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Pointed Hopf Algebras

NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

Abstract. This is a survey on pointed Hopf algebras over algebraically
closed fields of characteristic 0. We propose to classify pointed Hopf al-
gebras A by first determining the graded Hopf algebra grA associated to
the coradical filtration of A. The A0-coinvariants elements form a braided
Hopf algebra R in the category of Yetter–Drinfeld modules over the corad-
ical A0 = |Γ, Γ the group of group-like elements of A, and gr A ' R#A0.
We call the braiding of the primitive elements of R the infinitesimal braid-
ing of A. If this braiding is of Cartan type [AS2], then it is often possible
to determine R, to show that R is generated as an algebra by its prim-
itive elements and finally to compute all deformations or liftings, that is
pointed Hopf algebras such that gr A ' R#|Γ. In the last chapter, as a con-
crete illustration of the method, we describe explicitly all finite-dimensional
pointed Hopf algebras A with abelian group of group-likes G(A) and in-
finitesimal braiding of type An (up to some exceptional cases). In other
words, we compute all the liftings of type An; this result is our main new
contribution in this paper.
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2 NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

Introduction

A Hopf algebra A over a field k is called pointed [Sw], [M1], if all its simple
left or right comodules are one-dimensional. The coradical A0 of A is the sum
of all its simple subcoalgebras. Thus A is pointed if and only if A0 is a group
algebra.

We will always assume that the field k is algebraically closed of characteristic
0 (although several results of the paper hold over arbitrary fields).

It is easy to see that A is pointed if it is generated as an algebra by group-like
and skew-primitive elements. In particular, group algebras, universal envelop-
ing algebras of Lie algebras and the q-deformations of the universal enveloping
algebras of semisimple Lie algebras are all pointed.

An essential tool in the study of pointed Hopf algebras is the coradical filtration

A0 ⊂ A1 ⊂ · · · ⊂ A,
⋃

n≥0

An = A

of A. It is dual to the filtration of an algebra by the powers of the Jacobson rad-
ical. For pointed Hopf algebras it is a Hopf algebra filtration, and the associated
graded Hopf algebra gr A has a Hopf algebra projection onto A0 = kΓ, Γ = G(A)
the group of all group-like elements of A. By a theorem of Radford [Ra], gr A is
a biproduct

gr A ∼= R#kΓ,

where R is a graded braided Hopf algebra in the category of left Yetter–Drinfeld
modules over kΓ [AS2].

This decomposition is an analog of the theorem of Cartier–Kostant–Milnor–
Moore on the semidirect product decomposition of a cocommutative Hopf algebra
into an infinitesimal and a group algebra part.

The vector space V = P (R) of the primitive elements of R is a Yetter–Drinfeld
submodule. We call its braiding

c : V ⊗ V → V ⊗ V

the infinitesimal braiding of A. The infinitesimal braiding is the key to the
structure of pointed Hopf algebras.

The subalgebra B(V ) of R generated by V is a braided Hopf subalgebra. As
an algebra and coalgebra, B(V ) only depends on the infinitesimal braiding of
V . In his thesis [N] published in 1978, Nichols studied Hopf algebras of the
form B(V )#kΓ under the name of bialgebras of type one. We call B(V ) the
Nichols algebra of V . These Hopf algebras were found independently later by
Woronowicz [Wo] and other authors.

Important examples of Nichols algebras come from quantum groups [Dr1].
If g is a semisimple Lie algebra, U≥0

q (g), q not a root of unity, and the finite-
dimensional Frobenius–Lusztig kernels u≥0

q (g), q a root of unity of order N , are
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both of the form B(V )#kΓ with Γ = Zθ resp. (Z/(N))θ, θ ≥ 1. ([L3], [Ro1],
[Sbg], and [L2], [Ro1], [Mu]) (assuming some technical conditions on N).

In general, the classification problem of pointed Hopf algebras has three parts:

(1) Structure of the Nichols algebras B(V ).
(2) The lifting problem: Determine the structure of all pointed Hopf algebras A

with G(A) = Γ such that gr A ∼= B(V )#kΓ.
(3) Generation in degree one: Decide which Hopf algebras A are generated by

group-like and skew-primitive elements, that is gr A is generated in degree
one.

We conjecture that all finite-dimensional pointed Hopf algebras over an alge-
braically closed field of characteristic 0 are indeed generated by group-like and
skew-primitive elements.

In this paper, we describe the steps of this program in detail and explain the
positive results obtained so far in this direction. It is not our intention to give a
complete survey on all aspects of pointed Hopf algebras.

We will mainly report on recent progress in the classification of pointed Hopf
algebras with abelian group of group-like elements.

If the group Γ is abelian, and V is a finite-dimensional Yetter–Drinfeld module,
then the braiding is given by a family of non-zero scalars qij ∈ k, 1 ≤ i ≤ θ, in
the form

c(xi ⊗ xj) = qijxj ⊗ xi, where x1, . . . , xθ is a basis of V.

Moreover there are elements g1, . . . , gθ ∈ Γ, and characters χ1, . . . , χθ ∈ Γ̂ such
that qij = χj(gi). The group acts on xi via the character χi, and xi is a gi-
homogeneous element with respect to the coaction of Γ. We introduced braidings
of Cartan type [AS2] where

qijqji = q
aij

ii , 1 ≤ i, j ≤ θ, and (aij) is a generalized Cartan matrix.

If (aij) is a Cartan matrix of finite type, then the algebras B(V ) can be under-
stood as twisting of the Frobenius–Lusztig kernels u≥0(g), g a semisimple Lie
algebra.

By deforming the quantum Serre relations for simple roots which lie in two dif-
ferent connected components of the Dynkin diagram, we define finite-dimensional
pointed Hopf algebras u(D) in terms of a ”linking datum D of finite Cartan
type“ [AS4]. They generalize the Frobenius–Lusztig kernels u(g) and are liftings
of B(V )#kΓ.

In some cases linking data of finite Cartan type are general enough to obtain
complete classification results.

For example, if Γ = (Z/(p))s, p a prime > 17 and s ≥ 1, we have determined
the structure of all finite-dimensional pointed Hopf algebras A with G(A) ' Γ.
They are all of the form u(D) [AS4].
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Similar data allow a classification of infinite-dimensional pointed Hopf alge-
bras A with abelian group G(A), without zero divisors, with finite Gelfand–
Kirillov dimension and semisimple action of G(A) on A, in the case when the
infinitesimal braiding is ”positive“ [AS5].

But the general case is more involved. We also have to deform the root vector
relations of the u(g)′s.

The structure of pointed Hopf algebras A with non-abelian group G(A) is
largely unknown. One basic open problem is to decide which finite groups ap-
pear as groups of group-like elements of finite-dimensional pointed Hopf algebras
which are link-indecomposable in the sense of [M2]. In our formulation, this prob-
lem is the main part of the following question: given a finite group Γ, determine
all Yetter–Drinfeld modules V over kΓ such that B(V ) is finite-dimensional. On
the one hand, there are a number of severe constraints on V [Gñ3]. See also the
exposition in [A, 5.3.10]. On the other hand, it is very hard to prove the finite-
ness of the dimension, and in fact this has been done only for a few examples
[MiS], [FK], [FP] which are again related to root systems. The examples over
the symmetric groups in [FK] were introduced to describe the cohomology ring
of the flag variety. At this stage, the main difficulty is to decide when certain
Nichols algebras over non-abelian groups, for example the symmetric groups Sn,
are finite-dimensional.

The last chapter provides a concrete illustration of the theory explained in this
paper. We describe explicitly all finite-dimensional pointed Hopf algebras with
abelian group G(A) and infinitesimal braiding of type An (up to some exceptional
cases). The main results in this chapter are new, and complete proofs are given.
The only cases which were known before are the easy case A1 [AS1], and A2

[AS3].
The new relations concern the root vectors ei,j , 1 ≤ i < j ≤ n + 1. The

relations eN
i,j = 0 in u≥0

q (sln+1), q a root of unity of order N , are replaced by

eN
i,j = ui,j for a family ui,j ∈ kΓ, 1 ≤ i < j ≤ n + 1,

depending on a family of free parameters in k. See Theorem 6.25 for details.

Lifting of type B2 was treated in [BDR].

To study the relations between a filtered object and its associated graded
object is a basic technique in modern algebra. We would like to stress that finite-
dimensional pointed Hopf algebras enjoy a remarkable rigidity; it is seldom the
case that one is able to describe precisely all the liftings of a graded object, as
in this context.

Acknowledgements. We would like to thank Jacques Alev, Mat́ıas Graña and
Eric Müller for suggestions and stimulating discussions.

Conventions. As said above, our ground field k is algebraically closed field of
characteristic 0. Throughout, “Hopf algebra” means “Hopf algebra with bijective



POINTED HOPF ALGEBRAS 5

antipode”. ∆, S, ε, denote respectively the comultiplication, the antipode, the
counit of a Hopf algebra.

We denote by τ : V ⊗W → W ⊗V the usual transposition, that is τ(v⊗w) =
w ⊗ v.

We use Sweedler’s notation for the comultiplication and coaction; but, to avoid
confusions, we use the following variant for the comultiplication of a braided Hopf
algebra R: ∆R(r) = r(1) ⊗ r(2).

1. Braided Hopf Algebras

1.1. Braided categories. Braided Hopf algebras play a central rôle in this
paper. Although we have tried to minimize the use of categorical language,
we briefly and informally recall the notion of a braided category which is the
appropriate setting for braided Hopf algebras.

Braided categories were introduced in [JS]. We refer to [Ka, Ch. XI, Ch. XIII]
for a detailed exposition. There is a hierarchy of categories with a tensor product
functor:

(a) A monoidal or tensor category is a collection (C,⊗, a, I, l, r), where

• C is a category and ⊗ : C× C → C is a functor,
• I is an object of C, and
• aV,W,U : V ⊗ (W ⊗ U) → (V ⊗W ) ⊗ U , lV : V → V ⊗ I, rV : V → I ⊗ V ,

V,W,U objects in C, are natural isomorphisms;

such that the so-called “pentagon” and “triangle” axioms are satisfied, see [Ka,
Ch. XI, (2.6) and (2.9)]. These axioms essentially express that the tensor prod-
uct of a finite number of objects is well-defined, regardless of the place where
parentheses are inserted; and that I is a unit for the tensor product.

(b) A braided (tensor) category is a collection (C,⊗, a, I, l, r, c), where

• (C,⊗, a, I, l, r) is a monoidal category and
• cV,W : V ⊗W → W ⊗ V , V,W objects in C, is a natural isomorphism;

such that the so-called “hexagon” axioms are satisfied, see [Ka, Ch. XIII, (1.3)
and (1.4)]. A very important consequence of the axioms of a braided category is
the following equality for any objects V,W,U :

(cV,W ⊗ id U )(id V ⊗cU,W )(cU,V ⊗ id W ) = (id W ⊗cU,V )(cU,W ⊗ id V )(id U⊗cV,W ),
(1–1)

see [Ka, Ch. XIII, (1.8)]. For simplicity we have omitted the associativity mor-
phisms.

(c) A symmetric category is a braided category where cV,W cW,V = id W⊗V for
all objects V , W . Symmetric categories have been studied since the pioneering
work of Mac Lane.
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(d) A left dual of an object V of a monoidal category, is a triple (V ∗, evV , bV ),
where V ∗ is another object and evV : V ∗⊗V → I, bV : I→ V ⊗V ∗ are morphisms
such that the compositions

V −−−−→ I⊗ V
bV ⊗ id V−−−−−−→ V ⊗ V ∗ ⊗ V

id V ⊗ evV−−−−−−−→ V ⊗ I −−−−→ V

and

V ∗ −−−−→ V ∗ ⊗ I id V ∗ ⊗ bV−−−−−−−→ V ∗ ⊗ V ⊗ V ∗ evV ⊗ id V ∗−−−−−−−→ I⊗ V ∗ −−−−→ V ∗

are, respectively, the identity of V and V ∗. A braided category is rigid if any
object V admits a left dual [Ka, Ch. XIV, Def. 2.1].

1.2. Braided vector spaces and Yetter–Drinfeld modules. We begin
with the fundamental

Definition 1.1. Let V be a vector space and c : V ⊗ V → V ⊗ V a linear
isomorphism. Then (V, c) is called a braided vector space, if c is a solution of the
braid equation, that is

(c⊗ id )(id ⊗c)(c⊗ id ) = (id ⊗c)(c⊗ id )(id ⊗c). (1–2)

It is well-known that the braid equation is equivalent to the quantum Yang–
Baxter equation:

R12R13R23 = R23R13R12. (1–3)

Here we use the standard notation: R13 : V ⊗ V ⊗ V → V ⊗ V ⊗ V is the map
given by

∑
j rj ⊗ id ⊗rj , if R =

∑
j rj ⊗ rj . Similarly for R12, R23.

The equivalence between solutions of (1–2) and solutions of (1–3) is given by
the equality c = τ ◦ R. For this reason, some authors call (1–2) the quantum
Yang–Baxter equation.

An easy and for this paper important example is given by a family of non-zero
scalars qij ∈ k, i, j ∈ I, where V is a vector space with basis xi, i ∈ I. Then

c(xi ⊗ xj) = qijxj ⊗ xi, for all i, j ∈ I

is a solution of the braid equation.
Examples of braided vector spaces come from braided categories. In this

article, we are mainly concerned with examples related to the notion of Yetter–
Drinfeld modules.

Definition 1.2. Let H be a Hopf algebra. A (left) Yetter–Drinfeld module V

over H is simultaneously a left H-module and a left H-comodule satisfying the
compatibility condition

δ(h.v) = h(1)v(−1)Sh(3) ⊗ h(2).v(0), v ∈ V, h ∈ H. (1–4)
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We denote by H
HYD the category of Yetter–Drinfeld modules over H; the mor-

phisms in this category preserve both the action and the coaction of H. The
category H

HYD is a braided monoidal category; indeed the tensor product of two
Yetter–Drinfeld modules is again a Yetter–Drinfeld module, with the usual ten-
sor product module and comodule structure. The compatibility condition (1–4)
is not difficult to verify.

For any two Yetter–Drinfeld-modules M and N , the braiding cM,N : M⊗N →
N ⊗M is given by

cM,N (m⊗ n) = m(−1).n⊗m(0), m ∈ M, n ∈ N. (1–5)

The subcategory of H
HYD consisting of finite-dimensional Yetter–Drinfeld mod-

ules is rigid. Namely, if V ∈ H
HYD is finite-dimensional, the dual V ∗ = Hom(V, k)

is in H
HYD with the following action and coaction:

• (h · f)(v) = f(S(h)v) for all h ∈ H, f ∈ V ∗, v ∈ V .
• If f ∈ V ∗, then δ(f) = f(−1) ⊗ f(0) is determined by the equation

f(−1)f(0)(v) = S−1(v−1)f(v0), v ∈ V.

Then the usual evaluation and coevaluation maps are morphisms in H
HYD.

Let V , W be two finite-dimensional Yetter–Drinfeld modules over H. We
shall consider the isomorphism Φ : W ∗ ⊗ V ∗ → (V ⊗W )∗ given by

Φ(ϕ⊗ ψ)(v ⊗ w) = ψ(v)ϕ(w), ϕ ∈ W ∗, ψ ∈ V ∗, v ∈ V,w ∈ W. (1–6)

Remark 1.3. We see that a Yetter–Drinfeld module is a braided vector space.
Conversely, a braided vector space (V, c) can be realized as a Yetter–Drinfeld
module over some Hopf algebra H if and only if c is rigid [Tk1]. If this is the
case, it can be realized in many different ways.

We recall that a Hopf bimodule over a Hopf algebra H is simultaneously a
bimodule and a bicomodule satisfying all possible compatibility conditions. The
category H

HMH
H of all Hopf bimodules over H is a braided category. The category

H
HYD is equivalent, as a braided category, to the category of Hopf bimodules.
This was essentially first observed in [Wo] and then independently in [AnDe,
Appendix], [Sbg], [Ro1].

If H is a finite-dimensional Hopf algebra, then the category H
HYD is equivalent

to the category of modules over the double of H [Mj1]. The braiding in H
HYD

corresponds to the braiding given by the “canonical” R-matrix of the double.
In particular, if H is a semisimple Hopf algebra then H

HYD is a semisimple cate-
gory. Indeed, it is known that the double of a semisimple Hopf algebra is again
semisimple.

The case of Yetter–Drinfeld modules over group algebras is especially impor-
tant for the applications to pointed Hopf algebras. If H = kΓ, where Γ is a
group, then an H-comodule V is just a Γ-graded vector space: V =

⊕
g∈Γ Vg,
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where Vg = {v ∈ V | δ(v) = g ⊗ v}. We will write Γ
ΓYD for the category of

Yetter–Drinfeld modules over kΓ, and say that V ∈ Γ
ΓYD is a Yetter–Drinfeld

module over Γ (when the field is fixed).

Remark 1.4. Let Γ be a group, V a left kΓ-module, and a left kΓ-comodule
with grading V =

⊕
g∈Γ Vg. We define a linear isomorphism c : V ⊗ V → V ⊗ V

by

c(x⊗ y) = gy ⊗ x, for all x ∈ Vg, g ∈ Γ, y ∈ V. (1–7)

Then

(a) V ∈ Γ
ΓYD if and only if gVh ⊂ Vghg−1 for all g, h ∈ Γ.

(b) If V ∈ Γ
ΓYD, then (V, c) is a braided vector space.

(c) Conversely, if V is a faithful Γ-module (that is, if for all g ∈ Γ, gv = v for all
v ∈ V , implies g = 1), and if (V, c) is a braided vector space, then V ∈ Γ

ΓYD.

Proof. (a) is clear from the definition.
By applying both sides of the braid equation to elements of the form x⊗ y ⊗

z, x ∈ Vg, y ∈ Vh, z ∈ V, it is easy to see that (V, c) is a braided vector space if
and only if

c(gy ⊗ gz) = ghz ⊗ gy, for all g, h ∈ Γ, y ∈ Vh, z ∈ V. (1–8)

Let us write gy =
∑

a∈Γ xa, where xa ∈ Va for all a ∈ Γ. Then c(gy ⊗ gz) =∑
a∈Γ agz⊗xa. Hence (1–8) means that agz = ghz, for all z ∈ V and a ∈ Γ such

that the homogeneous component xa is not zero. This proves (b) and (c). ¤

Remark 1.5. If Γ is abelian, a Yetter–Drinfeld module over H = kΓ is nothing
but a Γ-graded Γ-module.

Assume that Γ is abelian and furthermore that the action of Γ is diagonalizable
(this is always the case if Γ is finite). That is, V =

⊕
χ∈bΓ V χ, where V χ = {v ∈

V | gv = χ(g)v for all g ∈ Γ}. Then

V =
⊕

g∈Γ,χ∈bΓ V χ
g , (1–9)

where V χ
g = V χ ∩ Vg. Conversely, any vector space with a decomposition (1–9)

is a Yetter–Drinfeld module over Γ. The braiding is given by

c(x⊗ y) = χ(g)y ⊗ x, for all x ∈ Vg, g ∈ Γ, y ∈ V χ, χ ∈ Γ̂.

It is useful to characterize abstractly those braided vector spaces which come
from Yetter–Drinfeld modules over groups or abelian groups. The first part of
the following definition is due to M. Takeuchi.

Definition 1.6. Let (V, c) be a finite-dimensional braided vector space.



POINTED HOPF ALGEBRAS 9

• (V, c) is of group type if there exist a basis x1, . . . , xθ of V and elements
gi(xj) ∈ V for all i, j such that

c(xi ⊗ xj) = gi(xj)⊗ xi, 1 ≤ i, j ≤ θ; (1–10)

necessarily gi ∈ GL(V ).
• (V, c) is of finite group type (resp. of abelian group type) if it is of group type

and the subgroup of GL(V ) generated by g1, . . . , gθ is finite (resp. abelian).
• (V, c) is of diagonal type if V has a basis x1, . . . , xθ such that

c(xi ⊗ xj) = qijxj ⊗ xi, 1 ≤ i, j ≤ θ, (1–11)

for some qij in k. The matrix (qij) is called the matrix of the braiding.
• If (V, c) is of diagonal type, then we say that it is indecomposable if for all

i 6= j, there exists a sequence i = i1, i2, . . . , it = j of elements of {1, . . . , θ}
such that qis,is+1qis+1,is 6= 1, 1 ≤ s ≤ t−1. Otherwise, we say that the matrix
is decomposable. We can also refer then to the components of the matrix.

If V ∈ Γ
ΓYD is finite-dimensional with braiding c, then (V, c) is of group type by

(1–5). Conversely, assume that (V, c) is a finite-dimensional braided vector space
of group type. Let Γ be the subgroup of GL(V ) generated by g1, . . . , gθ. Define
a coaction by δ(xi) = gi ⊗ xi for all i. Then V is a Yetter–Drinfeld module over
Γ with braiding c by Remark 1.4 (c).

A braided vector space of diagonal type is clearly of abelian group type; it is
of finite group type if the qij ’s are roots of one.

1.3. Braided Hopf algebras. The notion of “braided Hopf algebra” is one
of the basic features of braided categories. We will deal only with braided Hopf
algebras in categories of Yetter–Drinfeld modules, mainly over a group algebra.

