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Transfinite Chomp

SCOTT HUDDLESTON AND JERRY SHURMAN

Abstract. Chomp is a Nim-like combinatorial game played in
�

d or some

finite subset. This paper generalizes Chomp to transfinite ordinal space

Ωd. Transfinite Chomp exhibits regularities and closure properties not

present in the smaller game. A fundamental property of transfinite Chomp

is the existence of certain initial winning positions, including rectangular

positions 2×ω, 3×ω
ω , 2×2×ω

3, and 2×2×ω×ω. Many open questions

remain for both transfinite and finite Chomp.

Introduction and Notation

In the game of Chomp, cookies are laid out at the lattice points Nd where

N denotes the natural numbers and play is in d ∈ Z+ dimensions. The cookie

at the origin is poisonous. Two players alternate biting into the configuration,

each bite eating the cookies in an infinite box from some lattice point outward in

all directions, until one player loses by eating the poison cookie. The game can

start from a position with finitely many bites already taken from Nd rather than

from all of Nd. Chomp was invented by David Gale in [Ga74] and christened by

Martin Gardner. When Chomp begins from a finite rectangle it is isomophic to

an earlier game, Divisors, due to Schuh [Sch52]. See also [BCG82b], pp.598–606.

This paper considers Chomp on Ωd where Ω denotes the ordinals, a subject

the first author began studying in the early 1990s. This transfinite version of

Chomp has been mentioned in Mathematical Intelligencer columns [Ga93; Ga96];

these are anthologized in [Ga98].

Identifying each ordinal a with the set Ωa = {x ∈ Ω : x < a}, the sets

a, a = {x ∈ Ω : x ≥ a} for a ∈ Ω,

a × b, (a, b) = a × b for (a, b) ∈ Ω2

are the boxes at the origin and the Chomp bites in one and two dimensions.

Similarly in d dimensions, the Chomp boxes and bites are the corresponding
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v1 × · · · × vd and v = v1 × · · · × vd for v ∈ Ωd. Every Chomp position X is a

finite union of boxes, and conversely. As we will see, every Chomp game must

terminate after finitely many bites.

Working in the ordinals gives a more satisfyingly complete picture of Chomp.

For example, a position of two equal-height columns, X = 2×h, is an N-position

(next player wins) for all h ∈ Z+, but it is a P-position (previous player wins) for

h = ω, and then it is an N-position again for all h > ω. For three equal-height

columns, 3 × h is a P-position if and only if h = ωω. Another result is that the

six-dimensional position ω×ω ×ω× 2× 2× 2—i.e., the cartesian product of N3

with a 2 × 2 × 2 cube—is a P-position.

The join operator on Chomp positions is denoted “+,” the difference operator

“−,” and “⊂” denotes proper subposition. Every Chomp bite is a difference

operation

X 7→ X − v for some v ∈ Ωd,

valid only for positions X such that X − v ⊂ X . Since parts of the analysis use

the last direction for special purposes, vectors v ∈ Ωk are often written v = (u, k)

with u ∈ Ωd−1 and k ∈ Ω.

The minimal excluded element operator is denoted mex. Thus for any proper

subset S ⊂ Ω,

mex(S) = a, where a /∈ S and x ∈ S for all x < a.

1. The Ordinals, Very Briefly

This section gives the bare basics on ordinals needed to read the paper.

The ordinal numbers Ω with ordinal addition ] and ordinal multiplication ?

extend the natural numbers (N, +, ·) to the infinite. The operations are associa-

tive and satisfy the distributive property, but they are not commutative. Every

ordinal x has an ordinal successor x ] 1 and the supremum of every set of or-

dinals is an ordinal. The finite ordinals are just N. The first infinite ordinal is

ω = sup(N). Infinite ordinals include ω, ω ] 1, ω ] 2, . . . , ω ? 2, ω ? 2 ] 1, . . . ,

ω ? 3, . . . , ω2, ω2 ] 1, . . . , ω2 ? 2, . . . , ω2 ? 3 ] ω ? 5 ] 19, . . . , ω3, . . . , ω4, . . . ,

ωω, . . .

The ordinals are totally ordered and they are well founded, meaning every

nonempty subset contains a minimal element and so the mex operator makes

sense.

Every nonzero ordinal x can be written uniquely as

x = ĉ ] ωe0 ? c0

with e0 an ordinal, 0 < c0 < ω, and ĉ an ordinal multiple (possibly 0) of ωe0]1.

Recursively expanding ĉ as long as it is nonzero gives a unique expression

x = ωek ? ck ] ωek−1 ? ck−1 ] · · · ] ωe1 ? c1 ] ωe0 ? c0
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for some finite k, with ek > ek−1 > · · · > e1 > e0 a descending chain of ordinals,

and 0 < ci < w for i ∈ {0, . . . , k}. This form for an ordinal number is its base ω

expansion, also known as its Cantor normal form.

Instead of ordinal addition and multiplication, we nearly always use commu-

tative operators called natural addition and multiplication, denoted by ordinary

“+” and “·”. Natural addition of two ordinals written in base ω simply adds coef-

ficients of equal powers of ω, where missing terms are taken to have coefficient 0.

Ordinal addition satisfies

ωe ] y =

{
ωe + y if y < ωe+1

y if y ≥ ωe+1.

This property and associativity completely define ordinal addition. Though we

seldom use ordinal addition, explicitly noting when we do so, we do make a point

of arranging natural operations to agree with the ordinal operations, e.g., writing

ω + 1 (which equals ω ] 1) rather than 1 + ω (which does not equal 1 ] ω = ω),

and writing ω · 2 (which equals ω ? 2) rather than 2 · ω (which does not equal

2 ? ω = ω).

2. Size

Every Chomp position X has an ordinal size, denoted size(X).

To compute size, start by expressing X as a finite overlapping sum of boxes

at the origin. Each side of each box is uniquely expressible as a finite sum of

powers of ω (including 1 = ω0), e.g., ω · 2 + 3 = ω + ω + 1 + 1 + 1. (Here

and elsewhere we use so-called “natural addition” or “polynomial addition” of

ordinals, as compared to concatenating order types, or “ordinal addition.”) This

decomposition of the sides induces a unique decomposition of each box as a finite

disjoint sum of translated boxes all of whose sides are powers of ω. Construct

the finite set S of translated boxes that decompose the boxes of X , and then

remove any box contained in some other box of S, creating a new set S ′. Then

size(X) is just the sum of the sizes of the elements of S ′, with the size of each

box being the product of the lengths of its sides.

For example, when X is finite, size(X) is just the number of points in X . In

this case, S consists of distinct unit boxes, eliminating repeats since it is a set

rather than a multiset. And S ′ is simply S again since there are no inclusions of

distinct unit boxes.

As another example, consider the position X = (ω + 1) × 2 + (ω · 2) × 1.

Decomposing the summands yields (using “@” to specify translation)

S(ω+1)×2 = {(ω × 1)@(0, 0), (ω × 1)@(0, 1), (1× 1)@(ω, 0), (1 × 1)@(ω, 1)},

S(w·2)×1 = {(ω × 1)@(0, 0), (ω × 1)@(ω, 0)},
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and

S′ = S(ω+1)×2 ∪ S(w·2)×1 − {(1 × 1)@(ω, 0)},

because the subtrahend is a subset of (ω×1)@(ω, 0) in S(w·2)×1. Thus size(X) =

size(S′) = ω · 3 + 1. (See Figure 1, where the including box is shaded.)

Figure 1. A Chomp position of size ω · 3 + 1.

As a third example, let X = 1×ω×ω2+ω×ω2×1+ω2×1×ω. (See Figure 2.)

Then size(X) = ω3 · 3. Here S′ contains just three terms, the summands of X .

Figure 2. A Chomp position of size ω3
· 3.

This example illustrates the difficulty of trying to compute size from a fully

disjoint decomposition: there are finite fully disjoint decompositions of X , but

they all have component sums exceeding size(X); and there are fully disjoint

decompositions whose component sums come to size(X), but they are all infinite.

In our construction, the finite decomposition used to compute size(X) is semi-

disjoint, meaning whenever two elements of S ′ have nonempty intersection, then

the size of the intersection is at least a factor of ω less than the size of either

intersectand.

If Y is reachable from X by one bite, then size(Y ) < size(X). To see this,

note that S′
Y changes one or more components in S ′

X , either removing them or
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replacing them by components with smaller total sum. It follows that Chomp

terminates in finitely many moves.

3. Grundy Values

The Grundy value function on Chomp positions,

G : {Chomp positions in Ωd} −→ Ω,

is

G(X) = mex{G(Y ) : Y can be reached from X in one bite}.

In particular, the poison cookie has Grundy value 1, and a column of single

cookies has Grundy value equal to its height. Only the empty position has

Grundy value 0 since it is reachable from any other position.

