
More Games of No Chance
MSRI Publications
Volume 42, 2002

Global Threats in Combinatorial Games:

A Computation Model with Applications

to Chess Endgames

FABIAN MÄSER

Abstract. The end of play in combinatorial games is determined by the
normal termination rule: A player unable to move loses. We examine
combinatorial games that contain global threats. In sums of such games,
a move in a component game can lead to an immediate overall win in
the sum of all component games. We show how to model global threats in
Combinatorial Game Theory with the help of infinite loopy games. Further,
we present an algorithm that avoids computing with infinite game values
by cutting off branches of the game tree that lead to global wins. We apply
this algorithm to combinatorial chess endgames as introduced by Elkies [4]
where this approach allows to deal with positions that contain entailing
moves such as captures and threats to capture. As a result, we present
a calculator that computes combinatorial values of certain pawn positions
which allow the application of Combinatorial Game Theory.

1. Global Wins and Global Threats

Combinatorial game theory (CGT) applies the divide and conquer paradigm

to game analysis and game tree search. We decompose a game into independent

components (local games) and compute its value as the sum of all local games.

The end of play in a sum of combinatorial games is determined by the normal

termination rule: A player unable to move loses. Thus, in a sum of games, no

single move or game can be decisive by itself. We investigate a class of games

where a move in a local game may lead to an overall win in the sum of all local

games. We call such a move globally winning.

Examples of globally winning moves are moves that capture a vital opponent

piece such as checkmate,1 moves that promote a piece to a much more powerful

one like promoting a king in checkers, or moves that “escape” in games where

one side has to try to catch the other side’s pieces like in the game Fox and Geese

1Although checkmate does not actually capture the enemy king, it creates the unstoppable
threat to do so.

137

138 FABIAN MÄSER

(Winning Ways [2], chapter 20). Figure 1 shows a Fox and Geese position where

the fox escapes with his last move from e5 to d4 and obtains “an infinite number

of free moves”. If this game were a component of a sum game S, the fox side

would never lose in S.

a

8

b

7

c

6

d

5

e

4

f

3

g

2

h

1

 m m m m
m m m m
 m m m m

m m m m
 m m m m

m m m m
 m m m m

m m m m

Figure 1. A position in the game Fox and Geese: the last move by the (dark)

fox escapes the geese that are only allowed to move upwards.

We are mainly interested in games where none of the players can win by exe-

cuting a global threat if the opponent defends optimally. Such games are finally

decided by normal termination and have finite combinatorial values. However,

when we search the tree of all moves in order to compute a game’s value, we

also have to execute and undo globally winning moves. In section 2, with the

help of infinite games, we model the situation that arises after one of the players

has executed a globally winning move. A global win is equivalent to having an

infinite number of moves available. In section 3, we present an algorithm that

computes combinatorial values of games with global threats. In order to avoid

computing with infinite game values, the algorithm cuts of the game tree just

before a globally winning move is executed. Section 4 applies these techniques

to king and pawn endgames in chess.

Regarding chess endgames, Elkies [4] writes: “The analysis of such positions

is complicated by the possibility of pawn trades which involve entailing moves:

an attacked pawn must in general be immediately defended, and a pawn capture

parried at once with a recapture. Still we can assign standard CGT values to

many positions . . . in which each entailing line is dominated by a non-entailing

one.” This paper introduces an algorithm that solves this problem in general.

GLOBAL THREATS IN COMBINATORIAL GAMES 139

2. A CGT Model Based on Loopy Games

A natural way to model global wins in combinatorial game theory is to define

values Glwin and Grwin . The game Glwin stands for the situation that Left has

executed a globally winning move. It must be greater than any finite game G.

Analogously, Grwin stands for the situation that Right has executed a globally

winning move and has to be smaller than any finite game G.