Let H be a Hopf algebra. First, the tensor product in H
HYD allows us to define

algebras and coalgebras in H
HYD. Namely, an algebra in the category H

HYD is
an associative algebra (R, m), where m : R ⊗ R → R is the product, with unit
u : k → R, such that R is a Yetter–Drinfeld module over H and both m and u

are morphisms in H
HYD.

Similarly, a coalgebra in the category H
HYD is a coassociative coalgebra (R, ∆),

where ∆ : R → R⊗R is the coproduct, with counit ε : R → k, such that R is a
Yetter–Drinfeld module over H and both ∆ and ε are morphisms in H

HYD.

Let now R, S be two algebras in H
HYD. Then the braiding c : S ⊗ R →

R ⊗ S allows us to provide the Yetter–Drinfeld module R ⊗ S with a “twisted”
algebra structure in H

HYD. Namely, the product in R ⊗ S is mR⊗S , defined as
(mR ⊗mS)(id ⊗c⊗ id ):

R⊗ S ⊗R⊗ S −−−−→ R⊗ S

id ⊗c⊗id

y
x=

R⊗R⊗ S ⊗ S
mR⊗mS−−−−−−→ R⊗ S.
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We shall denote this algebra by R⊗S. The difference with the usual tensor
product algebra is the presence of the braiding c instead of the usual transposi-
tion τ .

Definition 1.7. A braided bialgebra in H
HYD is a collection (R, m, u, ∆, ε),

where

• (R, m, u) is an algebra in H
HYD.

• (R, ∆, ε) is a coalgebra in H
HYD.

• ∆ : R → R⊗R and ε : R → k are morphisms of algebras.

We say that it is a braided Hopf algebra in H
HYD if in addition:

• The identity is convolution invertible in End (R); its inverse is the antipode
of R.

A graded braided Hopf algebra in H
HYD is a braided Hopf algebra R in H

HYD

provided with a grading R =
⊕

n≥0 R(n) of Yetter–Drinfeld modules, such that
R is a graded algebra and a graded coalgebra.

Remark 1.8. There is a non-categorical version of braided Hopf algebras, see
[Tk1]. Any braided Hopf algebra in H

HYD gives rise to a braided Hopf algebra
in the sense of [Tk1] by forgetting the action and coaction, and preserving the
multiplication, comultiplication and braiding. For the converse see [Tk1, Th.
5.7]. Analogously, one can define graded braided Hopf algebras in the spirit of
[Tk1].

Let R be a finite-dimensional Hopf algebra in H
HYD. The dual S = R∗ is a braided

Hopf algebra in H
HYD with multiplication ∆∗

RΦ and comultiplication Φ−1m∗
R, cf.

(1–6); this is R∗bop in the notation of [AG, Section 2].

In the same way, if R =
⊕

n≥0 R(n) is a graded braided Hopf algebra in
H
HYD with finite-dimensional homogeneous components, then the graded dual
S = R∗ =

⊕
n≥0 R(n)∗ is a graded braided Hopf algebra in H

HYD.

1.4. Examples. The quantum binomial formula. We shall provide many
examples of braided Hopf algebras in Chapter 2. Here we discuss a very simple
class of braided Hopf algebras.

We first recall the well-known quantum binomial formula. Let U and V

be elements of an associative algebra over k[q], q an indeterminate, such that
V U = qUV . Then

(U + V )n =
∑

1≤i≤n

(
n

i

)

q

U iV n−i, if n ≥ 1. (1–12)

Here
(

n

i

)

q

=
(n)q!

(i)q!(n− i)q!
, where (n)q! =

∏

1≤i≤n

(i)q, and (i)q =
∑

0≤j≤i−1

qj .
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By specialization, (1–12) holds for q ∈ k. In particular, if U and V are elements
of an associative algebra over k, and q is a primitive n-th root of 1, such that
V U = qUV then

(U + V )n = Un + V n. (1–13)

Example 1.9. Let (qij)1≤i,j≤θ be a matrix such that

qijqji = 1, 1 ≤ i, j ≤ θ, i 6= j. (1–14)

Let Ni be the order of qii, when this is finite.
Let R be the algebra presented by generators x1, . . . , xθ with relations

xNi
i = 0, if ord qii < ∞. (1–15)

xixj = qijxjxi, 1 ≤ i < j ≤ θ. (1–16)

Given a group Γ and elements g1, . . . , gθ in the center of Γ, and characters
χ1, . . . , χθ of Γ, there exists a unique structure of Yetter–Drinfeld module over
Γ on R, such that

xi ∈ Rχi
gi

, 1 ≤ i ≤ θ.

Note that the braiding is determined by

c(xi ⊗ xj) = qij xj ⊗ xi, where qij = χj(gi), 1 ≤ i, j ≤ θ.

Furthermore, R is a braided Hopf algebra with the comultiplication given by
∆(xi) = xi ⊗ 1 + 1 ⊗ xi. To check that the comultiplication preserves (1–15)
one uses (1–13); the verification for (1–16) is easy. We know [AS1] that dim R

is infinite unless all the orders of qii’s are finite; in this last case, dim R =∏
1≤i≤θ Ni. We also have P (R) =

⊕
1≤i≤θ kxi.

1.5. Biproducts, or bosonizations. Let A, H be Hopf algebras and π : A →
H and ι : H → A Hopf algebra homomorphisms. Assume that πι = id H , so that
π is surjective, and ι is injective. By analogy with elementary group theory, one
would like to reconstruct A from H and the kernel of π as a semidirect product.
However, the natural candidate for the kernel of π is the algebra of coinvariants

R := Aco π = {a ∈ A : (id ⊗π)∆(a) = a⊗ 1}

which is not, in general, a Hopf algebra. Instead, R is a braided Hopf algebra in
H
HYD with the following structure:

• The action · of H on R is the restriction of the adjoint action (composed
with ι).

• The coaction is (π ⊗ id )∆.
• R is a subalgebra of A.
• The comultiplication is ∆R(r) = r(1)ιπS(r(2))⊗ r(3), for all r ∈ R.
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Given a braided Hopf algebra R in H
HYD, one can consider the bosonization

or biproduct of R by H [Ra], [Mj2]. This is a usual Hopf algebra R#H, with
underlying vector space R ⊗ H, whose multiplication and comultiplication are
given by

(r#h)(s#f) = r(h(1) · s)#h(2)f,

∆(r#h) = r(1)#(r(2))(−1)h(1) ⊗ (r(2))(0)#h(2).
(1–17)

The maps π : R#H → H and ι : H → R#H, π(r#h) = ε(r)h, ι(h) = 1#h,
are Hopf algebra homomorphisms; we have R = {a ∈ R#H : (id ⊗π)∆(a) =
a⊗ 1}.

Conversely, if A and H are Hopf algebras as above and R = Aco π, then
A ' R#H.

Let ϑ : A → R be the map given by ϑ(a) = a(1)ιπS(a(2)). Then

ϑ(ab) = a(1)ϑ(b)ιπS(a(2)), (1–18)

for all a, b ∈ A, and ϑ(ι(h)) = ε(h) for all h ∈ H; therefore, for all a ∈ A, h ∈ H,
we have ϑ(aι(h)) = ϑ(a)ε(h) and

ϑ(ι(h)a) = h · ϑ(a). (1–19)

Notice also that ϑ induces a coalgebra isomorphism A/Aι(H)+ ' R. In fact, the
isomorphism A → R#H can be expressed explicitly as

a 7→ ϑ(a(1))#π(a(2)), a ∈ A.

If A is a Hopf algebra, the adjoint representation ad of A on itself is given by

adx(y) = x(1)yS(x(2)).

If R is a braided Hopf algebra in H
HYD, then there is also a braided adjoint

representation ad c of R on itself defined by

ad cx(y) = µ(µ⊗ SR)(id ⊗c)(∆R ⊗ id )(x⊗ y),

where µ is the multiplication and c ∈ End (R ⊗ R) is the braiding. Note that if
x ∈ P(R) then the braided adjoint representation of x is just

ad cx(y) = µ(id −c)(x⊗ y) =: [x, y]c. (1–20)

For any x, y ∈ R, we call [x, y]c := µ(id −c)(x⊗ y) a braided commutator.

When A = R#H, then for all b, d ∈ R,

ad (b#1)(d#1) = (ad cb(d))#1. (1–21)
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1.6. Some properties of braided Hopf algebras. In this Section, we
first collect several useful facts about braided Hopf algebras in the category of
Yetter–Drinfeld modules over an abelian group Γ. We begin with some identities
on braided commutators.

In the following two Lemmas, R denotes a braided Hopf algebra in Γ
ΓYD. Let

a1, a2, · · · ∈ R be elements such that ai ∈ Rχi
gi

, for some χi ∈ Γ̂, gi ∈ Γ.

Lemma 1.10. (a)

[[a1, a2]c, a3]c + χ2(g1)a2[a1, a3]c = [a1, [a2, a3]c]c + χ3(g2)[a1, a3]ca2. (1–22)

(b) If [a1, a2]c = 0 and [a1, a3]c = 0 then [a1, [a2, a3]c]c = 0.
(c) If [a1, a3]c = 0 and [a2, a3]c = 0 then [[a1, a2]c, a3]c = 0.
(d) Assume that χ1(g2)χ2(g1)χ2(g2) = 1. Then

[[a1, a2]c, a2]c = χ2(g1)χ1(g2)−1[a2, [a2, a1]c]c (1–23)

Proof. Left to the reader. ¤

The following technical Lemma will be used at a crucial point in Section 6.1.

Lemma 1.11. Assume that χ2(g2) 6= −1 and

χ1(g2)χ2(g1)χ2(g2) = 1, (1–24)

χ2(g3)χ3(g2)χ2(g2) = 1. (1–25)

If

[a2, [a2, a1]c]c = 0, (1–26)

[a2, [a2, a3]c]c = 0, (1–27)

[a1, a3]c = 0, (1–28)

then

[[[a1, a2]c, a3]c, a2]c = 0. (1–29)

Proof. We compute:

[[[a1, a2]c, a3]c, a2]c = a1a2a3a2 − χ2(g1) a2a1a3a2 − χ3(g1)χ3(g2) a3a1a
2
2

+ χ3(g1)χ3(g2)χ2(g1) a3a2a1a2

− χ2(g1)χ2(g2)χ2(g3) a2a1a2a3 + χ2(g1)2χ2(g2)χ2(g3) a2
2a1a3

+ χ2(g1)χ2(g2)χ2(g3)χ3(g1)χ3(g2) a2a3a1a2

− χ2(g1)2χ2(g2)χ2(g3)χ3(g1)χ3(g2) a2a3a2a1.
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We index consecutively the terms in the right-hand side by roman numbers: (I),
. . . , (VIII). Then (II) + (VII) = 0, by (1–25) and (1–28). Now,

(I) =
1

χ3(g2)(1 + χ2(g2))
a1a

2
2a3 +

χ2(g2)χ3(g2)
1 + χ2(g2)

a1a3a
2
2

=
1

χ3(g2)(1 + χ2(g2))
a1a

2
2a3 +

χ2(g2)χ3(g2)χ3(g1)
1 + χ2(g2)

a3a1a
2
2

= (Ia) + (Ib),

by (1–27) and (1–28). By the same equations, we also have for (VIII) the value

−χ2(g1)2χ2(g2)χ2(g3)χ3(g1)
1 + χ2(g2)

a2
2a3a1−χ2(g1)2χ2(g2)2χ2(g3)χ3(g1)χ3(g2)2

1 + χ2(g2)
a3a

2
2a1

= −χ2(g1)2χ2(g2)χ2(g3)
1 + χ2(g2)

a2
2a1a3 − χ2(g1)2χ2(g2)2χ2(g3)χ3(g1)χ3(g2)2

1 + χ2(g2)
a3a

2
2a1

= (VIIIa) + (VIIIb).

We next use (1–26) to show that

(Ia) + (V) + (VI) + (VIIIa) = 0,

(Ib) + (III) + (IV) + (VIIIb) = 0.

In the course of the proof of these equalities, we need (1–24) and (1–25). This
finishes the proof of (1–29). ¤

Let H be a Hopf algebra. Then the existence of an integral for finite-dimensional
braided Hopf algebras implies

Lemma 1.12. Let R =
⊕N

n=0 R(n) be a finite-dimensional graded braided Hopf
algebra in H

HYD with R(N) 6= 0. There exists λ ∈ R(N) which is a left integral
on R and such that

R(i)⊗R(N − i) → k, x⊗ y 7→ λ(xy),

is a non-degenerate pairing , for all 0 ≤ i ≤ N . In particular ,

dim R(i) = dim R(N − i).

Proof. This is essentially due to Nichols [N, 1.5]. In this formulation, one needs
the existence of non-zero integrals on R; this follows from [FMS]. See [AG, Prop.
3.2.2] for details. ¤

1.7. The infinitesimal braiding of Hopf algebras whose coradical is a
Hopf subalgebra. For the convenience of the reader, we first recall in this
Section some basic definitions from coalgebra theory.

Definition 1.13. Let C be a coalgebra.
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• G(C) := {x ∈ C \ {0} | ∆(x) = x⊗ x} is the set of all group-like elements of
C.

• If g, h ∈ G(C), then x ∈ C is (g, h)-skew primitive if ∆(x) = x ⊗ h + g ⊗ x.
The space of all (g, h)-skew primitive elements of C is denoted by P(C)g,h. If
C is a bialgebra or a braided bialgebra, and g = h = 1, then P (C) = P(C)1,1

is the space of primitive elements.
• The coradical of C is C0 :=

∑
D, where D runs through all the simple subcoal-

gebras of C; it is the largest cosemisimple subcoalgebra of C. In particular,
kG(C) ⊆ C0.

• C is pointed if kG(C) = C0.
• The coradical filtration of C is the ascending filtration C0 ⊆ C1 ⊆ · · · ⊆

Cj ⊆ Cj+1 ⊆ . . . , defined by Cj+1 := {x ∈ C | ∆(x) ∈ Cj ⊗ C + C ⊗ C0}.
This is a coalgebra filtration: ∆Cj ⊆

∑
0≤i≤j Ci ⊗Cj−i; and it is exhaustive:

C =
⋃

n≥0 Cn.
• A graded coalgebra is a coalgebra G provided with a grading G =

⊕
n≥0 G(n)

such that ∆G(j) ⊆ ∑
0≤i≤j G(i)⊗G(j − i) for all j ≥ 0.

• A coradically graded coalgebra [CM] is a graded coalgebra G =
⊕

n≥0 G(n)
such that its coradical filtration coincides with the standard ascending filtra-
tion arising from the grading: Gn =

⊕
m≤n G(m). A strictly graded coalgebra

[Sw] is a coradically graded coalgebra G such that G(0) is one-dimensional.
• The graded coalgebra associated to the coalgebra filtration of C is gr C =⊕

n≥0 gr C(n), where gr C(n) := Cn/Cn−1, n > 0, gr C(0) := C0. It is a
coradically graded coalgebra.

We shall need a basic technical fact on pointed coalgebras.

Lemma 1.14. [M1, 5.3.3]. A morphism of pointed coalgebras which is injective
in the first term of the coalgebra filtration, is injective.

Let now A be a Hopf algebra. We shall assume in what follows that the coradical
A0 is not only a subcoalgebra but a Hopf subalgebra of A; this is the case if A

is pointed.

To study the structure of A, we consider its coradical filtration; because of our
assumption on A, it is also an algebra filtration [M1]. Therefore, the associated
graded coalgebra gr A is a graded Hopf algebra. Furthermore, H := A0 ' gr A(0)
is a Hopf subalgebra of gr A; and the projection π : gr A → gr A(0) with kernel⊕

n>0 gr A(n), is a Hopf algebra map and a retraction of the inclusion. We can
then apply the general remarks of Section 1.5. Let R be the algebra of coinvari-
ants of π; R is a braided Hopf algebra in H

HYD and gr A can be reconstructed
from R and H as a bosonization gr A ' R#H.

The braided Hopf algebra R is graded, since it inherits the gradation from
gr A: R =

⊕
n≥0 R(n), where R(n) = gr A(n) ∩ R. Furthermore, R is strictly

graded; this means that

(a) R(0) = k1 (hence the coradical is trivial, cf. [Sw, Chapter 11]);
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(b) R(1) = P (R) (the space of primitive elements of R).

It is in general not true that a braided Hopf algebra R satisfying (a) and (b),
also satisfies

(c) R is generated as an algebra over k by R(1).

A braided graded Hopf algebra satisfying (a), (b) and (c) is called a Nichols
algebra. In the next chapter we will discuss this notion in detail. Notice that
the subalgebra R′ of R generated by R(1), a Hopf subalgebra of R, is indeed a
Nichols algebra.

Definition 1.15. The braiding

c : V ⊗ V → V ⊗ V

of V := R(1) = P (R) is called the infinitesimal braiding of A. The graded
braided Hopf algebra R is called the diagram of A. The dimension of V = P (R)
is called the rank of A.

2. Nichols Algebras

Let H be a Hopf algebra. In this chapter, we discuss a functor B from the
category H

HYD to the category of braided Hopf algebras in H
HYD; given a Yetter–

Drinfeld module V , the braided Hopf algebra B(V ) is called the Nichols algebra
of V .

The structure of a Nichols algebra appeared first in the paper ”Bialgebras
of type one“ [N] of Nichols and was rediscovered later by several authors. In
our language, a bialgebra of type one is just a bosonization B(V )#H. Hence
Nichols algebras are the H-coinvariant elements of bialgebras of type one, also
called quantum symmetric algebras in [Ro2]. Several years after [N], Woronowicz
defined Nichols algebras in his approach to “quantum differential calculus” [Wo];
again, they appeared as the invariant part of his “algebra of quantum differential
forms”. Lusztig’s algebras f [L3], defined by the non-degeneracy of a certain
invariant bilinear form, are Nichols algebras. In fact Nichols algebras can always
be defined by the non-degeneracy of an invariant bilinear form [AG]. The algebras
B(V ) are called bitensor algebras in [Sbg]. See also [Kh; Gr; FlG].

In a sense, Nichols algebras are similar to symmetric algebras; indeed, both
notions coincide in the trivial braided category of vector spaces, or more generally
in any symmetric category (e.g. in the category of super vector spaces). But
when the braiding is not a symmetry, a Nichols algebra could have a much richer
structure. We hope that this will be clarified in the examples. On the other hand,
Nichols algebras are also similar to universal enveloping algebras. However, in
spite of the efforts of several authors, it is not clear to us how to achieve a
compact, functorial definition of a “braided Lie algebra” from a Nichols algebra.
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We believe that Nichols algebras are very interesting objects of an essentially
new nature.

2.1. Definition of Nichols algebras. We now present one of the main notions
of this survey.

Definition 2.1. Let V be a Yetter–Drinfeld module over H. A braided graded
Hopf algebra R =

⊕
n≥0 R(n) in H

HYD is called a Nichols algebra of V if k ' R(0)
and V ' R(1) in H

HYD, and

P (R) = R(1), (2–1)

R is generated as an algebra by R(1). (2–2)

The dimension of V will be called the rank of R.

We need some preliminaries to show the existence and uniqueness of the Nichols
algebra of V in H

HYD.

Let V be a Yetter–Drinfeld module over H. Then the tensor algebra T (V ) =⊕
n≥0 T (V )(n) of the vector space V admits a natural structure of a Yetter–

Drinfeld module, since H
HYD is a braided category. It is then an algebra in

H
HYD. There exists a unique algebra map ∆ : T (V ) → T (V )⊗T (V ) such that
∆(v) = v ⊗ 1 + 1⊗ v, for all v ∈ V . For example, if x, y ∈ V , then

∆(xy) = 1⊗ xy + x⊗ y + x(−1) · y ⊗ x(0) + yx⊗ 1.

With this structure, T (V ) is a graded braided Hopf algebra in H
HYD with counit

ε : T (V ) → k, ε(v) = 0, if v ∈ V . To show the existence of the antipode, one
notes that the coradical of the coalgebra T (V ) is k, and uses a result of Takeuchi
[M1, 5.2.10]. Hence all the braided bialgebra quotients of T (V ) in H

HYD are
braided Hopf algebras in H

HYD.

Let us consider the class S of all I ⊂ T (V ) such that

• I is a homogeneous ideal generated by homogeneous elements of degree ≥ 2,
• I is also a coideal, i.e. ∆(I) ⊂ I ⊗ T (V ) + T (V )⊗ I.

Note that we do not require that the ideals I are Yetter–Drinfeld submodules
of T (V ). Let then S̃ be the subset of S consisting of all I ∈ S which are
Yetter–Drinfeld submodules of T (V ). The ideals

I(V ) =
∑

I∈S

I, Ĩ(V ) =
∑

J∈eS J

are the largest elements in S, respectively S̃.
If I ∈ S then R := T (V )/I =

⊕
n≥0 R(n) is a graded algebra and a graded

coalgebra with
R(0) = k, V ' R(1) ⊂ P (R).

If actually I ∈ S̃, then R is a graded braided Hopf algebra in H
HYD.
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We can show now existence and uniqueness of Nichols algebras.