A Chomp position X is a P-position if and only if G(X) = 1. The case X = ?
is clear. As for nonempty X , observe that if G(X) = 1 then every nonempty

Y left by a bite into X satisfies G(Y ) > 1, so some second bite into Y gives a

nonempty position X ′ with G(X ′) = 1 again. (In general, any Grundy value-

increasing Chomp bite is reversible in this fashion—a fact we will exploit several

times.) So if G(X) = 1, the previous player wins by reversing bites until the

next player is left with the poison cookie; and if G(X) > 1, the next player wins

by biting X down to Y with G(Y ) = 1.

A simple upper bound on Grundy values is clear: since Chomp bites decrease

position size, it follows by induction that G(X) ≤ size(X) for all positions X .

Though it only seems to matter whether or not Grundy values are 1, knowing

them in general will let us construct P-positions and execute winning strategies.

4. Other Termination Criteria

The astute reader may reasonably object that P-positions should have Grundy

value 0.

In fact, Chomp can be defined with different termination conditions, leading

to definitions of Grundy value different from the unrestricted definition used so

far here. (We will use a certain restricted Grundy value later in this paper.)

The poison cookie description of Chomp can be viewed in two ways. First, the

poison cookie specifies 1-restricted Chomp, i.e., the bite (0, . . . , 0) is forbidden

and the last bite wins. The restricted Grundy values for this game are smaller

by 1 than unrestricted Grundy values in the finite case (so now a P-position is

specified by Grundy value 0 as it should be), but they catch up at G = ω and

are equal from then on. In a larger theory of Grundy values, the poison cookie

bite has the special value “loony” as defined in [BCG82a], Chapter 12.

Second, the poison cookie describes unrestricted misere Chomp, i.e., all bites

are allowed but the last bite loses. In this context, an unrestricted Grundy value
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of 1 is the natural P-position criterion. Unrestricted Chomp Chomp is “tame”

in the sense of [BCG82a], Chapter 13, so its misere analysis is tractable.

One can restrict Chomp more generally, disallowing a set of moves, and one

can play a misere version of restricted Chomp. Even 1-restricted Chomp is not

tame, however (e.g., the 1-restricted misere position (3 × 1) + (1 × 3), like the

misere Nim sum 2 + 2, does not reduce to a Nim heap), and its misere analysis

already requires general misere game theory.

For an isolated game, 1-restricted Chomp and unrestricted misere Chomp

are the same. But a sum of Chomp positions played unrestricted misere is not

equivalent to the same sum played 1-restricted: in the misere sum, only the last

poison cookie is fatal. The 1-restricted sum is a P-position if and only if the 1-

restricted Grundy values of the components have Nim sum 0. The unrestricted

misere sum is equivalent to misere Nim, where the sum is a P-position if and

only if the Nim sum of the unrestricted Grundy values equals

{
1 if every component has Grundy value 0 or 1,

0 if any component has Grundy value 2 or more.

5. The Fundamental Theorem

The fundamental theorem of Chomp requires a construction. Let d > 1 be

a finite ordinal, let A be a d-dimensional Chomp position, and let B (standing

for “base”) be a nonnull (d − 1)-dimensional Chomp position. For any ordinal

h, let E(A, B, h) denote the d-dimensional Chomp position consisting of A and

an infinite column over B in the last direction, the whole thing then truncated

in the last direction at height h. That is,

E(A, B, h) = A + (B × Ω) − (0, . . . , 0, h).

Call this the extension of A by B to height h. (See Figure 3 for two examples

with the same A and B; in the second example the truncation eats into A.)

Theorem 5.1 (Fundamental Theorem of Chomp). Suppose d, A, and B are

given, where d > 1 is a finite ordinal, A is a d-dimensional Chomp position,

and B is a nonnull (d− 1)-dimensional Chomp position. Then there is a unique

ordinal h such that E(A, B, h), the extension of A by B to height h, is a P-

position, meaning the second player wins.

Once one realizes this, the proof is almost self-evident: extend A by B to

the first—and only—height that doesn’t give an N-position. Here is the formal

argument:

Uniqueness is easy, granting existence. Let h be the least ordinal such that

E(A, B, h) is a P-position, and consider any greater ordinal, k > h. Since

E(A, B, k) reaches E(A, B, h) in one bite, it is an N-position.
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A

B

h

A

B

h

Figure 3. Extensions of A by B to height h.

In showing that h exists we further show how (in principle) to find it. We will

construct a height function H on suitable pairs A, B of Chomp positions, such

that

H(A, B) = h if E(A, B, h) is a P-position.

The construction is by an outer induction on B and an inner induction on A.

The outer basis case is the poison cookie B = 1d−1 ⊂ Ωd−1, denoted B0.

The inner basis case is A = ?. The extension of ? by B0 to height 1,

E(?, B0, 1), gives the d-dimensional poison cookie, a P-position. Thus we have

H(?, B0) = 1.

For the inner induction step, take nonnull A and assume that for each A′ ⊂

A, some extension E(A′, B0, H(A′, B0)) is a P-position. Let h be the minimal

nonzero excluded member from the set of such prior P-position heights H(A′, B)

as A′ ranges over the positions reachable from A by one bite, said bite not eating

into the column over B0. Thus h = mex(M0) where

M0 = {0}∪
{
h : h = H(A−v, B0), A−v ⊂ A, v = (u, k), B0−u = B0, h > k

}
.

Then E(A, B0, h) is a P-position. For if it were an N-position, then some bite

would take it to a P-position, E(A, B0, h) − v for v = (u, k) with k < h. There

are two cases:

(i) If B0 − u = B0 then the bite eats into E(A, B0, h) without truncating the

column over B0, leaving E(A− v, B0, h) with the bite v as in the definition of

M0. This is an N-position since h /∈ M0 means h 6= H(A − v, B0).

(ii) If B0 − u = ? then the bite truncates E(A, B0, h) in the last direction,

leaving E(A, B0, k) with k < h; we may assume k > 0 else the game was

just lost. This is an N-position since k = H(A − v′, B0) for some bite v′



190 SCOTT HUDDLESTON AND JERRY SHURMAN

as in the definition of M0, and said bite takes E(A, B0, k) to the P-position

E(A − v′, B0, k).

So H(A, B0) is defined by for all A. Note how the first case relies on h being

excluded from M0, while the second relies on all k < h belonging to M0.

Returning to the outer induction, suppose that for some B, the height function

H(A′, B′) is defined for all pairs A′, B′ satisfying either of (i) ? ⊂ B′ ⊂ B, or

(ii) B′ = B and A′ ⊂ A. To define H(A, B), construct a sequence of sets Mi,

none of whose elements can serve as H(A, B), and show that mex(Mω) does so.

So, starting from an M0 as above,

M0 = {0} ∪
{
h : h = H(A − v, B), A − v ⊂ A, v = (u, k), B − u = B, h > k

}
,

adjoin for each succeeding ordinal i + 1 the heights of certain P-positions,

Mi+1 =

{
h : h = H(A + E(A, B, k) − v, B − u),

v = (u, k), ? ⊂ B − u ⊂ B, k ∈ Mi, h > k

}
,

and let

Mω =
⋃

i<ω

Mi.

Let h = mex(Mω). Then E(A, B, h) is a P-position. For as before, if it were an

N-position, then some bite would leave a P-position, E(A, B, h)−v for v = (u, k)

with k < h. This time there are three cases:

(i) If B−u = B then the bite eats into E(A, B, h) without truncating the column

over B, leaving E(A− v, B, h) with the bite v as in the definition of M0. This

is an N-position as before.

(ii) If ? ⊂ B − u ⊂ B then the bite eats into part of the column over B,

leaving A + E(A, B, k) − v. Since k < h, we have k ∈ Mi for some i. Let

h′ = H(A + E(A, B, k) − v, B − u); either h′ > k, so h′ ∈ Mi+1 and thus

h 6= h′, or h′ ≤ k < h and again h 6= h′; in either case, the bite has left an

N-position.

(iii) If B−u = ? then the bite truncates E(A, B, h) in the last direction, leaving

E(A, B, k) for some k < h; we may assume k > 0 else N has just lost. If

k ∈ M0 then a bite as in the definition of M0 leaves a P-position; if k ∈ Mi+1

for some i then a bite as in the definition of Mi+1 leaves a P-position.

This completes the proof. This outer inductive step actually covers the basis

case as well: when B = B0, the construction of Mω simply gives M0 since all

other Mi are empty.

Corollary 5.2 (Size Lemma). For any nonempty d-dimensional Chomp position

A, let A − (B0 × Ω) denote all of A except its intersection with the tower over

the (d − 1)-dimensional poison cookie B0. Then

H(A, B0) ≤ 1 + size(A − (B0 × Ω)).
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In particular, if A − (B0 × Ω) is finite then so is H(A, B0).