∀ finite games G : Grwin < G < Glwin (2–1)

The simplest games (they consist of only one position) that satisfy (2–1) are

the loopy games on = {on | } and off = { | off } (Winning Ways [2], chapter

11). The game on is greater than any ender 2 G. Left wins any difference (on -

G) by just playing in on until Right runs out of moves in (−G).

a

8

b

7

c

6

d

5

e

4

f

3

g

2

h

1

 m m m m
m m m m
 m mam m

m mam m
 m m m m

m mAG m
 m m m m

m m m m

Figure 2. Global threats in a chess position: Both players have to prevent the

opponent from promoting a pawn to a queen. Play will end when the pawns are

blocked and neither player has any moves left.

Figure 2 shows a chess example. In the context of king and pawn endgames,

we consider promoting a pawn to be globally winning.3 For instance, White’s

move e3-e4 leads to a symmetrical position where both players have the choice

either to capture or to push the more advanced pawn. We compute its value as

{∗, {on | ∗} | ∗, {∗ | off }}.

2a game in which no player can play an infinite sequence of moves.
3This is true for a majority of pawn endgames, and we limit our attention to these.

140 FABIAN MÄSER

As the values on and off only appear as threats, the resulting game value of

Figure 2 is finite. None of the players is able to force the promotion of a pawn

if his opponent plays correctly. Here is a short analysis of the game position:

White’s move d3-d4 and Black’s move e6-e5 both lead to zero positions. It turns

out that both other moves are reversible (White’s e3-e4 and Black’s d5-d4), and

thus the game value is G = {0 | 0} = ∗.

If both players have the possibility to force a global win in different subgames,

the result of the sum is a “draw by repetition”. In the sum (on + off), both

players will always have moves available, therefore none will lose:

on + off = {on + off | on + off } = dud

The result dud (“deathless universal draw” [2]) offers a pass move for both

players, so any sum S containing at least one component game of value dud will

never be brought to an end (dud + G = dud).

3. An Algorithm Based on Cutoffs in the Game Tree

While the model presented in section 2 works fine in theory, it is not so easy

to implement in practice. We usually map finite combinatorial games “one to

one” to data structures by their inductive definition G = {GL | GR} with the

basis 0 = { | }. Following a path of left and right options, we are sure that finally

the zero game will be reached. Almost all algorithms that work on combinatorial

games are based on their inductive nature. Obviously, loopy games do not fit

into this model. Either, we must extend the model to handle loopy games, or

we must somehow avoid loopy games in our computations.

In this section, we pursue the second way. We present a computation model

for local games with global threats that cuts off branches of the game tree that

lead to global wins. The model is based on the following two lemmas:

(i) If a player has the chance to execute a globally winning move, he will always

do so.

(ii) Any move to a position which offers the opponent a globally winning move

is “bad”. Such a move need not be considered when evaluating a player’s

options.

Both lemmas follow directly from the rules for simplifying games (see [3] or

[2]). The first one is easily deduced: As for any game G, the equation off ≤ G ≤

on applies, a move to a globally winning position always dominates any other

possible move. The second one is deduced from the rule of replacing reversible

moves. If in the game G = {GL | GR}, Left plays a move to GLi which contains a

right move to off, then Left’s move to GLi is reversible (G ≥ off) and is replaced

by all left options of off. As off has no left options, Left’s move to GLi is simply

omitted. The same holds of course for a right move to a game GRj that offers a

left move to on.

GLOBAL THREATS IN COMBINATORIAL GAMES 141

m

m

m
a
m

m

m

G

m

m

m on off on off

LL

L R

R R

Figure 3. A game of value zero and its game tree. Each player’s move leads

to an immediate opponent win. This is equivalent to having no moves at all.

G = {{on | off } | {on | off }} = { | } = 0

The chess position on the left side of Figure 3 illustrates this. Both play-

ers have exactly one move which leads to a position where the two pawns

attack each other. The player who captures his opponent’s pawn will go on

to promote his pawn to a queen. The value of this position is computed as

G = {{on | off } | {on | off }} which simplifies to { | } = 0.

Applying the model presented in section 2, we compute the value of G by

producing its game tree up to the terminal positions on and off. Instead, based

on the second lemma, we can immediately cut off both players’ moves as we

already know that they will be reversible (see the right side of Figure 3). This

leads directly to the same value G = { | } = 0. There are two evident advantages

of this approach. First, we avoid most calculations with loopy games. In this

simple example, we do not have to deal with loopy games at all. Second, thanks

to the cutoffs, we minimize the number of nodes to be searched in the game tree.