Proposition 2.2. Let B(V ) := T (V )/Ĩ(V ). Then:

(i) V = P (B(V )), hence B(V ) is a Nichols algebra of V .
(ii) I(V ) = Ĩ(V ).
(iii) Let R =

⊕
n≥0 R(n) be a graded Hopf algebra in H

HYD such that R(0) = k1
and R is generated as an algebra by V := R(1). Then there exists a surjective
map of graded Hopf algebras R → B(V ), which is an isomorphism of Yetter–
Drinfeld modules in degree 1.

(iv) Let R =
⊕

n≥0 R(n) be a Nichols algebra of V . Then R ' B(V ) as braided
Hopf algebras in H

HYD.
(v) Let R =

⊕
n≥0 R(n) be a graded braided Hopf algebra in H

HYD with R(0) = k1
and R(1) = P (R) = V . Then B(V ) is isomorphic to the subalgebra k〈V 〉 of
R generated by V .

Proof. (i) We have to show the equality V = P (B(V )). Let us consider
the inverse image X in T (V ) of all homogeneous primitive elements of B(V ) in
degree n ≥ 2. Then X is a graded Yetter–Drinfeld submodule of T (V ), and for
all x ∈ X, ∆(x) ∈ x⊗ 1 + 1⊗ x + T (V )⊗ Ĩ(V ) + Ĩ(V )⊗ T (V ). Hence the ideal
generated by Ĩ(V ) and X is in S̃, and X ⊂ Ĩ(V ) by the maximality of Ĩ(V ).
Hence the image of X in B(V ) is zero. This proves our claim since the primitive
elements form a graded submodule.

(ii) We have to show that the surjective map B(V ) → T (V )/I(V ) is bijective.
This follows from (i) and Lemma 1.14.

(iii) The kernel I of the canonical projection T (V ) → R belongs to S̃; hence
I ⊆ Ĩ(V ).

(iv) follows again from Lemma 1.14, as in (ii).

(v) follows from (iv). ¤

If U is a braided subspace of V ∈ H
HYD, that is a subspace such that c(U ⊗U) ⊂

U ⊗U , where c is the braiding of V , we can define B(U) := T (U)/I(U) with the
obvious meaning of I(U). Then the description in Proposition 2.2 also applies
to B(U).

Corollary 2.3. The assignment V 7→ B(V ) is a functor from H
HYD to the

category of braided Hopf algebras in H
HYD.

If U is a Yetter–Drinfeld submodule of V , or more generally if U is a braided
subspace of V , then the canonical map B(U) → B(V ) is injective.

Proof. If φ : U → V is a morphism in H
HYD, then T (φ) : T (U) → T (V ) is a

morphism of braided Hopf algebras. Since T (φ)(I(U)) is a coideal and a Yetter–
Drinfeld submodule of T (V ), the ideal generated by T (φ)(Ĩ(U)) is contained in
Ĩ(V ). Hence by Proposition 2.2, B is a functor.

The second part of the claim follows from Proposition 2.2(v). ¤
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The duality between conditions (2–1) and (2–2) in the definition of Nichols alge-
bra, emphasized by Proposition 2.2(iii), (v), is explicitly stated in the following

Lemma 2.4. Let R =
⊕

n≥0 R(n) be a graded braided Hopf algebra in H
HYD;

suppose the homogeneous components are finite-dimensional and R(0) = k1. Let
S =

⊕
n≥0 R(n)∗ be the graded dual of R. Then R(1) = P (R) if and only if S

is generated as an algebra by S(1).

Proof. See for instance [AS2, Lemma 5.5]. ¤

Example 2.5. Let F be a field of positive characteristic p. Let S be the (usual)
Hopf algebra F [x]/〈xp2〉 with x ∈ P (S). Then xp ∈ P (S). Hence S satisfies
(2–2) but not (2–1).

Example 2.6. Let S = k[X] =
⊕

n≥0 S(n) be a polynomial algebra in one
variable. We consider S as a braided Hopf algebra in H

HYD, where H = kΓ, Γ an
infinite cyclic group with generator g, with action, coaction and comultiplication
given by

δ(Xn) = gn ⊗Xn, g ·X = qX, ∆(X) = X ⊗ 1 + 1⊗X.

Here q ∈ k is a root of 1 of order N . That is, S is a so-called quantum line. Then
S satisfies (2–2) but not (2–1) since XN is also primitive. Hence the graded dual
R = Sd =

⊕
n≥0 S(n)∗ is a braided Hopf algebra satisfying (2–1) but not (2–2).

However, in characteristic 0 we do not know any finite-dimensional example of
a braided Hopf algebra satisfying (2–1) but not (2–2).

Conjecture 2.7. [AS2, Conjecture 1.4] Any finite-dimensional braided Hopf
algebra in H

HYD satisfying (2–1) also satisfies (2–2). (Recall that the base field k
has characteristic zero.)

The compact description of B(V ) in Lemma 2.2 shows that it depends only on
the algebra and coalgebra structure of T (V ). Since the comultiplication of the
tensor algebra was defined using the “twisted” multiplication of T (V )⊗T (V ),
we see that B(V ) depends as an algebra and coalgebra only on the braiding of
V . The explicit formula for the comultiplication of T (V ) leads to the following
alternative description of B(V ).

2.2. Skew-derivations and bilinear forms. We want to describe two im-
portant techniques to prove identities in Nichols algebras even without knowing
the defining relations explicitly.

The first technique was introduced by Nichols [N, 3.3] to deal with B(V ) over
group algebras kΓ using skew-derivations. Let V ∈ Γ

ΓYD be of finite dimension θ.
We choose a basis xi ∈ Vgi with gi ∈ Γ, 1 ≤ i ≤ θ, of Γ-homogeneous elements.
Let I ∈ S and R = T (V )/I (see Section 2.1). Then R is a graded Hopf algebra
in Γ

ΓYD with R(0) = k1 and R(1) = V . For all 1 ≤ i ≤ θ let σi : R → R be the
algebra automorphism given by the action of gi.
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Recall that if σ : R → R is an algebra automorphism, an (id , σ)-derivation
D : R → R is a k-linear map such that

D(xy) = xD(y) + D(x)σ(y), for all x, y ∈ R.

Proposition 2.8. (1) For all 1 ≤ i ≤ θ, there exists a uniquely determined
(id, σi)-derivation Di : R → R with Di(xj) = δi,j (Kronecker δ) for all j.

(2) I = I(V ), that is R = B(V ), if and only if
⋂θ

i=1 Ker (Di) = k1.

Proof. See for example [MiS, 2.4]. ¤

Let us illustrate this Proposition in a very simple case.

Example 2.9. Let V be as above and assume that gi · xi = qixi, for some
qi ∈ k×, 1 ≤ i ≤ θ. Then for any n ∈ N,

(a) Di(xn
i ) = (n)qi

xn−1
i .

(b) xn
i 6= 0 if and only if (n)qi

! 6= 0.

Proof. (a) follows by induction on n since Di is a skew-derivation; (b) follows
from (a) and Proposition 2.8, since Dj vanishes on any power of xi, for j 6= i. ¤

The second technique was used by Lusztig [L3] to prove very deep results about
quantum enveloping algebras using a canonical bilinear form.

Let (V, c) be a braided vector space of diagonal type as in (1–11) and assume
that qij = qji for all i, j. Let Γ be the free abelian group of rank θ with basis
g1, . . . , gθ. We define characters χ1, . . . , χθ of Γ by

χi(gj) = qji, 1 ≤ i, j ≤ θ.

We consider V as a Yetter–Drinfeld module over kΓ by defining xi ∈ V χi
gi

for
all i.

Proposition 2.10. Let B1, . . . , Bθ be non-zero elements in k. There is a unique
bilinear form ( | ) : T (V )× T (V ) → k such that (1|1) = 1 and

(xj |xj) = δijBi, for all i, j; (2–3)

(x|yy′) = (x(1)|y)(x(2)|y′), for all x, y, y′ ∈ T (V ); (2–4)

(xx′|y) = (x|y(1))(x′|y(2)), for all x, x′, y ∈ T (V ). (2–5)

This form is symmetric and also satisfies

(x|y) = 0, for all x ∈ T (V )g, y ∈ T (V )h, g 6= h ∈ Γ. (2–6)

The homogeneous components of T (V ) with respect to its usual N-grading are
also orthogonal with respect to ( | ).

The quotient T (V )/I(V ), where I(V ) = {x ∈ T (V ) : (x|y) = 0∀y ∈ T (V )}
is the radical of the form, is canonically isomorphic to the Nichols algebra of V .
Thus, ( | ) induces a non-degenerate bilinear form on B(V ), denoted by the same
name.
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Proof. The existence and uniqueness of the form, and the claims about sym-
metry and orthogonality, are proved exactly as in [L3, 1.2.3]. It follows from the
properties of the form that I(V ) is a Hopf ideal. We now check that T (V )/I(V )
is the Nichols algebra of V ; it is enough to verify that the primitive elements of
T (V )/I(V ) are in V . Let x be a primitive element in T (V )/I(V ), homogeneous
of degree n ≥ 2. Then (x|yy′) = 0 for all y, y′ homogeneous of degrees m,m′ ≥ 1
with m + m′ = n; thus x = 0. ¤

A generalization of the preceding result, valid for any finite-dimensional Yetter–
Drinfeld module over any group, can be found in [AG, 3.2.17].

The Proposition shows that Lusztig’s algebra f [L3, Chapter 1] is the Nichols
algebra of V over the field of rational functions Q(v), with qij = vi·j if I =
{1, . . . , θ} and (I, ·) a Cartan datum. In particular, we can take a generalized
symmetrizable Cartan matrix (aij), 0 < di ∈ N for all i with diaij = djaji for
all i, j and define i · j := diaij .

2.3. The braid group. Let us recall that the braid group Bn is presented by
generators σ1, . . . , σn−1 with relations

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,

σiσj = σjσi, , 1 ≤ i, j ≤ n− 2, |i− j| > 1.

Here are some basic well-known facts about the braid group.

There is a natural projection π : Bn → Sn sending σi to the transposition
τi := (i, i + 1) for all i. The projection π admits a set-theoretical section s :
Sn → Bn determined by

s(τi) = σi, 1 ≤ i ≤ n− 1,

s(τω) = s(τ)s(ω), if l(τω) = l(τ) + l(ω).

Here l denotes the length of an element of Sn with respect to the set of generators
τ1, . . . , τn−1. The map s is called the Matsumoto section. In other words, if
ω = τi1 . . . τiM

is a reduced expression of ω ∈ Sn, then s(ω) = σi1 . . . σiM
.

Let q ∈ k, q 6= 0. The quotient of the group algebra k(Bn) by the two-sided
ideal generated by the relations

(σi − q)(σi + 1), 1 ≤ i ≤ n− 1,

is the so-called Hecke algebra of type An, denoted by Hq(n).

Using the section s, the following distinguished elements of the group algebra
kBn are defined:

Sn :=
∑

σ∈Sn

s(σ), Si,j :=
∑

σ∈Xi,j

s(σ);

here Xi,j ⊂ Sn is the set of all (i, j)-shuffles. The element Sn is called the
quantum symmetrizer.
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Given a braided vector space (V, c), there are representations of the braid
groups ρn : Bn → Aut (V ⊗n) for any n ≥ 0, given by

ρn(σi) = id ⊗ · · · ⊗ id ⊗c⊗ id ⊗ · · · ⊗ id ,

where c acts in the tensor product of the i and i + 1 copies of V . By abuse
of notation, we shall denote by Sn, Si,j also the corresponding endomorphisms
ρ(Sn), ρ(Si,j) of V ⊗n = Tn(V ).

If C =
⊕

n≥0 C(n) is a graded coalgebra with comultiplication ∆, we denote
by ∆i,j : C(i + j) → C(i) ⊗ C(j), i, j ≥ 0, the (i, j)-graded component of the
map ∆.

Proposition 2.11. Let V ∈ H
HYD. Then

∆i,j = Si,j , (2–7)

B(V ) =
⊕

n≥0

Tn(V )/ker(Sn). (2–8)

Proof. See for instance [Sbg]. ¤

This description of the relation of B(V ) does not mean that the relations are
known. In general it is very hard to compute the kernels of the maps Sn in
concrete terms. For any braided vector space (V, c), we may define B(V ) by
(2–8).

Using the action of the braid group, B(V ) can also be described as a subal-
gebra of the quantum shuffle algebra [N; Ro1; Ro2; Sbg].

2.4. Invariance under twisting. Twisting is a method to construct new Hopf
algebras by “deforming” the comultiplication; originally due to Drinfeld [Dr2],
it was adapted to Hopf algebras in [Re].

Let A be a Hopf algebra and F ∈ A ⊗ A be an invertible element. Let
∆F := F∆F−1 : A → A⊗A; it is again an algebra map. If

(1⊗ F )(id ⊗∆)(F ) = (F ⊗ 1)(∆⊗ id )(F ), (2–9)

(id ⊗ε)(F ) = (ε⊗ id )(F ) = 1, (2–10)

then AF (the same algebra, but with comultiplication ∆F ) is again a Hopf alge-
bra. We shall say that AF is obtained from A via twisting by F ; F is a cocycle
in a suitable sense.

There is a dual version of the twisting operation, which amounts to a twist of
the multiplication [DT]. Let A be a Hopf algebra and let σ : A × A → k be an
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invertible 2-cocycle1 , that is

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)),

σ(x, 1) = σ(1, x) = ε(x),

for all x, y, z ∈ A. Then Aσ – the same A but with the multiplication ·σ below
– is again a Hopf algebra, where

x ·σ y = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)).

For details, see for instance [KS, 10.2.3 and 10.2.4].

Assume now that H is a Hopf algebra, R is a braided Hopf algebra in H
HYD,

and A = R#H. Let π : A → H and ι : H → A be the canonical projection and
injection. Let σ : H×H → k be an invertible 2-cocycle, and define σπ : A×A → k
by

σπ := σ(π ⊗ π);

σπ is an invertible 2-cocycle, with inverse (σ−1)π. The maps π : Aσπ → Hσ,
ι : Hσ → Aσπ are still Hopf algebra maps. Because the comultiplication is not
changed, the space of coinvariants of π is R; this is a subalgebra of Aσπ that we
denote Rσ; the multiplication in Rσ is given by

x.σy = σ(x(−1), y(−1))x(0)y(0), x, y ∈ R = Rσ. (2–11)

Equation (2–11) follows easily using (1–17). Clearly, Rσ is a Yetter–Drinfeld
Hopf algebra in Hσ

Hσ
YD. The coaction of Hσ on Rσ is the same as the coaction

of H on R, since the comultiplication was not altered. The explicit formula for
the action of Hσ on Rσ can be written down; we shall do this only in the setting
we are interested in.

Let H = kΓ be a group algebra; an invertible 2-cocycle σ : H × H → k is
uniquely determined by its restriction σ : Γ × Γ → k×, a group 2-cocycle with
respect to the trivial action.

Lemma 2.12. Let Γ be an abelian group and let R be a braided Hopf algebra in
Γ
ΓYD. Let σ : Γ× Γ → k× be a 2-cocycle. Let S be the subalgebra of R generated
by P (R). In the case y ∈ Sη

h, for some h ∈ Γ and η ∈ Γ̂, the action of H = Hσ

on Rσ is
g ⇀σ y = σ(g, h)σ−1(h, g)η(g)y, g ∈ Γ. (2–12)

Hence, the braiding cσ in Rσ is given in this case by

cσ(x⊗ y) = σ(g, h)σ−1(h, g)η(g) y ⊗ x, x ∈ Rg, g ∈ Γ. (2–13)

Therefore, for such x and y, we have

[x, y]cσ = σ(g, h)[x, y]c. (2–14)

1 Here “invertible” means that the associated linear map σ : A⊗ A → | is invertible with
respect to the convolution product.
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Proof. To prove (2–12), it is enough to assume y ∈ P (R)η
h.

Let A = R#H; in Aσπ
, we have

g.σy = σ(g, π(y)) g σ−1(g, 1) + σ(g, h) gy σ−1(g, 1) + σ(g, h) gh σ−1(g, π(y))

= σ(g, h)gy;

y.σg = σ(π(y), g) g σ−1(1, g) + σ(h, g) yg σ−1(1, g) + σ(h, g) hg σ−1(π(y), g)

= σ(h, g)yg;

hence

g.σy = σ(g, h)gy = σ(g, h)η(g)yg = σ(g, h)σ−1(h, g)η(g)y.σg,

which is equivalent to (2–12). Now (2–13) follows at once, and (2–14) follows
from (2–11) and (2–13):

[x, y]cσ = x.σy − .σcσ(x⊗ y)

= σ(g, h)xy − σ(g, h)σ−1(h, g)η(g) σ(h, g)yx = σ(g, h)[x, y]c. ¤

The proof of the following lemma is clear, since the comultiplication of a Hopf
algebra is not changed by twisting.

Lemma 2.13. Let H be a Hopf algebra and let R be a braided Hopf algebra in
H
HYD. Let σ : H × H → k be an invertible 2-cocycle. If R =

⊕
n≥0 R(n) is a

braided graded Hopf algebra in H
HYD, then Rσ is a braided graded Hopf algebra

in Hσ

Hσ
YD with R(n) = Rσ(n) as vector spaces for all n ≥ 0. Also R is a Nichols

algebra if and only if Rσ is a Nichols algebra in Hσ

Hσ
YD.

3. Types of Nichols Algebras

We now discuss several examples of Nichols algebras. We are interested in
explicit presentations, e.g. by generators and relations, of B(V ), for braided
vector spaces in suitable classes, for instance, those of group type. We would
also like to determine when B(V ) has finite dimension, or polynomial growth.

3.1. Symmetries and braidings of Hecke type. We begin with the simplest
class of braided vector spaces.

Example 3.1. Let τ : V ⊗ V → V ⊗ V be the usual transposition; the braided
vector space (V, τ) can be realized as a Yetter–Drinfeld module over any Hopf
algebra H, with trivial action and coaction. Then B(V ) = Sym (V ), the sym-
metric algebra of V .

The braided vector space (V,−τ), which can be realized e.g. in Z
ZYD, has

B(V ) = Λ(V ), the exterior algebra of V .

Example 3.2. Let V =
⊕

i∈Z/2 V (i) be a super vector space and let c : V ⊗V →
V ⊗ V be the supersymmetry:

c(v ⊗ w) = (−1)i.jw ⊗ v v ∈ V (i), w ∈ V (j).
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Clearly, V can be realized as a Yetter–Drinfeld module over Z/2. Then B(V ) '
Sym (V (0))⊗ Λ(V (1)), the super-symmetric algebra of V .

The simple form of B(V ) in these examples can be explained in the following
context.

Definition 3.3. We say that a braided vector space (V, c) is of Hecke-type with
label q ∈ k, q 6= 0, if

(c− q)(c + 1) = 0.

In this case, the representation of the braid group ρn : Bn → Aut (V ⊗n) factorizes
through the Hecke algebra Hq(n), for all n ≥ 0; cf. Section 2.3.

If q = 1, one says that c is a symmetry. Then ρn factorizes through the
symmetric group Sn, for all n ≥ 0. The categorical version of symmetries is that
of symmetric categories, see Section 1.1.

Proposition 3.4. Let (V, c) be a braided vector space of Hecke-type with label
q, which is either 1 or not a root of 1. Then B(V ) is a quadratic algebra; that
is, the ideal I(V ) is generated by I(V )(2) = Ker S2.

Moreover , B(V ) is a Koszul algebra and its Koszul dual is the Nichols algebra
B(V ∗) corresponding to the braided vector space (V ∗, q−1ct).

A nice exposition on Koszul algebras is [BGS, Chapter 2].

Proof. The argument for the first claim is taken from [AA, Prop. 3.3.1]. The
image of the quantum symmetrizer Sn in the Hecke algebra Hq(n) is [n]q!Mε,
where Mε satisfies the following properties:

M2
ε = Mε, Mεci = ciMε = qMε, 1 ≤ i ≤ n− 1.

See for instance [HKW]. Now, we have to show that Ker Sn = Tn(V )∩ I, where
I is the ideal generated by Ker S2 = Ker (c + 1) = Im (c − q); but clearly
Tn(V ) ∩ I =

∑
i In,i, where

In,i = T i−1(V )⊗ Im (c− q)⊗ Tn−i−1(V ) = Im (ci − q).

It follows that Tn(V )∩I ⊆ Ker Sn, a fact that we already know from the general
theory. But moreover, Tn(V ) ∩ I is a Hq(n)-submodule of Tn(V ) since

cj(ci − q) = (cj − q)(ci − q) + q(ci − q).

This computation also shows that the action of Hq(n) on the quotient module
Tn(V )/Tn(V ) ∩ I is via the character that sends σi to q; hence Mε acts on
Tn(V )/Tn(V ) ∩ I by an automorphism, and a fortiori Tn(V ) ∩ I ⊇ Ker Sn.
Having shown the first claim, the second claim is essentially a result from [Gu;
Wa]; see also the exposition in [AA, Sections 3.3 and 3.4]. ¤

Example 3.5. Let q ∈ k×, q is not a root of 1. The braided vector space (V, qτ)
can be realized in Z

ZYD. It can be shown that B(V ) = T (V ), the tensor algebra
of V , for all q in an open set.
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It would be interesting to know whether other conditions on the minimal poly-
nomial of a braiding have consequences on the structure of the corresponding
Nichols algebra. The first candidate should be a braiding of BMW-type.

