
More Games of No Chance
MSRI Publications
Volume 42, 2002

Alpha-Beta Pruning Under Partial Orders

MATTHEW L. GINSBERG AND ALAN JAFFRAY

Abstract. Alpha-beta pruning is the algorithm of choice for searching
game trees with position values taken from a totally ordered set, such as
the set of real numbers. We generalize to game trees with position values
taken from a partially ordered set, and prove necessary and sufficient condi-
tions for alpha-beta pruning to be valid. Specifically, we show that shallow
pruning is possible if and only if the value set is a lattice, and full alpha-
beta pruning is possible if and only if the value set is a distributive lattice.
We show that the resulting technique leads to substantial improvements in
the speed of algorithms dealing with card play in contract bridge.

1. Introduction

Alpha-beta (α-β) pruning is widely used to reduce the amount of search

needed to analyze game trees. However, almost all discussion of α-β in the

literature is restricted to game trees with real or integer valued positions. It

may be useful to consider game trees with other valuation schema, such as vec-

tors, sets, or constraints. In this paper, we attempt to find the most general

conditions on a value set under which α-β may be used.

The intuition underlying α-β is that it is possible to eliminate from consider-

ation portions of the game tree that can be shown not to be on the “main line.”

Thus if one player P has a move leading to a position of value v, any alternative

or future move that would let the opponent produce a value v′ worse for P than

v need not be considered, since P can (and should) always make choices in a

way that avoid the value v′.

The assumption in the literature has been that terms such as “better” and

“worse” refer to comparisons made using a total order; there has been almost

no consideration of games where payoffs may be incomparable. As an example,

imagine a game involving a card selected at random from a standard 52-card

deck. If I make move m1, I will win the game if the card is an ace. If I make

This work has been supported by DARPA/Rome Labs under contracts F30602-95-1-0023 and
F30602-97-1-0294.

37



38 MATTHEW L. GINSBERG AND ALAN JAFFRAY

move m2, I will win the game if the card is a spade. Since there are more spades

in the deck than aces, m2 is presumably the better move.

The conventional way to analyze this situation is to convert both conditions

to probabilities, saying that m1 has a payoff of 1/13 and m2 a payoff of 1/4. The

second payoff is better, so I make move m2.

Now imagine, however, that I am playing a more complicated game. This

game involves two subgames; in order to win the overall game, I need to win

both subgames. The first subgame is as described in the previous paragraph.

For the second subgame, m1 wins if the card is an ace as before; m2 wins if the

card is a heart. It is clear that m2 has no chance at all of winning the overall

game (a card cannot be a heart and a spade both), so that m1 is now to be

preferred.

This example should make it clear that when we assign a number to a move

such as m1 or m2, the assignment is only truly meaningful at the root of the

game tree. At internal nodes, this game requires that we understand the context

in which a particular move wins or loses, as opposed to simply the probability

of that context. The contexts in which different moves win will not always be

comparable, although they can be forced to be comparable by converting each

context into a real number probabilistically. Doing so makes sense at the root of

the game tree, but not at internal nodes or other situations where the contexts

must be combined in some fashion.

Our goal in this paper is to analyze games while working with the most natural

labels available. These may be real numbers, tuples of real numbers (natural

if the payoff function involves multiple attributes), contexts (often natural in

games of incomplete information), or other values. Given a game described in

these terms, under what conditions can we continue to use α-β pruning to reduce

the search space?

We will answer this question in the next three sections. Section 2 begins by

introducing general operations on the value set that are needed if the notion of

a game tree itself is to be meaningful. In Section 3, we go on to show that the

validity of shallow α-β pruning is equivalent to the condition that the payoff

values are taken from a mathematical structure known as a lattice. In Section 4,

we show further that deep α-β pruning is valid if and only if the lattice in

question is distributive. Section 5 describes an application of our techniques to

card play problems arising in contract bridge. Related work is discussed briefly

in Section 6 and concluding remarks are contained in Section 7.

2. Structure and Definitions

By a game, we will mean basically a set of rules that determine play from a

given initial position I . We will assume that all games are two-player, involving

a minimizer (often denoted 0) and a maximizer (often denoted 1). The “rules”

of the game consist of a successor function s that takes a position p and returns



ALPHA-BETA PRUNING UNDER PARTIAL ORDERS 39

the set s(p) of possible subsequent positions. If s(p) = ?, p is a terminal position

and is assigned a value by an evaluation function e.

