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Introduction

Recall that for proper smooth and connected curves of genus g ≥ 2 over an al-
gebraically closed �eld of characteristic 0 the structure of the étale fundamental
group πg is well known and depends only on the genus g. Namely it is the pro�-
nite completion of the topological fundamental group of a compact orientable
topological surface of genus g. In contrast to this, the structure of the étale
fundamental group of proper smooth and connected curves of genus g ≥ 2 in
positive characteristic is unknown, and it depends on the isomorphy type of the
curve in discussion. The aim of this paper is to give new evidence for anabelian
phenomena for proper curves over algebraically closed �elds of characteristic
p > 0.

Before going into the details of the results we are going to prove, we set some
notation and recall well known facts. Let k be an algebraically closed �eld of
characteristic p > 0. Let X be a projective smooth and connected curve of genus
g ≥ 2 over k, and let J be the Jacobian of X. We denote by π1(X), πp

1(X), and
πp′

1 (X) the étale fundamental group of X, its pro-p quotient, and its prime to p

quotient. Then:

(1) The structure of πp
1(X) is given by Shafarevich's Theorem; see [Sh]. It is

isomorphic to the pro-p free group on r := rX generators, where rX is the
p-rank of J .

(2) The structure of πp′
1 (X) is well known by Grothendieck's Specialization The-

orem; see [SGA-1]. It is the prime to p completion of the topological funda-
mental group of a compact orientable topological surface of genus g.

(3) In contrast to this, the structure of the whole fundamental group π1(X)
is a big mystery! Its structure is not known in any single case. However, by
Grothendieck's Specialization Theorem we know that π1(X) is the quotient of
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the pro�nite completion Πg of the topological fundamental group of a compact
orientable topological surface of genus g. In particular π1(X) is topologically
�nitely generated. Since such groups are completely determined by the set of
their �nite quotients, another interpretation of (1) is the following:
� If two curves as above have the same p-rank, then there is a bijection
between the set of their Galois étale covers with Galois group a p-group.

� In the same way, the interpretation of (2) is that for two curves of the same
genus there is a bijection between the set of their Galois étale covers having
a Galois group of order prime to p.

In order to approach the complexity of π1 of proper curves in positive character-
istic we introduce the following: Let Mg → SpecFp be the coarse moduli space
of proper and smooth curves of genus g in characteristic p. It is well known
that Mg is a quasi-projective and geometrically irreducible variety. Let k be an
algebraically closed �eld of characteristic p; thus Mg(k) is the set of isomorphism
classes of curves of genus g over k. For x̄ ∈ Mg(k) let Cx̄ → Spec k be a curve
classi�ed by x̄, and let x ∈ Mg such that x̄ : Spec k → Mg factors through x.
We set

π1(x) := π1(Cx̄), πp
1(x) := πp

1(Cx̄), πp′
1 (x) = πp′

1 (Cx̄).

We remark that the structure of π1(x) as a pro�nite group depends only on x

and not on the concrete geometric point x̄ ∈ Mg(k) used to de�ne it. Indeed, let
κ be the algebraic closure of the residue �eld κ(x) at x in k. Then, if Cx is the
curve classi�ed by Spec κ → Mg, then Cx̄ is the base change Cx̄ ' Cx×κ k of Cx

to k. Hence π1(Cx̄) ' π1(Cx) by the geometric invariance of the fundamental
group for proper varieties; see [SGA-1]. Second, the isomorphy type of Cx as an
Fp-scheme does depend only on x, and not the concrete choice of the algebraic
closure κ of κ(x).

We further remark that by the comments above, if Jx̄ is the Jacobian of Cx̄,
then the p-rank of Jx̄ as well as Jx̄ being a simple abelian variety depends only
on x and not on the geometric point x̄. Indeed, in the notations above, if Jx is
the Jacobian of Cx, then Jx̄ ' Jx ×κ k; and for di�erent choices of the algebraic
closure of κ(x), the corresponding curves are isomorphic as Fp-schemes. Hence
their Jacobians too are isomorphic as Fp-schemes.