3.2. Braidings of diagonal type. In this section, (V, c) denotes a finite-di-
mensional braided vector space of diagonal type; that is, V has a basis x1, . . . , xθ

such that (1–11) holds for some non-zero qij in k. Our first goal is to determine
polynomial relations on the generators x1, . . . , xθ that should hold in B(V ). We
look at polynomial expressions in these generators which are homogeneous of
degree ≥ 2, and give rise to primitive elements in any braided Hopf algebra
containing V inside its primitive elements. For related material, see [Kh].

Lemma 3.6. Let R be a braided Hopf algebra in H
HYD, for some Hopf algebra

H, such that V ⊆ P (R) as braided vector spaces.

(a) If qii is a root of 1 of order N > 1 for some i ∈ {1, . . . , θ}, then xN
i ∈ P (R).

(b) Let 1 ≤ i, j ≤ θ, i 6= j, such that qijqji = qr
ii, where 0 ≤ −r < ord qii (which

could be infinite). Then (ad cxi)1−r(xj) is primitive in R.

Proof. (a) and (b) are consequences of the quantum binomial formula, see e.g.
[AS2, Appendix] for (b). ¤

We apply these first remarks to B(V ) and see how conditions on the Nichols
algebra induce conditions on the braiding.

Lemma 3.7. Let R = B(V ).

(a) If qii is a root of 1 of order N > 1 then xN
i = 0. In particular , if B(V ) is

an integral domain, then qhh = 1 or it is not a root of 1, for all h.
(b) If i 6= j, then (ad cxi)r(xj) = 0 if and only if (r)!qii

∏
0≤k≤r−1

(
1− qk

iiqijqji

)
vanishes.

(c) If i 6= j and qijqji = qr
ii, where 0 ≤ −r < ord qii (which could be infinite),

then (ad cxi)1−r(xj) = 0.
(d) If B(V ) has finite Gelfand–Kirillov dimension, then for all i 6= j, there

exists rij > 0 such that (ad cxi)rij (xj) = 0.

Proof. Parts (a) and (c) follow from Lemma 3.6; part (a) is also a special
case of Example 2.9; and part (c) also follows from (b). Part (b) is stated in
[Ro2, Lemma 14]. It can be shown using the skew-derivations Dj of Section 2.2.
Indeed, we first claim that Dj ((ad cxi)r(xj)) =

∏
0≤k≤r−1

(
1− qk

iiqijqji

)
xr

i . We
set zr = (ad cxi)r(xj) and compute

Dj (ad cxi(zr)) = Dj(xizr − (gi · zr)xi)

= Dj(xizr − qr
iiqijzrxi)

= xiDj(zr)− qr
iiqijqjiDj(zr)xi
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and the claim follows by induction. Thus, by Example 2.9, Dj ((ad cxi)r(xj)) = 0
if and only if (r)!qii

∏
0≤k≤r−1

(
1− qk

iiqijqji

)
= 0. We next claim that

Di ((ad cxi)r(xj)) = 0.

We compute

Di (ad cxi(zr)) = Di(xizr − (gi · zr)xi)

= xiDi(zr) + gi · zr − gi · zr −Di(gi · zr) gi · xi

and the claim follows by induction. Finally, it is clear that Dl ((ad cxi)r(xj)) = 0,
for all l 6= i, j. Part (b) follows then from Proposition 2.8.

Part(d) is an important result of Rosso [Ro2, Lemma 20]. ¤

We now discuss how the twisting operation, cf. Section 2.4, affects Nichols
algebras of diagonal type.

Definition 3.8. We shall say that two braided vector spaces (V, c) and (W,d)
of diagonal type, with matrices (qij) and (q̂ij), are twist-equivalent if dim V =
dim W and, for all i, j, qii = q̂ii and

qijqji = q̂ij q̂ji. (3–1)

Proposition 3.9. Let (V, c) and (W,d) be two twist-equivalent braided vector
spaces of diagonal type, with matrices (qij) and (q̂ij), say with respect to basis
x1, . . . , xθ and x̂1, . . . , x̂θ. Then there exists a linear isomorphism ψ : B(V ) →
B(W ) such that

ψ(xi) = x̂i, 1 ≤ i ≤ θ. (3–2)

Proof. Let Γ be the free abelian group of rank θ, with basis g1, . . . , gθ. We
define characters χ1, . . . , χθ, χ̂1, . . . , χ̂θ of Γ by

χi(gj) = qji, χ̂i(gj) = q̂ji, 1 ≤ i, j ≤ θ.

We consider V , W as Yetter–Drinfeld modules over Γ by declaring xi ∈ V χi
gi

,
x̂i ∈ V bχi

gi
. Hence, B(V ), B(W ) are braided Hopf algebras in Γ

ΓYD.
Let σ : Γ× Γ → k× be the unique bilinear form such that

σ(gi, gj) =

{
q̂ijq

−1
ij , i ≤ j,

1, i > j;
(3–3)

it is a group cocycle. We claim that ϕ : W → B(V )σ(1), ϕ(x̂i) = xi, 1 ≤ i ≤ θ,
is an isomorphism in Γ

ΓYD. It clearly preserves the coaction; for the action, we
assume i ≤ j and compute

gj ·σ xi = σ(gj , gi)σ−1(gi, gj)χi(gj)xi = (q̂ij)−1qijqjixi = q̂jixi,

gi ·σ xj = σ(gi, gj)σ−1(gj , gi)χj(gi)xj = q̂ijq
−1
ij qijxj = q̂ijxj ,
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where we have used (2–12) and the hypothesis (3–1). This proves the claim. By
Proposition 2.2, ϕ extends to an isomorphism ϕ : B(W ) → B(V )σ; ψ = ϕ−1 is
the map we are looking for. ¤

Remarks 3.10. (i) The map ψ defined in the proof is much more than just
linear; by (2–11) and (2–14), we have for all g, h ∈ Γ,

ψ(xy) = σ−1(g, h)ψ(x)ψ(y), x ∈ B(V )g, y ∈ B(V )h; (3–4)

ψ([x, y]c) = σ−1(g, h)[ψ(x), ψ(y)]d, x ∈ B(V )χ
g , y ∈ B(V )η

h. (3–5)

(ii) A braided vector space (V, c) of diagonal type, with matrix (qij), is twist-
equivalent to (W,d), with a symmetric matrix (q̂ij).

Twisting is a very important tool. For many problems, twisting allows to reduce
to the case when the diagonal braiding is symmetric; then the theory of quantum
groups can be applied.

3.3. Braidings of diagonal type but not Cartan. In the next chapter,
we shall concentrate on braidings of Cartan type. There are a few examples of
Nichols algebras B(V ) of finite group type and rank 2, which are not of Cartan
type, but where we know that the dimension is finite. We now list the examples
we know, following [N; Gñ3]. The braided vector space is necessarily of diagonal
type; we shall give the matrix Q of the braiding, the constraints on their entries
and the dimension d of B(V ). Below, ω, resp. ζ, denotes an arbitrary primitive
third root of 1, resp. different from 1.

(
q11 q12

q21 −1

)
; q−1

11 = q12q21 6= 1; d = 4 ord(q12q21). (3–6)

(
q11 q12

q21 ω

)
; q−1

11 = q12q21 6= ±1, ω−1; d = 9 ord(q11) ord(q12q21ω). (3–7)

(−1 q12

q21 ω

)
; q12q21 = −1; d = 108. (3–8)

(−1 q12

q21 ω

)
; q12q21 = ω; d = 72. (3–9)

(−1 q12

q21 ω

)
; q12q21 = −ω; d = 36. (3–10)

(−1 q12

q21 ζ

)
; q12q21 = ζ−2; d = 4 ord(ζ) ord(−ζ−1). (3–11)
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3.4. Braidings of finite non-abelian group type. We begin with a class of
examples studied in [MiS].

Let Γ be a group and T ⊂ Γ a subset such that for all g ∈ Γ, t ∈ T, gtg−1 ∈ T .
Thus T is a union of conjugacy classes of Γ. Let φ : Γ×T → k\{0} be a function
such that for all g, h ∈ Γ and t ∈ T ,

φ(1, t) = 1, (3–12)

φ(gh, t) = φ(g, hth−1)φ(h, t). (3–13)

We can then define a Yetter–Drinfeld module V = V (Γ, T, φ) over Γ with k-basis
xt, t ∈ T, and action and coaction of Γ given by

gxt = φ(g, t)xgtg−1 , (3–14)

δ(xt) = t⊗ xt (3–15)

for all g ∈ Γ, t ∈ T .
Conversely, if the function φ defines a Yetter–Drinfeld module on the vector

space V by (3–14), (3–15), then φ satisfies (3–12), (3–13).
Note that the braiding c of V (Γ, T, φ) is determined by

c(xs ⊗ xt) = φ(s, t)xsts−1 ⊗ xt for all s, t ∈ T,

hence by the values of φ on T × T .

The main examples come from the theory of Coxeter groups ([BL, Chapitre
IV]). Let S be a subset of a group W of elements of order 2. For all s, s′ ∈ S

let m(s, s′) be the order of ss′. (W,S) is called a Coxeter system and W a
Coxeter group if W is generated by S with defining relations (ss′)m(s,s′) = 1 for
all s, s′ ∈ S such that m(s, s′) is finite.

Let (W,S) be a Coxeter system. For any g ∈ W there is a sequence (s1, . . . , sq)
of elements in S with g = s1 · · · · · sq. If q is minimal among all such represen-
tations, then q = l(g) is called the length of g, and (s1, . . . , sq) is a reduced
representation of g.

Definition 3.11. Let (W,S) be a Coxeter system, and T = {gsg−1 | g ∈ W,

s ∈ S}. Define φ : W × T → k \ {0} by

φ(g, t) = (−1)l(g) for all g ∈ W, t ∈ T. (3–16)

This φ satisfies (3–12) and (3–13). Thus we have associated to each Coxeter
group the Yetter–Drinfeld module V (W,T, φ) ∈ W

W YD.

The functions φ satisfying (3–12), (3–13) can be constructed up to a diagonal
change of the basis from characters of the centralizers of elements in the con-
jugacy classes. This is a special case of the description of the simple modules
in Γ

ΓYD (see [W] and also [L4]); the equivalent classification of the simple Hopf
bimodules over Γ was obtained in [DPR] (over k) and then in [Ci] (over any
field).
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Let t be an element in Γ. We denote by Ot and Γt the conjugacy class and
the centralizer of t in Γ. Let U be any left kΓt-module. It is easy to see that the
induced representation V = kΓ⊗kΓt U is a Yetter–Drinfeld module over Γ with
the induced action of Γ and the coaction

δ : V → kΓ⊗ V, δ(g ⊗ u) = gtg−1 ⊗ g ⊗ u for all g ∈ Γ, u ∈ U.

We will denote this Yetter–Drinfeld module over Γ by M(t, U).
Assume that Γ is finite. Then V = M(t, U) is a simple Yetter–Drinfeld module

if U is a simple representation of Γt, and each simple module in Γ
ΓYD has this

form. If we take from each conjugacy class one element t and non-isomorphic
simple Γt-modules, any two of these simple Yetter–Drinfeld modules are non-
isomorphic.

Let si, 1 ≤ i ≤ θ, be a complete system of representatives of the residue
classes of Γt. We define ti = sits

−1
i for all 1 ≤ i ≤ θ. Thus

Γ/Γt → Ot, siΓt 7→ ti, 1 ≤ i ≤ θ,

is bijective, and as a vector space, V =
⊕

1≤i≤θ si ⊗ U . For all g ∈ Γ and
1 ≤ i ≤ θ, there is a uniquely determined 1 ≤ j ≤ θ with s−1

j gsi ∈ Γt, and the
action of g on si ⊗ u, u ∈ U , is given by

g(si ⊗ u) = sj ⊗ (s−1
j gsi)u.

In particular, if U is a one-dimensional Γt-module with basis u and action hu =
χ(h)u for all h ∈ Γt defined by the character χ : Γt → k \ {0}, then V has a
basis xi = si ⊗ u, 1 ≤ i ≤ θ, and the action and coaction of Γ are given by

gxi = χ(s−1
j gsi)xj and δ(xi) = ti ⊗ xi,

if s−1
j gsi ∈ Γt. Note that gtig

−1 = tj . Hence the module we have constructed
is V (Γ, T, φ), where T is the conjugacy class of t, and φ is given by φ(g, ti) =
χ(s−1

j gsi).

We now construct another example of a function φ satisfying (3–12), (3–13).

Definition 3.12. Let T be the set of all transpositions in the symmetric group
Sn. Define φ : Sn × T → k \ {0} for all g ∈ Sn, 1 ≤ i < j ≤ n, by

φ(g, (ij)) =

{
1 , if g(i) < g(j),

−1 , if g(i) > g(j).
(3–17)

Let t = (12). The centralizer of t in Sn is

〈(34), (45), . . . , (n−1, n)〉 ∪ 〈(34), (45), . . . , (n−1, n)〉(12).

Let χ be the character of (Sn)t with χ((ij)) = 1 for all 3 ≤ i < j ≤ n, and
χ((12)) = −1. Then the function φ defined by (3–17) is given by the character
χ as described above.
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Up to base change we have found all functions φ satisfying (3–12), (3–13) for
Γ = Sn, where T is the conjugacy class of all transpositions, and φ(t, t) = −1
for all t ∈ T . The case φ(t, t) = 1 for some t ∈ T would lead to a Nichols algebra
B(V ) of infinite dimension.

To determine the structure of B(V ) for the Yetter–Drinfeld modules defined
by the functions φ in (3–16) and (3–17) seems to be a fundamental and very
hard combinatorial problem. Only a few partial results are known [MiS], [FK],
[FP].

We consider some special cases; here the method of skew-derivations is applied,
see Proposition 2.8.

Example 3.13. Let W = Sn, n ≥ 2, and T = {(ij) | 1 ≤ i < j ≤ n} the
set of all transpositions. Define φ by (3–16) and let V = V (W,T, φ). Then the
following relations hold in B(V ) for all 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n:

x2
(ij) = 0. (3–18)

If {i, j} ∩ {k, l} = ∅, then x(ij)x(kl) + x(kl)x(ij) = 0. (3–19)

If i < j < k, then x(ij)x(jk) + x(jk)x(ik) + x(ik)x(ij) = 0, (3–20)

x(jk)x(ij) + x(ik)x(jk) + x(ij)x(ik) = 0.

Example 3.14. Let W = Sn, n ≥ 2, and T = {(ij) | 1 ≤ i < j ≤ n} the
set of all transpositions. Define φ by (3–17) and let V = V (W,T, φ). Then the
following relations hold in B(V ) for all 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n:

x2
(ij) = 0. (3–21)

If {i, j} ∩ {k, l} = ∅, then x(ij)x(kl) − x(kl)x(ij) = 0. (3–22)

If i < j < k, then x(ij)x(jk) − x(jk)x(ik) − x(ik)x(ij) = 0, (3–23)

x(jk)x(ij) − x(ik)x(jk) − x(ij)x(ik) = 0.

The algebras B̃(V ) generated by all x(ij), 1 ≤ i < j ≤ n, with the quadratic
relations in the examples 3.13 resp. 3.14 are braided Hopf algebras in the category
of Yetter–Drinfeld modules over Sn. B̃(V ) in example 3.14 is the algebra En

introduced by Fomin and Kirillov in [FK] to describe the cohomology ring of the
flag variety. We believe that indeed the quadratic relations in the examples 3.13
and 3.14 are defining relations for B(V ), that is B̃(V ) = B(V ) in these cases.

It was noted in [MiS] that the conjecture in [FK] about the ”Poincaré-duality“
of the dimensions of the homogeneous components of the algebras En (in case
they are finite-dimensional) follows from the braided Hopf algebra structure as
a special case of Lemma 1.12.

Another result about the algebras En by Fomin and Procesi [FP] says that
En+1 is a free module over En, and PEn divides PEn+1 , where PA denotes the
Hilbert series of a graded algebra A. The proof in [FP] used the relations in
Example 3.14.
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This result is in fact a special case of a very general splitting theorem for
braided Hopf algebras in [MiS, Theorem3.2] which is an application of the fun-
damental theorem for Hopf modules in the braided situation. This splitting
theorem generalizes the main result of [Gñ2].

In [MiS] some partial results are obtained about the structure of the Nichols
algebras of Coxeter groups. In particular

Theorem 3.15. [MiS, Corollary 5.9]Let (W,S) be a Coxeter system, T the
set of all W -conjugates of elements in S, φ defined by (3–16), V = V (W,T, φ)
and R = B(V ). For all g ∈ W , choose a reduced representation g = s1 · · · sq,
s1, · · · , sq ∈ S, of g, and define

xg = xs1 · · ·xsq .

Then the subalgebra of R generated by all xs, s ∈ S has the k-basis xg, g ∈ W .
For all g ∈ W , the g-homogeneous component Rg of R is isomorphic to R1.

If R is finite-dimensional , then W is finite and dim(R) = ord(W )dim(R1).

This theorem holds for more general functions φ, in particular for Sn and φ

defined in (3–17).

Let (W,S) be a Coxeter system and V = V (W,T, φ) as in Theorem [MiS].
Then B(V ) was computed in [MiS] in the following cases:

• W = S3, S = {(12), (23)}: The relations of B(V ) are the quadratic relations
in Example 3.13, and dim B(V ) = 12.

• W = S4, S = {(12), (23), (34)}: The relations of B(V ) are the quadratic
relations in Example 3.13, and dimB(V ) = 24 · 24.

• W = D4, the dihedral group of order 8, S = {t, t′}, where t, t′ are generators
of D4 of order 2 such that tt′ is of order 4. There are quadratic relations and
relations of order 4 defining B(V ), and dim B(V ) = 64.

In all three cases the integral, which is the longest non-zero word in the generators
xt, can be described in terms of the longest element in the Coxeter group. In all
the other cases it is not known whether B(V ) is finite-dimensional.

In [FK] it is shown that

• dim(E3) = 12.

• dim(E4) = 24 · 24.

• dim(E5) is finite by using a computer program.

Again, for the other cases n > 5 it is not known whether En is finite-dimensional.

In [Gñ3, 5.3.2] another example of a finite-dimensional Nichols algebra of a
braided vector space (V, c) of finite group type is given with dim(V ) = 4 and
dim(B(V )) = 72. The defining relations of B(V ) are quadratic and of order 6.
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By a result of Montgomery [M2], any pointed Hopf algebra B can be decom-
posed as a crossed product

B ' A#σkG, σ a 2-cocycle

of A, its link-indecomposable component containing 1 (a Hopf subalgebra) and
a group algebra kG. However, the structure of such link-indecomposable Hopf
algebras A, in particular in the case when A is finite-dimensional and the group
of its group-like elements G(A) is non-abelian, is not known. To define link-
indecomposable pointed Hopf algebras, we recall the definition of the quiver of A

in [M2]. The vertices of the quiver of A are the elements of the group G(A); for
g, h ∈ G(A), there exists an arrow from h to g if Pg,h(A) is non-trivial, that is
if k(g − h) $ Pg,h(A). The Hopf algebra A is called link-indecomposable, if its
quiver is connected as an undirected graph.

Definition 3.16. Let Γ be a finite group and V ∈ Γ
ΓYD. V is called link-

indecomposable if the group Γ is generated by the elements g with Vg 6= 0.

By [MiS, 4.2], V ∈ Γ
ΓYD is link-indecomposable if and only if the Hopf algebra

B(V )#kΓ is link-indecomposable.
Thus, by the examples constructed above, there are link-indecomposable,

finite-dimensional pointed Hopf algebras A with G(A) isomorphic to Sn, 3 ≤
n ≤ 5, or to D4.

Question 3.17. Which finite groups are isomorphic to G(A) for some finite-
dimensional, link-indecomposable pointed Hopf algebra A? Are there finite
groups which do not occur in this form?

Finally, let us come back to the simple Yetter–Drinfeld modules V = M(t, U) ∈
Γ
ΓYD, where t ∈ Γ and U is a simple left Γt-module of dimension > 1. In this
case, strong restrictions are known for B(V ) to be finite-dimensional. By Schur’s
lemma, t acts as a scalar q on U .

Proposition 3.18. [Gñ3, 3.1] Assume that dim B(V ) is finite. If dim U ≥ 3,
then q = −1; and if dim U = 2, then q = −1 or q is a root of unity of order
three.

In the proof of Proposition 3.18, a result of Lusztig on braidings of Cartan type
(see [AS2, Theorem 3.1]) is used. In a similar way Graña showed

Proposition 3.19. [Gñ3, 3.2] Let Γ be a finite group of odd order , and V ∈
Γ
ΓYD. Assume that B(V ) is finite-dimensional . Then the multiplicity of any
simple Yetter–Drinfeld module over Γ as a direct summand in V is at most 2.

In particular , up to isomorphism there are only finitely many Yetter–Drinfeld
modules V ∈ Γ

ΓYD such that B(V ) is finite-dimensional .

The second statement in Proposition 3.19 was a conjecture in a preliminary
version of [AS2].
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3.5. Braidings of (infinite) group type. We briefly mention Nichols algebras
over a free abelian group of finite rank with a braiding which is not diagonal.

