y ι. But since FιY

→ Y ι is a covering map, this implies
that α is in the image of π1(Y ι) in π1(Xι). This completes the proof. ¤

Remark. Thus, Theorem 3.6 is a sort of analogue of the so-called �Section
Conjecture� of anabelian geometry for the discrete fundamental groups of real
complex manifolds�see [Groth], p. 289, (2); [NTM], § 1.2, (GC3), for more on
the Section Conjecture.

Remark. Theorem 3.6 generalizes immediately to the case where X is a complex
analytic stack. In this case, �Y ι� is to be understood to be the real analytic stack
whose stack structure is inherited from that of the real analytic stack Xι. We
leave the routine details to the reader.

3.3. Hyperbolic curves and their moduli. By the discussion of Examples
3.2 (in the case of H), 3.3, in Section 3.1, together with Theorem 3.6 of Section
3.2, we obtain:

Corollary 3.7 (Discrete Real Section Conjecture for hyperbolic
real riemann surfaces). Let (X, ι) be a hyperbolic real Riemann surface .
Then the correspondence Y 7→ ιY of Section 3.2 de�nes a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))

from the set of connected components of the real locus X(R) to the set of conju-
gacy classes of sections of π1(Xι) → Gal(C/R) (or , equivalently , involutions in
π1(Xι)).

Remark. Some readers may �nd it strange that there is no discussion of �tan-
gential sections� (at the �points at in�nity� of X) in Corollary 3.7. The reason
for this is that in the present �real context,� where we only consider connected
components of the set of real points, every tangential section arising from a real
point at in�nity may be obtained as a limit of a sequence of real points that are
not at in�nity (and, which, moreover, may be chosen to lie in the same connected
components of the real locus), hence is �automatically included� in the connected
component containing those real points.

Corollary 3.8 (Discrete Real Section Conjecture for moduli of
hyperbolic curves). Let g, r ≥ 0 be integers such that 2g − 2 + r > 0.
Write (Mg,r, ιM) for the moduli stack of complex hyperbolic curves of type (g, r),
equipped with its natural antiholomorphic involution (arising from the structure
of Mg,r as an algebraic stack de�ned over R). If (X, ι) arises from a real hyper-
bolic curve of type (g, r), then the exact sequence

1 → π1(X) → π1(Xι) → Gal(C/R) → 1

de�nes a homomorphism

α(X,ι) : Gal(C/R) → π1(MιM
g,r ) = Modg,r ⊆ Out(π1(X))
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(where �Out(−)� denotes the group of outer automorphisms of the group in paren-
theses). This correspondence (X, ι) 7→ α(X,ι) de�nes a bijection

π0(Mg,r(R)) ∼= HomGal(C/R)(Gal(C/R), π1(MιM
g,r ))

from the set of connected components of Mg,r(R) to the set of conjugacy classes
of sections of π1(MιM

g,r ) → Gal(C/R), or , equivalently , involutions in π1(MιM
g,r ).

Moreover , the centralizer of an involution ιY ∈ π1(MιM
g,r ) is the image of π1(Y ι)

in π1(MιM
g,r ).

Remark. The injectivity portion of the bijection of Corollary 3.8, together with
the determination of the centralizer of an involution (the �nal sentence in the
statement of Corollary 3.8), may be regarded as the discrete real analogue of the
so-called �Strong Isomorphism Version of the Grothendieck Conjecture.� (For
the convenience of the reader, we recall that the �Strong Isomorphism Version
of the Grothendieck Conjecture� is the statement of Theorem A in the Intro-
duction, except with K-morphism (respectively, homomorphism) replaced by
K-isomorphism (respectively, isomorphism).)

Remark. The author was informed by M. Seppala that results similar to Corol-
lary 3.8 have been obtained in [AG].

3.4. Abelian varieties and their moduli.
Lemma 3.9. Let (X, ι) be a real complex manifold such that X is an abelian
variety over C. Then there exists a translation-invariant Riemannian metric on
X which is preserved by ι.

Proof. By the Remark following De�nition 3.1, (X, ι) arises from a projec-
tive algebraic variety XR over R. Write Xc for the complex conjugate of the
complex manifold X (i.e., Xc and X have the same underlying real analytic
manifold, but holomorphic functions on Xc are antiholomorphic functions on
X). Since X is an abelian variety over C, it follows that Xc is also an abelian
variety over C. Thus, the holomorphic isomorphism ι : X ∼= Xc is the compos-
ite of an isomorphism of abelian varieties (i.e., one which preserves the group
structures) with a translation. In particular, it follows that ι preserves the in-
variant di�erentials V

def= Γ(X, ΩX) on X. Thus, ι induces a semi-linear (with
respect to complex conjugation) automorphism of V , i.e., ι induces a real struc-
ture VR ⊆ VR ×R C = V on V . Then any inner product on the real vector space
VR induces an ι-invariant inner product on the underlying real vector space of V

which, in turn, induces a translation-invariant Riemannian metric on X which
is preserved by ι, as desired. ¤

Remark. Any Riemannian metric on X̃ arising from a Riemannian metric as
in the conclusion of Lemma 3.9 induces a geometry on X̃ which is isomorphic to
Euclidean space, hence enjoys the property that any two points are joined by a
unique geodesic.
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Now if we apply Theorem 3.6 using Lemma 3.9, Example 3.2, we obtain:

Corollary 3.10 (Discrete Real Section Conjecture for real abelian
varieties). Let (X, ι) be a real abelian variety . Then the correspondence
Y 7→ ιY of Section 3.2 de�nes a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))

from the set of connected components of the real locus X(R) to the set of conju-
gacy classes of sections of π1(Xι) → Gal(C/R) (or , equivalently , involutions in
π1(Xι)).

Corollary 3.11 (Discrete Real Section Conjecture for moduli of
abelian varieties). Let g ≥ 1 be a positive integer . Write (Ag, ιA) for the
moduli stack of principally polarized abelian varieties of dimension g, equipped
with its natural antiholomorphic involution (arising from the structure of Ag as
an algebraic stack de�ned over R). If (X, ι) is a real abelian variety of dimension
g, then the exact sequence

1 → π1(X) → π1(Xι) → Gal(C/R) → 1

de�nes a homomorphism α(X,ι) : Gal(C/R) → π1(AιA
g ) ∼= GSp(π1(X)) (where

�GSp� denotes the automorphisms that preserve, up to a constant multiple, the
symplectic form de�ned by the polarization). This correspondence (X, ι) 7→ α(X,ι)

de�nes a bijection

π0(Ag(R)) ∼= HomGal(C/R)(Gal(C/R), π1(AιA
g ))

from the set of connected components of Ag(R) to the set of conjugacy classes
of sections of π1(AιA

g ) → Gal(C/R) (or , equivalently , involutions in π1(AιA
g )).

Moreover , the centralizer of an involution ιY ∈ π1(AιA
g ) is the image of π1(Y ι)

in π1(AιA
g ).

Proof. The bijectivity of the natural morphism

π1(AιA
g ) → GSp(π1(X))

follows from the fact that it is compatible with the projections on both sides
to Gal(C/R) (where the projection GSp(π1(X)) → Z× = Gal(C/R) is given
by looking at the constant multiple to which the symplectic form arising from
the polarization is mapped), together with the well-known bijectivity of this
morphism on the �+� portions of both sides. ¤

3.5. Pro�nite real anabelian geometry. So far we have considered the
real analogue of Grothendieck's anabelian geometry given by using the discrete
fundamental groups of varieties. Another �real analogue� of anabelian geometry
is that given by using the pro�nite fundamental groups. Just as in the discrete,
the fundamental result was an existence theorem for real points in the presence



142 SHINICHI MOCHIZUKI

of involutions (i.e., Lemma 3.5), in the pro�nite case, the fundamental existence
is given by the following theorem of Cox (see [Frdl], Corollary 11.3):

Lemma 3.12. Let X be a connected real algebraic variety . Then X(R) 6= ∅
if and only if Hi

et(X,Z/2Z) 6= 0 (where �Hi
et� denotes étale cohomology) for

in�nitely many i.

Remark. In particular, if the complex manifold X(C) is a �K(π, 1)� space
(i.e., its universal cover is contractible), and, moreover, its fundamental group
π1(X(C)) is good (i.e., the cohomology of π1(X(C)) with coe�cients in any �nite
π1(X(C))-module is isomorphic (via the natural morphism) to the cohomology
of the pro�nite completion of π1(X(C)) with coe�cients in that module), then
we obtain:

(∗) X(R) 6= ∅ if and only if Hi
et(π

alg
1 (X),Z/2Z) 6= 0 for in�nitely many

integers i.