Coming back to the fundamental group we thus have maps

π1 : Mg → (Prof.groups), x → π1(x),

and the induced maps

πp
1 : Mg → (Prof.groups), x → πp

1(x)

and
πp′

1 : Mg → (Prof.groups), x → πp′
1 (x),
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where (Prof.groups) are the objects of the category of pro�nite groups. The last
two maps are not very interesting: �rst, the isomorphy type of the images of πp

1

depends only on the p-rank; and second, the isomorphy type is constant on the
image of πp′

1 .
To �nish our preparation we remark that for points x, y ∈ Mg such that x

is a specialization of y, by Grothendieck's specialization theorem there exists a
surjective continuous homomorphism Sp : π1(y) → π1(x). In particular, if η is
the generic point of Mg, then Cη is the generic curve of genus g; and every point
x of Mg is a specialization of η. Thus, for every x ∈ Mg, there is a surjective
homomorphism Spx : π1(η) → π1(x) which is determined up to Galois-conjugacy
by the choice of the local ring of x in the algebraic closure of κ(η). For every
x ∈ Mg we �x such a map once for all; in particular, if x is a specialization of
y, there exists a specialization homomorphism Spy,x : π1(y) → π1(x) such that
Spy,x ◦Spy = Spx. (In order to obtain Spy,x one has to choose the local ring of
x to be contained in the local ring of y.)

Finally, let Sa.s. ⊂ Mg be the set of closed points corresponding to curves
Cx having an absolutely simple Jacobian Jx. Further, let Sa.s.

≥g−1 ⊂ Sa.s. be the
subset of points x ∈ Sa.s. such that the p-rank of Cx equals g or g−1. Concerning
the set Sa.s., Chai and Oort proved the following (see [Se-1] for facts concerning
Dirichlet density):
Theorem ([Ch-Oo]). The subset Sa.s. is non empty and has a positive Dirichlet
density . In particular , Sa.s. is Zariski dense.
We now come to the main results of the present article. We remark that for
genus g = 2, even stronger results were proven by Raynaud. This is Raynaud's
theory of the theta divisor of the sheaf of locally exact di�erentials for curves in
positive characteristic; see [Ra-1] the main tool that we use in our approach.
Theorem A. For all points s ∈ Sa.s., the specialization homomorphism Sps :
π1(η) → π1(s) is not an isomorphism.

More precisely , every cyclic étale cover of Xη of order prime to p is ordinary ,
whereas there exist such covers of Cs that are not ordinary .
Theorem B. If a point y ∈ Mg specializes to some point s ∈ Sa.s.

≥g−1 with
s 6= y, then the specialization homomorphism Spy,s : π1(y) → π1(s) is not an
isomorphism.

In particular , for a given point s ∈ Sa.s.
≥g−1 there exist only �nitely many points

s′ ∈ Sa.s.
≥g−1 such that π1(s′) ' π1(s).

As an application we have the following corollary answering a question raised by
David Harbater:
Corollary. There is no nonempty open subset U ⊂ Mg such that the isomor-
phy type of the geometric fundamental group π1(x) is constant on U .
We conclude with a question:
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Question. Is it true that the specialization homomorphism

Sp : π1(y) → π1(x)

to points y 6= x with x closed is never an isomorphism?

If this is the case the same proof as that of Corollary 4.4 below would imply
the following �niteness result: Given a closed point x ∈ Mg there exists at most
�nitely many closed points x′ in Mg such that π1(x′) ' π1(x).

One could ask the preceding question more generally, without the condition
that the point x be closed. However, the condition that x be closed is essential
in the proof of our results.
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from September 1998 to June 1999. He would like very much to thank the
members of the Mathematics Institute for their hospitality and the very good
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to express their gratitude for the support from MSRI and the wonderful working
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1. Preliminaries and Notations

1.1. The sheaf of locally exact di�erentials in characteristic p > 0 and
the associated theta divisor. We recall here the de�nition of the sheaf of lo-
cally exact di�erentials associated to an algebraic curve in positive characteristic
and its associated theta divisor, mainly following Raynaud (see [Ra-1], 4). Let
X be a proper smooth and connected algebraic curve of genus gX := g ≥ 2, over
an algebraically closed �eld k of characteristic p > 0. Consider the Cartesian
diagram