This follows from the proof of the Fundamental Theorem since H(A, B0) is

the minimal excluded element from the set M0, and every element of M0 is less

than size(A − (B0 × Ω)) by induction.

6. Two Constructions

Along with extending Chomp positions to P-positions, The Fundamental The-

orem can be used to find Grundy values and to construct extensions with arbi-

trary Grundy values.

To find the Grundy value of an arbitrary position, let X be d-dimensional and

raise it to height 1 in the (d + 1)st dimension, creating the position A = X × 1;

note that A is essentially the same thing as X , i.e., the bites out of A and X

correspond perfectly and so G(A) = G(X). Apply the Fundamental Theorem to

A and B = B0, the poison cookie in d+1 dimensions; this creates a P-position Y

from the original X by adding an orthogonal column of single cookies of some

height h,

Y = (X × 1) + (1d × h).

(See Figure 4.) In fact, the column has height h = G(X), because in that case

the previous player wins by a pairing strategy: if the next bite is from X × 1

leaving a Grundy value smaller than G(X), bite the orthogonal column down to

the same value; if the next bite is from X×1 and reversible, i.e., it leaves a larger

Grundy value, then bite into what’s left of X × 1 restoring the Grundy value

to G(X); if the next bite is from the orthogonal column, reducing its Grundy

value below G(X), then bite into X × 1 reducing its Grundy value by the same

amount. So we have constructed a column of the desired height G(X). This sort

of pairing strategy will be used frequently throughout the paper.

X

h = GX

Figure 4. Finding a Grundy value.
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To extend a position and get an arbitary Grundy value g, start with X as

before and carry out a similar construction, only the column of single cookies

extends to height g in a prepended zeroth dimension:

A = (1 × X) + (g × 1d).

Again apply the Fundamental Theorem to A and any nonempty 1×B in dimen-

sions 0, . . . , d, extending A in the last direction to get a P-position,

Y = E((1 × X) + (g × 1d), 1 × B, h).

(See Figure 5, where B is taken to be B0, the poison cookie.) Again the win is

by a pairing strategy, showing that the d-dimensional extension of X ,

E(X, B, h),

has the same Grundy value as the orthogonal column, i.e., the desired value g.

h

g

Figure 5. Constructing a position with Grundy value g.

Proposition 6.1 (Beanstalk Lemma). Let A be any finite d-dimensional Chomp

position, and let h be any infinite ordinal. Then the Chomp position

A + (1d−1 × h),

obtained by adding a tower of height h to A, has infinite Grundy value.

To see this, note that for every finite ordinal g, the second construction just

given—adding a tower to A over B0 to obtain a position with Grundy value

g—adds a tower of finite height by the Size Lemma. Adding an infinite tower to

A thus gives an infinite Grundy value.

A more general statement of the Beanstalk Lemma is that for any ordinal h,

G(A + (1d−1 × h)), where A is finite, has the same highest term as h. That is,

if h = ωi · ai + · · · with 0 < ai < ω then also G(A + (1d−1 × h)) = ωi · ai + · · · .

This phenomenon of the dominant term of size determining the dominant term

of Grundy value is called stratification, and it is ubiquitous in transfinite Chomp
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analysis. By contrast, the dominant term of size actually equalling the dominant

term of Grundy value is particular to this case, an artifact of a single column’s

Grundy value being its height.

7. P-Ordered Positions

Define a Chomp position to be P-ordered if its P-subpositions are totally

ordered by inclusion. Every non-P-ordered position contains a minimal non-P-

ordered position (3×1)+(2×2)+(1×3) or (2×1×1)+(1×2×1)+(1×1×2), so every

P-position must be, up to congruence, a subposition of 2×Ω or (1×Ω)+(Ω×1).

Thus the complete list of P-ordered P-positions, up to rotation and inclusion, is

2 × ω, {(1× (i + 1)) + (2 × i) : 0 ≤ i < ω}, {(1× a) + (a × 1) : 0 < a}.

Theorem 7.1. If X is any Chomp position and P is any P-ordered P-position,

then G(X × P ) = G(X). In particular, if X is a P-position, then so is X × P .

To prove this, let g = G(X), construct the product X × P , and prepend to

this main body a column of g single cookies in the zeroth direction, constructing

the position

Y = (1 × X × P ) + (g × 1 × 1).

(These triple products and others to follow refer to Ω× Ωd ×Ωe where X ⊂ Ωd

and P ⊂ Ωe; thus “1” often will mean 1d or 1e.) The idea is to show that Y is

a P-position by exhibiting a winning strategy.

Let Y0 = Y . For i ≥ 0, let Y2i+1 be the result of an arbitrary bite applied

to Y2i and let Y2i+2 be the result of a to-be-specified bite applied to Y2i+1. The

specified bite will maintain two invariants of the even positions Y2i:

(I1) Vertical sections of the main body are P-positions, i.e., for all z ∈ Ω, Y2i ∩

(1 × {z} × P ) either is empty or is a P-position. (Strictly speaking, it needs

to be translated to the origin — we’re being a bit casual to avoid even more

notation.)

(I2) What’s left of the prepended column retains the same Grundy value as what’s

left of X , i.e., G(Y2i ∩ (g × 1 × 1)) = G(Y2i ∩ (1 × X × 1)).

The invariants clearly hold for Y0.

Bites into Y2i fall under three cases:

(i) (0, x, p) with p > 0. This bite preserves invariant (I2). Answer it with

(0, x, p′), where p′ is the bite into P that restores the section Y2i+1 ∩ (1 ×

{x}×P ) to a P-position Y2i+2∩ (1×{x}×P ). The bite (0, x, p) may have left

other sections Y2i+1∩(1×{ξ}×P ) not P-positions for ξ ∈ x; but the answering

bite restores all such sections in Y2i+2 to P-positions, thus restoring invariant

(I1) while preserving (I2). This property depends on P being P-ordered.
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(ii) (0, x, 0) with x 6= 0, i.e., a truncation in the X-direction. This bite preserves

invariant (I1). Let g′ = G(Y2i ∩ (1×X×1)), and g′′ = G(Y2i+1 ∩ (1×X×1));

note g′ 6= g′′. Also note that G(Y2i ∩ (g × 1 × 1)) = g′ by invariant (I2). If

g′′ < g′, answer the bite by truncating the orthogonal column with (g′′, 0, 0),

restoring (I2). If g′′ > g′, answer the bite with (0, x′, 0), reversing the bite

into X to make G(Y2i+2 ∩ (1×X×1) = g′, also restoring (I2). Either of these

answering bites also preserves (I1).

(iii) (h, 0, 0), i.e., a bite into the orthogonal column. This bite preserves (I1).

We had G(Y2i ∩ (1 × X × 1) > h before this bite, so answer it with any bite

(0, x, 0) that makes G(Y2i+2)∩(1×X×1) = h, restoring (I2) while preserving

(I1).

This completes the proof.

Applying the theorem twice, if X is any P-position and P1, P2 are P-ordered

P-positions, then X × P1 × P2 is a P-position. In particular, letting X = P1 =

P2 = ω × 2 and then permuting axes, ω ×ω ×ω × 2× 2× 2 is a P-position. The

winning strategy is

• Answer (r, t, i + 1, s, u, 0) with (r, t, i, s, u, 1) and vice versa.

• Answer (r, i + 1, 0, s, 0, 0) with (r, i, 0, s, 1, 0) and vice versa.

• Answer (i + 1, 0, 0, 0, 0, 0) with (i, 0, 0, 1, 0, 0) and vice versa.

8. Side-Top Positions

Consider two 2-dimensional Chomp positions S and T (for “side” and “top”),

with S finite and T at most two cookies wide. Let S@(2, 0) denote the translation

of S rightward by 2 and let T@(0, ω) denote the translation of T upward by ω.

Construct the Chomp position

U = (2 × ω) + S@(2, 0) + T@(0, ω),

i.e., a 2-wide, ω-high column with finitely much added to its side and any amount

to its top. (See Figure 6.) This section gives the criterion for U to be a P-position.

Doing so requires a certain notion of restricted Grundy value, cf. the section

earlier in this paper of other termination criteria. Let X denote a collection of

Chomp positions. The X -restricted Grundy value function

GX : X −→ Ω

is defined as

GX (X) = mex{GX (Y ) : Y ∈ X , Y can be reached from X in one bite}.

Let S denote S@(2, 0) left-extended two units to the axis, i.e.,

S = (2 × s) + S@(2, 0),
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S

T

Figure 6. A side-top position.

where s is the height of S. Let S denote the set of all side positions S̃ such that

H( S̃, 2) is infinite.