(Here πalg
1 (X) denotes the algebraic fundamental group of the scheme X.) Also,

if the projection πalg
1 (X) → Gal(C/R) possesses a splitting, then the fact that

Hi
et(Gal(C/R),Z/2Z) 6= 0 for in�nitely many i implies that

Hi
et(π

alg
1 (X),Z/2Z) 6= 0

for in�nitely many i.

Since hyperbolic curves and abelian varieties satisfy the conditions of the pre-
ceding remark, we obtain:

Corollary 3.13 (Profinite Real Section Conjecture for real hy-
perbolic curves). Let X be a hyperbolic curve over R. Then the pro�nite
version of the correspondence Y 7→ ιY of Section 3.2 de�nes a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 (X))

from the set of connected components of the real locus X(R) to the set of con-
jugacy classes of sections of πalg

1 (X) → Gal(C/R) (or , equivalently , involutions
in πalg

1 (X)).

Proof. Surjectivity follows from the above Remark, using the technique of
[Tama1]: Namely, given a section α : Gal(C/R) → πalg

1 (X) of πalg
1 (X) →

Gal(C/R), the family of open subgroups of πalg
1 (X) containing Im(α) de�nes

a system of coverings {Xi → X} (as i varies over the elements of some index
set I) such that (by the above Remark) each Xi(R) 6= 0. Since each Xi(R)
has only �nitely many connected components, it thus follows that there exists a
compatible system (indexed by I) of connected components of Xi(R). But this
amounts to the assertion that α arises from some connected component of X(R),
as desired (see [Tama1], Corollary 2.10).



ANABELIAN GEOMETRY OF HYPERBOLIC CURVES 143

Injectivity follows from the fact that involutions arising from distinct con-
nected components de�ne distinct elements of H1(πalg

1 (X),Z/2Z)�see [Schd],
§ 20, Propositions 20.1.8, 20.1.12. ¤

Remark. To the author's knowledge, the �rst announcement in the literature
of a result such as Corollary 3.13 (in the proper case) appears in a manuscript
of Huisman ([Huis]). (In fact, [Huis] also treats the one-dimensional case of
Corollary 3.14 below.) Unfortunately, however, the author was not able to follow
the portion of Huisman's proof ([Huis], Lemma 5.7) that corresponds to the
application of Cox's theorem (as in the Remark following Lemma 3.12).

Corollary 3.14 (Profinite Real Section Conjecture for real abelian
varieties). Let X be an abelian variety over R. Then the pro�nite version
of the correspondence Y 7→ ιY of Section 3.2 de�nes a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 (X))

from the set of connected components of the real locus X(R) to the set of con-
jugacy classes of sections of πalg

1 (X) → Gal(C/R) (or , equivalently , involutions
in πalg

1 (X)).

Proof. Surjectivity follows as in the proof of Corollary 3.13. Injectivity fol-
lows, for instance, from the discrete result (Corollary 3.10), together with the
injectivity of the natural morphism

H1(Gal(C/R), π1(X(C))) → H1(Gal(C/R), πalg
1 (X ⊗R C))

�itself a consequence of the fact that πalg
1 (X ⊗R C)) = π1(X(C))⊗Z Ẑ, where

Ẑ is the pro�nite completion of Z (hence a faithfully �at Z-module). ¤

As for the case of moduli, the above argument breaks down in most cases since
it is either false that or unknown whether or not the fundamental group of
the corresponding moduli stacks is good. More precisely, π1(Ag) = Sp(2g,Z)
is known not to be good if g ≥ 2 (see Lemma 3.16 below). (If g = 1, then the
�pro�nite real section conjecture� for Ag is essentially contained in Corollary 3.13
above.) On the other hand, to the author's knowledge, it is not known whether
or not π1(Mg,r) is good if g > 2. If g ≤ 2, then, up to passing to �nite étale
coverings, Mg,r may be written as a successive extension of smooth families of
hyperbolic curves, hence has a good fundamental group. Thus, we obtain:

Corollary 3.15 (Profinite Real Section Conjecture for moduli of
hyperbolic curves of genus ≤ 2). Let g, r ≥ 0 be integers such that 2g −
2 + r > 0, g ≤ 2. Write (Mg,r)R for the moduli stack of complex hyperbolic
curves of type (g, r) over R. If X is a real hyperbolic curve of type (g, r), then
X de�nes a section α(X,ι) : Gal(C/R) → πalg

1 ((Mg,r)R). This correspondence
(X, ι) 7→ α(X,ι) de�nes a bijection

π0((Mg,r)R(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 ((Mg,r)R))
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from the set of connected components of (Mg,r)R(R) to the set of conjugacy
classes of sections of πalg

1 ((Mg,r)R) → Gal(C/R) (or , equivalently , conjugacy
classes of involutions in πalg

1 ((Mg,r)R)). Moreover , the centralizer of an invo-
lution ιY ∈ πalg

1 ((Mg,r)R) is the image of the pro�nite completion of π1(Y ι) in
πalg

1 ((Mg,r)R).

Proof. Since (as just remarked) the fundamental groups involved are good,
surjectivity follows as in Corollaries 3.13, 3.14.

As for injectivity, we reason as follows. Given two real hyperbolic curves X,
Y of the same type (g, r) which induce the same section α (up to conjugacy) of
πalg

1 ((Mg,r)R) → Gal(C/R), we must show that they belong to the same con-
nected component of (Mg,r)R(R). First, observe that since [C : R] = 2, it follows
that the marked points of X and Y over C consist of: (i.) points de�ned over R;
(ii) complex conjugate pairs. Moreover, the combinatorial data of which points
are de�ned over R and which points are conjugate pairs is clearly determined by
the section α. Thus, there exists an �ordering of connected components of the
divisor of marked points over R� of X, Y , which is compatible with α. Write

N → (Mg,r)R

for the �nite étale covering de�ned by the moduli stack (over R) of hyperbolic
curves equipped with such an ordering. Note, in particular, that the injectivity
assertion under consideration for (Mg,r)R follows formally from the correspond-
ing injectivity assertion for N . Moreover, N may be written as a �successive
extension�

N = Nr → Nr−1 → · · · → N1 → N0

of smooth families (i.e., the Nj+1 → Nj) of either hyperbolic curves (where we
include curves which are stacks�see the remark in parentheses following the
list below) or surfaces (of a special type, to be described below) over the stack
N0, where N0 may be described as follows:

(1) If g = 0, then N0 is the moduli stack of 4-pointed curves of genus 0, equipped
with an �ordering type� T , where T is one of the following: a total ordering
of the four points; a total ordering of two points, plus a pair of conjugate
points; a total ordering of two pairs of conjugate points. In each of these
three cases, one sees that N0 is a hyperbolic curve over R, so we conclude the
corresponding injectivity assertion for N0 from Corollary 3.13.

(2) If g = 1, then N0 is either the moduli stack of 1-pointed curves of genus 1
(which is a hyperbolic curve, so we may conclude the corresponding injectivity
assertion for N0 from Corollary 3.13), or N0 is the moduli stack of 2-pointed
curves of genus 1, where the two points are unordered. In the latter case,
by considering the �group of automorphisms of the underlying genus 1 curve
which preserve the invariant di�erentials,� we get a morphism N0 → (M1,1)R ,
which is a smooth family whose �ber over the elliptic curve E is the stack
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given by forming the quotient of E\{0E} (where 0E is the origin of E) by
the action of ±1. (Indeed, this �ber parametrizes the �di�erence� of the two
unordered points.) In particular, (M1,1)R , as well as these �bers over (M1,1)R
are hyperbolic curves, so the corresponding injectivity assertion for N0 follows
from Corollary 3.13.

(3) If g = 2, then N0 is the moduli stack of 0-pointed curves of genus 2. More-
over, by using the well-known morphism (M2,0)R → (M0,6)R (given by con-
sidering the rami�cation points of the canonical double covering of the pro-
jective line associated to a curve of genus 2), this case may be reduced to the
case g = 0, which has already been dealt with.