Definition 2.1. A game is an octuple

(P, V, I, w, s, e, f+, f−)

such that:

(i) P is the set of possible positions in the game.

(ii) V is the set of values for the game.

(iii) I ∈ P is the initial position of the game.

(iv) w : P → {0, 1} is a function indicating which player is to move in each

position in P .

(v) s : P → P(P ) gives the successors of each position in P .

(vi) e : s−1(?) → V evaluates each terminal position in P .

(vii) f+ : P(V ) → V and f− : P(V ) → V are the combination functions for the

maximizer and minimizer respectively.

Most games that have been discussed in the AI literature take V to be the set

{−1, 0, +1}, with −1 being a win for the minimizer, +1 a win for the maximizer,

and 0 a draw. The functions f+ and f− conventionally return the maximum and

minimum of their set-valued arguments.

Note, incidentally, that the assumption that f+ and f− have sets as arguments

is not without content. It says, for example, that there is no advantage to either

player to have multiple winning options in a given position; one winning option

suffices.

A game is finite if there is no infinite sequence of legal moves starting at the

initial position. Formally:

Definition 2.2. A game (P, V, I, w, s, e, f+, f−) will be called finite if there is

some integer N such that there is no sequence p0, . . . , pN with p0 = I and

pi ∈ s(pi−1) for i = 1, . . . , N .

Given the above definitions, we can use the minimax algorithm to assign

values to nonterminal nodes of the game tree:

Definition 2.3. Let G = (P, V, I, w, s, e, f+, f−) be a finite game. By the eval-

uation function for G we will mean that function e defined recursively by

e(p) =







e(p), if s(p) = ?;

f+{e(p
′)|p′ ∈ s(p)} if w(p) = 1;

f−{e(p
′)|p′ ∈ s(p)} if w(p) = 0.

(2–1)

The value of G will be defined to be e(I).

Proposition 2.4. The evaluation function e is well defined for finite games.

Proof. The proof proceeds by induction on the distance of a given position p

from the fringe of the game tree. �



40 MATTHEW L. GINSBERG AND ALAN JAFFRAY

q q q q

q

�
�

�
�

��

�
�
�
�A

A
A
A

Q
Q

Q
Q

QQ

C
C
C
C min

m1 m2 m3 m4

q q q

q q

q

�
�
�
�A

A
A
A

�
�

�
�S

S
S
S

C
C
C
C

min

min

m2

m1 m3 m4

Figure 1. Equivalent games?

The expression (2–1) is, of course, just the usual minimax algorithm, reex-

pressed as a definition. In keeping with our overall goals, we have replaced the

usual max and min operations with f+ and f−.

Consider now the two game trees in Figure 1, where none of the mi are

intended to be necessarily terminal. Are these two games always equivalent?

We would argue that they are. In the game on the left, the minimizer needs

to select among the four options m1, m2, m3, m4. In the game on the right, he

needs to first select whether or not to play m2; if he decides not to, he must select

among the remaining options. Since the minimizer has the same possibilities in

both cases, we assume that the values assigned to the games are the same.

From a more formal point of view, the value of the game on the left is

f−(m1, m2, m3, m4) and that of the game on the right is f−(m2, f−(m1, m3, m4)),

where we have abused notation somewhat, writing mi for the value of the node

mi as well.

Definition 2.5. A game will be called simple if for any x ∈ v ⊆ V ,

f+{x} = f−{x} = x

and also

f+(v) = f+{x, f+(v − x)} and f−(v) = f−{x, f−(v − x)}.

We have augmented the condition developed in the discussion of Figure 1 with

the assumption that if a player’s move in a position p is forced (so that p has a

unique successor), then the value before and after the forced move is the same.

Proposition 2.6. For any simple game, there are binary functions ∧ and ∨

from V to itself that are commutative, associative and idempotent 1 and such

that

f+{v0, . . . , vm} = v0 ∨ · · · ∨ vm and f−{v0, . . . , vm} = v0 ∧ · · · ∧ vm.

Proof. Induction on m. �

1A binary function f is called idempotent if f(a, a) = a for all a.