X1 −−−−→ Xy
y

Spec k
F−−−−→ Spec k

where F denotes the absolute Frobenius morphism. The projection X1 → X is
a scheme isomorphism, in particular X1 is a smooth and proper curve of genus
g. The absolute Frobenius morphism F : X → X induces in a canonical way a
morphism π : X → X1 called the relative Frobenius which is a radicial morphism
of k-curves of degree p. The canonical di�erential π∗d : π∗OX → π∗Ω1

X is a
morphism of OX1 -modules. Its image BX := B := Im(π∗d) is the sheaf of locally
exact di�erentials. One has the exact sequence

0 → OX1 → π∗OX → B → 0,
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and B is a vector bundle on X1 of rank p − 1. Let c : π∗(Ω1
X) → Ω1

X1 be the
Cartier operator; this is a morphism of OX1 -modules. The kernel ker(c) of c is
equal to B, and the following sequence of OX1 -modules is exact (see [Se], 10):

0 → B → π∗(Ω1
X) → Ω1

X1 → 0

Let L be a universal Poincaré bundle on X1 ×k J1 where J1 := Pic0(X1) is
the Jacobian of X1. This is a line bundle such that its restriction to X1 × {a}
for any a ∈ J1(k) is isomorphic to the invertible sheaf La which is the image
of a under the natural isomorphism J1(k) ' Pic0(X1). Let h : X1 × J1 → X1

and f : X1 × J1 → J1 be the canonical projections. As Rif∗(h∗B ⊗ L) = 0 for
i ≥ 2, the total direct image Rf∗(h∗B ⊗ L) of (h∗B ⊗ L) by f can be realized
by a complex u : M0 →M1 of length 1, where M0 and M1 are vector bundles
on J1, keru = R0f∗(h∗B ⊗ L), and cokeru = R1f∗(h∗B ⊗ L). Moreover as
the Euler-Poincaré characteristic χ(h∗B ⊗ L) = 0, the vector bundles M0 and
M1 have the same rank. In [Ra-1], théorème 4.1.1, it has been proved that the
determinant detu of u is not identically zero on J1, hence one can consider the
divisor θ := θX on J1, which is the positive Cartier divisor locally generated by
det u, it is the theta divisor associated to the vector bundle B (note that the
de�nition of θX is independant on the above chosen complex u). By de�nition a
point a ∈ J1(k) lies on the support of θ if and only if H0(X1, B ⊗ La) 6= 0.

1.2. p-Rank of cyclic étale covers of degree prime to p. We use the
same notations as in 1.1. The p-rank rX of X is the dimension of the maximal
subspace of H1(X,OX) on which the absolute Frobenius F acts bijectively. By
duality it is also the dimension of the maximal subspace of H0(X, Ω1

X) on which
the Cartier operator c is bijective (see [Se-1], 10). The p-rank rX of X is also
the rank of the maximal pro-p-quotient πp

1(X) of the fundamental group π1(X)
of X, which is a free pro-p-group (see [Sh]).

The relative Frobenius morphism π : X → X1 induces a �canonical� iso-
morphism π1(X) → π1(X1) between fundamental groups (see [SGA-1]). In
particular for any positive integer n which is prime to p one has a one to one cor-
respondence between µn-torsors of X1 and µn-torsors of X. More precisely the
canonical homomorphism H1

et(X
1, µn) → H1

et(X,µn) induced by π is an isomor-
phism. Consider a µn-torsor f : Y → X with Y connected. By Kummer theory f

is given by an invertible sheaf L of order n on X, and Y := Spec(⊕n−1
i=0 L⊗i). Thus

there exists an invertible sheaf L1 on X1 of order n, such that if f ′ : Y 1 → X1

is the associated µn-torsor we have a Cartesian diagram

Y
f−−−−→ X

π′
y π

y
Y 1 f ′−−−−→ X1
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Let JY (resp. JX) denote the Jacobian variety of Y (resp. the Jacobian of X).
The morphism f : Y → X induces a homomorphism f∗ : JX → JY between
Jacobians. Let Jnew := JY/X denote the quotient of JY by the image f∗(JX) of
JX , that is the new part of the Jacobian JY of Y with respect to the morphism f .