(We remark here that even though some of the hyperbolic curves appearing above
are in fact stacks, by passing to appropriate �nite étale coverings which are still
de�ned over R and for which the real points in question lift to real points of
the covering, injectivity for such �stack-curves� follows from injectivity for usual
curves as proven in Corollary 3.13.) Finally, the surfaces that may appear as
�bers in the families Nj+1 → Nj appearing above are of the following type: If
C is a hyperbolic curve over R, write ∆C ⊆ C ×R C for the diagonal. Then
the surfaces in question are of the form {(C ×R C)\∆C}/S2 (where S2 is the
symmetric group on two letters permuting the two factors of C, and we note that
this quotient is the same whether taken in the sense of schemes or of stacks). Now
by passing (as in the one-dimensional case) to appropriate �nite étale coverings
of these surfaces which are still de�ned over R and for which the real points in
question lift to real points of the covering, the corresponding injectivity assertion
for such surfaces follows from injectivity for surfaces that may be written as a
smooth family of hyperbolic curves parametrized by a hyperbolic curve, hence
is a consequence of Corollary 3.13. Thus, by �dévissage� we conclude the desired
injectivity for (Mg,r)R .

Before proceeding, we observe that the above argument shows that the bijec-
tivity assertion of Corollary 3.15 also holds for any �nite étale covering of Mg,r

which is de�ned over R.
The �nal statement on centralizers may be proven as follows: Given an invo-

lution ιY , write MY → (Mg,r)R for the pro-covering de�ned by the subgroup
generated by ιY in πalg

1 ((Mg,r)R). Then the statement on centralizers follows
from the fact that the conjugates of ιY in πalg

1 ((Mg,r)R) are in bijective corre-
spondence with the connected components of the inverse images of Y in MY

(where we note that this bijective correspondence follows from the observation
of the preceding paragraph). ¤

Remark. In many respects the pro�nite theory is more di�cult and less elegant
than the discrete theory, where everything follows easily from the very general
Lemma 3.5. It is thus the feeling of the author that the discrete theory provides
a more natural real analogue of anabelian geometry than the pro�nite theory.
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Lemma 3.16. Let g ≥ 2, and let H ⊆ Sp(2g,Z) be a subgroup of �nite index .
Then there exists a subgroup H ′ ⊆ H which is normal and of �nite index in
Sp(2g,Z) such that the cohomological dimension of the pro�nite completion of
H ′ is > dimR(Ag) = 2 · dimC(Ag) = g(g + 1). (This estimate holds even if
one restricts to H ′-modules of order equal to a power of p, for any �xed prime
number p.) In particular , if g ≥ 2, then Sp(2g,Z) is not good .

Proof. First, note that if Sp(2g,Z) is good, then so is any subgroup H of
�nite index. But there exist H such that if we write AH′ → Ag for the �-
nite étale covering de�ned by a �nite index subgroup H ′ ⊆ H, then AH′ is a
complex manifold (i.e., not just a stack). The cohomology of H ′ is then given
by the cohomology of AH′ . Moreover, the cohomological dimension of AH′ is
= dimR(AH′) = dimR(Ag). Thus, if the cohomological dimension of the pro�nite
completion of H ′ is > dimR(Ag), it follows that the cohomology of H ′ and of its
pro�nite completion (with coe�cients in a �nite module) are not isomorphic in
general, i.e., that H ′ is not good. But this implies that Sp(2g,Z) is not good, as
desired.

Next, assume that we are given H as in the statement of Lemma 3.16, and
prove the existence of an H ′ as stated. First, observe that since the congruence
subgroup problem has been resolved a�rmatively for Sp(2g,Z) (see [BMS]), it
follows that

Sp(2g,Z)∧ = Sp(2g, Ẑ) =
∏
p

Sp(2g,Zp)

(where the �∧� denotes the pro�nite completion, and the product is taken over
all prime numbers p). Thus, it follows that the cohomological dimension of
Sp(2g,Z)∧ is ≥ the cohomological dimension of Sp(2g,Zp) for any prime p. In
particular, in order to complete the proof of Lemma 3.16, it su�ces to show that
Sp(2g,Zp) admits a collection of arbitrarily small normal open subgroups whose
p-cohomological dimension is > g(g + 1).

But this follows from the theory of [Laz]: Indeed, by [Laz], V, § 2.2.8, it follows
that that the p-cohomological dimension of any �p-valuable group� is equal to
the �rank� r of the group. Here, a p-valuable group (see [Laz], III, § 2.1.2) is
a topogical group with a �ltration satisfying certain properties. In the present
context, the topological group Sp[n](2g,Zp) (i.e., symplectic matrices which are
≡ to the identity matrix modulo pn), equipped with the �ltration de�ned by the
Sp[m](2g,Zp) for m ≥ n, will satisfy these properties. Moreover, the rank r of
a p-valuable group (see [Laz], III, § 2.1.1, § 2.1.3) is the Qp-dimension of the Lie
algebra sp(2g,Qp) of Sp(2g,Zp). Thus, in this case,

r = dimQp
(sp(2g,Qp)) = dimR(sp(2g,R))

= dimR(Sp(2g,R)) > dimR(Hg) = dimR(Ag)
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(where Hg is the Siegel upper half-plane�see Example 3.2). Indeed, the inequal-
ity here follows from the fact that Sp(2g,R) acts transitively on Hg, with positive
dimensional isotropy subgroups. This completes the proof. ¤

4. Complements to the p-adic Theory

In this section, we present certain complements to the p-adic theory of [Mzk2]
which allow us to prove a certain isomorphism version of Theorem A of [Mzk2]
(see Section 0 of the present article) over a somewhat larger class of �elds K

than was treated in [Mzk2]. This larger class of �elds�which we refer to as
generalized sub-p-adic�consists of those �elds which may be embedded as sub-
�elds of a �nitely generated extension of the quotient �eld of W (F̄p) (the ring
of Witt vectors with coe�cients in the algebraic closure of Fp, for some prime
number p).

4.1. Good Chern classes. In this section, we work over a base �eld K, which
we assume (for simplicity, although it is not absolutely necessary for much of
what we shall do) to be of characteristic 0. Let XK be a smooth, geometrically
connected variety over K.

If p is a prime number, and n ≥ 1 an integer, then we may consider the
Kummer sequence on XK , i.e., the exact sequence of sheaves on (XK)et (i.e., the
étale site of XK) given by

0 → (Z/pnZ)(1) → Gm → Gm → 0

(where the (1) is a �Tate twist,� and the morphism from Gm to Gm is given
by raising to the pn-th power.) The connecting morphism induced on étale
cohomology by the Kummer sequence then gives us a morphism

δp,n : H1
et(XK ,Gm) → H2

et(XK , (Z/pnZ)(1))

Now suppose that L is a line bundle on XK . Then applying δp,n to L ∈
H1

et(XK ,Gm) gives us a compatible system of classes

δp,n(L) ∈ H2
et(XK , (Z/pnZ)(1)),

and hence (by letting p, n vary) a class c1(L) ∈ H2
et(XK , Ẑ(1)).

Definition 4.1. We shall refer to c1(L) ∈ H2
et(XK , Ẑ(1)) as the (pro�nite,

étale-theoretic) �rst Chern class of L. If N ≥ 1 is an integer, then we shall refer
to c1(L) mod N ∈ H2

et(XK , (Z/NZ)(1)) as the (étale-theoretic) �rst Chern
class of L modulo N .