ALPHA-BETA PRUNING UNDER PARTIAL ORDERS 41

When referring to a simple game, we will typically replace the functions f+

and f− by the equivalent binary functions ∨ and ∧. We assume throughout the

rest of this paper that all games are simple and finite.2

The binary functions ∨ and ∧ now induce a partial order ≤, where we will say

that x ≤ y if and only if x ∨ y = y. It is not hard to see that this partial order

is reflexive (x ≤ x), antisymmetric (x ≤ y and y ≤ x if and only if x = y) and

transitive. The operators ∨ and ∧ behave like greatest lower bound and least

upper bound operators with regard to the partial order.

We also have the following:

Proposition 2.7. Whenever S ⊆ T , f+(S) ≤ f+(T ) and f−(S) ≥ f−(T ). �

In other words, assuming that the minimizer is trying to reach a low value in

the partial order and the maximizer is trying to reach a high one, having more

options is always good.

3. Shallow Pruning

What about α-β pruning in all of this? Let us begin with shallow pruning,

shown in Figure 2.

q q

q q

q

�
�
�
�A

A
A
A

�
�

�
�S

S
S
S

C
C
C
C

max

min

x

y T

Figure 2. T can be pruned (shallowly) if x ≤ y.

The idea here is that if the minimizer prefers x to y, he will never allow

the maximizer even the possibility of selecting between y and the value of the

subtree rooted at T . After all, the value of the maximizing node in the figure is

y ∨ e(T ) ≥ y ≥ x, and the minimizer will therefore always prefer x.

We will not give a precise definition of α-β pruning here, because the formal

definition is fairly intricate if the game tree can be a graph (and we have nowhere

excluded that). Instead, we observe simply that:

2We also assume that the games are sufficiently complex that we can find in the game tree
a node with any desired functional value, e.g., a ∧ (b ∨ c) for specific a, b and c. Were this not
the case, none of our results would follow. As an example, a game in which the initial position
is also terminal surely admits pruning of all kinds (since the game tree is empty) but need not
satisfy the conclusions of the results in the next sections.



42 MATTHEW L. GINSBERG AND ALAN JAFFRAY

Definition 3.1 (Shallow α-β pruning). A game G will be said to allow shallow

α-β pruning for the minimizer if

x ∧ (y ∨ T ) = x (3–1)

for all x, y, T ∈ V with x ≤ y. The game will be said to allow shallow α-β

pruning for the maximizer if

x ∨ (y ∧ T ) = x (3–2)

for all x, y, T ∈ V with x ≥ y. We will say that G allows shallow pruning if it

allows shallow α-β pruning for both players.

As we will see shortly, the expressions (3–1) and (3–2) describing shallow

pruning are identical to what are more typically known as absorption identities.

Definition 3.2. Suppose V is a set and ∧ and ∨ are two binary operators on V .

The triple (V,∧,∨) is called a lattice if ∧ and ∨ are idempotent, commutative

and associative, and satisfy the absorption identities in that for any x, y ∈ V ,

x ∨ (x ∧ y) = x, (3–3)

x ∧ (x ∨ y) = x. (3–4)

Definition 3.3. A lattice (V,∧,∨) is called distributive if ∧ and ∨ distribute

with respect to one another, so that

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), (3–5)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (3–6)

Lemma 3.4. Each of (3–3) and (3–4) implies the other. Each of (3–5) and

(3–6) implies the other.

These are well known results from lattice theory [Grätzer 1978].

Proposition 3.5. For a game G, the following conditions are equivalent:

(i) G allows shallow α-β pruning for the minimizer.

(ii) G allows shallow α-β pruning for the maximizer.

(iii) G allows shallow pruning.

(iv) (V,∧,∨) is a lattice.

Proof. We show that the first and fourth conditions are equivalent; everything

else follows easily.

If G allows shallow α-β pruning for the minimizer, we take x = a and y =

T = a ∨ b in (3–1). Clearly x ≤ y so we get

a ∧ (y ∨ y) = a ∧ y = a ∧ (a ∨ b) = a

as in (3–4).