1.3. De�nition. The µn-torsor f : Y → X is said to be new-ordinary if the new
part Jnew of the Jacobian of Y with respect to the morphism f is an ordinary
abelian variety.

Since the dimension of the abelian variety Jnew is h = gY −gX , it follows that
Jnew is ordinary if the étale part of the kernel of the multiplication by p in Jnew

has order ph. This is also equivalent to the fact that the absolute Frobenius F

acts bijectively on H1(Jnew,OJnew). One has H1(JY ,OJY
) ' H1(Y,OY ), and

H1(Y,OY ) = H1(X, f∗OY ) = H1(X,⊕n−1
i=0 L⊗i). Moreover H1(Jnew,OJnew) '

H1(X,⊕n−1
i=1 (L)⊗i) and these identi�cations are compatible with the action of

Frobenius. Hence the kernel of Frobenius on H1(Jnew,OJnew) is isomorphic
to the kernel of Frobenius acting on H1(X,⊕n−1

i=1 L⊗i). On the other hand
as f ′ is étale (f ′)∗(BX) = BY , thus also (f ′)∗(BY ) = BX ⊗ (f ′)∗(OY 1) =
⊕n−1

i=0 (BX ⊗ (L1)⊗i). Now by duality, the kernel of the Frobenius acting on
H1(X1,⊕n−1

i=1 L1⊗i) is isomorphic to the kernel of the Cartier operator on H0(X1,

π∗Ω1
X ⊗ (⊕n−1

i=1 (L1)⊗i)), which is ⊕n−1
i=1 H0(X1, BX ⊗ (L1)⊗i). Thus the above

µn-torsor f : Y → X is new-ordinary if and only if H0(X1, B ⊗ (L1)⊗i) = 0 for
i ∈ {1, . . . , n − 1}, which is also equivalent to the fact that the subgroup 〈L1〉
generated by L1 in J1 intersects the support of the theta divisor θX associated
to BX at most at the zero point 0J1 of J1.

2. µn-Torsors of Curves over Finite Fields and Ordinariness
In this section we consider curves over the algebraic closure Fp of the prime

�eld Fp. We establish that after �nite étale covers the theta divisor associated to
the sheaf B of locally exact di�erentials contains in�nitely many torsion points
of order prime to p. This indeed gives information on the fundamental group of
these curves.
Proposition 2.1. Let A be an abelian variety of dimension ≥ 2 over Fp, and
let Y be a closed sub-variety of A of dimension ≥ 1. Assume either A is a simple
abelian variety , or Y (Fp) contains the zero point 0A of A. Then Y (Fp) contains
an in�nity of torsion points of pairwise prime order .
Proof. First note that the abelian group A(Fp) = A(Fp)tor is torsion. We will
use the following result from [An-In]:
Proposition. Let C be a proper smooth and connected curve over Fp of genus
g ≥ 1, and let J := Pic0(C) be its Jacobian. Let φ : C → J be the embedding of
C in J associated to a point x0 ∈ C(Fp). For any integer m denote by mJ(Fp)
the m-primary part of the torsion group J(Fp) (i .e., mJ(Fp) := ⊕l(lJ(Fp)) the
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sum being taken over all primes ` dividing m), and let λ : J(Fp) →m J(Fp) be
the canonical projection. Then the map λ ◦ φ : C(Fp) →m J(Fp) is surjective.
This was proved in [An-In] only in the case where m = l is a prime number, but it
is easy to check that the proof there works also in the case of any positive integer
m. It follows immediately from the above result that C(Fp) contains in�nitely
many points which have pairwise prime orders, in particular it contains in�nitely
many points of order prime to p. Indeed, If {x1, . . . , xn} are �nitely many points
of C(Fp), r is the least common multiple of the orders of the points {x1, . . . , xn},
and if s > 1 is an integer which is relatively prime to r, and x 6= 0 is an s-torsion
point on J , then by the above result one can �nd a point on C(Fp) whose s

primary part equal x and whose r-primary part equals 0, in particular such a
point has an order which is prime to r. ¤
For the proof of 2.1, let y ∈ Y (Fp) be a closed point in Y and let C be an
irreducible sub-scheme of Y of dimension 1 which contains y. We endow C with
its reduced structure. Let C̃ be the normalization of C which is a smooth and
connected curve of genus ≥ 1, and let J̃ be its Jacobian. One has a commutative
diagram:

J̃
f−−−−→ A

φ̃

x i

x
C̃

f̃−−−−→ C

where f̃ is the normalization morphism, φ̃ is the embedding of C̃ in its Jacobian
associated to a point ỹ above y, and f is the morphism induced by the universal
property of J̃ , which is a composition of a homomorphism g and a translation
τy by the point y. If y is a point of order prime to p then the image via f of
the points of order prime to p on φ̃(C̃) (which exists and are an in�nity by the
above result) yields in�nitely many points in C(Fp) which have pairwise prime
orders. Moreover if 0A ∈ Y (Fp) and one takes y = 0A, then with the same
notations as above, the images via f of the points of φ̃(C̃) having pairwise prime
orders yield in�nitely many points on C having pairwise prime orders. Assume
now that A is a simple abelian variety. Then the above homomorphism g is
necessarily surjective, in particular there exists x in J̃ such that g(x) = y, and
C = g(τx(C̃)), where τx denotes the translation by x inside J̃ . On the other
hand it is easy to see, using the above result in [An-In] in the same way that was
used above, that τx(C̃) also contains in�nitely many points which have pairwise
prime orders in J̃ hence the result in this case.
Proposition/Definition 2.2. With the same hypothesis as in Proposition 2.1
let Yi be an irreducible component of Y which has dimension ≥ 1, and denote by
A(Fp)(p

′) the prime to p-part of the torsion group A(Fp). Then:
(1) either Yi(Fp) ∩ A(Fp)(p

′) is Zariski dense in Yi, in which case we call Yi an
abelian like sub-variety of A, or
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(2) Yi(Fp)∩A(Fp)(p
′) is empty in which case Yi must be a translate of an abelian

like sub-variety of A by a point which necessarily has order divisible by p.

Proof. After eventually a translation we can assume that Yi contains the zero
point of A and then we can assume by 2.1 that Yi(Fp)∩A(Fp)(p

′) is non empty.
Assume that the closure Zi of Yi(Fp) ∩A(Fp)(p

′) is distinct from Yi. Let x be a
point in Yi(Fp) ∩ A(Fp)(p

′) and y ∈ Yi(Fp), but y is not contained in Zi. Then
one can �nd a curve C which contains both y and x (see [Mu], lemma on p. 56).
It follows then from the same argument used in the proof of 2.1 that C contains
in�nitely many points of order prime to p, hence Yi − Zi contains such a point
which contradicts the fact that Zi 6= Yi. ¤

Here is an immediate consequence of these propositions:

Proposition 2.3. Let X be a proper smooth and connected curve over Fp. Let
θX be the theta divisor associated to the sheaf BX of locally exact di�erentials
on X (see Section 1.1). Assume: either the Jacobian J of X is a simple abelian
variety , or that the curve X is not ordinary which is equivalent to the fact that
0 ∈ θX(Fp). Then θX(Fp) contains in�nitely many torsion points of the Jacobian
J1 of X1 having pairwise prime orders. In general , if θX(Fp) contains a torsion
point of order prime to p, then θX(Fp) contains in�nitely many torsion points
of order prime to p. In both cases θX has an irreducible component which is an
abelian like sub-variety of J1.

In the general case where the conditions of 2.3 are not satis�ed one has the
following.

Proposition 2.4. Let X be a proper smooth and connected curve over Fp. Then
there exists an étale Galois cover Y → X with Galois group G of order prime to p

such that the theta divisor θY associated to the sheaf of locally exact di�erentials
on Y contains in�nitely many Fp-torsion points of pairwise prime order .