Theorem 8.1 (Side-Top Theorem). Let a side-top position U = (2 × ω) +

S@(2, 0) + T@(0, ω) be given. If H( S, 2) is finite then U is an N-position. If

H( S, 2) is infinite then

U is a P-position ⇐⇒ GS(S) = G(T ).

The first statement is clear, for if H( S, 2) is finite then the bite truncating U

to that height in the second direction wins. For the rest of the proof, H( S, 2)

is infinite.

To show “⇐=” of the second statement, assume GS(S) = G(T ). Take any

bite (a, b), other than the complete bite a = b = 0 of course.

If b is infinite then the bite takes T@(0, ω) down to some T̃@(0, ω) and leaves

the rest of U intact. Let g = G(T̃ ) 6= G(T ). If g > G(T ) then a further bite

into T̃@(0, ω) reverses the first one, while if g < G(T ) = GS(S) then a bite into

S@(2, 0) takes it down to some S̃@(2, 0) with G(S̃) = g and H( S̃, 2) infinite.

Now we consider b finite. If a = 0 then the bite leaves a finite position, thus

leaving a losing position since H( S, 2) is infinite. If a = 1 then the bite leaves

a position with one infinite column plus a finite part. The Beanstalk Lemma

from earlier shows that this has infinite Grundy value, meaning its Grundy value

isn’t 1, so it is a losing position.

Finally, if a ≥ 2 then player N has bitten into S@(2, 0), leaving position

(2 × ω) + S̃@(2, 0) + T@(0, ω) for some finite S̃. Either H( S̃, 2) is finite or it

is infinite. If it is finite then the bite truncating the second direction to that

height leaves a P-position. If it is infinite then S̃ ∈ S. Let g = G(S̃), so that

g 6= GS(S) = G(T ); if g < G(T ) then bite into T@(0, ω), getting T̃@(0, ω) with
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G(T̃ ) = g; if g > GS(S) then bite into S̃@(2, 0) to restore Grundy value GS(S).

This covers all cases.

For “=⇒” of the second statement, let GS(S) 6= G(T ). If GS(S) is larger,

bite into S@(2, 0) to produce a P-position as just shown; if G(T ) is larger, bite

into T@(0, ω) similarly.

9. Two-wide Chomp

A two-wide Chomp position takes the form X = (1×h) + (2× k) with h ≥ k.

Thus

h = ωi · u + a, k = ωi · v + b,

where u > 0, u ≥ v, a ≥ b when u = v, a < ωi, b < ωi, and when i < ω then also

u < ωi. This section gives the Grundy values G(X), renotated for convenience

G(ωi · u + a, ωi · v + b).

When i = 0, the position is just two columns of finite heights u ≥ v. Com-

puting from first principles gives the following Grundy values shown in Table 1.

Reading down the diagonals shows what’s going on. For u− v even, the Grundy

G(u, v) v = 0 1 2 3 4 5 6 · · ·

u = 0 0

1 1 2

2 2 1 3

3 3 4 1 5

4 4 3 5 1 6

5 5 6 4 7 1 8

6 6 5 7 4 8 1 9

7 7 8 6 9 4 10 1 · · ·

8 8 7 9 6 10 4 11 · · ·

9 9 10 8 11 7 12 4 · · ·

10 10 9 11 8 12 7 13 · · ·

11 11 12 10 13 9 14 7 · · ·

Table 1. Two-wide Grundy values

values skip every third value; for u− v odd, they iterate at every second step for

a while and then stabilize. The formula is

(9–1) G(u, v) =

{
u − v + b 3v+1

2 c if u − v is even,

min{u− v + b v
2c,

3(u−v)−1
2 } if u − v is odd.

The next case is i = 1, i.e., the column heights are ω · u + a, ω · v + b, with all

of u, v, a, b finite and u > 0, u ≥ v, a ≥ b when u = v.
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Consider the subcase u = v, a = b = 0. Biting only into the right column

gives a Chomp position whose left column has greater order of magnitiude than

its right; by an extension of the Beanstalk Lemma such a position has infinite

Grundy value. On the other hand, biting into both columns and thus truncating

the position at a lower height gives (by induction) a finite Grundy value. Thus,

G(ωi · u, ωi · u) is the mex of the set of Grundy values of smaller positions with

two columns of equal height h. These run through

N \ {3k + 1} as 0 ≤ h < ω,

{3k + 1} \ {9k + 4} as ω ≤ h < ω · 2,

{9k + 4} \ {27k + 13} as ω · 2 ≤ h < ω · 3,

...
{

3u−1k +
3u−1 − 1

2

}
\

{
3uk +

3u − 1

2

}
as ω · (u − 1) ≤ h < ω · u.

And thus G(ω, ω) = 1, G(ω · 2, ω · 2) = 4, G(ω · 3, ω · 3) = 13, and in general

G(ω ·u, ω ·u) = (3u−1)/2. Each time the column heights reach a new multiple of

ω, the Grundy values have filled up the naturals minus an arithmetic progression,

with the complementary progression—an iterate of the initial {3k+1}—becoming

sparser each time.

Continuing to assume i = 1 and u = v but now allowing a and b nonzero gives

the position X = (2 × ωi · u) + ((1 × a) + (2 × b))@(0, ωi · u). By the Beanstalk

Lemma, the only new bites giving positions of small enough Grundy value to

worry about are the bites into the finite top part. These bites give Grundy values

from the beginning of the omitted arithmetic progression {3uk + (3u − 1)/2},

thus

(9–2) G(ω · u + a, ω · u + b) = 3uG(a, b) +
3u − 1

2
.

We already know the right side here, thanks to (1).

Still keeping i = 1 but now taking u > v, the formula is

(9–3) G(ω · u + a, ω · v + b) = ω · (u − v) + (a ⊕ b) when u > v,

where “⊕” denotes Nim sum. This is easy to see when b = 0 and the position

is X = (2 × ω · v) + (1 × ω · (u − v) + a)@(0, ω · v): bites leaving two equal

height columns give all finite Grundy values except an arithmetic progression;

bites into the top part give ω · (u − v) + a more Grundy values, filling in the

missing progression and then all other values less than ω · (u− v) + a; and bites

into the right column give larger Grundy values.

To prove (3) when b > 0, first note the recursive formula

G(ω · u + a, ω · v + b) = G(ω · (u − v) + a, b),
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which follows from observing that taking base B = 2 × ω · v and top T =

(1×ω ·(u−v)+a)+(1×b)@(1, 0), the orthogonal sum of positions B+T@(0, ω ·v)

and T (cf. various prior constructions) is a P-position. The pairing strategy is

clear: match bites into either top part, and if B + T@(0, ω · v) is bitten down to

two columns of equal height less than ω · v, giving a position of finite Grundy

value, the Beanstalk Lemma says that a matching bite into T gives the same

Grundy value.

With the recursive formula established it suffices to prove (3) when the posi-

tion is T . To do so, take the orthogonal sum of T with a single column of height

ω · (u − v) + (a ⊕ b). This time the pairing strategy to win is: the Nim sum

allows matching bites into the finite parts; the simple upper bound G ≤ size

from Section 2 shows that other bites into T leave positions of Grundy value less

than ω · (u − v), matched by bites into the column; and the Beanstalk Lemma

shows that G(T ) ≥ ω · (u − v), so bites deeper than a ⊕ b into the column can

be matched by bites into T .

The analysis for 2 < i < ω is similar to i = 1. When u = v the formula is

(9–4) G(ωi · u + a, ωi · u + b) = ωi−1 · u + G(a, b).

This is easy to establish first when a = b = 0, and then in general. When u > v,

the formula is

(9–5) G(ωi · u + a, ωi · v + b) = ωi · (u − v) + (a ⊕ b).

Again this follows from the recursive formula

G(ωi · u + a, ωi · v + b) = G(ωi · (u − v) + a, b),

which is established as above.

Finally, for i ≥ ω, the formula is

(9–6) G((ωω)j · u + a, (ωω)j · v + b) = (ωω)j · G(u, v) +

{
G(a, b) if u = v,

a ⊕ b if u > v.

Here j > 0, 0 < u < ωω, u ≥ v, a < (ωω)j , b < (ωω)j .

To see this, first let j = 1 and a = b = 0. Build up the formulas G(ωω, ωω) =

ωω · 2 = ωω · G(1, 1), G(ωω · 2, ωω) = ωω · 1 = ωω · G(2, 1), G(ωω · 2, ωω · 2) =

ωω · 3 = ωω · G(2, 2), . . . , and in general,

G(ωω · u, ωω · v) = ωω · G(u, v) for finite u ≥ v

by considering the bites into these configurations.