Example 3.20. Let Γ = 〈g〉 be a free group in one generator. Let V(t, 2) be
the Yetter–Drinfeld module of dimension 2 such that V(t, 2) = V(t, 2)g and the
action of g on V(t, 2) is given, in a basis x1, x2, by

g · x1 = tx1, g · x2 = tx2 + x1.

Here t ∈ k×. Then:
(a) If t is not a root of 1, then B(V(t, 2)) = T (V(t, 2)).
(b) If t = 1, then B(V(1, 2)) = k〈x1, x2|x1x2 = x2x1 + x2

1〉; this is the well-
known Jordanian quantum plane.

Example 3.21. More generally, if t ∈ k×, let V(t, θ) be the Yetter–Drinfeld
module of dimension θ ≥ 2 such that V(t, θ) = V(t, θ)g and the action of g on
V(t, θ) is given, in a basis x1, . . . , xθ, by

g · x1 = tx1, g · xj = txj + xj−1, 2 ≤ j ≤ θ.

Note there is an inclusion of Yetter–Drinfeld modules V(t, 2) ↪→ V(t, θ); hence,
if t is not a root of 1, B(V(t, θ)) has exponential growth.

Question 3.22. Compute B(V(1, θ)); does it have finite growth?

4. Nichols Algebras of Cartan Type

We now discuss fundamental examples of Nichols algebras of diagonal type
that come from the theory of quantum groups.

We first need to fix some notation. Let A = (aij)1≤i,j≤θ be a generalized
symmetrizable Cartan matrix [K]; let (d1, . . . , dθ) be positive integers such that
diaij = djaji. Let g be the Kac–Moody algebra corresponding to the Cartan
matrix A. Let X be the set of connected components of the Dynkin diagram
corresponding to it. For each I ∈ X, we let gI be the Kac–Moody Lie algebra
corresponding to the generalized Cartan matrix (aij)i,j∈I and nI be the Lie
subalgebra of gI spanned by all its positive roots. We omit the subindex I when
I = {1, . . . , θ}. We assume that for each I ∈ X, there exist cI , dI such that
I = {j : cI ≤ j ≤ dI}; that is, after reordering the Cartan matrix is a matrix
of blocks corresponding to the connected components. Let I ∈ X and i ∼ j in
I; then Ni = Nj , hence NI := Ni is well defined. Let ΦI , resp. Φ+

I , be the root
system, resp. the subset of positive roots, corresponding to the Cartan matrix
(aij)i,j∈I ; then Φ =

⋃
I∈X ΦI , resp. Φ+ =

⋃
I∈X Φ+

I is the root system, resp. the
subset of positive roots, corresponding to the Cartan matrix (aij)1≤i,j≤θ. Let
α1, . . . , αθ be the set of simple roots.

Let WI be the Weyl group corresponding to the Cartan matrix (aij)i,j∈I ; we
identify it with a subgroup of the Weyl group W corresponding to the Cartan
matrix (aij).
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If (aij) is of finite type, we fix a reduced decomposition of the longest element
ω0,I of WI in terms of simple reflections. Then we obtain a reduced decompo-
sition of the longest element ω0 = si1 . . . siP

of W from the expression of ω0 as
product of the ω0,I ’s in some fixed order of the components, say the order arising
from the order of the vertices. Therefore βj := si1 . . . sij−1(αij ) is a numeration
of Φ+.

Example 4.1. Let q ∈ k, q 6= 0, and consider the braided vector space (V, c),
where V is a vector space with a basis x1, . . . , xθ and the braiding c is given by

c(xi ⊗ xj) = qdiaij xj ⊗ xi, (4–1)

Theorem 4.2. [L3, 33.1.5] Let (V, c) be a braided vector space with braiding
matrix (4–1). If q is not algebraic over Q, then

B(V) = k〈x1, . . . , xθ|ad c(xi)1−aij xj = 0, i 6= j〉.
The theorem says that B(V) is the well-known “positive part” U+

q (g) of the
Drinfeld–Jimbo quantum enveloping algebra of g.

To state the following important theorem, we recall the definition of braided
commutators (1–20). Lusztig defined root vectors Xα ∈ B(V), α ∈ Φ+ [L2].
One can see from [L1; L2] that, up to a non-zero scalar, each root vector can
be written as an iterated braided commutator in some sequence Xl1 , . . . , Xla of
simple root vectors such as [[Xl1 , [Xl2 , Xl3 ]c]c, [Xl4 , Xl5 ]c]c. See also [Ri].

Theorem 4.3 [L1; L2; L3; dCP; Ro1; Mu]. Let (V, c) be a braided vector space
with braiding matrix (4–1). Assume that q is a root of 1 of odd order N ; and
that 3 does not divide N if there exists I ∈ X of type G2.

The algebra B(V) is finite-dimensional if and only if (aij) is a finite Cartan
matrix .

If this happens, then B(V) can be presented by generators Xi, 1 ≤ i ≤ θ, and
relations

ad c(Xi)1−aij (Xj) = 0, i 6= j, (4–2)

XN
α = 0, α ∈ Φ+. (4–3)

Moreover , the following elements constitute a basis of B(V):

Xh1
β1

Xh2
β2

. . . XhP

βP
, 0 ≤ hj ≤ N − 1, 1 ≤ j ≤ P.

The theorem says that B(V) is the well-known “positive part” u+
q (g) of the

so-called Frobenius–Lusztig kernel of g.
Motivated by the preceding theorems and results, we introduce the following

notion, generalizing [AS2] (see also [FG]).

Definition 4.4. Let (V, c) a braided vector space of diagonal type with basis
x1, . . . , xθ, and matrix (qij), that is

c(xi ⊗ xj) = qi,jxj ⊗ xi, for all 1 ≤ i, j ≤ θ.
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We shall say that (V, c) is of Cartan type if qii 6= 1 for all i, and there are integers
aij with aii = 2, 1 ≤ i ≤ θ, and 0 ≤ −aij < ord qii (which could be infinite),
1 ≤ i 6= j ≤ θ, such that

qijqji = q
aij

ii , 1 ≤ i, j ≤ θ.

Since clearly aij = 0 implies that aji = 0 for all i 6= j, (aij) is a generalized
Cartan matrix in the sense of the book [K]. We shall adapt the terminology from
generalized Cartan matrices and Dynkin diagrams to braidings of Cartan type.
For instance, we shall say that (V, c) is of finite Cartan type if it is of Cartan
type and the corresponding GCM is actually of finite type, i.e. a Cartan matrix
associated to a finite-dimensional semisimple Lie algebra. We shall say that a
Yetter–Drinfeld module V is of Cartan type if the matrix (qij) as above is of
Cartan type.

Definition 4.5. Let (V, c) be a braided vector space of Cartan type with Cartan
matrix (aij). We say that (V, c) is of FL-type (or Frobenius–Lusztig type) if there
exist positive integers d1, . . . , dθ such that

For all i, j, diaij = djaji (thus (aij) is symmetrizable). (4–4)

There exists a root of unity q ∈ k such that qij = qdiaij for all i, j. (4–5)

We call (V, c) locally of FL-type if any principal 2× 2 submatrix of (qij) defines
a braiding of FL-type.

We now fix for each α ∈ Φ+ such a representation of Xα as an iterated braided
commutator. For a general braided vector space (V, c) of finite Cartan type,
we define root vectors xα in the tensor algebra T (V ), α ∈ Φ+, as the same
formal iteration of braided commutators in the elements x1, . . . , xθ instead of
X1, . . . , Xθ but with respect to the braiding c given by the general matrix (qij).

Theorem 4.6. [AS2, Th. 1.1], [AS4, Th. 4.5]. Let (V, c) be a braided vector
space of Cartan type. We also assume that qij has odd order for all i, j.

(i) Assume that (V, c) is locally of FL-type and that , for all i, the order of qii is
relatively prime to 3 whenever aij = −3 for some j, and is different from 3,
5, 7, 11, 13, 17. If B(V ) is finite-dimensional , then (V, c) is of finite Cartan
type.

(ii) If (V, c) is of finite Cartan type, then B(V ) is finite dimensional , and if
moreover 3 does not divide the order of qii for all i in a connected component
of the Dynkin diagram of type G2, then

dim B(V ) =
∏

I∈X

Ndim nI

I ,
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where NI = ord(qii) for all i ∈ I and I ∈ X. The Nichols algebra B(V ) is
presented by generators xi, 1 ≤ i ≤ θ, and relations

ad c(xi)1−aij (xj) = 0, i 6= j, (4–6)

xNI
α = 0, α ∈ Φ+

I , I ∈ X. (4–7)

Moreover , the following elements constitute a basis of B(V ):

xh1
β1

xh2
β2

. . . xhP

βP
, 0 ≤ hj ≤ NI − 1, if βj ∈ I, 1 ≤ j ≤ P.

Let B̂(V ) be the braided Hopf algebra in Γ
ΓYD generated by x1, . . . , xθ with

relations (4–6), where the xi’s are primitive. Let K(V ) be the subalgebra of
B̂(V ) generated by xNI

α , α ∈ Φ+
I , I ∈ X; it is a Yetter–Drinfeld submodule of

B̂(V ).

Theorem 4.7. [AS4, Th. 4.8] K(V ) is a braided Hopf subalgebra in Γ
ΓYD of

B̂(V ).

5. Classification of Pointed Hopf Algebras by the Lifting
Method

5.1. Lifting of Cartan type. We propose subdividing the classification prob-
lem for finite-dimensional pointed Hopf algebras into the following problems:

(a) Determine all braided vector spaces V of group type such that B(V ) is
finite-dimensional.

(b) Given a finite group Γ, determine all realizations of braided vector spaces V

as in (a) as Yetter–Drinfeld modules over Γ.
(c) The lifting problem: For V as in (b), compute all Hopf algebras A such that

gr A ' B(V )#H .
(d) Investigate whether any finite-dimensional pointed Hopf algebra is generated

as an algebra by its group-like and skew-primitive elements.

Problem (a) was discussed in Chapters 3 and 4. We have seen the very important
class of braidings of finite Cartan type and some isolated examples where the
Nichols algebra is finite-dimensional. But the general case of problem (a) seems
to require completely new ideas.

Problem (b) is of a computational nature. For braidings of finite Cartan type
with Cartan matrix (aij)1≤i,j≤θ and an abelian group Γ we have to compute
elements g1, . . . , gθ ∈ Γ and characters χ1, . . . , χθ ∈ Γ̂ such that

χi(gj)χj(gi) = χi(gi)aij , for all 1 ≤ i, j ≤ θ. (5–1)

To find these elements one has to solve a system of quadratic congruences in sev-
eral unknowns. In many cases they do not exist. In particular, if θ > 2(ordΓ)2,
then the braiding cannot be realized over the group Γ. We refer to [AS2, Section
8] for details.
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Problem (d) is the subject of Section 5.4.

We will now discuss the lifting problem (c).
The coradical filtration kΓ = A0 ⊂ A1 ⊂ · · · of a pointed Hopf algebra A is

stable under the adjoint action of the group. For abelian groups Γ and finite-
dimensional Hopf algebras, the following stronger result holds. It is the starting
point of the lifting procedure, and we will use it several times.

If M is a kΓ-module, we denote by Mχ = {m ∈ M | gm = χ(g)m for all g ∈
Γ}, χ ∈ Γ̂, the isotypic component of type χ.

Lemma 5.1. Let A be a finite-dimensional Hopf algebra with abelian group
G(A) = Γ and diagram R. Let V = R(1) ∈ Γ

ΓYD with basis xi ∈ V χi
gi

, gi ∈
Γ, χi ∈ Γ̂, 1 ≤ i ≤ θ.

(a) The isotypic component of trivial type of A1 is A0. Therefore, A1 =
A0 ⊕ (

⊕
χ 6=ε(A1)χ) and

⊕

χ6=ε

(A1)χ '−→ A1/A0
'←− V #kΓ. (5–2)

(b) For all g ∈ Γ, χ ∈ Γ̂ with χ 6= ε,

Pg,1(A)χ 6= 0 ⇐⇒ there is some 1 ≤ l ≤ θ : g = gl, χ = χl; (5–3)

Pg,1(A)ε = k(1− g). (5–4)

Proof. (a) follows from [AS1, Lemma 3.1] and implies (b). See [AS1, Lemma
5.4]. ¤

We assume that A is a finite-dimensional pointed Hopf algebra with abelian
group G(A) = Γ, and that

gr A ' B(V )#kΓ,

where V ∈ Γ
ΓYD is a given Yetter–Drinfeld module with basis xi∈V χi

gi
, g1 . . . , gθ ∈

Γ, χ1, . . . , χθ ∈ Γ̂, 1 ≤ i ≤ θ.

We first lift the basis elements xi. Using (5–2), we choose ai ∈ P(A)χi

gi,1
such

that the canonical image of ai in A1/A0 is xi (which we identify with xi#1),
1 ≤ i ≤ θ. Since the elements xi together with Γ generate B(V )#kΓ, it follows
from a standard argument that a1, . . . , aθ and the elements in Γ generate A as
an algebra.

Our aim is to find relations between the a′is and the elements in Γ which define
a quotient Hopf algebra of the correct dimension dimB(V ) · ord(Γ). The idea is
to ”lift“ the relations between the x′is and the elements in Γ in B(V )#kΓ.

We now assume moreover that V is of finite Cartan type with Cartan matrix
(aij) with respect to the basis x1, . . . , xθ, that is (5–1) holds. We also assume

ord(χj(gi)) is odd for all i, j, (5–5)

Ni = ord(χi(gi)) is prime to 3 for all i ∈ I, I ∈ X of type G2. (5–6)
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We fix a presentation Γ = 〈y1〉⊕ · · · ⊕ 〈yσ〉, and denote by Ml the order of yl,
1 ≤ l ≤ σ. Then Theorem 4.6 and formulas (1–17) imply that B(V )#kΓ can be
presented by generators hl, 1 ≤ l ≤ σ, and xi, 1 ≤ i ≤ θ with defining relations

hMl

l = 1, 1 ≤ l ≤ σ; (5–7)

hlht = hthl, 1 ≤ t < l ≤ σ; (5–8)

hlxi = χi(yl)xihl, 1 ≤ l ≤ σ, 1 ≤ i ≤ θ; (5–9)

xNI
α = 0, α ∈ Φ+

I , I ∈ X; (5–10)

ad (xi)1−aij (xj) = 0, i 6= j, (5–11)

and where the Hopf algebra structure is determined by

∆(hl) = hl ⊗ hl, 1 ≤ l ≤ σ; (5–12)

∆(xi) = xi ⊗ 1 + gi ⊗ xi, 1 ≤ i ≤ θ. (5–13)

Thus A is generated by the elements ai, 1 ≤ i ≤ θ, and hl, 1 ≤ l ≤ σ. By
our previous choice, relations (5–7), (5–8), (5–9) and (5–12), (5–13) all hold in
A with the x′is replaced by the a′is.

The remaining problem is to lift the quantum Serre relations (5–11) and the
root vector relations (5–10). We will do this in the next two Sections.

5.2. Lifting the quantum Serre relations. We divide the problem into two
cases.

• Lifting of the “quantum Serre relations” xixj − χj(gi)xjxi = 0, when i 6= j

are in different components of the Dynkin diagram.
• Lifting of the “quantum Serre relations” ad c(xi)1−aij (xj) = 0, when i 6= j are

in the same component of the Dynkin diagram.

The first case is settled in the next result from [AS4, Theorem 6.8 (a)].

Lemma 5.2. Assume that 1 ≤ i, j ≤ θ, i < j and i 6∼ j. Then

aiaj − χj(gi)ajai = λij(1− gigj), (5–14)

where λij is a scalar in k which can be chosen such that

λij is arbitrary if gigj 6= 1 and χiχj = ε, but 0 otherwise. (5–15)

Proof. It is easy to check that aiaj − χj(gi)ajai ∈ P(A)χiχj

gigj ,1. Suppose that
χiχj 6= ε and aiaj − χj(gi)ajai 6= 0. Then by (5–3), χiχj = χl and gigj = gl for
some 1 ≤ l ≤ θ.

Substituting gl and χl in χi(gl)χl(gi) = χi(gi)ail and using χi(gj)χj(gi) = 1
(since aij = 0, i and j lie in different components), we get χi(gi)2 = χi(gi)ail .
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Thus we have shown that ail ≡ 2 mod Ni, and in the same way ajl ≡ 2
mod Nj . Since i 6∼ j, ail or ajl must be 0, and we obtain the contradiction
Ni = 2 or Nj = 2.

Therefore χiχj = ε, and the claim follows from (5–4), or aiaj−χj(gi)ajai = 0,
and the claim is trivial. ¤

Lemma 5.2 motivates the following notion.

Definition 5.3. [AS4, Definition 5.1] We say that two vertices i and j are
linkable (or that i is linkable to j) if

i 6∼ j, (5–16)

gigj 6= 1 and (5–17)

χiχj = ε. (5–18)

The following elementary properties are easily verified:

If i is linkable to j, then χi(gj)χj(gi) = 1, χj(gj) = χi(gi)−1. (5–19)

If i and k, resp. j and l, are linkable, then aij = akl, aji = alk. (5–20)

A vertex i can not be linkable to two different vertices j and h. (5–21)

A linking datum is a collection (λij)1≤i<j≤θ, i 6∼j of elements in k such that λij is
arbitrary if i and j are linkable but 0 otherwise. Given a linking datum, we say
that two vertices i and j are linked if λij 6= 0.

The notion of a linking datum encodes the information about lifting of rela-
tions in the first case.

Definition 5.4. The collection D formed by a finite Cartan matrix (aij), and
g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂ satisfying (5–1), (5–5) and (5–6), and a linking
datum (λij)1≤i<j≤θ, i 6∼j will be called a linking datum of finite Cartan type for
Γ. We define the Yetter–Drinfeld module V ∈ Γ

ΓYD of D as the vector space
with basis x1, . . . , xθ with xi ∈ V χi

gi
for all i.

If D is a linking datum of finite Cartan type for Γ, we define the Hopf al-
gebra u(D) by generators ai, 1 ≤ i ≤ θ, and hl, 1 ≤ l ≤ σ and the relations
(5–7),(5–8),(5–9),(5–10), the quantum Serre relations (5–11) for i 6= j and i ∼ j,
(5–12),(5–13) with the xi’s replaced by the ai’s, and the lifted quantum Serre
relations (5–14). We formally include the case when θ = 0 and u(D) is a group
algebra.

In the definition of u(D) we could always assume that the linking datum con-
tains only elements λij ∈ {0, 1} (by multiplying the generators ai with non-zero
scalars).

Theorem 5.5. [AS4, Th. 5.17] Let Γ be a finite abelian group and D a linking
datum of finite Cartan type for Γ with Yetter–Drinfeld module V . Then u(D) is
a finite-dimensional pointed Hopf algebra with gr u(D) ' B(V )#kΓ.
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The proof of the theorem is by induction on the number of irreducible com-
ponents of the Dynkin diagram. In the induction step a new Hopf algebra is
constructed by twisting the multiplication of the tensor product of two Hopf
algebras by a 2-cocycle. The 2-cocycle is defined in terms of the linking datum.

Note that the Frobenius–Lusztig kernel uq(g) of a semisimple Lie algebra g

is a special case of u(D). Here the Dynkin diagram of D is the disjoint union
of two copies of the Dynkin diagram of g, and corresponding points are linked
pairwise. But many other linkings are possible, for example 4 copies of A3 linked
in a circle [AS4, 5.13]. See [D] for a combinatorial description of all linkings of
Dynkin diagrams.

Let us now turn to the second case. Luckily it turns out that (up to some
small order exceptions) in the second case the Serre relations simply hold in the
lifted situation without any change.

Theorem 5.6. [AS4, Theorem 6.8]. Let I ∈ X. Assume that NI 6= 3. If I is of
type Bn, Cn or F4, resp. G2, assume further that NI 6= 5, resp. NI 6= 7. Then
the quantum Serre relations hold for all i, j ∈ I, i 6= j, i ∼ j.

5.3. Lifting the root vector relations. Assume first that the root α is
simple and corresponds to a vertex i. It is not difficult to see, using the quantum
binomial formula, that aNi

i is a (gNi
i , 1)-skew-primitive. By Lemma 5.1, we have

aNi
i = µi

(
1− gNi

i

)
, (5–22)

for some scalar µi; this scalar can be chosen so that

µi is arbitrary if gNi
i 6= 1 and χNi

i = 1 but 0 otherwise. (5–23)

Now, if the root α is not simple then aNi
i is not necessarily a skew-primitive,

but a skew-primitive “modulo root vectors of shorter length”.
In general, we define the root vector aα for α ∈ Φ+

I , I ∈ X, by replacing the
xi by ai in the formal expression for xα as a braided commutator in the simple
root vectors. Then aNI

α , α ∈ I, should be an element uα in the group algebra of
the subgroup generated by the NI -th powers of the elements in Γ.