Proof. By a result of Raynaud (see [Ra-2]) there exists an étale Galois cover
Y → X with Galois group G of order prime to p such that Y is not ordinary. In
particular the theta divisor θY associated to the sheaf of locally exact di�erentials
on Y contains the zero point of J1

Y . Hence the result follows from 2.3. ¤

3. On the Theta Divisor θ of Curves with Simple Jacobians
Theorem 3.1. Let A be a simple abelian variety of dimension g ≥ 2 over an
algebraically closed �eld K of characteristic p > 0. Assume that A is not de�ned
over a �nite �eld , and that the p-rank of A equals g or g − 1. Let D be a closed
sub-variety of codimension ≥ 1 of A. Then D(K) contains at most �nitely many
torsion points of A(K)tor of order prime to p.

Proof. Since A is simple, any K-homomorphism from A to an abelian variety
is either trivial or an isogeny. In particular, the Fp-trace of A is either trivial
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or isogenous to A in which case the kernel of such an isogeny is automatically
de�ned over a Fp because of the condition on the p-rank of A (see [Oo], 3.4),
hence the Fp-trace of A equals 0 necessarily, since A is not de�ned over a �nite
�eld by assumption. Let D(p′) be the closure in A of the intersection of D with
the prime to p-part of the torsion group J(K)tor. By the results of Hrushovski
on the analog of the Mordell-Lang conjecture over function �elds in positive
characteristic D(p′) is a �nite union ∪i(ai + Ai) of translates of abelian sub-
varieties Ai of A (see [Hr], Corollary 1.2). As A is simple, dim Ai = 0 and hence
D(p′) consists of at most �nitely many points. ¤

Corollary 3.2. Let X be a proper smooth and connected curve of genus g ≥ 2
over an algebraically closed �eld K of characteristic p > 0. Assume that X is not
de�ned over a �nite �eld . Let θX be the theta divisor associated to the sheaf of
locally exact di�erentials BX on X1 (see Section 1.1). Assume that the Jacobian
J of X is a simple abelian variety and that the p-rank of X equals g or g − 1.
Then θX(K) contains at most �nitely many torsion points of order prime to p.

Proof. Since X is not de�ned over a �nite �eld this is also the case for its
Jacobian J By Torelli's theorem [We]; hence 3.2 follows from 3.1. ¤

4. Proof of Theorem A, Theorem B, and Corollary
We reformulate the assertions of the theorems as follows:
Let x, y be points of Mg with x a specialization of y. Thus the local ring

OMg,x of the point x contains a prime ideal Py corresponding to y, and OMg,y

is the localization of OMg,x at Py. Let K be an algebraic closure of κ(y). Then
there exits a valuation ring R of K dominating the factor ring OMg,x/Py inside
κ(y) ⊂ K, such that the residue �eld of R is an algebraic closure κ of κ(x).
Thus y = Spec K is the generic point, and x̄ = Spec κ is the closed point of
Spec R. We choose a smooth projective curve f : X → Spec R so that we
have a morphism g : Spec R → Mg such that the induced morphisms ȳ → Mg

and x̄ → Mg de�ne the generic �ber Xȳ → Spec K, respectively the special
�ber Xx̄ → Spec κ as points in Mg(K), respectively Mg(κ). We can identify
π1(Xκ) with π1(x), and π1(XK) with π1(y) respectively, in such a way that the
Grothendieck's specialization homomorphism π1(XK) → π1(Xκ) is exactly the
specialization homomorphism Sp : π1(y) → π1(x).

Now we suppose that the points y and x are of a special nature, as in Theo-
rem A and/or Theorem B. This means in particular, that y might be the generic
point η of Mg, and x is a point s in Sa.s. or Sa.s.