Now we are ready to formulate an algorithm for evaluating local games with

global threats. We consider both players’ options in each position. Additionally,

however, we make use of the information who played the last move. This allows

us to cut off moves that lead to global wins for the opponent. It might seem

unusual to make use of to-play-information in combinatorial game tree search,

but this also occurs implicitly in conventional CGT. The same rule of replacing

reversible options that allows us to cut off the game tree is based on “good

replies” to an opponent’s move, thus also makes use of to-play-information.

3.1. Result Types. In contrast to finite combinatorial games, the value of a

game that contains global threats might be on or off i.e. a forced global win

for one of the players. This is the case if a player cannot prevent his opponent

from finally playing a globally winning move no matter how he defends. In

order to separate finite combinatorial values from global wins, we distinguish

the following result types of local games:

142 FABIAN MÄSER

• Type win: If the players move alternately including the right to pass, Left

will win by executing a globally winning move no matter how Right defends

and no matter who starts.

• Type loss : If the players move alternately including the right to pass, Right

will win by executing a globally winning move no matter how Left defends

and no matter who starts.

• Type CGT : None of the players can force a win by global threat. In this case,

a combinatorial value G = {GL | GR} can be computed for the actual game

position.

3.2. Game Tree Search. In order to evaluate a game, we produce its tree

starting from the current position. In every position, we recursively evaluate both

players’ options. As the possible result types are ordered (win > CGT > loss

from Left’s point of view and loss > CGT > win from Right’s point of view),

we can determine the best result types both players can get if they have the

move. If a player’s best result type is CGT, we also compute his combinatorial

game options (GL respectively GR). Combined with the information on who is

to play, we compute the result type of the actual position as shown in Figure 4.

In case the actual result type is CGT, we also compute the combinatorial game

value of the actual position.

win

loss

CGT

winL CGTlossR

loss CGT1 CGT2

CGT3 CGT4

winwin
loss

loss

CGT

CGT
win

Figure 4. Result Types of Global Threats Evaluation: the table indicates the

result type of a local game depending on the best result types of Left’s (rows)

and Right’s (columns) options and on the right to make the next move. The

split entries show the result types for Left to play (lower left) and Right to play

(upper right).

In the four cases labeled CGT, we can compute a finite combinatorial value

for the actual game position.

(i) All left options lead to games of type loss while Right has at least one move

that leads to a finite combinatorial game. As Left has no good moves, the

value of the actual position is G = { | GR}.

GLOBAL THREATS IN COMBINATORIAL GAMES 143

(ii) Neither player has any good moves. The position is a mutual Zugzwang.

G = { | } = 0. We have already seen an example of such a situation in

Figure 3.

(iii) Both players’ best options all lead to finite combinatorial values. The actual

game value is computed as G = {GL | GR}.

(iv) In contrast to the first case, Right has no good move while Left has at least

one CGT option. G = {GL | }.

If both players’ best result types are win (resp. loss), the result type of the

actual game position is of course also win (resp. loss). In the remaining three

cases, the result type of the actual position will depend on who has the right to

move. If the player to move can move to a winning position, he will of course do

so and the result type is determined as a win in his favor. Of special interest are

the positions where the player to move has one or more moves that lead to games

of type CGT while his opponent would be winning if he was to play. These are

the only cases where the loopy games on and off occur in our combinatorial

game values which are either {on | GR} or {GL | off }). Fortunately, on and off

only appear as threats. For example, Left plays a move to a position of value

{on | GR} when Right immediately has to move to one of the options in GR as

Left threatened to move to on.

3.3. Implementation. The function GTSearch searches the game tree depth

first and computes result types and combinatorial game values of local games

that contain global threats. Its specification is

• in:

– toplay : the player (constants kWhite, kBlack, kNoPlayer) who has the

move. In the starting position, kNoPlayer is passed. After at least one

move is played, the right to move is determined.

• out:

– return value: the result type (constants kWin, kLoss or kCGT) of the

current position.