Similarly, G(ωω ·ω, ωω ·ω) = ωω: bites truncating both columns give positions

with Grundy values ωω · (N \ {3k + 1}), and bites truncating the second column

give positions with Grundy value on the order of ωω · ω. This continues on to

G(ωω · ω · 2, ωω · ω · 2) = ωω · 4, G(ωω · ω · 3, ωω · ω · 3) = ωω · 13, . . . , until the

gaps in N are filled in and G(ωω · ω2, ωω · ω2) = ωω · ω.
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Essentially the same argument now gives G(ωω ·ω3, ωω ·ω3) = ωω ·ω2, G(ωω ·

ω4, ωω · ω4) = ωω · ω3, . . . , until catching up at G((ωω)2, (ωω)2) = (ωω)2. From

here the whole argument repeats to establish the formula for j = 2, a = b = 0,

and similarly for all ordinals j.

The term in (9–6) when (a, b) 6= (0, 0) is argued exactly as in earlier cases.

Formulas (9–1)–(9–6) cover all cases.

10. Three-Wide Chomp

Let A be a three-wide Chomp position,

A = (1 × u) + (2 × v) + (3 × x), u ≥ v ≥ x.

This section gives the conditions for A to be a P-position.

First we dispense with some small positions and some large ones: when the

right column has finite height, i.e., x < ω, the Beanstalk Lemma reduces the case

v < ω to finite calculation, and the Side-Top Theorem covers the case v ≥ ω.

On the other hand, the discussion below will show that the tall box A = 3× ωω

is a P-position, so any superposition of this box, i.e., any other position with

x ≥ ωω, is an N-position.

This leaves the case ω ≤ x < ωω, where the analysis is detailed. The first

step is to decompose A into components, two bottoms (denoted with a subscript

“b”) and three tops (subscript “t”). For some unique i with 1 ≤ i < ω, we have

ωi ≤ x < ωi+1, so write

u = ωi+1 · ui+1+ωi · ui + a (ui < ω, a < ωi),

v = ωi+1 · vi+1+ωi · vi + b (vi < ω, b < ωi),

x = ωi · xi + c (0 < xi < ω, c < ωi).

The precise decomposition of A depends on the nature of u, v, and x. Specifically,

(i) If ui+1 = vi+1 = 0 and ui = vi = xi then let

Ub = 2× ωi · ui, Xb = (1 × ωi · xi)@(2, 0),

Ut = ((1 × a) + (2 × b) + (3 × c))@(0, ωi · ui), Vt = ?, Xt = ?.

(ii) If vi+1 = 0 and vi = xi and either ui+1 > 0 or ui > vi then let

Ub = (1 × (ωi+1 · ui+1 + ωi · ui)) + (2 × ωi · vi),

Xb = (1 × ωi · xi)@(2, 0), Ut = (1 × a)@(0, ωi+1 · ui+1 + ωi · ui),

Vt = ((1 × b) + (2 × c))@(1, ωi · vi), Xt = ?.
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(iii) If ui+1 = vi+1 > 0 and ui = vi then let

Ub = 2 × ωi+1 · ui+1, Xb = (1 × ωi · xi)@(2, 0),

Ut = ((1 × (ωi · ui + a)) + (2 × (ωi · vi + b)))@(0, ωi+1 · ui+1),

Vt = ?, Xt = (1 × c)@(2, ωi · xi).

(iv) Otherwise let

Ub = (1 × (ωi+1 · ui+1 + ωi · ui)) + (2 × (ωi+1 · vi+1 + ωi · vi)),

Xb = (1 × ωi · xi)@(2, 0), Ut = (1 × a)@(0, ωi+1 · ui+1 + ωi · ui),

Vt = (1 × b)@(1, ωi+1 · vi+1 + ωi · vi), Xt = (1 × c)@(2, ωi · xi).

(See Figures 7a and 7b. Note that 7b only illustrates one instance of the fourth,

general case.)

Ub Xb

Ut

Ub Xb

Ut

Vt

Figure 7a. Three-wide positions: first and second cases.

The criterion to be established is that in these cases the three-wide Chomp

position A is a P-position if and only if

(10–1) G(Ub) = G(Xb) and G(Ut) ⊕ G(Vt) ⊕ G(Xt) = 0.

This reduces the three-wide question to questions about one-wide and two-wide

subpositions: even in the case with a three-wide top subposition, the bottom

subpositions already fail the test.

To show the criterion it suffices to show that if A is a position that satisfies (7)

then every bite into A gives a position that doesn’t; and if A is a position not

satisfying (7) then some bite into A gives a position that does.

So assume first that A satisfies (7). Bite into A, obtaining a new position with

components U ′
b, X ′

b, etc. If the bite doesn’t touch any bottom component then it

changes exactly one top component, violating G(U ′
t)⊕G(V ′

t )⊕G(X ′
t) = 0 in (7).
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Ub

Xb

Ut

Xt

Ub

Xb

Ut

Vt

Xt

Figure 7b. Three-wide positions: third and fourth cases.

If the bite reduces Ub to U ′
b but doesn’t touch Xb then G(U ′

b) 6= G(Ub) = G(Xb) =

G(X ′
b), again violating (7). If the bite reduces Xb to X ′

b but doesn’t touch Ub

then possibly U ′
b ⊃ Ub and G(U ′

b) > G(Ub) in the new decomposition, but in any

case G(U ′
b) ≥ G(Ub) = G(Xb) > G(X ′

b). Finally, if the bite touches both bottom

components then it is either (1, z) for some z, in which case G(U ′
b) > G(Ub) by

two-wide results and G(Xb) > G(X ′
b); or the bite is (0, z) for some z, in which

case U ′
b = 2 × h and X ′

b = (1 × h)@(2, 0) for some h, so that G(U ′
b) 6= G(X ′

b).

For the other half of the argument, assume that position A, with components

Ub, Xb, etc., doesn’t satisfy (7). We seek a bite into A, giving a new position

with components U ′
b, X ′

b, etc., that does.

If G(Ub) = G(Xb) then G(Ut)⊕G(Vt)⊕G(Xt) 6= 0 and the disjoint grouping

strategy (cf. the pairing strategy used earlier) provides a bite into exactly one

top component restoring the second condition in (7).

If G(Ub) < G(Xb) then the answering bite to restore (7) is some (2, z) that

touches Xb. All such bites satisfy U ′
b ⊇ Ub (proper containment only when the

decomposition index i is altered by the bite), G(U ′
b) ≥ G(Ub), and G(X ′

b) <

G(Xb). The needed bite has z = ωj · zj + c′ such that ωj · zj = G(U ′
b) and

c′ = G(U ′
t) ⊕ G(V ′

t ).

If G(Ub) > G(Xb), then the answering bite is some (0, z) touching Ub but

not Xb. All such bites give G(U ′
b) < G(Ub) in this decomposition. To make

the top Grundy values sum to zero, use the fact that for any component Ub

arising in our decomposition, any bite (1, y) in Ub increases the Grundy value,

i.e., G(Ub − (1, y)) > G(Ub); it follows by the definition of Grundy value as a

mex that G(Xb) takes the form G(Ub − (0, z′)) for some z′. A larger bite height

z > z′ will leave bottom piece U ′
b = Ub − (0, z′) with the right Grundy value and

also leave a two-wide top piece U ′
t with G(U ′

t) = G(X ′
t).
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To complete the discussion of three-wide Chomp, we show that the tall box

3 × ωω is a P-position by itemizing how every bite leaves an N-position. That

is, every bite into 3 × ωω can be answered with another bite leaving a smaller

P-position described above. Bites take the form (e, z) with 0 ≤ e < 3 and

0 ≤ z < ωω. One can check that the P-positions enumerated don’t include

any position 3 × ωω − (e, z). Responses to the bite are analyzed by the cases

e = 2, 1, 0.

If e = 2, the bite truncates the third column. Let u = H(3 × z, 2). If u < ωω

then by definition the answering bite is (0, u). To show u < ωω we may assume

u ≥ ω, else there is nothing to prove. The argument has two cases, depending

on z.

When z < ω, the position 3 × ωω − (2, z) is a Side-Top position and the

Side-Top Theorem tells us how to proceed: recalling the notion of restricted

Grundy value GS , bite the top part of the position down to 2 × a such that

G(2×a) = GS(1×z) ≤ G(1×z) = z < ω. From the results on two-wide Chomp

we know that G(2×a) < ω if and only if a < ω2; since we are biting into 2×ωω,

there is plenty of room to bite the top part down to 2 × a.

When z ≥ ω, write, using the terminology of the three-wide algorithm, z =

x = ωi · xi + c with 0 < xi < ω and c < ωi. Now the answering bite to (2, x) is

(0, u), where u = ωi+1 · xi + a is found from the algorithm with G(2 × a) = c.

From the two-wide results, a is unique and satisfies a < ωi+1. This completes

the case e = 2.