≥g−1. Assuming that Spy,x

is an isomorphism, we will get a contradiction by showing that the morphism
g : Spec R → Mg is constant.
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Concerning Theorem A. In the above notations, let x = s and y = η, thus κ

is an algebraic closure of the �nite �eld κ(s), and K is the algebraic closure of
κ(η). We denote by Js = Jκ the Jacobian of Xs := Xκ, respectively by Jη = JK

the Jacobian of Xη := XK . Further let θs, respectively θη be the theta divisor
in (Js)1 associated to the sheaf of locally exact di�erentials on Xs, respectively
the theta divisor in (Jη̄)1 associated to the sheaf of locally exact di�erentials on
Xη. It follows from 2.3 that θs contains in�nitely many torsion points of order
prime to p. Let L be an invertible sheaf of order n prime to p on X → S. Let
Lη, respectively Ls be the restriction of L to Xη, respectively its restriction to
Xs. The assumption that Sp : π1(Xη) → π1(Xs) is an isomorphism implies in
particular: The µn-torsor associated to Lη is new-ordinary (in the sense of 1.3) if
and only if the µn-torsor associated to Ls is new ordinary. In other words: The
subgroup 〈L1

η〉 generated by L1
η intersects the theta divisor θη at a non zero point

if and only if the subgroup 〈L1
s〉 generated by L1

s intersects the theta divisor θs

at a non zero point. Hence we deduce from Proposition 2.3, it follows that θη

contains in�nitely many torsion points of Jη of order prime to p. On the other
hand, it is well known that all cyclic étale covers Y → Xη of degree n prime
to p (and even without this condition) are new-ordinary (see [Na], for instance).
This means that the theta divisor θη contains no torsion point of order prime to
p. Thus a contradiction in this case.

Concerning Theorem B. One proceeds as above, but without using the
assumption that y is the generic point of Mg. In the above notations we then
have: Let J → Spec R be the Jacobian of the projective smooth curve X →
Spec R. Thus J → Spec R is an abelian scheme over Spec R, and Js = J ×R κ

is the special �ber of J , and Jy = J ×R K is the generic �ber of J . Since Js

is a simple abelian variety (by the hypothesis on s), it follows that its generic
�ber Jy is simple too. Since f is non iso-trivial, it follows that Xy := XK is not
de�ned over a �nite �eld. Hence Corollary 3.2 implies that the theta-divisor θy

of X1
y is such that θy(λ) contains at most �nitely many torsion points of order

prime to p. This is a contradiction, so Sp cannot be an isomorphism in this case.
We next prove the second assertion of Theorem B. Let x ∈ Sa.s.

≥g−1 be a closed
point of Mg. By contradiction, suppose that there exists in�nitely many points
x′ ∈ Sa.s.

≥g−1 such that π1(x) ' π1(x′). Let Sx denote the subset of those points,
and Sx be the closure of Sx in Mg. Then Sx is a closed sub-scheme of Mg

of dimension d ≥ 1. Let z be a point of Sx which is not a closed point. By
hypothesis there exists a point x′ ∈ Sx such that z specializes in x′, and hence
there exists a continuous surjective homomorphism Sp : π1(z) → π1(x′). In
particular one has an inclusion of sets πA(x′) ⊂ πA(z). On the other hand
it is well known that every �nite group G ∈ πA(z) belongs to πA in an open
neighborhood of z (see [St]), and as each such a neighborhood contains a point
of Sx one deduces in fact that one has an equality πA(x′) = πA(z), and the above
homomorphism Sp : π1(z) → π1(x′) is an isomorphism (this follows from the
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Hop�an property for �nitely generated pro�nite groups; see [Fr-Ja], Prop. 15.4).
But this can not be the case by the �rst half of Theorem B since x′ ∈ Sa.s.

≥g−1.

Concerning the Introduction's Corollary. We �nally come to the proof of
the Corollary. First, the fact that the subset Sa.s. of closed points with absolutely
simple Jacobian has positive Dirichlet density implies in particular that Sa.s.∩U

is dense in U for every open (nonempty) subset U of Mg (see [Se-2]). Further,
since the Jacobian of the generic curve Cη is ordinary, it follows that every curve
Cx with π1(x) ∼= π1(η) is ordinary too. Thus we have: If π1 is constant on U ,
then Sa.s. ∩ U = Sa.s.

≥g ∩ U is dense in U , in particular in�nite. This in turn is a
contradiction by the second part of Theorem B.
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