Next, write
π1(XK)
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for the (algebraic) fundamental group of XK (where we omit the base-point since
it will not be explicitly necessary in our discussion). Also, assume that we are
given a quotient

π1(XK) ³ Q

(where Q is pro�nite, and the surjection is continuous). Then we make the
following crucial de�nition:
Definition 4.2. Let N ≥ 1 be an integer. For i, j ∈ Z, a cohomology class
η ∈ Hi

et(XK , (Z/NZ)(j)) will be called good if there exists a (nonempty) �nite
étale covering Y → XK such that η|Y ∈ Hi

et(Y, (Z/NZ)(j)) is zero.
Next, suppose that π1(XK) ³ Q is a surjection such that the composite

of the natural surjection π1(XK) ³ ΓK with the cyclotomic character ΓK →
(Z/NZ)× factors through Q. Then we shall say that η is Q-good if this covering
Y → XK may be chosen to arise from a quotient of π1(XK) that factors through
π1(XK) ³ Q. If L is a line bundle on XK , then we will say that its Chern class
is good (respectively, Q-good) modulo N if the Chern class of L modulo N in
H2

et(XK , (Z/NZ)(1)) is good (respectively, Q-good).
Recall that a discrete group Γ is said to be good if the cohomology of Γ with
coe�cients in any �nite Γ-module is isomorphic (via the natural morphism) to
the cohomology of the pro�nite completion of Γ with coe�cients in that module.
Then the justi�cation for the terminology of De�nition 4.2 is the following:
Lemma 4.3. Suppose that K is a sub�eld of C (the complex number �eld); that
the topological space X def= XC(C) is a �K(π, 1)� space (i .e., its universal cover is
contractible); and that the topological fundamental group πtop

1 (X ) is good . Then
it follows that all cohomology classes η ∈ Hi

et(XK , (Z/NZ)(j)) are good .
Proof. Write XC

def= XK ⊗K C, XK
def= XK ⊗K K. Since �nite étale cover-

ings of XC are always de�ned over a �nite extension of K, and (by well-known
elementary properties of étale cohomology) the natural morphism

Hi
et(XK , (Z/NZ)(j)) → Hi

et(XC , (Z/NZ)(j))

is an isomorphism, one sees immediately that it su�ces to prove Lemma 4.3
when K = C, j = 0. But then

Hi
et(XC ,Z/NZ) ∼= Hi

sing(XC ,Z/NZ) ∼= Hi(πtop
1 (X ),Z/NZ)

(where the second isomorphism (between singular and group cohomology) follows
from the fact that X is a �K(π, 1)� space). Thus, the fact that η vanishes upon
restriction to a (nonempty) �nite étale covering follows from the fact that πtop

1 (X )
is assumed to be good. ¤
Remark. Thus, under the hypotheses of Lemma 4.3, every cohomology class is
good. In general, however, we would like to work with varieties XK that do not
satisfy the hypotheses of Lemma 4.3, but which nonetheless have the property
that the cohomology classes that we are interested in are good.
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Now let L be a line bundle on XK . Write L→ XK for the geometric line bundle
associated to L (i.e., the spectrum over XK of the symmetric algebra over OXK

of L−1). Also, write
L× ⊆ L→ XK

for the complement of the zero section in L. Thus, L× → XK is a Gm-torsor,
and we have an exact sequence of (algebraic) fundamental groups

Ẑ(1) = π1((Gm)K) → π1(L×) → π1(XK) → 1

(where we omit base-points since they will not be explicitly necessary in our
discussion). In general, however, it is not necessarily the case that the �rst arrow
is injective. (Consider, for instance, the line bundle O(−1) on P1 (over, say, an
algebraically closed �eld K of characteristic zero), in which case L× = A2\{0}
has trivial fundamental group.)

Lemma 4.4. Suppose that the Chern class of L is good modulo all powers of p.
Then the restriction to Zp(1) ⊆ Ẑ(1) of the morphism Ẑ(1) → π1(L×) is injec-
tive , so the above exact sequence de�nes an extension class ∈H2(π1(XK),Zp(1)).
If , moreover , the Chern class of L is Q-good modulo all powers of p, then (for
all integers n ≥ 1) the reduction modulo pn of this extension class arises from
an element ∈ H2(Q, (Z/pnZ)(1)).

Proof. Indeed, let
Y → XK

be a �nite étale covering such that the Chern class of L modulo pn vanishes
upon restriction to Y . Going back to the de�nition of the Chern class using the
Kummer exact sequence, one thus sees that there exists a line bundle P on Y such
that P⊗pn ∼= L|Y . Write P× → Y for the complement of the zero section in the
geometric line bundle corresponding to P. Thus, P× → Y is a Gm-torsor with
the property that, if we execute the change of structure group Gm → Gm given
by raising to the pn-th power, we obtain the Gm-torsor L×|Y def= L××XK Y → Y .
In particular, we obtain a �nite étale covering

P× → L×|Y
whose restriction to the geometric �bers of L×|Y → Y is (isomorphic to) the
covering of Gm given by raising to the pn-th power. Sorting through the de�-
nitions of the various fundamental groups involved, one thus sees that the ex-
istence of such coverings implies that Zp(1) → π1(L×) is injective, and, more-
over, that if the covering Y → XK arises from a quotient of Q, then the ex-
tension class ∈ H2(π1(XK), (Z/pnZ)(1)) de�ned by π1(L×) arises from a class
∈ H2(Q, (Z/pnZ)(1)), as desired. ¤

Remark. In the Q-good portion of Lemma 4.4, it was necessary to use �nite
coe�cients Z/pnZ (i.e., rather than Zp) since it is not clear that the various
group extensions of Q by (Z/pnZ)(1) form a compatible system as n varies.
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(When Q = π1(XK), one need not worry about this since one already has a
natural group extension, namely, that arising from π1(L×).)

Lemma 4.5. Suppose that the Chern class of L is good modulo all powers of p.
Write

cgp
1 (L) ∈ H2(π1(XK),Zp(1))

for the extension class of Lemma 4.4. Then the image of cgp
1 (L) under the natural

map
H2(π1(XK),Zp(1)) → H2

et(XK ,Zp(1))

is equal to the (p-adic portion of the) �rst Chern class c1(L) of De�nition 4.1.
If , moreover , the Chern class of L is Q-good modulo all powers of p, then (for
all integers n ≥ 1) there exists a class ∈ H2(Q, (Z/pnZ)(1)) whose image in
H2

et(XK , (Z/pnZ)(1)) is equal to c1(L) mod pn.

Proof. If Γ is a pro�nite group, denote by B(Γ) the �classifying site of Γ,� i.e.,
the site de�ned by considering the category of �nite sets with continuous Γ-action
(and coverings given by surjections of such sets). Thus, if M is a �nite abelian
group with continuous Γ-action, then M de�nes a sheaf of abelian groups on this
site whose cohomology may be identi�ed with the usual group cohomology of Γ
with coe�cients in M .

Next, note that relative to this notation, there is a tautological morphism

(XK)et → B(π1(XK))

determined by the well-known equivalence between �nite étale coverings of XK

and �nite sets with continuous π1(XK)-action. Put another way, this morphism
is the étale analogue of the well-known tautological morphism (determined up
to homotopy equivalence) in topology from a topological space to the classifying
space of its fundamental group. By functoriality, we thus obtain a commutative
diagram

(L×)et → B(π1(L×))
↓ ↓

(XK)et → B(π1(XK))
(where the horizontal morphisms are the tautological morphisms just discussed,
and the vertical morphisms are those induced by functoriality from L× → XK).

Next, observe that both vertical morphisms of the above commutative diagram
give rise to Leray�Serre spectral sequences on cohomology with coe�cients in
Zp(1). (Here, we note that the fact that the vertical morphism on the right
gives rise to such a spectral sequence follows from the injectivity assertion of
Lemma 4.4.) In particular, if we consider the di�erential on the �E2-term� of
these spectral sequences we obtain a commutative diagram
Zp = H0(π1(XK), H1(Ẑ(1),Zp(1))) → Zp = H0

et(XK ,H1
et((Gm)K ,Zp(1)))

↓ ↓
H2(π1(XK),Zp(1)) → H2

et(XK ,Zp(1))
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(where the vertical morphisms are the di�erentials of the spectral sequence, and
the horizontal morphisms are induced by the morphisms of sites just discussed).
On the other hand, sorting through the de�nitions, one sees that it is a tautology
that the image of 1 ∈ Zp under the vertical morphism on the right (respectively,
left) is the Chern class c1(L) (respectively, cgp

1 (L)). Thus, the assertion that the
image of cgp

1 (L) in H2
et(XK ,Zp(1)) is equal to c1(L) follows from the commu-

tativity of the above diagram. The corresponding assertion in the Q-good case
follows by replacing π1(XK), Zp in the above argument by Q, Z/pnZ, respec-
tively, and applying the Q-good portion of Lemma 4.4. ¤

Lemma 4.6. Suppose that XK is equipped with a smooth, proper morphism

XK → ZK

(where ZK is a smooth, geometrically connected variety over K) which admits a
section σ : ZK → XK . Also, assume that K may be embedded as a sub�eld of C,
and that if z̄ is any geometric point of ZK such that k(z̄) may be embedded as a
sub�eld of C, then the geometric �ber Xz̄

def= XK ×ZK z̄ satis�es the hypotheses
of Lemma 4.3 (i .e., its complex valued points form a �K(π, 1)� space with good
topological fundamental group). Then the Chern class of any line bundle L on
XK for which the pull-back σ∗(L) is trivial (as a line bundle on ZK) is good
modulo all integers N ≥ 1.