– value: the combinatorial game value of the current position. This value is

“valid” only in case kCGT is returned.

The algorithm performs the following steps (numbers refer to comments in

the code):

(i) Check termination:

determine if the actual position is a global win for one of the players. If so,

we are finished and return kWin resp. kLoss.

(ii) Recursively evaluate Left’s options:

We store the best result type (kWin > kCGT > kLoss) achieved so far in the

variable bestL. For every option of type kCGT, we include its combinatorial

144 FABIAN MÄSER

value in the set GL. If we find an option leading to result type kWin, we can

skip the remaining options (cutoff!).

(iii) Recursively evaluate Right’s options:

As in step 2, we compute the values bestR and GR.

(iv) Compose the result:

According to the table in Figure 4, we compute the result type of the actual

position. In case the result type is kCGT, we also compute the combinatorial

game value {GL | GR} and return it in the out-parameter value.

function GTSearch(toplay: TPlayer; var value: TGameValue): TResultType;

begin

if GlobalWin(kLeft) then return kWin; endif ; /* 1 */

if GlobalWin(kRight) then return kLoss; endif ;

GL ← {}; bestL ← kLoss;

forall left moves m do /* 2 */

ExecMove(m);

res ← GTSearch(kRight, val);

UndoLastMove();

if res = kWin then bestL ← kWin; break endif ; /* cutoff! */

if res = kCGT then bestL ← kCGT; GL ← GL∪ val endif ;

endfor;

GR ← {}; bestR ← kWin;

forall right moves m do /* 3 */

ExecMove(m);

res ← GTSearch(kLeft, val);

UndoLastMove();

if res = kLoss then bestR ← kLoss; break endif ; /* cutoff! */

if res = kCGT then bestR ← kCGT; GR ← GR∪ val endif ;

endfor;

return ComposeResult(bestL, bestR, value, GL, GR, toplay); /* 4 */

end GTSearch;

4. Application to Chess Endgames

Elkies [4] has shown that certain types of chess endgames (mostly king and

pawn endgames) can be analyzed using Combinatorial Game Theory. If both

players’ kings (or any other remaining pieces) are bound by mutual Zugzwang

(mZZ), the remaining pawn moves (tempi in the chess literature) decide who

will have to give way. Thus, when we identify a mZZ, we try to decompose the

position and calculate local values for the independent pawn chunks. Figure 5

shows a position from an actual game (Sveda - Sika, Brno 1929) which has been

GLOBAL THREATS IN COMBINATORIAL GAMES 145

solved by Elkies. Its value is ↑ (queenside, a and b files) plus 0 (center, a mZZ

involving both kings) plus ↓↓ ∗ which adds up to ↓ ∗, a first player win.

a

8

b

7

c

6

d

5

e

4

f

3

g

2

h

1

 m m m m
mam m ma
am m m m
m m l m
 m mAg m

m m mFmA
AG m m m
m m m m

Figure 5. Mutual Zugzwang: Sveda - Sika, Brno 1929 The player who first has

to move his king loses. Therefore the player who makes the last pawn move in

the sum game of the queenside and kingside pawns will win.

Position with pawns on one file only, like the kingside in Figure 5, are easy

to analyze. The pawns will get blocked in any possible line of play. Because of

the possibility of moving a pawn by two squares from its original square they

are not completely trivial. Positions with two or more pawns on each side (for

example the queenside in Figure 5) are more complex. The key to the analysis of

such structures are the global threats of promoting pawns that reach their final

rank. With the computation model presented in section 2, we can also handle

positions like the one shown in Figure 6.

The kingside with king and pawn each is “the same” mutual Zugzwang that we

have already seen in the Sveda-Sika game. The pawn structure on the queenside

looks like it will block after a few moves, but in fact thanks to his far advanced

pawns white to move can force a global win by sacrificing two pawns in order

to promote the third one. After 1.b5–b6 a7×b6 (c7×b6 2.a5–a6 etc.) 2.c5–c6

b7×c6 3.a5–a6 the a-pawn is unstoppable. In the chess literature, this maneuver

is known as a breakthrough. Black to play, on the other hand, cannot do the

same, as white would be much faster promoting one of his own pawns. His only

move that does not allow white to win by global threat is 1... b7-b6 leading to

a value GL
1

= {0, {on | 0} | off }.