Finally, the Hopf algebra generated by ai, 1 ≤ i ≤ θ, and hl, 1 ≤ l ≤ σ with
the relations (5–7),(5–8),(5–9) (with ai instead of xi),

• the lifted root vector relations aNI
α = uα, α ∈ Φ+

I , I ∈ X,
• the quantum Serre relations (5–11) for i 6= j and i ∼ j (with ai instead of xi),
• the lifted quantum Serre relations (5–14),

should have the correct dimension dim(B(V )) · ord(Γ).
We carried out all the steps of this program in the following cases:

(a) All connected components of the Dynkin diagram are of type A1 [AS1].
(b) The Dynkin diagram is of type A2, and N > 3 is odd [AS3].
(c) The Dynkin diagram is arbitrary, but we assume gNi

i = 1 for all i [AS4].
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(d) The Dynkin diagram is of type An, any n ≥ 2, and N > 3 , see Section 6 of
this paper.

The cases A2, N = 3 and B2, N odd and 6= 5, were recently done in [BDR].
Here N denotes the common order of χi(gi) for all i when the Dynkin diagram
is connected.

5.4. Generation in degree one. Let us now discuss step (d) of the Lifting
method.

It is not difficult to show that our conjecture 2.7 about Nichols algebras, in
the setting of H = kΓ, is equivalent to

Conjecture 5.7. [AS3]. Any pointed finite-dimensional Hopf algebra over k is
generated by group-like and skew-primitive elements.

We have seen in Section 2.1 that the corresponding conjecture is false when
the Hopf algebra is infinite-dimensional or when the Hopf algebra is finite-
dimensional and the characteristic of the field is > 0. A strong indication that
the conjecture is true is given by:

Theorem 5.8. [AS4, Theorem 7.6]. Let A be a finite-dimensional pointed Hopf
algebra with coradical kΓ and diagram R, that is

gr A ' R#kΓ.

Assume that R(1) is a Yetter–Drinfeld module of finite Cartan type with braiding
(qij)1≤i,j≤θ. For all i , let qi = qii, Ni = ord(qi). Assume that ord(qij) is odd and
Ni is not divisible by 3 and > 7 for all 1 ≤ i, j ≤ θ.

(i) For any 1 ≤ i ≤ θ contained in a connected component of type Bn, Cn or F4

resp. G2, assume that Ni is not divisible by 5 resp. by 5 or 7.
(ii) If i and j belong to different components, assume qiqj = 1 or ord(qiqj) = Ni.

Then R is generated as an algebra by R(1), that is A is generated by skew-
primitive and group-like elements.

Let us discuss the idea of the proof of Theorem 5.8. At one decisive point, we
use our previous results about braidings of Cartan type of rank 2.

Let S be the graded dual of R. By the duality principle in Lemma 2.4, S is
generated in degree one since P (R) = R(1). Our problem is to show that R is
generated in degree one, that is S is a Nichols algebra.

Since S is generated in degree one, there is a surjection of graded braided
Hopf algebras S → B(V ), where V = S(1) has the same braiding as R(1). But
we know the defining relations of B(V ), since it is of finite Cartan type. So we
have to show that these relations also hold in S.

In the case of a quantum Serre relation ad c(xi)1−aij (xj)=0, i 6= j, we consider
the Yetter–Drinfeld submodule W of S generated by xi and ad c(xi)1−aij (xj) and
assume that ad c(xi)1−aij (xj) 6= 0. The assumptions (1) and (2) of the theorem
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guarantee that W also is of Cartan type, but not of finite Cartan type. Thus
ad c(xi)1−aij (xj) = 0 in S.

Since the quantum Serre relations hold in S, the root vector relations follow
automatically from the next Lemma which is a consequence of Theorem 4.7.

Lemma 5.9. [AS4, Lemma 7.5] Let S =
⊕

n≥0 S(n) be a finite-dimensional
graded Hopf algebra in Γ

ΓYD such that S(0) = k1. Assume that V = S(1) is of
Cartan type with basis (xi)1≤i,j≤θ as described in the beginning of this Section.
Assume the Serre relations

(ad cxi)1−aij xj = 0 for all 1 ≤ i, j ≤ θ, i 6= j and i ∼ j.

Then the root vector relations

xNI
α = 0, α ∈ Φ+

I , I ∈ X,

hold in S.

Another result supporting Conjecture 5.7 is:

Theorem 5.10. [AEG, 6.1] Any finite-dimensional cotriangular pointed Hopf
algebra is generated by skew-primitive and group-like elements.

5.5. Applications. As a special case of the theory explained above we obtain
a complete answer to the classification problem in a significant case.

Theorem 5.11. [AS4, Th. 1.1] Let p be a prime > 17, s ≥ 1, and Γ = (Z/(p))s.
Up to isomorphism there are only finitely many finite-dimensional pointed Hopf
algebras A with G(A) ' Γ. They all have the form

A ' u(D), where D is a linking datum of finite Cartan type for Γ.

If we really want to write down all these Hopf algebras we still have to solve the
following serious problems:

• Determine all Yetter–Drinfeld modules V over Γ = (Z/(p))s of finite Cartan
type.

• Determine all the possible linkings for the modules V over (Z/(p))s in (a).

By [AS2, Proposition 8.3], dimV ≤ 2sp−1
p−2 , for all the possible V in (a). This

proves the finiteness statement in Theorem 5.11.

Note that we have precise information about the dimension of the Hopf alge-
bras in 5.11:

dim u(D) = ps|φ+|,

where |φ+| is the number of the positive roots of the root system of rank θ ≤
2sp−1

p−2 of the Cartan matrix of D.
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For arbitrary finite abelian groups Γ, there usually are infinitely many non-
isomorphic pointed Hopf algebras of the same finite dimension. The first exam-
ples were found in 1997 independently in [AS1], [BDG], [G]. Now it is very easy
to construct lots of examples by lifting. Using [AS3, Lemma 1.2] it is possible
to decide when two liftings are non-isomorphic.

But we have a bound on the dimension of A:

Theorem 5.12. [AS4, Th. 7.9] For any finite (not necessarily abelian) group Γ
of odd order there is a natural number n(Γ) such that

dim A ≤ n(Γ)

for any finite-dimensional pointed Hopf algebra A with G(A) = kΓ.

Remark 5.13. As a corollary of Theorem 5.11 and its proof, we get the complete
classification of all finite-dimensional pointed Hopf algebras with coradical of
prime dimension p, p 6= 2, 5, 7. By [AS2, Theorem 1.3], the only possibilities for
the Cartan matrix of D with Γ of odd prime order p are

(a) A1 and A1 ×A1,
(b) A2, if p = 3 or p ≡ 1 mod 3,
(c) B2, if p ≡ 1 mod 4,
(d) G2, if p ≡ 1 mod 3,
(e) A2 ×A1 and A2 ×A2, if p = 3.

The Nichols algebras over Z/(p) for these Cartan matrices are listed in [AS2,
Theorem 1.3]. Hence we obtain from Theorem 5.11 for p 6= 2, 5, 7 the bosoniza-
tions of the Nichols algebras, the liftings in case (a), that is quantum lines and
quantum planes [AS1], and the liftings of type A2 [AS3] in case (b).

This result was also obtained by Musson [Mus], using the lifting method and
[AS2].

The case p = 2 was already done in [N]. In this case the dimension of the
pointed Hopf algebras with 2-dimensional coradical is not bounded.

Let us mention briefly some classification results for Hopf algebras of special
order which can be obtained by the methods we have described. Let p > 2 be
a prime. Then all pointed Hopf algebras A of dimension pn, 1 ≤ n ≤ 5 are
known. If the dimension is p or p2, then A is a group algebra or a Taft Hopf
algebra. The cases of dimension p3 and p4 were treated in [AS1] and [AS3], and
the classification of dimension p5 follows from [AS4] and [Gñ1]. Independently
and by other methods, the case p3 was also solved in [CD] and [SvO].

See [A] for a discussion of what is known on classification of finite-dimensional
Hopf algebras.

5.6. The infinite-dimensional case. Our methods are also useful in the
infinite-dimensional case. Let us introduce the analogue to FL-type for infinite-
dimensional Hopf algebras.
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Definition 5.14. Let (V, c) be a braided vector space of Cartan type with
Cartan matrix (aij). We say that (V, c) is of DJ-type (or Drinfeld–Jimbo type)
if there exist positive integers d1, . . . , dθ such that

for all i, j, diaij = djaji (thus (aij) is symmetrizable); (5–24)

there exists q ∈ k, not a root of unity, such that qij = qdiaij for all i, j. (5–25)

To formulate a classification result for infinite-dimensional Hopf algebras, we
now assume that k is the field of complex numbers and we introduce a notion
from [AS5].

Definition 5.15. The collection D formed by a free abelian group Γ of finite
rank, a finite Cartan matrix (aij)1≤i,j≤θ, g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂, and a
linking datum (λij)1≤i<j≤θ, i 6∼j , will be called a positive datum of finite Cartan
type if

χi(gj)χj(gi) = χi(gi)aij , and 1 6= χi(gi) > 0, for all 1 ≤ i, j,≤ θ.

Notice that the restriction of the braiding of a positive datum of finite Cartan
type to each connected component is twist-equivalent to a braiding of DJ-type.

If D is a positive datum we define the Hopf algebra U(D) by generators ai,
1 ≤ i ≤ θ, and h±l , 1 ≤ l ≤ σ and the relations h±mh±l = h±l h±l , h±l h∓l =
1, for all 1 ≤ l, m ≤ σ, defining the free abelian group of rank σ, and (5–9),
the quantum Serre relations (5–11) for i 6= j and i ∼ j, (5–12),(5–13) (with
ai instead of xi), and the lifted quantum Serre relations (5–14). We formally
include the case when θ = 0 and U(D) is the group algebra of a free abelian
group of finite rank.

If (V, c) is a finite-dimensional braided vector space, we will say that the
braiding is positive if it is diagonal with matrix (qij), and the scalars qii are
positive and different from 1, for all i.

The next theorem follows from a result of Rosso [Ro2, Theorem 21] and the
theory described in the previous Sections.

Theorem 5.16. [AS5] Let A be a pointed Hopf algebra with abelian group
Γ = G(A) and diagram R. Assume that R(1) has finite dimension and posi-
tive braiding . Then the following are equivalent :

(a) A is a domain of finite Gelfand–Kirillov dimension, and the adjoint action
of G(A) on A (or on A1) is semisimple.

(b) The group Γ is free abelian of finite rank , and

A ' U(D), where D is a positive datum of finite Cartan type for Γ.

It is likely that the positivity assumption on the infinitesimal braiding in the last
theorem is related to the existence of a compact involution.
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6. Pointed Hopf Algebras of Type An

In this chapter, we develop from scratch, i.e. without using Lusztig’s results,
the classification of all finite-dimensional pointed Hopf algebras whose infinites-
imal braiding is of type An. The main results of this chapter are new.

6.1. Nichols algebras of type An. Let N be an integer, N > 2, and let q be
a root of 1 of order N . For the case N = 2, see [AnDa].

Let qij , 1 ≤ i, j ≤ n, be roots of 1 such that

qii = q, qijqji =

{
q−1, if |i− j| = 1,

1, if |i− j| ≥ 2.
(6–1)

for all 1 ≤ i, j ≤ n. For convenience, we denote

Bi,j
p,r :=

∏

i≤l≤j−1, p≤h≤r−1

ql,h,

for any 1 ≤ i < j ≤ n + 1, 1 ≤ p < r ≤ n + 1. Then we have the following
identities, whenever i < s < j, p < t < r:

Bi,s
p,rB

s,j
p,r =

∏

i≤l≤s−1,p≤h≤r−1

ql,h

∏

s≤l≤j−1,p≤h≤r−1

ql,h = Bi,j
p,r; (6–2)

Bi,j
p,tB

i,j
t,r = Bi,j

p,r; (6–3)

also,

Bi,j
j,j+1B

j,j+1
i,j =

∏

i≤l≤j−1

ql,j

∏

i≤h≤j−1

qj,h = q−1; (6–4)

Bi,j
i,j = q. (6–5)

We consider in this Section a vector space V = Vn with a basis x1, . . . , xn and
braiding determined by:

c(xi ⊗ xj) = qij xj ⊗ xi, 1 ≤ i, j ≤ n;

that is, V is of type An.

Remark 6.1. Let Γ be a group, g1, . . . , gn in the center of Γ, and χ1, . . . , χn in
Γ̂ such that

qij = 〈χj , gi〉, 1 ≤ i, j ≤ n.

Then V can be realized as a Yetter–Drinfeld module over Γ by declaring

xi ∈ V χi
gi

, 1 ≤ i ≤ n. (6–6)

For example, we could consider Γ = (Z/P )n, where P is divisible by the orders
of all the qij ’s; and take g1, . . . , gn as the canonical basis of Γ.
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We shall consider a braided Hopf algebra R provided with an inclusion of braided
vector spaces V → P (R). We identify the elements x1, . . . , xn with their images
in R. Distinguished examples of such R are the tensor algebra T (V ) and the
Nichols algebra B(V ). Additional hypotheses on R will be stated when needed.

We introduce the family (eij)1≤i<j≤n+1 of elements of R as follows:

ei,i+1 := xi; (6–7)

ei,j := [ei,j−1, ej−1,j ]c, 1 ≤ i < j ≤ n + 1, j − i ≥ 2. (6–8)

The braiding between elements of this family is given by:

c(ei,j ⊗ ep,r) = Bi,j
p,rep,r ⊗ ei,j , 1 ≤ i < j ≤ n + 1, 1 ≤ p < r ≤ n + 1. (6–9)

In particular,

ei,j = ei,j−1ej−1,j −Bi,j−1
j−1,jej−1,jei,j−1.

Remark 6.2. When V is realized as a Yetter–Drinfeld module over Γ as in
Remark 6.1, we have ei,j ∈ R

χi,j
gi,j , where

χi,j =
∏

i≤l≤j−1

χl, gi,j =
∏

i≤l≤j−1

gl, 1 ≤ i < j ≤ n + 1. (6–10)

Lemma 6.3. (a) If R is finite-dimensional or R ' B(V ), then

eN
i,i+1 = 0, if 1 ≤ i ≤ n. (6–11)

(b) Assume that R ' B(V ). Then

[ei,i+1, ep,p+1]c = 0, that is ei,i+1ep,p+1 = qipep,p+1ei,i+1, (6–12)

if 1 ≤ i < p ≤ n, p− i ≥ 2.
(c) Assume that R ' B(V ). Then

[ei,i+1, [ei,i+1, ei+1,i+2]c]c = 0, if 1 ≤ i < n; (6–13)

[ei+1,i+2, [ei+1,i+2, ei,i+1]c]c = 0, if 1 ≤ i < n; (6–14)

that is

ei,i+1ei,i+2 = Bi,i+1
i,i+2ei,i+2ei,i+1, (6–15)

ei,i+2ei+1,i+2 = Bi,i+2
i+1,i+2ei+1,i+2ei,i+2. (6–16)

Proof. (a) This follows from Lemma 3.6 (a), use c(eN
i,i+1 ⊗ eN

i,i+1) = eN
i,i+1 ⊗

eN
i,i+1 in the finite-dimensional case.

(b), (c) By Lemma 3.6 (b), the elements

[ei,i+1, ep,p+1]c, [ei,i+1, [ei,i+1, ei+1,i+2]c]c and [ei+1,i+2, [ei+1,i+2, ei,i+1]c]c

are primitive. Since they are homogeneous of degree 2, respectively of degree 3,
they should be 0. To derive (6–16) from (6–14), use (1–23). ¤
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Lemma 6.4. Assume that (6–12) holds in R. Then

[ei,j , ep,r]c = 0, if 1 ≤ i < j < p < r ≤ n + 1. (6–17)

[ep,r, ei,j ]c = 0, if 1 ≤ i < j < p < r ≤ n + 1. (6–18)

[ei,p, ep,j ]c = ei,j , if 1 ≤ i < p < j ≤ n + 1. (6–19)

Proof. (6–17). For j = i + 1 and r = p + 1, this is (6–12); the general case
follows recursively using (1–22). (6–18) follows from (6–17), since Bi,j

p,rB
p,r
i,j = 1

in this case.
(6–19). By induction on j − p; if p = j − 1 then (6–19) is just (6–8). For

p < j, we have

ei,j+1 = [ei,j , ej,j+1]c = [[ei,p, ep,j ]c, ej,j+1]c

= [ei,p, [ep,j , ej,j+1]c]c = [ei,p, ep,j+1]c

by (1–22), since [ei,p, ej,j+1]c = 0 by (6–17). ¤

Lemma 6.5. Assume that (6–12) holds in R. Then for any 1 ≤ i < j ≤ n + 1,

∆(ei,j) = ei,j ⊗ 1 + 1⊗ ei,j + (1− q−1)
∑

i<p<j

ei,p ⊗ ep,j . (6–20)

Proof. We proceed by induction on j − i. If j − i = 1, the formula just says
that the xi’s are primitive. For the inductive step, we compute ∆(ei,jej,j+1) to
be

(
ei,j⊗1+1⊗ei,j +(1−q−1)

∑

i<p<j

ei,p⊗ep,j

)
(ej,j+1⊗1+1⊗ej,j+1)

= ei,jej,j+1⊗1+Bi,j
j,j+1ej,j+1⊗ei,j +(1−q−1)

∑

i<p<j

Bp,j
j,j+1ei,pej,j+1⊗ep,j

+ei,j⊗ej,j+1 +1⊗ei,jej,j+1 +(1−q−1)
∑

i<p<j

ei,p⊗ep,jej,j+1;

and ∆(ej,j+1ei,j) to be

(ej,j+1⊗1+1⊗ej,j+1)
(

ei,j⊗1+1⊗ei,j +(1−q−1)
∑

i<p<j

ei,p⊗ep,j

)

= ej,j+1ei,j⊗1+ej,j+1⊗ei,j +(1−q−1)
∑

i<p<j

ej,j+1ei,p⊗ep,j

+Bj,j+1
i,j ei,j⊗ej,j+1+1⊗ej,j+1ei,j +(1−q−1)

∑

i<p<j

(Bi,p
j,j+1)

−1ei,p⊗ej,j+1ep,j .
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Hence

∆(ei,j+1) = ei,j+1 ⊗ 1 + 1⊗ ei,j+1 + (1−Bij
j,j+1B

j,j+1
ij )ei,j ⊗ ej,j+1

+ (1− q−1)
∑

i<p<j

(
Bp,j

j,j+1B
i,p
j,j+1 −Bi,j

j,j+1

)
ej,j+1ei,p ⊗ ep,j

+ (1− q−1)
∑

i<p<j

ei,p ⊗
(
ep,jej,j+1 −Bi,j

j,j+1(B
i,p
j,j+1)

−1ej,j+1ep,j

)

= ei,j+1 ⊗ 1 + 1⊗ ei,j+1 + (1− q−1)
∑

i<p<j+1

ei,p ⊗ ep,j+1;

by (6–4), (6–17) and the hypothesis. ¤

Remark 6.6. Let Γ be a group with g1, . . . , gn in the center of Γ, χ1, . . . , χn in
Γ̂, as in 6.1. Let R be a braided Hopf algebra in Γ

ΓYD such that (6–12) holds in
R. It follows from (6–20) and the reconstruction formulas for the bosonization
(1–17) that

∆R#kΓ(ei,j) = ei,j ⊗ 1 + gi,j ⊗ ei,j + (1− q−1)
∑

i<p<j

ei,pgp,j ⊗ ep,j . (6–21)

Lemma 6.7. Assume that (6–12), (6–13), (6–14) hold in R. Then

[ei,j , ep,r]c = 0, if 1 ≤ i < p < r < j ≤ n + 1; (6–22)

[ei,j , ei,r]c = 0, if 1 ≤ i < j < r ≤ n + 1; (6–23)

[ei,j , ep,j ]c = 0, if 1 ≤ i < p < j ≤ n + 1. (6–24)

Proof. (a) We prove (6–22) by induction on j − i. If j − i = 3, then

[ei,i+3, ei+1,i+2]c = [[ei,i+2, ei+2,i+3]c, ei+1,i+2]c

= [[[ei,i+1, ei+1,i+2]c, ei+2,i+3]c, ei+1,i+2]c = 0,

by Lemma 1.11. If j − i > 3 we argue by induction on r − p. If r − p = 1,
then there exists an index h such that either i < h < p < r = p + 1 < j or
i < p < r = p + 1 < h < j. In the first case, by (6–19), we have

[ei,j , ep,r]c = [[ei,h, eh,j ]c, ep,p+1]c = 0;

the last equality follows from Lemma 1.10 (c), because of (6–17) and the induc-
tion hypothesis. In the second case, we have

[ei,j , ep,r]c = [[ei,h, eh,j ]c, ep,p+1]c = 0;

the last equality follows from Lemma 1.10 (c), because of the induction hypoth-
esis and (6–18). Finally, if r − p > 1 then

[ei,j , ep,r]c = [ei,j , [ep,r−1, er−1,r]c]c = 0

by Lemma 1.10 (b) and the induction hypothesis.
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(b) We prove (6–23) by induction on r − i. If r − i = 2, then the claimed
equality is just (6–13). If r − i > 2 we argue by induction on j − i. If j − i = 1
we have

[ei,i+1, ei,r]c = [ei,i+1, [ei,r−1, er−1,r]c]c = [[ei,i+1, ei,r−1]c, er,r−1]c = 0

by (1–22), since [ei,i+1, er−1,r]c = 0 by (6–17). If j − i > 2, we have

[ei,j , ei,r]c = [[ei,j−1, ej−1,j ]c, ei,r]c = 0

by Lemma 1.10 (c), because of the induction hypothesis and (6–22).