Proof. First, observe that we may always replace ZK (respectively, XK) by
a �nite étale covering of ZK (respectively, XK , possibly at the expense of also
replacing ZK by some new �nite étale covering of ZK) without a�ecting the
validity of either the hypotheses or the conclusion of the lemma. Next, �x a
geometric point z̄ of Z as in the statement of Lemma 4.6, and write Xz̄ for the
resulting geometric �ber. Then the existence of the section σ implies that we
obtain an exact sequence of fundamental groups:

1 → π1(Xz̄) → π1(XK) → π1(ZK) → 1

Indeed, in general (i.e., in the absence of hypothesis that σ exist) the morphism
π1(Xz̄) → π1(XK) need not be injective. That is to say, its kernel is naturally
isomorphic to the cokernel of the morphism (induced by XK → ZK via functo-
riality) between certain étale-theoretic second homotopy groups of XK and ZK

(see [Frdl], p. 107, Theorem 11.5). On the other hand, since XK → ZK admits
a section, it thus follows (by functoriality) that this morphism between second
homotopy groups also admits a section, hence that it is surjective (i.e., its cok-
ernel is trivial). This implies the injectivity of the morphism π1(Xz̄) → π1(XK).
Stated in words, the injectivity of this morphism implies that (after possible
base-change to a �nite étale covering of ZK) any �nite étale covering of Xz̄ may
be realized as the restriction to the �ber Xz̄ of a �nite étale covering of XK .

Next, consider the Leray�Serre spectral sequence associated to the morphism
XK → ZK for étale cohomology with coe�cients in (Z/pnZ)(1) (for some p, n
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as in De�nition 4.1). If we consider the �E2-term�of this spectral sequence, we
see that the cohomology group H2

et(XK , (Z/pnZ)(1)) gets a natural �ltration
whose �highest subquotient� (i.e., the subquotient which is, in fact, a quotient)
is a submodule of H0

et(ZK ,H2
et(Xz̄, (Z/pnZ)(1))). On the other hand, by the

assumptions placed on Xz̄, it follows that all the classes of H2
et(Xz̄, (Z/pnZ)(1))

vanish upon restriction to some �nite étale covering of Xz̄. Moreover, by the
discussion of the preceding paragraph, it follows that this covering may be re-
alized as the restriction to Xz̄ of a �nite étale covering of XK . Thus, in con-
clusion, by replacing XK and ZK by appropriate �nite étale coverings, we may
assume that the image of the class c1(L) mod pn in the highest subquotient
of H2

et(XK , (Z/pnZ)(1)) vanishes.
The next highest subquotient of the natural �ltration on H2

et(XK , (Z/pnZ)(1))
induced by the Leray�Serre spectral sequence may be regarded naturally as a sub-
module of H1

et(ZK , H1
et(Xz̄, (Z/pnZ)(1))). Thus, by an argument similar to that

of the preceding paragraph, we conclude that we may assume that the image of
the class c1(L) mod pn in the next highest subquotient of H2

et(XK , (Z/pnZ)(1))
also vanishes.

The next subquotient (i.e., the subquotient which is, in fact, a submodule)
of the natural �ltration on H2

et(XK , (Z/pnZ)(1)) induced by the Leray�Serre
spectral sequence is given by the submodule of H2

et(XK , (Z/pnZ)(1)) which is the
image of H2

et(ZK , (Z/pnZ)(1)) in H2
et(XK , (Z/pnZ)(1)) (via pull-back relative to

XK → ZK). Note that the existence of the section σ implies that this pull-back
morphism H2

et(ZK , (Z/pnZ)(1)) → H2
et(XK , (Z/pnZ)(1)) is injective. Thus, we

conclude that the class c1(L) mod pn arises as the pull-back to XK of a
class in H2

et(ZK , (Z/pnZ)(1)). On the other hand, by pulling back via σ (and
applying the functoriality of the formation of the Chern class of a line bundle),
we thus see that this class in H2

et(ZK , (Z/pnZ)(1)) is simply c1(σ∗(L)) mod pn,
which is = 0 (since σ∗(L) is assumed to be trivial). This completes the proof of
Lemma 4.6. ¤

4.2. The group-theoreticity of a certain Chern class. In this section, we
let K be a �eld of characteristic 0 (until further notice). Also, we �x a prime
number p and an integer g ≥ 2.

Denote by A the moduli stack of principally polarized abelian varieties of
dimension g. Write

G → A

for the tautological abelian scheme over A, and ε : A → G for its identity section.
Also, denote by LG the tautological line bundle on G that de�nes the principal
polarization. Thus, LG is relatively ample over A, and we assume that it is
rigidi�ed by some isomorphism ε∗(LG) ∼= OA. Also, we �x a geometric point
ā ∈ A(K), and denote the fundamental group π1(Gā) of the geometric �ber Gā
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by π1(G/A). Thus, we obtain an exact sequence of fundamental groups

1 → π1(G/A) → π1(G) → π1(A) → 1

equipped with a section π1(ε) : π1(A) → π1(G) which allows us to identify π1(G)
with the semi-direct product π1(G/A)oπ1(A). Next, observe that since π1(G/A)
is a free Ẑ-module of rank 2g, we may write

π1(G/A) = Π(p)
G/A ×Π(6=p)

G/A

for the natural decomposition of π1(G/A) as a product of a Zp-free module�
i.e., Π(p)

G/A�and a module Π(6=p)
G/A which is free over the product of all Zp′ , where

p′ ranges over the prime numbers not equal to p. Moreover, the above exact
sequence shows that π1(A) acts naturally on π1(G/A) in a way that respects this
decomposition. In particular, we may push forward the above exact sequence
via the quotient π1(G/A) ³ Π(p)

G/A to obtain exact sequences

1 → Π(6=p)
G/A → π1(G) → Π(p/A)

G → 1,

1 → Π(p)
G/A → Π(p/A)

G → π1(A) → 1,

where Π(p/A)
G is de�ned by the �rst exact sequence, and the second exact sequence

admits a section that allows us to identify Π(p/A)
G with the semi-direct product

Π(p)
G/A o π1(A).
Now consider π1(A) in greater detail. First, recall that the action of π1(A) on

Π(p)
G/A preserves the symplectic form de�ned by the tautological principal polar-

ization on the family of abelian varieties G → A up to multiplication by a scalar.
Denote by

GSp(Π(p)
G/A)

the group of Zp-linear automorphisms of Π(p)
G/A which preserve this symplectic

form up to multiplication by a scalar. Thus, we obtain a natural commutative
diagram in which the rows are exact:

1 → Sp(π1(G/A)) → π1(A) → ΓK → 1
↓ ↓ ↓

1 → Sp(Π(p)
G/A) → GSp(Π(p)

G/A) → Zp
× → 1

Here, Sp denotes the group of Ẑ-linear automorphisms of π1(G/A) that preserve
the symplectic form in question precisely; the homomorphism

GSp(Π(p)
G/A) → Zp

×

is the map that assigns to an element of the domain the scalar by which this
element acts on the symplectic form in question. (Also, we note that here, we
apply two well-known facts: (i) when K = C, the topological fundamental group
of A is equal to Sp(2g,Z); (ii) for g ≥ 2, the congruence subgroup problem for
Sp(2g,Z) has been resolved a�rmatively (see the proof of Lemma 3.16; [BMS]).)
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Finally, we observe that the vertical morphism (on the right) ΓK → Zp
× is simply

the cyclotomic character of K.
In particular, by applying the identi�cation of Π(p/A)

G with the semi-direct
product Π(p)

G/A o π1(A), we obtain a continuous homomorphism

Π(p/A)
G → Π(p)

G
def= Π(p)

G/A oGSp(Π(p)
G/A)

which is surjective whenever the cyclotomic character ΓK → Zp
× is surjective.

As is well-known (see, e.g., [Ser3], Chapter XIV, § 7), this is the case, for instance,
when K = Q,Qp.

In the present discussion, we would like to concentrate our attention on the
prime p, in the case K = Q. Thus, we have surjections:

π1(G) ³ Π(p/A)
G ³ Π(p)

G

Denote (by abuse of notation relative to De�nition 4.1) the p-adic component
of the �rst Chern class of LG by:

c1(LG) ∈ H2
et(G,Zp(1))

Lemma 4.7. Suppose that K = Q. Then relative to the tautological morphisms

Get → B(π1(G)) → B(Π(p)
G )

(see the proof of Lemma 4.5), the class c1(LG) mod pn ∈ H2
et(G, (Z/pnZ)(1))

arises from a class ∈ H2(Π(p)
G , (Z/pnZ)(1)), for all integers n ≥ 1.