For the converse, if x ≤ y, then x ∧ y = x and

x ∧ (y ∨ T ) = (x ∧ y) ∧ (y ∨ T ) = x ∧ (y ∧ (y ∨ T )) = x ∧ y = x. �



ALPHA-BETA PRUNING UNDER PARTIAL ORDERS 43

4. Deep Pruning

Deep pruning is a bit more subtle. An example appears in Figure 3.

r r

r r

r

�
�
�
�A

A
A
A

�
�

�
�S

S
S
S

C
C
C
C

rmax

rmin
�

��

�� max

min

x

y T

Figure 3. T can be pruned (deeply) if x ≤ y.

As before, assume x ≤ y. The argument is as described in the introduction:

Given that the minimizer has a guaranteed value of x at the upper minimizing

node, there is no way that a choice allowing the maximizer to reach y can be on

the main line; if it were, then the maximizer could get a value of at least y.

Definition 4.1 (Deep α-β pruning). A game G will be said to allow α-β pruning

for the minimizer if for any x, y, T, z1, . . . , z2i ∈ V with x ≤ y,

x ∧ (z1 ∨ (z2 ∧ · · · ∨ (z2i ∧ (y ∨ T ))) · · ·) = x ∧ (z1 ∨ (z2 ∧ · · · ∨ z2i) · · ·).

The game will be said to allow α-β pruning for the maximizer if

x ∨ (z1 ∧ (z2 ∨ · · · ∧ (z2i ∨ (y ∧ T ))) · · ·) = x ∨ (z1 ∧ (z2 ∨ · · · ∧ z2i) · · ·).

We will say that G allows pruning if it allows α-β pruning for both players.

As before, the prune allows us to remove the dominated node (y in Figure 3)

and all of its siblings.

Note that the fact that a game allows shallow α-β pruning does not mean

that it allows pruning in general, as the following counterexample shows.

This game is rather like the game of the introduction, except only the suit

of the card matters. In addition, the maximizer (but only the maximizer) is

allowed to specify that the card must be one of two suits of his choosing.

The values we will assign the game are built from the primitives, “Win (for

the maximizer) if the card is a club,” “Win if the card is a diamond,” and so

on. The conjunction of two such values is a loss for the maximizer, since the

card cannot be of two suits. The disjunction of two such values is a win for the

maximizer, since he can require that the card be one of the two suits in question.

The lattice of values is thus the one appearing in Figure 4. The maximizing

function ∨ moves up the figure; the minimizing function ∧ moves down.



44 MATTHEW L. GINSBERG AND ALAN JAFFRAY

r

r

r r r r�
�

�
�

��

Q
Q

Q
Q

QQ

�
�
�
�

A
A
A
A�

�
�

�
��

�
�
�
�

Q
Q

Q
Q

QQ

A
A
A
A

0

1

♣ ♦ ♥ ♠

Figure 4. Values in a game where deep pruning fails.

r

r

r

r

r

@
@

@
@

@
@

@
@

@

�
��

�
��

�
��

�
��

0

♣

♦

♥

♣

max

min

max

min

Figure 5. The deep pruning counterexample.

Consider now the game tree shown in Figure 5. If we evaluate it as shown, the

backed up values are (from the lower right) 0, ♥, 0, and ♣, so that the maximizer

wins if and only if the card is a club. But if we use deep α-β pruning to remove

the 0 in the lower right (since its sibling has the same value ♣ as the value in the

upper left), we get values of ♣, 1, ♦ and 1, so that the maximizer wins outright.

The problem is that we can’t “push” the value ♣∧ 0 past the ♥ to get to the

♣ near the root. Somewhat more precisely, the problem is that

♥ ∨ (♣ ∧ 0) 6= (♥ ∧ ♣) ∨ (♥ ∧ 0).

This suggests the following:

Proposition 4.2. For a game G, the following conditions are equivalent:

(i) G allows α-β pruning for the minimizer.

(ii) G allows α-β pruning for the maximizer.

(iii) G allows pruning.

(iv) (V,∧,∨) is a distributive lattice.

Proof. As before, we show only that the first and fourth conditions are equiv-

alent. Since pruning implies shallow pruning (take i = 0 in the definition), it

follows that the first condition implies that (V,∧,∨) is a lattice.