The proof of (6–24) is analogous to the proof of (6–23), using (6–14) instead
of (6–13). ¤

Lemma 6.8. Assume that (6–12), (6–13), (6–14) hold in R. Then

[ei,j , ep,r]c = Bpj
jr (q − 1)eirepj , if 1 ≤ i < p < j < r ≤ n + 1. (6–25)

Proof. We compute:

[ei,j , ep,r]c = [[ei,p, ep,j ]c, ep,r]c

= [ei,p, [ep,j , ep,r]c]c + Bp,j
p,r [ei,p, ep,r]cep,j −Bi,p

p,jep,j [ei,p, ep,r]c

= Bp,j
p,rei,rep,j −Bi,p

p,jep,jei,r =
(
Bp,j

p,r −Bi,p
p,j(B

i,r
p,j)

−1
)
ei,rep,j

=
(
Bp,j

p,r − (Bp,r
p,j )−1

)
ei,rep,j = Bpj

jr (q − 1)eirepj .

Here, the first equality is by (6–19); the second, by Lemma 1.10 (a); the third,
by (6–23) and by (6–19); the fourth, by (6–22). ¤

Lemma 6.9. Assume that (6–12), (6–13) and (6–14) hold in R. For any 1 ≤
i < j ≤ n + 1 we have

∆(eN
i,j) = eN

i,j ⊗ 1 + 1⊗ eN
i,j + (1− q−1)N

∑

i<p<j

(
Bp,j

i,p

)N(N−1)/2
eN
i,p⊗ eN

p,j . (6–26)

Proof. By (6–20), and using several times the quantum binomial formula
(1–13), we have

∆(eN
i,j) =

(
ei,j ⊗ 1 + (1− q−1)

∑

i<p<j

ei,p ⊗ ep,j

)N

+1⊗ eN
i,j

= eN
i,j ⊗ 1 + (1− q−1)N

( ∑

i<p<j

ei,p ⊗ ep,j

)N

+1⊗ eN
i,j

= eN
i,j ⊗ 1 + (1− q−1)N

∑

i<p<j

(ei,p ⊗ ep,j)N + 1⊗ eN
i,j

= eN
i,j ⊗ 1 + (1− q−1)N

∑

i<p<j

(
Bp,j

i,p

)N(N−1)/2
eN
i,p ⊗ eN

p,j + 1⊗ eN
i,j .

Here, in the first equality we use that (1 ⊗ ei,j)(ei,j ⊗ 1) = q(ei,j ⊗ 1)(1 ⊗ ei,j)
and (1 ⊗ ei,j)(ei,p ⊗ ep,j) = q(ei,p ⊗ ep,j)(1 ⊗ ei,j), this last by (6–24); in the
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second, we use (ei,p ⊗ ep,j)(ei,j ⊗ 1) = q(ei,j ⊗ 1)(ei,p ⊗ ep,j), which follows from
(6–23); the third, that (ei,p ⊗ ep,j)(ei,s ⊗ es,j) = q2(ei,s ⊗ es,j)(ei,p ⊗ ep,j) for
p < s, which follows from (6–23) and (6–24); the fourth, from (ei,p ⊗ ep,j)h =(
Bp,j

i,p

)h(h−1)/2
eh
i,p ⊗ eh

p,j . ¤

Remark 6.10. Let Γ be a group with g1, . . . , gn in the center of Γ, χ1, . . . , χn

in Γ̂, as in 6.1. Let R be a braided Hopf algebra in Γ
ΓYD such that (6–12), (6–13)

and (6–14) hold in R. By (6–26) and the reconstruction formulas (1–17), we
have

∆R#kΓ(eN
i,j) = eN

i,j⊗1+gN
i,j⊗eN

i,j +(1−q−1)N
∑

i<p<j

(
Bp,j

i,p

)N(N−1)/2

eN
i,pg

N
p,j⊗eN

p,j .

(6–27)

Lemma 6.11. Assume that R = B(V ). Then

eN
i,j = 0, 1 ≤ i < j ≤ n + 1. (6–28)

Proof. This follows from Lemma 6.9 by induction on j − i, the case j − i = 1
being Lemma 6.3 (c). ¤

Lemma 6.12. Assume that (6–12), (6–13), (6–14), (6–28), hold in R. Assume,
furthermore, that R is generated as an algebra by the elements x1, . . . , xn. Then
the algebra R is spanned as a vector space by the elements

e
ε1,2
1,2 e

ε1,3
1,3 . . . e

ε1,n+1
1,n+1 e

ε2,3
2,3 . . . e

ε2,n+1
2,n+1 . . . e

εn,n+1
n,n+1 , with εi,j ∈ {0, 1, . . . , N − 1}.

(6–29)

Proof. We order the family (eij) by

e1,2 ≺ e1,3 ≺ . . . e1,n+1 ≺ e2,3 ≺ . . . e2,n+1 ≺ . . . en,n+1;

this induces an ordering in the monomials (6–29). If M is an ordered monomial,
we set σ(M) := er,s if er,s is the first element appearing in M . Let B be the
subspace generated by the monomials in (6–29). We show by induction on the
length that, for any ordered monomial M and for any i, ei,i+1M ∈ B and it is
0 or a combination of monomials N with σ(N) º min{ei,i+1, σ(M)}, length of
N ≤ length of M + 1. The statement is evident if the length of M is 0; so that
assume that the length is positive. Write M = ep,qM

′ where ep,q ¹ M ′. We
have several cases:

If i < p or i = p and i + 1 < q, ei,i+1 ≺ ep,q and we are done.
If i = p and i + 1 = q, then the claim is clear.
If p < q < i then ei,i+1ep,q = Bi,i+1

p,q ep,qei,i+1 by (6–18); hence ei,i+1M =
ei,i+1ep,qM

′ = Bi,i+1
p,q ep,qei,i+1M

′; by the inductive hypothesis and the fact that
ep,q ¹ min{ei,i+1, σ(M ′)}, the claim follows.

If p < i = q then ei,i+1ep,i = (Bp,i
i,i+1)

−1(ep,iei,i+1 − ep,i+1) by (6–19); again,
the inductive hypothesis and ep,q ¹ min{ei,i+1, σ(M ′)} imply that ep,iei,i+1M

′
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has the form we want. To see that ep,i+1M” satisfies the claim when ep,i =
σ(M ′), we use ep,i+1ep,i = (Bp,i

p,i+1)−1ep,iep,i+1 by (6–23).
If p < i < q then ei,i+1ep,q = (Bp,q

i,i+1)
−1ep,qei,i+1 by (6–22) or (6–24); we then

argue as in the two preceding cases.
Therefore, B = R since it is a left ideal containing 1. ¤

We shall say that the elements e1,2, e1,3, . . . , e1,n+1e2,3 . . . e2,n+1 . . . en,n+1, in this
order, form a PBW-basis for R if the monomials (6–29) form a basis of R. Then
we can prove, as in [AnDa]:

Theorem 6.13. The elements e1,2, e1,3, . . . , e1,n+1e2,3 . . . e2,n+1 . . . en,n+1, in
this order , form a PBW basis for B(Vn). In particular ,

dim B(Vn) = N
n(n+1)

2 .

Proof. We proceed by induction on n. The case n = 1 is clear, see [AS1,
Section 3] for details. We assume the statement for n − 1. We consider Vn as
a Yetter–Drinfeld module over Γ = (Z/P )n, as explained in Remark 6.1. Let
Zn = B(Vn)#kΓ. Let in : Vn−1 → Vn be given by xi 7→ xi and pn : Vn → Vn−1

by xi 7→ xi, 1 ≤ i ≤ n− 1 and xn 7→ 0. The splitting of Yetter–Drinfeld modules
id Vn−1 = pnin gives rise to a splitting of Hopf algebras id Zn−1 = πnιn, where
ιn : Zn−1 → Zn and πn : Zn → Zn−1 are respectively induced by in, pn. Let

Rn = Zco πn
n = {z ∈ Zn : (id ⊗πn)∆(z) = z ⊗ 1}.

Then Rn is a braided Hopf algebra in the category Zn−1
Zn−1

YD; we shall denote
by cRn the corresponding braiding of Rn. We have Zn ' Rn#Zn−1 and in
particular dim Zn = dim Rn dim Zn−1.

For simplicity, we denote hi = ei,n+1, 1 ≤ i ≤ n. We have hihj = Bi,n+1
j,n+1hjhi,

for i < j, by (6–24). We claim that h1, . . . , hn are linearly independent primitive
elements of the braided Hopf algebra Rn.

Indeed, it follows from (6–8) that πn(hi) = 0; by (6–20), we conclude that
hi ∈ Rn. We prove by induction on j = n + 1− i that hi is a primitive element
of Rn, the case j = 1 being clear. Assume the statement for j. Now

xi−1 ⇀ hi = xi−1hi + gi−1hiS(xi−1) = xi−1hi − gi−1hig
−1
i−1xi−1

= xi−1hi −Bi−1,i
i,n+1hixi−1 = [xi−1, hi]c = hi−1.

So

∆Rn(hi−1) = ∆Rn(xi−1 ⇀ hi) = xi−1 ⇀ ∆(hi)

= gi−1 ⇀ 1⊗ xi−1 ⇀ hi + xi−1 ⇀ hi ⊗ 1 = hi−1 ⊗ 1 + 1⊗ hi−1.

We prove also by induction on j = n + 1 − i that hi 6= 0 using (6–20) and the
induction hypothesis on Zn−1. Since hi is homogeneous of degree j (with respect
to the grading of Zn), we conclude that h1, . . . , hn are linearly independent.
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We next claim that cRn
(hi ⊗ hj) = Bi,n+1

j,n+1hj ⊗ hi, for any i > j.
By (6–27), the coaction of Zn−1 on Rn satisfies

δ(hi) = gi,n+1 ⊗ ei,n+1 + (1− q−1)
∑

i<p<n+1

ei,pgp,n+1 ⊗ ep,n+1.

If j < i, we compute the action on Rn:

ei,p ⇀ hj = ei,phj + gi,phjS(ei,n+1) + (1− q−1)
∑

i<t<p

ei,tgt,phjS(et,p)

= (Bj,n+1
i,p )−1hjei,p + Bi,p

j,n+1hjgi,pS(ei,n+1)

+ hj(1− q−1)
∑

i<t<p

Bt,p
j,n+1(B

j,n+1
i,t )−1ei,tgt,pS(et,p)

= Bi,p
j,n+1hjei,p(1)S(ei,p(2)) = 0,

by (6–24). Thus

cRn(hi ⊗ hj) = gi,n+1 ⇀ hj ⊗ hi = Bi,n+1
j,n+1hj ⊗ hi.

We next claim that the dimension of the subalgebra of Rn spanned by h1,
. . . , hn is ≥ Nn.

We already know that

∆(hmj

j ) =
∑

0≤ij≤mj

(
mj

ij

)

q

h
ij

j ⊗ h
mj−ij

j , mj ≤ N.

Set m = (m1, . . . , mj , . . . , mn), 1 = (1, . . . , 1, . . . , 1), N = (N, . . . , N). We
consider the partial order i ≤ m, if ij ≤ mj , j = 1, . . . , n. We set hm :=
hmn

n . . . h
mj

j . . . hm1
1 . From the preceding claim, we deduce that

∆(hm) = hm ⊗ 1 + 1⊗ hm +
∑

0≤i≤m, 0 6=i6=m

cm,ih
i ⊗ hm−i, m ≤ N− 1;

where cm,i 6= 0 for all i. We then argue recursively as in the proof of [AS1, Lemma
3.3] to conclude that the elements hm, m ≤ N − 1, are linearly independent;
hence the dimension of the subalgebra of Rn spanned by h1, . . . , hn is ≥ Nn, as
claimed.

We can now finish the proof of the theorem. Since dim Zn ≤ N
n(n+1)

2 by
Lemma 6.12 and dim Zn−1 = N

n(n−1)
2 by the induction hypothesis, we have

dim Rn ≤ Nn. By what we have just seen, this dimension is exactly Nn. There-
fore, dim Zn = N

n(n+1)
2 ; in presence of Lemma 6.12, this implies the theorem. ¤

Theorem 6.14. The Nichols algebra B(V ) can be presented by generators ei,i+1,
1 ≤ i ≤ n, and relations (6–12), (6–13), (6–14) and (6–28).
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Proof. Let B′ be the algebra presented by generators ei,i+1, 1 ≤ i ≤ n, and
relations (6–12), (6–13), (6–14) and (6–28). We claim that B′ is is a braided Hopf
algebra with the ei,i+1’s primitive. Indeed, the claim follows without difficulty;
use Lemma 6.9 for relations (6–28).

By Lemma 6.12, we see that the monomials (6–29) span B′ as a vector space,
and in particular that dimB′ ≤ N

n(n+1)
2 . By Lemmas 6.3 and 6.11, there is a

surjective algebra map ψ : B′ → B(V ). By Theorem 6.13, ψ is an isomorphism.
¤

6.2. Lifting of Nichols algebras of type An. We fix in this Section a finite
abelian group Γ such that our braided vector space V can be realized in Γ

ΓYD,
as in Remark 6.1. That is, we have g1, . . . , gn in Γ, χ1, . . . , χn in Γ̂, such that
qij = 〈χj , gi〉 for all i,j, and V can be realized as a Yetter–Drinfeld module over
Γ by (6–6).

We also fix a finite-dimensional pointed Hopf algebra A such that G(A) is
isomorphic to Γ, and the infinitesimal braiding of A is isomorphic to V as a
Yetter–Drinfeld module over Γ. That is, gr A ' R#kΓ, and the subalgebra R′

of R generated by R(1) is isomorphic to B(V ). We choose elements ai ∈ (A1)χi
gi

such that π(ai) = xi, 1 ≤ i ≤ n.
We shall consider, more generally, Hopf algebras H provided with

• a group isomorphism Γ → G(H);
• elements a1, . . . , an in P(H)χi

gi,1
.

Further hypotheses on H will be stated when needed. The examples of such H

we are thinking of are the Hopf algebra A, and any bosonization R#kΓ, where R

is any braided Hopf algebra in Γ
ΓYD provided with a monomorphism of Yetter–

Drinfeld modules V → P (R); so that ai := xi#1, 1 ≤ i ≤ n. This includes
notably the Hopf algebras T (V )#kΓ, B̂(V )#kΓ, B(V )#kΓ.

Here B̂(V ) is the braided Hopf algebra in Γ
ΓYD generated by x1, . . . , xθ with

relations (6–12), (6–13) and (6–14).

We introduce inductively the following elements of H:

Ei,i+1 := ai; (6–30)

Ei,j := ad (Ei,j−1)(Ej−1,j), 1 ≤ i < j ≤ n + 1, j − i ≥ 2. (6–31)

Assume that H = R#kΓ as above. Then, by the relations between braided
commutators and the adjoint (1–21), the relations (6–12), (6–13) and (6–14)
translate respectively to

ad Ei,i+1(Ep,p+1) = 0; 1 ≤ i < p ≤ n, p− i ≥ 2; (6–32)

(ad Ei,i+1)2(Ei+1,i+2) = 0, 1 ≤ i < n; (6–33)

(ad Ei+1,i+2)2(Ei,i+1) = 0, 1 ≤ i < n. (6–34)
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Remark 6.15. Relations (6–32), (6–33) and (6–34) can be considered, more
generally, in any H as above. If these relations hold in H, then we have a Hopf
algebra map πH : B̂(V )#kΓ → H. On the other hand, we know by Remark
6.10 that the comultiplication of the elements EN

ij is given by (6–27). Hence, the
same formula is valid in H, provided that relations (6–32), (6–33) and (6–34)
hold in it. In particular, the subalgebra of H generated by the elements EN

ij , gN
i,j ,

1 ≤ i < j ≤ n + 1, is a Hopf subalgebra of H.

Lemma 6.16. Relations (6–32), (6–33) and (6–34) hold in A if N > 3.

Proof. This is a particular case of Theorem 5.6; we include the proof for
completeness. We know, by Lemma 2.13, that

ad Ei,i+1(Ep,p+1) ∈ Pgigp,1(A)χiχp , 1 ≤ i < p ≤ n, p− i ≥ 2,

(adEi,i+1)2(Ep,p+1) ∈ Pg2
i gp,1(A)χ2

i χp , 1 ≤ i, p ≤ n, |p− i| = 1.

Assume that ad Ei,i+1(Ep,p+1) 6= 0, and χiχp 6= ε, where 1 ≤ i < p ≤ n,
p − i ≥ 2. By Lemma 5.1, there exists l, 1 ≤ l ≤ n, such that gigp = gl,
χiχp = χl. But then

q = χl(gl) = χi(gi)χi(gp)χp(gi)χp(gp) = q2.

Hence q = 1, a contradiction.
Assume next that ad E2

i,i+1(Ep,p+1) 6= 0, |p − i| = 1. and χ2
i χp 6= ε. By

Lemma 5.1 , there exists l, 1 ≤ l ≤ n, such that g2
i gp = gl, χ2

i χp = χl. But then

q = χl(gl) = χi(gi)4χi(gp)2χp(gi)2χp(gp) = q3.

Hence q = ±1, a contradiction (we assumed N > 2).
It remains to exclude the cases χiχp = ε, |p− i| ≥ 2, and χ2

i χp = ε, |p− i| = 1.
The first case leads to the contradiction N = 3. In the second case it follows
from the connectivity of An that N would divide 2 which is also impossible. ¤

Lemma 6.17. If H = A, then EN
i,j ∈ kΓN , for any 1 ≤ i < j ≤ n + 1.

Proof. We first show that EN
i,j ∈ kΓ, 1 ≤ i < j ≤ n + 1. (For our further

purposes, this is what we really need).
Let i < j. We claim that there exists no l, 1 ≤ l ≤ n, such that gN

i,j = gl,
χN

i,j = χl. Indeed, otherwise we would have

q = χl(gl) = χi,j(gi,j)N2
= qN2

= 1.

By Lemma 6.16 and Remark 6.15, we have

∆(EN
i,j) = EN

i,j⊗1+gN
i,j⊗EN

i,j +(1−q−1)N
∑

i<p<j

(
Bp,j

i,p

)N(N−1)/2

EN
i,pg

N
p,j⊗EN

p,j .

(6–35)
We proceed by induction on j − i. If j − i = 1, then, by Lemma 5.1 , either

EN
i,i+1 ∈ kΓ or EN

i,i+1 ∈ PgN
i ,1(A)χN

i and χN
i 6= ε, hence gN

i = gl, χ
N
i = χl for
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some l; but this last possibility contradicts the claim above. Assume then that
j − i > 1. By the induction hypothesis, ∆(EN

i,j) = EN
i,j ⊗ 1 + gN

i,j ⊗ EN
i,j + u,

for some u ∈ kΓ ⊗ kΓ. In particular, we see that EN
i,j ∈ (A1)χN

i . Then, by
Lemma 5.1, either χN

i = ε and hence EN
i,i+1 ∈ kΓ, or else χN

i 6= ε, which implies
u = 0 and EN

i,i+1 ∈ PgN
i ,1(A)χN

i . Again, this last possibility contradicts the claim
above.

Finally, let C be the subalgebra of A generated by the elements EN
ij , gN

i,j ,
1 ≤ i < j ≤ n + 1, which is a Hopf subalgebra of H. Since EN

i,j ∈ kΓ ∩ C, we
conclude that EN

i,j ∈ C0 = kΓN . ¤

To solve the lifting problem, we see from Lemma 6.17 that we first have to answer
a combinatorial question in the group algebra of an abelian group. To simplify
the notation we define

hij = gN
i,j , Cj

i,p = (1− q−1)N
(
Bp,j

i,p

)N(N−1)/2

.

We are looking for families (uij)1≤i<j≤n+1 of elements in kΓ such that

∆(uij) = uij ⊗1+hi,j ⊗uij +
∑

i<p<j

Cj
i,pui,p hp,j ⊗up,j , for all 1 ≤ i < j ≤ n+1.

(6–36)
The coefficients Cj

i,p satisfy the rule

Cj
isC

j
st = Ct

isC
j
it, for all 1 ≤ i < s < t < j ≤ n + 1. (6–37)

This follows from (6–2) and (6–3) since

Bsj
is Btj

st = Bst
isBtj

isBtj
st = Bst

isBtj
it .

Theorem 6.18. Let Γ be a finite abelian group and hij ∈ Γ, 1 ≤ i < j ≤ n + 1,
a family of elements such that

hij = hi,p hp,j , if i < p < j. (6–38)

Let Cj
i,p ∈ k×, 1 ≤ i < p < j ≤ n + 1, be a family of elements satisfying

(6–37). Then the solutions (uij)1≤i<j≤n+1 of (6–36), uij ∈ kΓ for all i < j, have
the form (uij(γ))1≤i<j≤n+1 where γ = (γij)1≤i<j≤n+1 is an arbitrary family of
scalars γij ∈ k such that

for all 1 ≤ i < j ≤ n + 1, γij = 0 if hij = 1, (6–39)

and where the elements uij(γ) are defined by induction on j − i by

uij(γ) = γij(1− hij) +
∑

i<p<j

Cj
ipγipupj(γ) for all 1 ≤ i < j ≤ n + 1. (6–40)
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Proof. We proceed by induction on k. We claim that the solutions uij ∈ kΓ,
1 ≤ i < j ≤ n + 1, j − i ≤ k, of (6–36) for all i < j with j − i ≤ k are given by
arbitrary families of scalars γij , 1 ≤ i < j ≤ n + 1, j − i ≤ k such that

uij = γij(1− hij) +
∑

i<p<j

Cj
ipγipupj for all 1 ≤ i < j ≤ n + 1 with j − i ≤ k.