We conclude that captures and attacks are often entailing moves because

they usually lead to global threats in form of the promotion of a pawn. In

146 FABIAN MÄSER

a

8

b

7

c

6

d

5

e

4

f

3

g

2

h

1

 m m m m
gag m l
 m m mAg

GAG m mF
 m m m m

m m m m
 m m m m

m m m m

Figure 6. The breakthrough: White to play sacrifices two pawns in order to

promote the third one. Black to play loses by Zugzwang.

many pawn structures, however, especially if both sides have an equal number

of pawns, none of the players can force a win by promoting a pawn, and we can

calculate a combinatorial game value for the given position.

4.1. Implementation. Based on the algorithm presented in section 3, we have

implemented a pawn structure calculator within the Game Bench [6] project.

The Game Bench is an application framework for programs that implement

combinatorial games. One of its main goals is to separate algorithms and data

structures common to all combinatorial games from the details of specific games

and make them available to the game programmer.

The Game Bench is written in Java which makes it portable to almost all

of today’s computer platforms. Its variety of game independent support makes

the Game Bench well suited for “fast prototyping”. On the other hand, thanks

to “just in time compilation” of Java bytecode, it allows serious game analysis

and time critical calculations of combinatorial games as well. Furthermore, on

Unix and Windows platforms, David Wolfe’s Gamesman’s Toolkit [7] is used in

the form of a dynamic library of efficient C-functions. This library performs all

basic CGT computations which are the most time critical part of algorithms like

combinatorial game tree search.

4.2. Results and Conclusions. Applying combinatorial game theory to king

and pawn chess endgames involves the following three steps:

(i) Detection of Zugzwang and identification of the component games.

(ii) Evaluation of the local component games.

(iii) Combination of the local results.

GLOBAL THREATS IN COMBINATORIAL GAMES 147

Step one is chess specific, whereas steps two and three are independent of the

game we want to analyze. Although we can detect Zugzwang positions involving

the kings (and possibly other pieces) automatically, e.g. with the help of a local

minimax search, the conclusion that such a Zugzwang will be constant is of a

heuristic nature.

Let’s again look at the Sveda-Sika game (Figure 5): If White starts, play might

continue 1.h3–h4 a6–a5 2.h4–h5 a5–a4 3.h5–h6. Black could now consider to

abandon his f4-pawn and instead attack the white pawn on h6. After the moves

3...
�

e5–f6 4.
�

f3×f4
�

f6–g6 5.
�

f4–e5
�

g6×h6, material is balanced but white

has an easy win with 6.
�

e5–f6 as his e-pawn is unstoppable. Thus, our initial

assumption that the side to move its king first loses, was correct. But in other

cases, breaking out of the Zugzwang might upset the combinatorial evaluation

of the position.

Thus, we see the main application of a pawn structure calculator as a tool

to support human chess players when analyzing and explaining certain chess

endgames. Positions in which the pawns fight for extra tempi are only vaguely

described in the chess literature, and a verification of the results of human anal-

ysis by brute force minimax search is still beyond the scope of today’s leading

chess software if the positions are complex enough.

a

8

b

7

c

6

d

5

e

4

f

3

g

2

h

1

 m m m m
gam m g
 m m m g

m mfm m
AG Gam m
m m L G
 m m mAm

m m m m

Figure 7. A first player win: Popov - Dankov, Albena 1978. The queenside and

center are both of value 0. On the kingside, the first player to move forces his

opponent into a zugzwang position. The kingside and therefore the whole game

has a value of G = {0 | −1}.

Figure 7 shows a position from the game Popov vs. Dankov (Albena 1978).

The relative position of the two kings is the same as in the Sveda-Sika game.

148 FABIAN MÄSER

The player to move his king loses his central pawn. Thus, the game is decided

by the subgames on the queenside and kingside.

• The queenside is a game of value GQS = 0. With the white pawns advanced

to the fourth rank, Black gets no advantage from the double step option. The

player to move gets blocked immediately.