If e = 1, the bite is (1, z), truncating the last two columns at the same height.

Let u = H(3 × z, 1). Again the answering bite is clearly (0, u) once we know

that u < ωω, and again showing this breaks into two cases depending on z.

When z < ω, the Beanstalk Lemma says that u < ω as well. When z ≥ ω,

write z = x = ωi · xi + c with 0 < xi < ω and c < ωi, and u works out to

u = ωi · 2xi + G(2 × c) — to see this, check that the position 1 × u + 3 × x is

identified by the three-wide algorithm as a P-position. Note G(2 × c) < ωi by

two-wide results. This completes the case e = 1.

If e = 0, the bite is (0, z), leaving a rectangle 3×z with z < ωω. When z < ω,

the rectangle is finite. A result on finite Chomp says that the rectangle must be

an N-position, so some finite bite into it leaves a P-position. The bite takes the

form (1, v) or (2, x) and is believed to be unique.

When ω ≤ z < ω2, write z = ω · (n + 1) + c with 0 ≤ n < ω and c < ω.

Answer the bite (0, z) with (2, x) for the unique x < ω that satisfies GS(x) =

G(2× (ω · n + c)), where again GS is restricted Grundy value as in the Side-Top

Theorem and x is found from that theorem.

When z ≥ ω2, write z = ωi+1 · zi+1 + c with 0 < zi+1 < ω and c < ωi+1.

Answer (0, z) with (2, x) where x = ωi · zi+1 + G(2× c) is found from the three-

wide P-position algorithm; again G(2×c) < wi by two-wide results. In this case,

when zi+1 is even there is sometimes also a winning bite (1, v); finding it is an

exercise for the interested reader. This completes the case e = 0.
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11. A Three-Dimensional Example

This section will present the three-dimensional Chomp P-positions with 2-by-2

base, including 2 × 2 × ω3.

We need a variant of the Side-Top Theorem. Consider a pair of 3-dimensional

Chomp positions F and T (for “front” and “top”), with F a finite subset of

2 × Ω × Ω, and T a subset of 1 × 2 × Ω. Let B = 1 × 2 × ω be the one-deep,

two-wide infinite brick of height ω. Let F@(1, 0, 0) denote the translation of F

one unit forward, meaning perpendicular to the wide dimension of the brick, and

let T@(0, 0, ω) denote the translation of T upward by ω. Construct the Chomp

position

U = B + F@(1, 0, 0) + T@(0, 0, ω),

the brick with finitely much added to its front and any amount to its top. (See

Figure 8.)

Figure 9. A front-top position.

Let F denote F@(1, 0, 0) back-extended one unit to the wall, i.e., F =

F ∩ (1× 2×Ω) + F@(1, 0, 0). Let F denote the set of all front positions F̃ such

that H( F̃ , 1 × 2) is infinite.

Theorem 11.1 (Front-Top Theorem). Let a front-top position

U = B + F@(1, 0, 0) + T@(0, 0, ω)

be given. If H( F, 1 × 2) is finite then U is an N-position. If H( F, 1 × 2) is

infinite then

U is a P-position ⇐⇒ GF(F ) = G(T ).

(Here, as in the Side-Top Theorem earlier, GF denotes restricted Grundy value.)

The proof is virtually identical to the Side-Top case. A more complicated

Base-Top Theorem holds, where finite base material may be added in all direc-

tions around the brick, but this is all we need.
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Defining an ordinal subtraction operation helps with the decompositions to be

used in this section. For ordinals b ≤ z, let b\z be the unique ordinal t such that

b] t = z, where “]” denotes ordinal addition. For instance, ω\(ω · (c+1)+ d) =

ω · c+d while ω\z = z if z ≥ ω2. In Chomp terms, b\z is the amount of a z-high

tower that extends above base height b.

Returning to subpositions of 2×2×Ω, introduce the bird’s-eye view notation

[
vz

uy

]
= (1 × 1 × u) + (1 × 2 × v) + (2 × 1 × y) + (2 × 2 × z)

where u ≥ v ≥ y ≥ z without loss of generality. Thus we are looking at the posi-

tion down the third axis — the origin is at the lower left corner, the first axis goes

right, the second up the page. Since this section involves many decompositions,

extend the bird’s-eye notation also to

[
v

u

]
= 1 × 1 × u + 1 × 2 × v

so that [
vz

uy

]
=

[
v

u

]
+

[
z

y

]
@(1, 0, 0).

The finite P-positions in 2 × 2 × Ω have a nice closed form, unlike the three-

wide case. They are found by repeated application of the Fundamental Theorem,

giving

[
v 0

v + 10

]
for 0 ≤ v < ω,

[
10

11

]
,

[
v 1

v + 21

]
for 1 ≤ v < ω,

[
21

22

]
,

[
v 2

v + 32

]
for 2 ≤ v < ω,

[
32

33

]
,

etc.

We now classify the subpositions of 2×2×Ω into six types and characterize the

P-positions for each type. For the classification, write uniquely u = û+ω ·u1+u0

with û a multiple of ω2 and u1, u0 finite; similarly for v, y, z.

Type A: z < ω, z = y.

Type B: z < ω, z < y.

Type C: ω ≤ z < ω3, ẑ = v̂, y < ωω (the third condition actually follows from

the first two).

Type D: ω ≤ z < ω3, ẑ < v̂, y < ωω.

Type E: ω ≤ z < ω3, y ≥ ωω.

Type F: z ≥ ω3.
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Further, a type C, D, or E position is short if z < ω2 and tall if z ≥ ω2. A type D

position is thick if z\u < ω2 · 2 and thin if z\u ≥ ω2 · 2.

The following properties characterize the P-subpositions of 2 × 2 × Ω.

PA1: A type A position with v < ω is a P-position if and only if u = v+z+1.

PA2: A type A position with v ≥ ω is a P-position if and only if

G(ω\u, ω\v) = z.

(This is the notation introduced earlier for Grundy values of two-wide positions.)

PB1: The P-positions of type B are
[

z+1 z
z+1 z+1

]
for z < ω.

PB2: If z ≥ ω and h is finite then both [ v z
u y ]−(0, 0, h + 1) and [ v z

u y ]−(1, 1, h)

are N-positions.

Properties PA1 and PB1 follow from finite iteration of the Fundamental The-

orem, as already observed. PB2 follows immediately from PB1 by noting that

answering bite (0, 0, h + 1) with bite (1, 1, h) and vice versa leaves a P-position.

PA2 follows from the Front-Top Theorem. The restricted Grundy value

GF (z, z) = z for the front portion (1 × 2 × z)@(1, 0, 0) of a PA2 position is

a consequence of the finite P-positions enumerated by PA1 and PB1.

The following property PA3 combines with PB2 to analyze all bites of finite

height in superpositions of 2×2×ω (types C through F). With the one exception

noted in PA3, all such bites leave N-positions.

PA3: If z ≥ ω and h is finite then [ v z
u y ] − (0, 1, h) and [ v z

u y ] − (1, 0, h) are

N-positions unless [ v z
u y ] is a short type C position with u1 = v1.

To see this, note that PA3 is a statement about bites that leave two columns of

finite height. (In the case of bite (0, 1, h), follow it by a mirror-reflection to restore

our symmetry-breaking assumption v ≥ y before continuing the analysis.) The

P-positions of this form are described by PA2: they satisfy G(ω\u, ω\v) = h < ω.

By two-wide Grundy value results, G2(ω\u, ω\v) < ω if and only if u < ω2 and

u1 = v1. This is precisely the exception in PA3; under any other conditions the

bite leaves an N-position.

We next characterize P-positions of types C and D. The argument here is long

and intricate, so the reader may just want to read through the results PC1 and

PD1 and then skip onward to the discussion of type E.

The characterizations of type C and type D P-positions are proved by trans-

finite induction on Chomp positions, noting that all properties of a position are

proved from properties of strictly smaller positions reached by biting into it.

The induction hypothesis is the conjunction of all propositions PCn and PDn,

including pending auxiliary ones. The basis of the induction is provided by

propositions PAn and PBn.

Every type C position with v ≥ y can be written uniquely as

[
vz

uy

]
= B + T@(0, 0, h),
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where

h =

{
ω if ẑ = 0,

ω2 · k if ẑ = ω2 · k, 0 < k < ω,

B =

[
hh

hh

]
, T ∈

{[
vz

uy

]
: v̂ = 0

}
.

The B and T in this decomposition are called the base and top pieces.

Proposition PC1 now characterizes type C P-positions up to a restricted

Grundy value calculation on the comparatively small top piece. After estab-

lishing PC1 and PD1, we will briefly consider some specifics of the calculation.