Proof. Indeed, Lemma 4.7 follows from Lemmas 4.4, 4.5, together with the
proof of Lemma 4.6 (where, in Lemma 4.6, we take G → A as our smooth,
proper morphism XK → ZK). In fact, if we apply Lemmas 4.4, 4.5, 4.6, literally
as stated, we already obtain that c1(LG) arises from a class ∈ H2(π1(G),Zp(1)).
Since the kernel of the surjection π1(G) ³ Π(p/A)

G is equal to Π(6=p)
G/A , which is a

pro�nite group of order prime to p, it thus follows immediately that this class
arises from a class ∈ H2(Π(p/A)

G ,Zp(1)). To see that, in fact, c1(LG) mod pn

arises from a class ∈ H2(Π(p)
G , (Z/pnZ)(1)), it su�ces to observe that, in the

proof of Lemma 4.6, the only coverings of G that were necessary to annihilate
c1(LG) modulo pn were coverings of G that restricted to arbitrary p-power cov-
erings of the abelian variety Gā. But it is clear from the de�nition of Π(p)

G (see
the discussion above) that such coverings may be constructed from quotients of
Π(p/A)
G that factor through the quotient Π(p/A)

G ³ Π(p)
G . Thus, we conclude by

taking �Q� to be the quotient π1(G) ³ Π(p)
G in Lemmas 4.4, 4.5. This completes

the proof of Lemma 4.7. ¤

Next, denote by ∆ a copy of the maximal pro-p quotient of the pro�nite com-
pletion of the fundamental group of a (Riemann) surface of genus g. Since, as



ANABELIAN GEOMETRY OF HYPERBOLIC CURVES 155

is well-known (see, e.g., [Tama1], Proposition 1.11), ∆ is center-free, we have an
exact sequence of pro�nite groups:

1 → ∆ → A∆
def= Aut(∆) → O∆

def= Out(∆) → 1

If we form the quotient A′∆ of A∆ by the kernel of the quotient ∆ ³ ∆ab (to the
maximal abelian quotient of ∆), then we obtain a natural commutative diagram
in which the rows are exact:

1 → ∆ → A∆ → O∆ → 1
↓ ↓ ↓

1 → ∆ab → A′∆ → O∆ → 1

In particular, we obtain a natural action of O∆ on ∆ab which preserves the
natural symplectic form on ∆ab �i.e., the symplectic form determined by the cup
product on group cohomology H1(∆,Zp)×H1(∆,Zp) → H2(∆,Zp) ∼= Zp (where
we think of H1(∆,Zp) as the Zp-linear dual to ∆ab)� up to multiplication by a
scalar. Denote by

GSp(∆ab)

the group of Zp-linear automorphisms of ∆ab which preserve this symplectic form
up to multiplication by a scalar. Thus, we obtain a natural homomorphism

O∆ → GSp(∆ab)

together with an O∆-equivariant action of ∆ab on A′∆ (via the inclusion ∆ab ↪→
A′∆), which determines an isomorphism of pro�nite groups

(∆ab oO∆)×O∆ A′∆ ∼= A′∆ ×O∆ A′∆;

in more geometric language, A′∆ is a ∆ab-torsor over O∆. In particular, by
applying this isomorphism, we obtain a natural projection:

A′∆ ×O∆ A′∆ → (∆ab oO∆) → (∆ab oGSp(∆ab))

Moreover, any choice of symplectic isomorphism ∆ab ∼= Π(p)
G/A determines an

isomorphism
(∆ab oGSp(∆ab)) ∼= Π(p)

G

which, up to composition with an inner automorphism, is independent of our
choice of symplectic isomorphism.

In a similar vein, write M for the moduli stack of smooth, proper curves of
genus g over K, and

C →M
for the tautological curve over M. Also, write J → M for the Jacobian of
C → M and (for d ∈ Z) Jd → M for the J -torsor over M that parametrizes
line bundles on C of relative degree d over M. By assigning to a point of the
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curve C the line bundle on C de�ned by that point (regarded as an e�ective
divisor), we obtain a natural morphism:

C → J1

Moreover, the action of J on J1 determines an isomorphism

J ×M J1
∼= J1 ×M J1

hence also a projection J1×MJ1 → J . In particular, by composition, we obtain
a morphism

C ×M C → J1 ×M J1 → J
(over M), which may be thought of, in terms of S-valued points (where S is a
scheme), as the morphism that maps a pair of points (x, y) ∈ C(S) ×M(S) C(S)
to the line bundle of degree 0 on C determined by the divisor x − y. Finally, if
we write M→A for the Torelli morphism, i.e., the classifying morphism of the
abelian scheme J →M equipped with its natural principal �theta polarization�,
we thus obtain a natural commutative diagram

J → G
↓ ↓
M → A

which is, in fact, cartesian, and, moreover, (by composition) induces a commu-
tative diagram

C ×M C → G
↓ ↓
M → A

Denote by LC×MC the pull-back of LG to C ×M C.
Next, we consider fundamental groups. Fix a geometric point m̄ ∈ M(K),

and a set Σ of prime numbers such that p ∈ Σ. Write π1(C/M) for π1(Cm̄),
and π1(C/M) ³ ΠC/M for the maximal pro-Σ quotient of π1(C/M). Since this
quotient is characteristic, its kernel is also normal when regarded as a subgroup
of π1(C); denote the quotient of π1(C) by this kernel by ΠC . Thus, if we write
ΠM

def= π1(M), then we obtain an exact sequence:

1 → ΠC/M → ΠC → ΠM → 1

Moreover, the morphism C ×M C → G considered in the preceding paragraph
induces a morphism on fundamental groups:

ΠC ×ΠM ΠC → Π(p)
G

Finally, consider the diagram

ΠC ×ΠM ΠC → Π(p)
G

↓ ↓
A∆ ×O∆ A∆ → (∆ab oGSp(∆ab))
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where the lower horizontal morphism is the morphism constructed above; the
vertical morphism on the left arises from the natural action by conjugation of ΠC
on ΠC/M (a pro�nite group whose maximal pro-p quotient is isomorphic to ∆);
and the vertical morphism on the right is the isomorphism (well-de�ned up to
composition with an inner automorphism) discussed above It is an immediate
formal consequence of our de�nitions that this diagram commutes up to com-
position with an inner automorphism. In particular, by pulling back along the
morphisms in this commutative diagram the group cohomology classes discussed
in Lemma 4.7, it thus follows formally from Lemma 4.7 that:

Corollary 4.8. Suppose that K = Q. Then relative to the tautological mor-
phisms

(C ×M C)et → B(ΠC ×ΠM ΠC) → B(A∆ ×O∆ A∆)

(see Lemma 4.7), the class c1(LC×MC) mod pn ∈ H2
et(C ×M C, (Z/pnZ)(1))

arises from a class ∈ H2(A∆ ×O∆ A∆, (Z/pnZ)(1)), for all integers n ≥ 1.

4.3. A generalization of the main result of [Mzk2]. In this section, we
maintain the notation of Section 4.2, except that we again allow K to be an
arbitrary �eld of characteristic 0 (until further notice).

Assume that we are given two hyperbolic curves X1, X2 of type (g, r) over
K. For i = 1, 2, write π1((Xi)K) ³ Π(Xi)K

for the maximal pro-Σ quotient
of π1((Xi)K), and π1(Xi) ³ ΠXi

for the quotient of π1(Xi) by the kernel of
π1((Xi)K) ³ Π(Xi)K

. Thus, for i = 1, 2, we obtain exact sequences

1 → Π(Xi)K
→ ΠXi

→ ΓK → 1.

Next, assume that we are given an isomorphism

α : ΠX1
∼= ΠX2

which preserves and induces the identity on the quotients ΠXi
³ ΓK . Thus, α

induces isomorphisms:
ΠαK

: Π(X1)K

∼= Π(X2)K
,

αH2
et

: H2
et(X1,Zp(1)) ∼= H2(ΠX1

,Zp(1)) ∼= H2(ΠX2
,Zp(1)) ∼= H2

et(X2,Zp(1)).