• The kingside is a bit more complex. Black to play gains a considerable ad-

vantage with 1...h6-h5. In fact, due to White’s option to sacrifice a pawn for

a tempo with g3-g4, it “only” leads to a value of −1. White to play has only

one move. Thanks to the possibility of sacrificing one of the doubled pawns

for a tempo, it leads to a position of value 0. The main line runs 1.g4 g6 2.g5

h×g5 3.g4 and a zero position with no moves for either side is reached. The

value of the kingside is GKS = {0 | −1}.

Thus, the sum GQS + GKS = {0 | −1} is a first player win. Awerbach [1]

assesses this position correctly, but does not offer other calculation methods

than brute force search. He write (in German): “With pawns on one or two files,

computing spare tempi is not too difficult. . . ” Conventional chess programs,

on the other hand, have more problems evaluating this position. The following

results are computed on a PC (466 MHz Intel Celeron, 128 MByte Ram) running

Linux.

• The CGT algorithm presented in section 3 requires a total of less than 1000

evaluated nodes to compute the values of the kingside and the queenside.

• Combinatorial evaluation of the combined (kingside and queenside) pawn

structure yields the same result of course, but takes much longer. Almost

200, 000 nodes need to be evaluated.

• In order to illustrate the complexity of a full-width alpha-beta search, we ran

Crafty [5] on the game position with White to move. Only after evaluating

more than 2 · 109 nodes, the program indicated 1.g3–g4 leading to a white

advantage.

5. Summary and Outlook

Games with global threats are an interesting extension of conventional combi-

natorial games. They model entailing moves such as captures in king and pawn

chess endgames. As we can see in Figure 6, the heuristic that a capture should

be answered with a recapture fails to produce exact results. We can represent

global threats with infinite, loopy games. On the other hand, we propose an

algorithm for game tree search that avoids dealing with infinite game values by

cutting off branches of the game tree that lead to global wins.

Certain chess endgames allow the application of combinatorial game theory

[4]. We decompose the pawn structure into independent local games, calculate

their values and finally compute the value of the sum by rules of CGT. However,

promoting a pawn to a queen in a local game results in a global win in the sum

GLOBAL THREATS IN COMBINATORIAL GAMES 149

of all component games. The analysis of local pawn structures becomes very

complex if the number of pawns increases. A calculator that computes values

of such pawn structures automatically is a useful tool for the game analyst,

especially as most game positions are still too complex to be searched at full

width by conventional chess programs.

The analysis of pawn structures presented in this paper has potential applica-

tions beyond CGT. We have used divide and conquer in combination with CGT

to combine the results of local games. But the results computed by the GT-

Search algorithm can be used in more general settings as well. As an example,

the information that a cluster of white and black pawns can generate a passed

pawn for one of the players may be used in a heuristic evaluation function that

rates pawn structures.

References

[1] J. Awerbach. Bauernendspiele. Sportverlag, Berlin, 1983.

[2] E. Berlekamp, J. H. Conway, and R. Guy. Winning Ways for Your Mathematical

Plays. Academic Press, New York, NY, USA, 1982.

[3] J. H. Conway. On Numbers and Games. A K Peters, 2001.

[4] N. D. Elkies. On Numbers and Endgames: Combinatorial Game Theory in Chess
Endgames. In R. J. Nowakowski, editor, Games of No Chance, pages 135–150.
Cambridge University Press, New York, 1996.

[5] R. Hyatt. Crafty v17.9, a very strong freeware chess program, rated 2499 on the
Elo scale by the Swedish Chess Computer Association in August 2000.

[6] F. Mäser. Divide and Conquer in Game Tree Search: Algorithms, Software and

Case Studies. PhD thesis, ETH Zürich, 2001.

[7] D. Wolfe. The Gamesman’s Toolkit. In R. J. Nowakowski, editor, Games of No

Chance, pages 93–98. Cambridge University Press, New York, 1996.

Fabian Mäser

Ergon Informatik AG

Bächtoldstrasse 4

8044 Zürich

Switzerland

fabian.maeser@ergon.ch