PC1: A type C Position as just decomposed is a P-position if and only if

T ∈ T and GT (T ) = 0, where

T =

{[
vz

uy

]
: u1 > max(v1, y1) and û = 0

}
.

Characterizing a type D P-position is accomplished by decomposing it into a

base B, and two-wide front and top F and T . Specifically,

B =

[
ω2ω

ω2ω

]
, F =

[
ω\z

ω\y

]
, T =

[
ω2\v

ω2\u

]
.

Thus [ v z
u y ] = B + F@(1, 0, ω) + T@(0, 0, ω2).

PD1: A type D position as just decomposed is a P-position if and only if

G(F ) = G(T ).

Proving PC1 and PD1 requires several auxiliary propositions.

PC2: A type C position with û = v̂ and u1 = v1 is an N-position.

PC3: In a type C position with either û > v̂ or both û = v̂ and u1 > v1,

every bite that intersects the base B leaves an N-position.

The proofs of PC2 and PC3 are briefly deferred.

PC4: If a short type C position is a P-position, then u < ω2.

For PC4, the Size Lemma gives u ≤ 1 + v + y + z. In a short type C position,

v̂ = ŷ = ẑ = 0 and the result follows.

PD2: If a type D position has û = v̂ = ŷ, then it is an N-position.

To see PD2 note that the givens imply G(T ) < ω2 in the type D decom-

position, while G(F ) ≥ ω2. Thus PD2 follows from the inductive hypothesis

on PD1.

PD3: If a type D position [ v z
u y ] satisfies ẑ < ŷ and v̂ < û then

G(F ) = G(T ) ⇐⇒ G(F̃ ) = G(T̃ ),

where (using row vectors to indicate decomposition in the other direction)

F̃ =
[
ω\vω\z

]
, T̃ =

[
ω2\uω2\y

]
.

That is, for a type D position where neither the shortest nor the tallest column

has the same ω2-coefficient as either intermediate column, the decomposition
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to determine whether it is a P-position can be made in either direction. PD3

follows from 2-wide Grundy value results.

We now prove PC1 from these auxiliary propositions and then resume the

deferred proofs of PC2 and PC3. The PC1 proof uses the decomposition of a

type C position into top and base pieces T and B.

Consider the set of type C positions with base B of a particular height h,

B = 2× 2× h. Let T (h) denote the set of top pieces of such positions for which

every bite intersecting B leaves an N-position. Then it follows easily from the

definition of restricted Grundy value that the P-positions of type C are precisely

those of the form B + T@(0, 0, h), where T ∈ T (h) and GT (h)(T ) = 0.

Now it follows from PC2 and PC3 that

T (h) =

{[
vz

uy

]
: v̂ = 0 and either û > 0 or u1 > max(v1, y1)

}

for all values of h that occur. Thus T (h) is independent of h, and whether a

type C position is a P-position depends solely on its top piece. Notice that T (h)

(for any h) differs from the set T in PC1 only in allowing û > v̂ in the top piece.

This is because the restricted Grundy value calculation does not in itself rule out

the possibility û > v̂ in T (h). But PC4 excludes û > v̂ directly for short type

C P-positions, and T (h) being independent of h excludes û > v̂ for tall type C

P-positions. Thus for each h, T (h) ∩ {[ v z
u y ] : û = 0} = T , completing the proof

of PC1.

To prove PC2, let k = G(h\u, h\v), where h is the height of base B in the

type C decomposition; k is finite by two-wide results since u1 = v1 and h\u < ω2.

We show that PC2 describes an N-position by finding a bite that leaves a P-

position. For a short type C position, the bite (1, 0, k) leaves a P-position of

type A by PA2. For a tall type C position, let h = ω2 · m, h′ = ω2 · (m − 1),

and h′′ = w ] h′, where ] denotes ordinal addition. Then bite (1, 0, h′′ + c)

leaves a P-position of type D by PD1, where c is the unique value satisfying

G(c, c) = k. In the decomposition of this type D P-position, F =
[

h′+c

h′+c

]
,

T =
[

h′+(h\v)

h′+(h\u)

]
=

[
ω2\v

ω2\u

]
, and G(F ) = G(T ) = ω · (m − 1) + k.

To prove PC3, we sketch the cases showing that every bite (i, j, k) intersecting

the base in a type PC3 position leaves an N-position. PB2 and PA3 show this

for all finite k, covering all bites in short type C positions, so consider only

k ≥ ω and tall type C positions; also, k < h since the bite intersects the base.

If (i, j) = (0, 0), we get a type C N-position by PC2. If (i, j) = (1, 1), we get a

type D N-position by PD2.

If (i, j) = (1, 0), we get a type D position with a decomposition such that

G(T ) > G(F ), an N-position by PD1. To see why G(T ) > G(F ) here, note that

for some m < h and f < ω2,

T =

[
ω2 · (h − 1) + (h\v)

ω2 · (h − 1) + (h\u)

]
=

[
ω2\v

ω2\u

]
, F =

[
ω2 · m + f

ω2 · m + f

]
.
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We have G(h\u, h\v) ≥ ω since u1 > v1 or û > v̂, and G(f, f) < ω since f < ω2,

hence G(T ) = ω ·(h−1)+G(h\u, h\v) ≥ ω ·h, and G(F ) = ω ·m+G(f, f) < ω ·h.

Finally, the result for (i, j) = (0, 1) follows symmetrically from (i, j) = (1, 0) by

interchanging v and y.

We now prove PD1, that a type D position is a P-position if and only if

G(F ) = G(T ) in its decomposition. We first show that every type D position

with G(F ) 6= G(T ) can be bitten to a position with G(F ′) = G(T ′), where the

primes mean “after the bite.” If G(F ) > G(T ), find a bite (known to exist by

2-wide Grundy value results) that bites F without touching T , leaving a type

D position with G(F ′) = G(T ) and T ′ = T . If G(T ) > G(F ), find a bite that

bites T without touching F , leaving a type D position with G(T ′) = G(F ) and

F ′ = F . Case analysis (details omitted) confirms this can be done.

To finish PD1 we sketch the cases showing that every bite (i, j, h) from a

type D position with G(F ) = G(T ) leaves an N-position. PB2 and PA3 show

this for all finite h, so take h ≥ ω. If (i, j) = (0, 0), any h leaving a type C position

(reducing two, three, or four columns) leaves an N-position by PC2. Otherwise a

type D position is left (by reducing one, two, or three columns). Reducing three

columns to type D leaves an N-position by PD2. Reducing one or two columns

to type D leaves an N-position by PD1, since G(T ′) 6= G(T ) and G(F ′) = G(F ).

If (i, j) = (1, 1) or (i, j) = (1, 0), we get a type D N-position by PD1 since

G(F ′) 6= G(F ) but G(T ′) = G(T ). This leaves the final case (i, j) = (0, 1). If

ĥ = ẑ = ŷ, we get a type C N-position by PC4. If ẑ < ĥ and h ≥ y, we get

G(T ′) 6= G(T ) but G(F ′) = G(F ), an N-position by PD1. If ẑ < ĥ = v̂ and

h < y, we get G(T ′) = G(T̃ ) but G(F ′) 6= G(F̃ ), an N-position by PD3 and

PD1 (recall that the “˜” notation arises from cleaving in the other direction).

If ẑ < ĥ < v̂ and h < y, we get G(F ′) < G(F ) ] ω2 (since h < y and ĥ ≤ ŷ) and

G(T ′) ≥ G(T )]ω2 (since ŷ < v̂, by PD3), where ] denotes ordinal addition and

F = [ z
y ], T = [ v

u ], F ′ =
[
hz

]
, T ′ =

[
uy

]
. Since G(F ) ] ω2 = G(T ) ] ω2 follows

from G(F ) = G(T ), this gives G(F ′) < G(T ′), an N-position by PD1. Finally,

if ĥ < ẑ or if ĥ = ẑ < ŷ, we get G(T ′) >= ω2 (since ŷ < û) and G(F ′) < ω2, an

N-position by PD1.

We now briefly consider specific examples of type C P-positions, which so

far have only been characterized up to a restricted Grundy value calculation on

positions with 2 × 2 cross section and height less than ω2.

Type C P-positions [ v z
u y ] with z < ω · 2 (i.e., with z1 = 1) are well behaved.

They are just those positions with u1 + z1 = v1 + y1 + 1 whose finite top pieces

have Nim sum 0. Top pieces at the same level (coefficient of ω) must have their

num sum component computed together, so they can be 2-wide Grundy values,

or even a 3-column piece with L-shaped cross section (which is computed by the

suitable restricted Grundy value function).

Type C P-positions with z1 = 2 start to get interesting. For example, P-

positions
[

ω·2+b ω·2+d
ω·3+a ω·2+c

]
are given by precisely those Q = [ b d

a c ] ∈ Q that satisfy
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GQ(Q) = 0, where

Q =

{[
bd

ac

]
: a ⊕ b ≡ a ⊕ c ≡ 1 (mod 3), d ≤ min(b, c)

}
.