Lemma 4.9. Let X be a proper hyperbolic curve over K equipped with a non-
trivial automorphism σ : X ∼= X over K. Denote the Jacobian of X by JX .
Then the morphism

δσ : X → JX

that maps an S-valued point x ∈ X(S) (where S is a scheme) to the degree 0
line bundle determined by the divisor x− σ(x) is nonconstant .
Proof. Assume (without loss of generality) that X(K) is nonempty. Then we
may think of JX as the Albanese variety associated to X. Write λ : X → JX

for the morphism exhibiting JX as the Albanese variety of X. Then (by the
universal property of the Albanese variety) δσ necessarily factors through λ,
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inducing a morphism δλ
σ : JX → JX which is nonconstant if and only if δσ is

nonconstant. On the other hand, δλ
σ is easily computed to be (up to composition

with a translation) equal to the morphism 1−Jσ, where Jσ is the automorphism
induced on JX by σ. Thus, it su�ces to verify that Jσ is not equal to the
identity. But this follows again (formally) from the universal property of the
Albanese variety. ¤

Corollary 4.10. Suppose that r = 0. Then for i = 1, 2, there exist ample
line bundles Pi on Xi with the property that c1(P1) ∈ H2

et(X1,Zp(1)) maps to
c1(P2) ∈ H2

et(X2,Zp(1)) under αH2
et
.

Proof. First, observe that by replacing the Xi by �nite étale Galois coverings
that correspond via α, we may assume (without loss of generality) that Xi admits
a K-automorphism σi such that σ1, σ2 correspond via α. Indeed, once the
necessary line bundles are de�ned over these coverings, one obtains line bundles
on the original curves with the desired properties by simply �taking the norm�
of the line bundles on the coverings.

Since Xi de�nes a classifying morphism κi : Spec(K) → M, we let P ′i be
the pull-back (where we note that Xi = C ×M,κi Spec(K)) of the line bundle
LC×MC of Corollary 4.8 to Xi ×K Xi. Moreover, by Lemma 4.9, it follows that
the pull-back Pi of P ′i via the morphism (1, σi) : Xi → Xi ×K Xi given by the
product of the identity and the automorphism σ is ample on Xi.

Now consider the homomorphism on fundamental groups (well-de�ned up to
composition with an inner automorphism)

ΠXi
→ ΠC

induced by κi. Note that the composite

ΠXi
→ A∆

of this homomorphism with the natural homomorphism ΠC → A∆ of Section 4.2
may be constructed entirely group-theoretically (from the action by conjugation
of ΠXi

on its normal subgroup Π(Xi)K
). Thus, in particular, it follows that (for

i = 1, 2) these composites are compatible with α.
This compatibility implies that the composite of the homomorphism

ΠXi
×ΓK

ΠXi
→ ΠC ×ΠM ΠC

(induced by κi) with the homomorphism ΠC ×ΠM ΠC → A∆ ×O∆ A∆ of Section
4.2 is a homomorphism

ΠXi
×ΓK ΠXi

→ A∆ ×O∆ A∆

which is compatible with α. Thus, it follows formally from Corollary 4.8 that the
Chern classes of the P ′i correspond via α. Since the pull-back via �(1, σi)� may
also be de�ned entirely group-theoretically, we thus conclude that the Chern
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classes of the P ′i correspond via α, as desired. This completes the proof of
Corollary 4.10. ¤

We are now ready to state and prove the main result of the Section 4.

Definition 4.11. We say that K is generalized sub-p-adic if K may be embed-
ded as a sub�eld of a �nitely generated extension of the quotient �eld of W (F̄p)
(the ring of Witt vectors with coe�cients in the algebraic closure of Fp).

Remark. Sub-p-adic �elds are always generalized sub-p-adic. On the other
hand, �elds such as the maximal algebraic extension of Q which is unrami�ed
over p are generalized sub-p-adic, but not sub-p-adic.

Remark. Suppose that K is generalized sub-p-adic, where p ∈ Σ. Then note
that even if we do not know a priori that the hyperbolic curves X1, X2 are of
the same type (g, r), the mere existence of an isomorphism

α : ΠX1
∼= ΠX2

(which preserves and induces the identity on the quotients ΠXi
³ ΓK) already

implies that X1 and X2 are of the same type. Indeed, to see this, we reduce im-
mediately to the case where K is �nite over the quotient �eld of W (F̄p) and then
consider the dimension of the weight 0 portion of the Hodge�Tate decomposition
of the maximal pro-p abelian quotient of Π(Xi)K

. This dimension gives back the
genus g; then r may be recovered from the fact that Π(Xi)K

is free on 2g + r− 1
generators (respectively, not free) if r > 0 (respectively, r = 0). Thus, there is
no loss of generality in assuming (as we did in the above discussion) that the Xi

are of the same �type� (g, r).

Theorem 4.12 (Isomorphism version of the Grothendieck conjecture
over generalized sub-p-adic fields). Suppose that K is a generalized
sub-p-adic �eld , where p ∈ Σ. Let X1, X2 be hyperbolic curves over K.
Write Isom(X1, X2) for the set of K-isomorphisms between X1 and X2, and
IsomΓK

(ΠX1
, ΠX2

) for the set of continuous group isomorphisms ΠX1
∼= ΠX2

over ΓK , considered up to composition with an inner automorphism arising from
Π(X1)K

or Π(X2)K
. Then the natural map

Isom(X1, X2) → IsomΓK
(ΠX1

,ΠX2
)

is bijective.

Remark. One formal consequence of Theorem 4.12 (see [Mzk2], Theorem C) is
the following:

If K is generalized sub-p-adic, andM denotes the moduli stack of hyperbolic
curves of type (g, r) over K, then the natural morphism

M(K) → SectΓK
(ΓK , ΠM)

is injective.
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(Here, ΠM is as de�ned in Section 4.2 (where we note that the same formal
de�nition can be made even in the case r > 0), and �SectΓK

(ΓK ,ΠM)� is the
set of sections of the projection ΠM ³ ΓK considered up to composition with
an inner automorphism of ΠM arising from ΠMK

.)

Proof. In a word, once one has Corollary 4.10, the proof of Theorem 4.12
is entirely similar to the proof of Theorem A in [Mzk2], so we will only sketch
details.

First, we reduce immediately to the case where K is a �nite extension of the
quotient �eld of W (F̄p) (see Lemmas 4.13, 4.14, below; [Mzk2], § 15), and X1,
X2 are proper of genus g (see [Mzk2], proof of Theorem 14.1).

Now, the main idea of the proof is to replace the portion of the proof of [Mzk2]
given in [Mzk2], § § 1�6, by Corollary 4.10, by using the following argument.
First, write

Hi
def= H2

et(Xi,Qp(1)) for i = 1, 2,

and Gi ⊆ Hi for the geometric part of Hi, i.e., the Qp-subspace generated by �rst
Chern classes of line bundles on Xi. Also, write Ji for the Jacobian of Xi, and
T (Ji) for its associated p-adic Tate module. Note that α induces an isomorphism
αH : H1

∼= H2. Also, observe that since K has cohomological dimension 1
(see Lemma 4.13 below), applying the Leray�Serre spectral sequence (for Galois
cohomology with coe�cients in Qp(1)) to the surjection Π(p)

Xi
³ ΓK gives rise to

an exact sequence:

0 → H1(K, T (Ji)⊗Qp) → Hi → Qp → 0

(where the �T (Ji)� on the left should, strictly speaking, be the Cartier dual of
T (Ji), but we identify T (Ji) with its Cartier dual via the standard principal po-
larization on the Jacobian Ji; the �Qp� on the right arises from the isomorphism
H0(K,H2(Π(p)

(Xi)K
,Qp(1))) ∼= Qp de�ned by the �degree map�).