From deep pruning for the minimizer with i = 1, we have that if x ≤ y, then

for any z1, z2, T ,

x ∧ (z1 ∨ (z2 ∧ (y ∨ T ))) = x ∧ (z1 ∨ z2)



ALPHA-BETA PRUNING UNDER PARTIAL ORDERS 45

Now take y = T = x to get

x ∧ (z1 ∨ (z2 ∧ x)) = x ∧ (z1 ∨ z2). (4–1)

It follows that each top level term in the left hand side of (4–1) is greater than

or equal to the right hand side; specifically

z1 ∨ (z2 ∧ x) ≥ x ∧ (z1 ∨ z2). (4–2)

We claim that this implies that the lattice in question is distributive.

To see this, let u, v, w ∈ V . Now take z1 = u ∧ w, z2 = v and x = w in (4–2)

to get

(u ∧ w) ∨ (v ∧ w) ≥ w ∧ ((u ∧ w) ∨ v). (4–3)

But v ∨ (u ∧ w) ≥ w ∧ (v ∨ u) is an instance of (4–2), and combining this with

(4–3) gives us

(u ∧ w) ∨ (v ∧ w) ≥ w ∧ ((u ∧ w) ∨ v)

≥ w ∧ w ∧ (v ∨ u)

= w ∧ (v ∨ u).

This is the hard direction; w ∧ (v ∨ u) ≥ (u ∧ w) ∨ (v ∧ w) for any lattice

because w ∧ (v ∨ u) ≥ u ∧ w and w ∧ (v ∨ u) ≥ v ∧ w individually. Thus

w ∧ (v ∨ u) = (u ∧ w) ∨ (v ∧ w), and deep pruning implies that the lattice is

distributive.

For the converse, if the lattice is distributive and x ≤ y, then

x ∧ (z1 ∨ (z2 ∧ (y ∨ T ))) = (x ∧ z1) ∨ (x ∧ z2 ∧ (y ∨ T ))

= (x ∧ z1) ∨ (x ∧ z2)

= x ∧ (z1 ∨ z2),

where the second equality is a consequence of the fact that x ≤ (y ∨ T ), so that

x = x ∧ (y ∨ T ). This validates pruning for i = 1; deeper cases are similar. �

5. Bridge

To test our ideas in practice, we built a card-playing program for the game of

contract bridge. Previous authors [Ginsberg 1996a; Ginsberg 1996b; Ginsberg

1999; Levy 1989] have too often considered only the perfect-information variant

of this game; the problems with this approach have been pointed out by others

[Frank and Basin 1998]. The proposed solution to this problem has been to

search in the space of possible plans for playing a given deal or position, but the

complexity of finding an optimal plan is NP-complete in the size (not depth) of

the game tree, which is prohibitive. As a result, Frank et.al. report that it takes

an average of 571 seconds to run an approximate search algorithm on problems

of size 13 (running on a 300 MHz UltraSparc II) [Frank et al. 1998].



46 MATTHEW L. GINSBERG AND ALAN JAFFRAY

We built a search engine that is capable of solving problems such as these

exactly. The value assigned to a fringe node is not simply the number of tricks

that can be taken by one side or the other on a particular bridge hand, but

a combination of the number of tricks and information that has been acquired

about the hidden hands (e.g., West has the ♥7 but not the ♠Q, and I can take

seven tricks).

The defenders are assumed to be minimizing and to be playing with perfect

information, so that their combination function is simple logical disjunction. As

an example, if the nondefending side can take four tricks (and hence one, two

or three as well) in one case, and only three tricks in another, the greatest lower

bound of the two values is that the nondefending side can take three tricks – the

disjunction.

The declaring side is assumed to be maximizing and is playing with incom-

plete information, so that they cannot simply take the best of two potentially

competing outcomes. Instead, the maximizer works with values of the form

choose(v1, . . . , vn) where the vi are the values assigned to the lines from which

a choice must be made.

When these two operators are used to construct a (distributive) lattice in the

obvious way, the ideas we have discussed can be applied to solve bridge problems

under the standard assumption [Frank and Basin 1998] that the maximizer is

playing with incomplete information while the minimizer is playing perfectly.

The performance of the resulting algorithm is vastly improved over that reported

by Frank. Endings with up to 32 cards are solved routinely in a matter of a few

seconds (Frank et.al. could only deal with 13 cards), and endings with 13 cards

are solved essentially instantly on a 500-MHz Pentium III. In addition, the results

computed are exact as opposed to approximate.