This fact combines with 2-wide Grundy results and number theory to show that

given b, c, and d ≤ min(b, c), then there is a P-position

[
ω · 2 + bω · 2 + d

ω · 3 + aω · 2 + c

]
for some a

if and only if b⊕c is not a power of 2. When b⊕c is a power of 2, the Fundamental

Theorem finds a similar P-position but with taller highest column,
[
ω · 2 + bω · 2 + d

ω · 5 + aω · 2 + c

]
for some a.

Type C P-positions with z1 = 2 satisfy the conditions

u1 + z1= v1 + y1 + 1 if v1 or y1 is odd or v1 = y1 = 2,

u1 + z1= v1 + y1 + 3 if v1 and y1 are even.

Type C P-positions with z1 > 2 become increasingly more complex. They

can be found by finite calculation, but we don’t prove this here. The principles

justifying this claim are the subject of ongoing research.

For a type E positions [ v z
u y ], define the base and top to be

B =

[
ωω ω

ωωωω

]
, T =

[
ωω\v 0

ωω\uωω\y

]
,

so that [ v z
u y ] = B + T@(0, 0, ωω) + (1 × 1 × (ω\z))@(1, 1, ω). Then

PE1: A type E position is a P-position if and only if G(T ) = ω\z.

This is a variant of the Front-Top Theorem, with a higher, differently shaped

top and an elevated “front.” The winning strategy is: anwer any bite into the

front or the top with a pairing strategy; the rest of the analysis in this section

shows that any other bite leaves an N-position, so answer the bite appropriately.

Property PE1 isn’t entirely satisfactory. It refers to the Grundy value of the

top, which has an L-shaped cross-section; we haven’t discussed such positions

in general yet, though the section on P-ordered positions gives the special case

result G(
[

a 0
a+b a

]
) = a + b.

Finally, type F is the simplest to characterize.

PF1: A type F position is a P-position if and only if it is 2 × 2 × ω3.

This is shown by answering any bite (i, j, h) into 2× 2×ω3 with another bite

that gives a P-position. By properites PB2 and PA3, we may assume h ≥ ω.

If the bite is (0, 0, h) with ω ≤ h < ω2, then the answering bite is

(1, 0, G(2 × (ω\h))),
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giving a front-top position of type A. If the bite is (0, 0, h) with ω2 ≤ h < ω2 · 2,

then the answering bite is (1, 0, ω + (ω\h)), giving a short thick position of type D

with F = T in the decomposition. If the bite is (0, 0, h) with ω2 ·2 ≤ h, then the

answering bite is (1, 0, ω\h), giving a tall thick position of type D with F = T . If

the bite is (1, 1, h), then the answering bite is (1, 0, ω2 + h), giving a thin position

of type D with T =
[

ω3

ω3

]
, F =

[ a
ω2+a

]
for some a < ω3, and G(T ) = G(F ) = ω2.

If the bite is (1, 0, h), then the answering bite is (0, 0, ω2 + h), giving a thick

position of type D. The final case of bite (0, 1, h) is symmetric.

We conclude the section with some examples of P-positions of the different

types.

Finite type A: [ 1 1
3 1 ], [ 2 2

5 2 ], [ 3 2
6 2 ].

Type B: [ 2 1
2 2 ], [ 3 2

3 3 ].

Front-top type A: [ ω 0
ω 0 ],

[
ω 1

ω+1 1

]
. The latter has top T = [ 0

1 ] and front

F = [ 1
1 ], with G(T ) = GF (F ) = 1.

Short type C: [ ω ω
ω·2 ω ],

[
ω+1 ω

ω·2+1 ω

]
.

Tall type C:
[

ω2 ω2

ω2+ω ω2

]
,
[

ω2+1 ω2

ω2+ω+1 ω2

]
.

Thick type D:
[

ω2 ω
ω2 ω

]
,
[

ω2 ω
ω2+1 ω+1

]
,
[

ω2·2 ω2

ω2·2 ω2

]
with T = F =

[
ω2

ω2

]
.

Thin type D:
[

ω2 ω
ω2·2 ω2

]
,
[

ω2·2 ω2

ω2·3 ω2·2

]
,
[

ω2·2 ω
ω2·2 ω·2

]
with T =

[
ω2

ω2

]
and F = [ 0

ω ],
[

ω3 ω
ω3 ω2

]
with T =

[
ω3

ω3

]
and F =

[
0

ω2

]
,
[

ω3 ω2

ω3 ω2·2

]
with T =

[
ω3

ω3

]
and F =

[
ω2

ω2·2

]
.

Type E:
[

ωω ω
ωω ωω

]
,
[

ωω+ω ω+1
ωω+ω ωω

]
,
[

ωω ω2

ωω+ω2 ωω

]
,
[

ωω+ω3 ω2

ωω+ω3 ωω

]
.

Type F:
[

ω3 ω3

ω3 ω3

]
.

12. Open Questions

In all cases we have examined to date, any two Chomp positions whose sizes

agree past some power of ω (i.e., both sizes are
∑

i≥i0
ωi ·ai plus possibly different

lower order terms) also have Grundy values agreeing past the same power of ω

(i.e., both values are
∑

i≥i0
ωi · bi plus possibly different lower order terms). We

conjecture that this property always holds. Specifically, for any Chomp position

X and ordinal i, define the stratification strat(X, ωi) to be the Chomp position

obtained from X by deleting all rectangles of size less than ωi in the construction

of size(X). For ordinal j, define strat(j, ωi) = strat(1 × j, ωi).

Conjecture 12.1 (Stratification Conjecture). For all Chomp positions X and

Y and ordinals i, if strat(X, wi) = strat(Y, wi) then

strat(G(X), wi) = strat(G(Y ), wi).

We would like to know which sets of Chomp positions have computable subsets

of P-positions.
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A winning strategy for a set of Chomp positions can be viewed as a pair of

functions, one which identifies P-positions and N-positions, and another which

identifies winning moves by mapping each N-position to one or more P-positions

reachable from it in one bite. A complete analysis of a set of P-positions would

give a winning strategy for each subposition of any member of the set. For

instance, the discussion of two-wide Chomp gave a complete analysis of (1× 2×

Ω) + (Ω × 1 × 1). The discussion of P-ordered positions such as ω × ω × 2 × 2

gave a winning strategy, but not a complete analysis.

It is not difficult to show that the set of P-positions contained in any Chomp

position with a finite part and either two one-wide transfinite stalks or one two-

wide transfinite stalk is recursive.

We are confident that the set of P-positions in 3×Ω is recursive (though this

has not been fully proved) and consider it very likely that the set of P-positions

in (1 × 3 × Ω) + (Ω × 1 × 1) is recursive.

However we don’t know the Grundy value G(4 × ω), or even whether it is

computable. Put another way, we don’t know if (1× 4×ω) + (ω2 × 1× 1) has a

recursive set of P-positions. The sets

{(a, b, g) : G((4 × a) + (3 × b) + (2 × ω)) = g},

{(a, b, g) : G((4 × a) + (3 × b)) = g}

are recursive, but the set

L = {g : G((4 × a) + (2 × ω)) = g or G(4 × a) = g for some a < ω}

is recursively enumerable and not known to be recursive. This is of interest

because G(4 × ω) = mex(L). We know L contains all g < 46, we don’t know if

46 ∈ L, but if 46 ∈ L then 46 = G((4×a)+(2×ω)) for some a > 480. If mex(L)

is infinite then we believe G(4 × ω) = ω · 2.

13. Conclusion

Extending Chomp from the naturals to the ordinals gives it a pleasing struc-

ture.

The main tools used here are size, the Fundamental Theorem, pairing strate-

gies, “change of venue” arguments, and stratification. The Fundamental Theo-

rem extends any position in one direction by any nonempty base to produce a

P-position, leading to constructions that find Grundy values and create certain

extensions with any given Grundy value. Pairing orthogonal summands with the

same Grundy value creates a P-position, as does taking the cartesian product of

an arbitrary P-position and any product of P-ordered P-positions. Stratification

estimates a Grundy value by looking at the dominant piece of a position, while

change of venue arguments switch strategies in response to bites that alter a

position’s large structure.
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Results include the Grundy values of all two-wide positions, a list of all three-

wide P-positions, and a list of some three-dimensional P-positions with a 2-by-2

base. In particular, the boxes 2×ω, 3×ωω, 2×2×ω3, and ω×ω×ω×2×2×2

are all P-positions.

We briefly touched on the computability of sets of P-positions, giving one

example at the boundary of our current knowledge, a candidate for a small

uncomputable set.
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