Now I claim that αH(G1) = G2. Indeed, by Corollary 4.10, there exists a
line bundle Pi of nonzero degree on Xi such that αH(c1(P1)) = c1(P2). Thus,
to show that αH(G1) = G2, it su�ces to show that αH preserves �rst Chern
classes of line bundles of degree 0. Since we are working over Qp, we may always
replace K by a �nite extension of K without a�ecting the validity of the claim.
In particular, we may assume that the Xi have semi-stable reduction over K.
Write Ji for the unique semi-abelian scheme over OK whose generic �ber is Ji.
Now if Li is a line bundle of degree 0 on Xi, it de�nes a point [Li] ∈ Ji(K), hence,
by Kummer theory (i.e., considering the obstruction to the p-power divisibility
of [Li]�see [Mzk2], § 6, the discussion following De�nition 6.1), determines an
element κ(Li) ∈ H1(K, T (Ji)⊗Qp). If we regard this Galois cohomology group
as a subspace of Hi via the exact sequence of the preceding paragraph, then
this class κ(Li) coincides with the �rst Chern class c1(Li) of Li (see [Mzk2], the
Remark preceding De�nition 6.2). On the other hand, if [L1] ∈ J1(K) arises
from a point ∈ J1(OK) which is equal to the zero section modulo mK , then κ(L1)
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corresponds, via α, to κ(L2) for some degree 0 line bundle L2 on X2 de�ned by
a point ∈ J2(OK) (which will also be equal to the zero section modulo mK).
Indeed, this follows by applying �Tate's theorem� (see [Tate], Theorem 4) as
in the argument of the proof of [Mzk2], Theorem 7.4, to the p-divisible groups
de�ned by the formal groups associated to J1, J2. Moreover, for any point
∈ J1(K) it follows from the fact that F̄p = OK/mK is a union of �nite �elds
that some nonzero multiple of this point arises from a point ∈ J1(OK) which
is equal to the zero section modulo mK . Thus, since we are working with Qp-
coe�cients, we thus conclude that αH maps the Qp-subspace of H1 generated by
�rst Chern classes of line bundles of degree 0 onto the corresponding subspace
of H2. This completes the proof of the claim.

Before proceeding, we note here that the argument of the preceding paragraph
is the only place in this proof where we use that the original base �eld is a sub�eld
of a �nitely generated extension of the quotient �eld of W (F̄p)�i.e., as opposed
to W (k), where we permit k to be an arbitrary perfect �eld of characteristic p.
The arguments to be used in the remainder of the proof are valid for F̄p replaced
by an arbitrary such k. Also, we remark here that (not surprisingly) the portion
of the argument of [Mzk2] that corresponds to what was done in the preceding
paragraph is given in [Mzk2], § § 1�6, where it was necessary, especially for the
arguments of [Mzk2], Lemma 4.1, § 6, to assume that the residue �eld be �nite
(i.e., not an arbitrary perfect �eld of characteristic p).

Now that we know that α preserves (up to Qp-coe�cients) �rst Chern classes
of line bundles over �nite extensions of K, the rest of the argument of [Mzk2]
goes through without much change. Namely, [Mzk2], Proposition 7.4, follows by
the same argument as that given in loc. cit. (except that instead of working
over a K which is �nite over Qp as in loc. cit., we work over the present �K,�
which is �nite over the quotient �eld of W (F̄p)). We remark that in the present
context, it is not necessary to distinguish between �F -geometricity� and �FI-
geometricity� as was done in [Mzk2], since we are working with proper curves
to begin with (see the Remark at the end of [Mzk2], § 7). Then [Mzk2], § 8,
goes through without change (except that the �nite �eld �k� is to be replaced
by F̄p). The convergence arguments of [Mzk2], § 9, 10, are entirely valid when
k is any perfect �eld of characteristic p, so no changes are necessary in these
two § 's. [Mzk2], § 11, is unnecessary in the present context since we are working
with proper curves to begin with. Finally, the arguments of [Mzk2], § § 12�14,
go through without essential change (except that they are much easier in the
present context since we are working with proper curves to begin with). This
completes the proof of the bijectivity assertion of Theorem 4.12 (see [Mzk2],
Corollary 14.2). ¤

Remark. Thus, Theorem 4.12 states (roughly) that the isomorphism class of
a hyperbolic curve over a �nite extension of the quotient �eld of W (F̄p) may
be recovered from the outer action of the Galois group on its geometric funda-
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mental group. In particular, one need not make use of Gal(F̄p/Fp) (as was done
in [Mzk2]). In this sense, Theorem 4.12 is reminiscent of the main results of
[Tama2], which state that in certain cases, the isomorphism class of a hyperbolic
curve over F̄p is completely determined by the isomorphism class of its geometric
fundamental group (see the results of [Tama1], which make essential use of the
action of Gal(F̄p/Fp)). It would be interesting to see if the relationship between
Theorem 4.12 and [Tama2] could be understood more explicitly.

Remark. Another interesting aspect of Theorem 4.12 is the following: Note
that, if K is a �nite extension of the quotient �eld of W (F̄p), then its absolute
Galois group ΓK has cohomological dimension 1 (see Lemma 4.13 below). On
the other hand, if X is a hyperbolic curve over K, then ΠXK

has cohomological
dimension 2. Thus, the cohomological dimension of ΠX is equal to 3. Since,
roughly speaking, Theorem 4.12, states that the structure of X is determined by
ΠX , Theorem 4.12 is reminiscent of the rigidity theorem of Mostow�Prasad for
hyperbolic manifolds of real dimension 3 (see the discussion of [Mzk4], Introduc-
tion, § 0.10, 2.2.3, 2.2.6).
The following lemma is, in essence, well-known:

Lemma 4.13. Let K be a �nite extension of the quotient �eld of W (F̄p). Then
ΓK is center-free and has cohomological dimension equal to 1.

Proof. First, write L for the quotient �eld of W (F̄p), and L′ for the union
(inside L) of the quotient �elds of the W (k), as k ranges over all �nite extensions
of Fp. Then the ring of integers OL′ of L′ is the union of the W (k), hence stictly
henselian. Moreover, since OL = W (F̄p) is the p-adic completion of OL′ , it
follows immediately from the general theory of henselian rings that ΓL = ΓL′ .
In particular, since K is a �nite extension of L, it follows that there exists a
�nite extension K ′ of L′ such that K = L ⊗L′ K ′. Moreover, since OK′ is
strictly henselian, with completion equal to OK , we have ΓK = ΓK′ . Thus, it
su�ces to prove that ΓK′ is center-free and of cohomological dimension equal to
1. In the remainder of the proof, to simplify notation, we shall simply write K

for K ′.
Next, observe that by considering the maximal tamely rami�ed extension Ktm

of K, we obtain an exact sequence

1 → ΓKtm → ΓK →
∏

l 6=p

Zl(1) → 1

(where the product ranges over all prime numbers not equal to p). Moreover,
recall that ΓKtm is a pro-p-group which is center-free and of cohomological dimen-
sion 1 (see, e.g., [Mzk2], the proof of Lemma 15.6). We thus obtain immediately
that ΓK is of cohomological dimension 1. To show that ΓK is center-free, it suf-
�ces to show Gal(Ktm/K) acts faithfully on Γab

Ktm ⊗Qp (where �ab� denotes the
maximal abelian quotient). But this may be done as follows: Let K0 ⊆ K be a
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�nite extension of Qp such that K/K0 is unrami�ed. Thus, it follows that Ktm is
also the maximal unrami�ed extension of K0, so Gal(Ktm/K) ↪→ Gal(Ktm/K0).
Now let L0/K0 be a �nite, Galois, totally tamely rami�ed extension of K0. Then
L0 ⊆ Ktm, so we obtain a surjection:

Γab
Ktm ⊗Qp ³ (Γab

L0
)wild ⊗Qp

(where the superscript �wild� denotes the wild inertia subgroup). But by the
class �eld theory of �nite extensions of Qp, one knows that (Γab

L0
)wild ⊗ Qp is

naturally isomorphic (via the p-adic logarithm�see, e.g., [Mzk5], § 2) to L0, so
the action of Gal(L0/K0) on (Γab

L0
)wild ⊗ Qp is faithful. Since arbitrary �nite

quotients of Gal(Ktm/K) may be realized as �Gal(L0/K0)'s� for appropriate
choices of K0, L0, it thus follows that Gal(Ktm/K) acts faithfully on Γab

Ktm⊗Qp,
as desired. This completes the proof of Lemma 4.13. ¤

Lemma 4.14. Let K be generalized sub-p-adic. Then ΓK is center-free.

Proof. Let K be an arbitrary generalized sub-p-adic �eld. If XL is any hyper-
bolic curve of type (g, r) over a �nite extension L of K, and σ ∈ Z(ΓK) (i.e., the
center of ΓK), then we have an isomorphism

Π(XL)K

∼= Π(XL)σ
K

(induced by conjugating by σ) which is compatible with the outer actions of ΓL

on both sides.
With this observation in hand, it follows that Lemma 4.14 may be derived

from Lemma 4.13 by means of Theorem 4.12 using exactly the same argument
as that used to derive [Mzk2], Lemma 15.8, from [Mzk2], Lemma 15.6, by means
of [Mzk2], Corollary 15.3. ¤
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