6. Related Work

There appear to be two authors who have discussed issues related to those

presented here.

Dasgupta et. al. examines games where values are taken from Rn instead of

simply R [Dasgupta et al. 1996]. Since any distributive lattice can be embedded

in Rn for some n, it follows from Dasgupta’s results that if the values are taken

from a distributive lattice, then α-β pruning can be applied. The converse, along

with our results regarding nondistributive lattices, are not covered by this earlier

work.

Müller considers games with values taken from arbitrary partially ordered

sets, evaluating such games by taking a threshold value and then converting the

original game to a 0-1 game by calling a position a win if its value exceeds the

threshold and a loss otherwise [Müller 2000].

The problem with this approach is that you need some way to produce the

threshold value; Müller suggests mapping the partial order in question into a



ALPHA-BETA PRUNING UNDER PARTIAL ORDERS 47

discrete total order (the integers), and then using the values in that total order

to produce thresholds for the original game.

While this appears to work in some instances (Müller examines capturing

races in Go), it is unlikely to work in others. In bridge, for example, the natural

mapping is from a context in which a hand can be made to the (discretized)

probability that the context actually occurs. Unfortunately, it is possible to

have three contexts c1, c2 and c3 where the probability of c1 or c2 in isolation is

less than the probability of c3, but the probability of c1 and c2 together is greater

than the probability of c3. This suggests that there is no suitable linearization

of the partial order discussed in the previous section, so that Müller’s ideas will

be difficult to apply.

7. Conclusion

If adversary search is to be effective in a setting where positional values have

more structure than simple real numbers, we need to understand conditions

under which proven AI algorithms can still be applied. For α-β pruning, this

paper has characterized those conditions exactly: Shallow pruning remains valid

if and only if the values are taken from a lattice, while deep pruning is valid if

and only if the lattice in question is distributive. We also showed the somewhat

surprising result that pruning is valid for one player if and only if it is valid for

both.

We used the theoretical work described here to implement a new form of

cardplay engine for the game of contract bridge. This implementation uses the

standard bridge assumption that the defenders will play perfectly while the de-

clarer may not, and avoids the Monte Carlo techniques used by previous authors.

Compared to previous programs with this goal, we are able to compute exact

results in a small fraction of the time previously needed to compute approximate

ones.

References

[Dasgupta et al. 1996] Pallab Dasgupta, P. P. Chakrabarti, and S. C. DeSarkar.
Searching game trees under a partial order. Artificial Intelligence, 82:237–257, 1996.

[Frank and Basin 1998] Ian Frank and David Basin. Search in games with incomplete
information: A case study using bridge card play. Artificial Intelligence, 100:87–123,
1998.

[Frank et al. 1998] Ian Frank, David Basin, and Hitoshi Matsubara. Finding optimal
strategies for imperfect information games. In Proceedings of the Fifteenth National

Conference on Artificial Intelligence, pages 500–507, 1998.

[Ginsberg 1996a] Matthew L. Ginsberg. How computers will play bridge. The Bridge

World, 1996.

[Ginsberg 1996b] Matthew L. Ginsberg. Partition search. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence, 1996.



48 MATTHEW L. GINSBERG AND ALAN JAFFRAY

[Ginsberg 1999] Matthew L. Ginsberg. GIB: Steps toward an expert-level bridge-
playing program. In Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence, 1999.

[Grätzer 1978] George Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 1978.

[Levy 1989] David N. L. Levy. The million pound bridge program. In D. N. L. Levy
and D. F. Beal, editors, Heuristic Programming in Artificial Intelligence, Asilomar,
CA, 1989. Ellis Horwood.

[Müller 2000] M. Müller. Partial order bounding: A new approach to evaluation in game
tree search. Technical Report TR-00-10, Electrotechnical Laboratory, Tsukuba,
Japan, 2000. Available from http://web.cs.ualberta.ca/˜mmueller/publications.html.

Matthew L. Ginsberg

CIRL

1269 University of Oregon

Eugene, OR 97403-1269

United States

ginsberg@cirl.uoregon.edu

Alan Jaffray

jaffray@pobox.com