Suppose k = 1. For any 1 ≤ i < n, j = i + 1, ui,i+1 is a solution of (6–36) if
and only if ui,i+1 is (hi,i+1, 1)-primitive in kΓ, that is ui,i+1 = γi,i+1(1− hi,i+1)
for some γi,i+1 ∈ k. We may assume that γi,i+1 = 0, if hi,i+1 = 1.

For the induction step, let k > 2. We assume that γab ∈ k, 1 ≤ a < b ≤
n + 1, b− a ≤ k − 1, is a family of scalars with γab = 0, if hab = 1, and that the
family uab ∈ kΓ, 1 ≤ a < b ≤ n + 1, b− a ≤ k− 1, defined inductively by the γab

by (6–40) is a solution of (6–36). Let 1 ≤ i < j ≤ n + 1, and j − i = k. We have
to show that

∆(uij) = uij ⊗ 1 + hij ⊗ uij +
∑

i<p<j

Cj
ipuiphpj ⊗ upj (6–41)

is equivalent to

uij = γij(1− hij) +
∑

i<p<j

Cj
ipγipupj for some γij ∈ k. (6–42)

We then may define γij = 0 if hij = 1.

We denote
zij := uij −

∑

i<p<j

Cj
ipγipupj .

Then (6–42) is equivalent to

∆(zij) = zij ⊗ 1 + hij ⊗ zij . (6–43)

For all i < p < j we have ∆(upj) = upj⊗1+hpj⊗upj+
∑

p<s<j Cj
psupshsj⊗usj ,

since j − p < k. Using this formula for ∆(upj) we compute

∆(zij)− zij ⊗ 1− hij ⊗ zij

= ∆(uij)−
∑

i<p<j

Cj
ipγip∆(upj)− zij ⊗ 1− hij ⊗ zij

= ∆(uij)−
∑

i<p<j

Cj
ipγip

(
upj ⊗ 1 + hpj ⊗ upj +

∑

p<s<j

Cj
psupshsj ⊗ usj

)

− (uij −
∑

i<p<j

Cj
ipγipupj)⊗ 1− hij ⊗ (uij −

∑

i<p<j

Cj
ipγipupj)

= ∆(uij)− uij ⊗ 1− hij ⊗ uij +
∑

i<p<j

Cj
ipγiphij ⊗ upj

−
∑

i<p<j

Cj
ipγiphpj ⊗ upj −

∑

i<p<s<j

Cj
ipC

j
psγipupshsj ⊗ usj .
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Therefore, (6–41) and (6–42) are equivalent if and only if the identity
∑

i<p<j

Cj
ipγiphij ⊗ upj −

∑

i<p<j

Cj
ipγiphpj ⊗ upj −

∑

i<p<s<j

Cj
ipC

j
psγipupshsj ⊗ usj

(6–44)

= −
∑

i<p<j

Cj
ipuiphpj ⊗ upj

holds.
To prove (6–44) we use (6–40) for all i < p, where i < p < j, that is uip =

γip(1− hip) +
∑

i<s<p Cp
isγisusp. Then

∑

i<p<j

Cj
iphpjuip ⊗ upj +

∑

i<p<j

Cj
ipγiphij ⊗ upj −

∑

i<p<j

Cj
ipγiphpj ⊗ upj

=
∑

i<p<j

(Cj
iphpj(γip(1− hip) +

∑

i<s<p

Cp
isγisusp) + Cj

ipγip(hij − hpj))⊗ upj

=
∑

i<p<j

Cj
iphpj

∑

i<s<p

Cp
isγisusp ⊗ upj , since hpj(1− hip) = hpj − hij by (6–38),

=
∑

i<s<p<j

Cj
isC

j
spγisusphpj ⊗ upj , since Cj

ipC
p
is = Cj

isC
j
sp by (6–37).

This proves (6–44) by interchanging s and p. ¤

Remarks 6.19. (1) Let γ = (γij)1≤1qi<j≤n+1 be an arbitrary family of scalars.
Then it is easy to see that the family uij(γ) ∈ kΓ, 1 ≤ i < j ≤ n + 1, can be
defined explicitly as follows:

uij(γ) =
∑

i≤p<j

φj
ip(γ)(1− hpj) for all i < j,

where

φj
ip(γ) =

∑

i=i1<···<ik=p,k≥1

Cj
i1,i2

. . . Cj
ik−1,ik

γi1,i2 . . . γik−1,ik
γpj for all i ≤ p < j

is a polynomial of degree p in the free variables (γij)1≤i<j≤n+1.

(2) Let γ = (γij)1≤i<j≤n+1 and γ̃ = (γ̃ij)1≤i<j≤n+1 be families of scalars in k
satisfying (6–39). Assume that for all i < j, uij(γ) = uij(γ̃). Then γ = γ̃. This
follows easily by induction on j − i from (6–40).

Lemma 6.20. Assume the situation of Theorem 6.18. Let γ = (γij)1≤i<j≤n+1

be a family of scalars in k satisfying (6–39) and define uij = uij(γ) for all
1 ≤ i < j ≤ n + 1 by (6–40).

(1) The following are equivalent :

(a) For all i < j, uij = 0 if χN
ij 6= ε.

(b) For all i < j, γij = 0 if χN
ij 6= ε.
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(2) Assume that hij = gN
ij for all i < j. Then the following are equivalent :

(a) For all i < j, uij = 0 if χN
ij (gl) 6= 1 for some 1 ≤ l ≤ n.

(b) For all i < j, γij = 0 if χN
ij (gl) 6= 1 for some 1 ≤ l ≤ n.

(c) The elements uij , 1 ≤ i < j ≤ n + 1, are central in B̂(V )#kΓ.

Proof. (1) follows by induction on j − i.
Suppose j = i + 1. Then ui,i+1 = γi,i+1(1 − hi,i+1). If hi,i+1 = 1, then both

ui,i+1 and γi,i+1 are 0. If hi,i+1 6= 1, then ui,i+1 = 0 if and only if γi,i+1 = 0.
The induction step follows in the same way from (6–40), since for all i < p < j,

if χN
ij 6= ε, then χN

ip 6= ε or χN
pj 6= ε, hence by induction γip = 0 or upj = 0, and

uij = γij(1− hij).

(2) Suppose that for all i < p < j, upj is central in B̂(V )#kΓ, and let
1 ≤ l ≤ n. Then

hijxl = xlχl(hij)hij ,

and we obtain from (6–40)

uijxl = xlγij(1− χl(hij)hij) + xl

∑

i<p<j

Cj
ipγipupj .

Hence uij is central in B̂(V )#kΓ if and only if γij = γijχl(hij) for all 1 ≤ l ≤ n.
Since the braiding is of type An and the order of q = χl(gl) is N ,

χl(hij) = χl(gN
ij ) = χ−N

ij (gl),

and the equivalence of (b) and (c) follows by induction on j− i. The equivalence
of (a) and (b) is shown as in (1). ¤

6.3. Classification of pointed Hopf algebras of type An. Using the
previous results we will now determine exactly all finite-dimensional pointed
Hopf algebras of type An (up to some exceptional cases). We will find a big new
class of deformations of u≥0

q (sln+1).

As before, we fix a natural number n, a finite abelian group Γ, an integer
N > 2, a root of unity q of order N , g1, . . . , gn ∈ Γ, χ1, . . . , χn ∈ Γ̂ such that
qij = χj(gi) for all i, j satisfy (6–1), and V ∈ Γ

ΓYD with basis xi ∈ V χi
gi

, 1 ≤ i ≤ n.
Recall that B̂(V ) is the braided Hopf algebra in Γ

ΓYD generated by x1, . . . , xn

with the quantum Serre relations (6–12), (6–13) and (6–14).
In B̂(V ) we consider the iterated braided commutators ei,j , 1 ≤ i < j ≤ n+1

defined inductively by (6–8) beginning with ei,i+1 = xi for all i.
Let A be the set of all families (ai,j)1≤i<j≤n+1 of integers ai,j ≥ 0 for all

1 ≤ i < j ≤ n + 1. For any a ∈ A we define

ea := (e1,2)a1,2(e1,3)a1,3 . . . (en,n+1)an,n+1 ,

where the order in the product is the lexicographic order of the index pairs. We
begin with the PBW-theorem for B̂(V ).
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Theorem 6.21. The elements ea, a ∈ A, form a basis of the k-vector space
B̂(V ).

Proof. The proof is similar to the proof of Theorem 6.13. For general finite
Cartan type the theorem can be derived from the PBW-basis of Uq(g) (see [L3])
by changing the group and twisting as described in [AS4, Section 4.2]. ¤

The following commutation rule for the elements eN
ij is crucial.

Lemma 6.22. For all 1 ≤ i < j ≤ n + 1, 1 ≤ s < t ≤ n + 1,

[ei,j , e
N
s,t]c = 0, that is ei,je

N
s,t = χN

s,t(gi,j)eN
s,tei,j .

Proof. Since ei,j is a linear combination of elements of the form xi1 . . . xik
with

k = j − i and gi1 . . . gik
= gij , it is enough to consider the case when j = i + 1.

To show [ei,i+1, e
N
s,t]c = 0, we will distinguish several cases.

First assume that (i, i + 1) < (s, t). If i + 1 < s resp. i = s and i + 1 < t, then
[ei,i+1, es,t]c = 0 by (6–17) resp. (6–23), and the claim follows.

If i + 1 = s, we denote x = ei+1,t, y = ei,i+1, z = eit and α = χi+1,t(gi), β =
χi+1,t(gi,t). Then

yx = αxy + z, by (6–19), and zx = βxz, by (6–24).

Moreover, α = χi+1,t(gi) 6= β = χi+1,t(gi,t) = χi+1,t(gi)χi+1,t(gi+1,t), and αN =
βN , since χi+1,t(gi+1,t) = q by (6–5). Therefore it follows from [AS4, Lemma
3.4] that yxN = αNxNy, which was to be shown.

The claim is clear if i = s, and i + 1 = t, since χN
i (gi) = 1.

It remains to consider the case when (i, i + 1) > (s, t). If s < i and t = i + 1,
then es,tei,i+1 = χi(gs,t)ei,i+1es,t by (6–24). If s < i and i + 1 < t, the same
result is obtained from (6–22), and if s = i and t < i + 1, from (6–23). Hence in
all cases, ei,i+1e

N
s,t = χ−N

i (gs,t)eN
s,tei,i+1. This proves the claim [ei,i+1, e

N
s,t]c = 0,

since χ−N
i (gs,t) = χN

s,t(gi). ¤

We want to compute the dimension of certain quotient algebras of B̂(V )#kΓ.
Since this part of the theory works for any finite Cartan type, we now consider
more generally a left kΓ-module algebra R over any abelian group Γ and assume
that there are integers P and Ni > 1, elements yi ∈ R, hi ∈ Γ, ηi ∈ Γ̂, 1 ≤ i ≤ P ,
such that

g · yi = ηi(g)yi, for all g ∈ Γ, 1 ≤ i ≤ P. (6–45)

yiy
Nj

j = η
Nj

j (hi)y
Nj

j yi for all 1 ≤ i, j ≤ P. (6–46)

The elements ya1
1 . . . yaP

P , a1, . . . , aP ≥ 0, form a k− basis of R. (6–47)

Let L be the set of all l = (li)1≤i≤P ∈ NP such that 0 ≤ li < Ni for all 1 ≤ i ≤ P .
For a = (ai)1≤i≤P ∈ NP , we define

ya = ya1
1 . . . yaP

P , and aN = (aiNi)1≤i≤P .
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Then by (6–46), (6–47), the elements

ylyaN , l ∈ L, a ∈ NP ,

form a k-basis of R.
In the application to B̂(V )#kΓ, P is the number of positive roots, and the yi

play the role of the root vectors ei,j .
To simplify the notation in the smash product algebra R#kΓ, we identify

r ∈ R with r#1 and v ∈ kΓ with 1#v. For 1 ≤ i ≤ P , let η̃i : kΓ → kΓ be the
algebra map defined by η̃i(g) = ηi(g)g for all g ∈ Γ. Then

vyi = yiη̃i(v) for all v ∈ kΓ.

We fix a family ui, 1 ≤ i ≤ P , of elements in kΓ, and denote

ua :=
∏

1≤i≤P

uai
i , if a = (ai)1≤i≤P ∈ NP .

Let M be a free right kΓ-module with basis m(l), l ∈ L. We then define a right
kΓ-linear map

ϕ : R#kΓ → M by ϕ(ylyaN ) := m(l)ua for all l ∈ L, a ∈ NP .

Lemma 6.23. Assume that

• ui is central in R#kΓ, for all 1 ≤ i ≤ P , and
• ui = 0 if ηNi

i (hj) 6= 1 for some 1 ≤ j ≤ P .

Then the kernel of ϕ is a right ideal of R#kΓ containing yNi
i − ui for all 1 ≤

i ≤ P .

Proof. By definition, ϕ(yNi
i ) = m(0)ui = ϕ(ui).

To show that the kernel of ϕ is a right ideal, let

z =
∑

l∈L,a∈NP

ylyaNvl,a, where vl,a ∈ kΓ, for all l ∈ L, a ∈ NP ,

be an element with ϕ(z) = 0. Then ϕ(z) =
∑

l,a m(l)uavl,a = 0, hence
∑

a∈NP

uavl,a = 0, for all l ∈ L.

Fix 1 ≤ i ≤ P . We have to show that ϕ(zyi) = 0.
For any l ∈ L, we have the basis representation

ylyi =
∑

t∈L,b∈NP

αl
t,by

tybN , where αl
t,b ∈ k for all t ∈ L, b ∈ NP .

Since ua is central in R#kΓ,

ua = η̃i(ua) for all a ∈ NP . (6–48)
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For any a = (ai)1≤i≤P ∈ NP and any family (gi)1≤i≤P of elements in Γ we define
ηaN ((gi)) =

∏
i ηi

aiNi(gi). Then by (6–46), for all a, b ∈ NP ,

yaNyi = yiy
aNηaN (ga), and ybNyaN = y(a+b)NηaN (gb), (6–49)

for some families of elements ga, gb in Γ.
By a reformulation of our assumption,

uaηaN ((gi)) = ua for any a ∈ NP and family (gi) in Γ. (6–50)

Using (6–49) we now can compute

zyi =
∑

l,a

ylyaNvl,ayi =
∑

l,a

ylyaNyiη̃i(vl,a)

=
∑

l,a

ylyiy
aNηaN (ga)η̃i(vl,a)

=
∑

l,a

∑

t,b

αl
t,by

tybNeaNηaN (ga)η̃i(vl,a)

=
∑

l,a

∑

t,b

αl
t,by

ty(a+b)NηaN (ga)ηaN (gb)η̃i(vl,a).

Therefore

ϕ(zyi) =
∑

t

m(t)
∑

l,a,b

αl
t,bu

a+bηaN (ga)ηaN (gb)η̃i(vl,a)

=
∑

t

m(t)
∑

l,a,b

αl
t,bu

a+bη̃i(vl,a), by (6–50),

=
∑

t

m(t)
∑

b,l

αl
t,bu

b
∑

a

uaη̃i(vl,a)

=
∑

t

m(t)
∑

b,l

αl
t,bu

bη̃i(
∑

a

uavl,a), by (6–48),

= 0, since
∑

a

uavl,a = 0.

¤

Theorem 6.24. Let ui, 1 ≤ i ≤ P, be a family of elements in kΓ, and I the
ideal in R#kΓ generated by all yNi

i − ui, 1 ≤ i ≤ P. Let A = (R#kΓ)/I be the
quotient algebra. Then the following are equivalent :

(1) The residue classes of ylg, l ∈ L, g ∈ Γ, form a k-basis of A.
(2) ui is central in R#kΓ for all 1 ≤ i ≤ P , and ui = 0 if ηNi

i 6= ε.

Proof. (1) ⇒ (2) : For all i and g ∈ Γ, gyNi
i = ηNi

i (g)yNi
i g, hence uig = gui ≡

ηNi
i (g)uig mod I. Since by assumption, kΓ is a subspace of A, we conclude that

ui = ηNi
i (g)ui, and ui = 0 if ηNi

i 6= ε.
Similarly, for all 1 ≤ i, j ≤ n, yiy

Nj

j = η
Nj

j (hi)y
Nj

j yi by (6–46), hence yiuj ≡
η

Nj

j (hi)ujyi mod I. Since we already know that ui = 0 if η
Nj

j 6= ε, we see that
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yiuj ≡ ujyi mod I. On the other hand ujyi = yiη̃i(uj). Then our assumption
in (1) implies that η̃i(uj) = uj . In other words, uj is central in R#kΓ.

(2) ⇒ (1): Let J be the right ideal of R#kΓ generated by all yNi
i − ui,

1 ≤ i ≤ P . For any 1 ≤ i ≤ P and g ∈ Γ,

g(yNi
i − ui) = yNi

i gηNi
i (g)− gui = (yNi

i − ui)ηNi
i (g)g,

since gui = uiη
Ni
i (g)g by (2).

And for all 1 ≤ i, j ≤ P ,

yi(y
Nj

j − uj) = η
Nj

j (hi)y
Nj

j yi − yiuj = (yNj

j − uj)η
Nj

j (hi)yi,

since by (2) yiuj = ujyi = ujη
Nj

j (hi)yi.

This proves J = I.
It is clear that the images of all ylg, l ∈ L, g ∈ Γ, generate the vector space

A. To show linear independence, suppose
∑

l∈L,g∈Γ

αl,gy
lg ∈ I, with αl,g ∈ k for all l ∈ L, g ∈ Γ.

Since I = J , we obtain from Lemma 6.23 that ϕ(I) = 0. Therefore,

0 = ϕ(
∑

l∈L,g∈Γ

αl,gy
lg) =

∑

l∈L,g∈Γ

αl,gm(l)g,

hence αl,g = 0 for all l, g. ¤

We come back to An. Our main result in this chapter is

Theorem 6.25. (i) Let γ = (γi,j)1≤i<j≤n+1 be any family of scalars in k such
that for any i < j, γi,j = 0 if gN

i,j = 1 or χN
i,j 6= ε. Define ui,j = ui,j(γ) ∈ kΓ,

1 ≤ i < j ≤ n + 1, by (6–40). Then

Aγ := (B̂(V )#kΓ)/(eN
i,j − ui,j | 1 ≤ i < j ≤ n + 1)

is a pointed Hopf algebra of dimension Nn(n+1)/2 ord(Γ) satisfying gr Aγ '
B(V )#kΓ.

(ii) Conversely , let A be a finite-dimensional pointed Hopf algebra such that
either

(a) grA ' B(V )#kΓ, and N > 3, or

(b) the infinitesimal braiding of A is of type An with N > 7 and not divisible
by 3.

Then A is isomorphic to a Hopf algebra Aγ in (i).

Proof. (i) By Lemma 6.20, the elements ui,j are central in Û := B̂(V )#kΓ,
and ui,j = 0 if gN

i,j = 1 or χN
i,j 6= ε. Hence the residue classes of the elements

elg, l ∈ A, 0 ≤ li,j < N for all 1 ≤ i < j ≤ n + 1, g ∈ Γ, form a basis of Aγ
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by Theorem 6.24. By Theorem 6.18, the ui,j satisfy (6–36). The ideal I of Û

generated by all eN
i,j − ui,j is a biideal, since

∆(eN
i,j − ui,j) = (eN

i,j − ui,j)⊗ 1 + gN
i,j ⊗ (eN

i,j − ui,j)

+
∑

i<p<j

Cj
i,p((e

N
i,p − ui,p)gN

p,j ⊗ eN
p,j + ui,pg

N
p,j ⊗ (eN

p,j − up,j))

∈ I ⊗ Û + Û ⊗ I,

by (6–35) and (6–36).
Since Aγ is generated by group-like and skew-primitive elements, and the

group-like elements form a group, Aγ is a Hopf algebra.
For all 1 ≤ i ≤ n, let ai ∈ gr (Aγ)(1) be the residue class of xi ∈ (Aγ)1.

Define root vectors ai,j ∈ gr (Aγ), 1 ≤ i < j ≤ N + 1 inductively as in (6–30)
and (6–31). Then aN

i,j = 0 in gr (Aγ) since eN
i,j = 0 in Aγ . Therefore, by Theorem

6.14, there is a surjective Hopf algebra map

B(V )#kΓ → gr (Aγ) mapping xi#g onto aig, 1 ≤ i ≤ n, g ∈ Γ.

This map is an isomorphism, since dim(gr (Aγ)) = dim(Aγ) = Nn(n+1)/2 |Γ| =
dim(B(V )#kΓ) by Theorem 6.13.

(ii). As in Section 6.2, we choose elements ai ∈ (A1)χi
gi

such that π(ai) = xi,
1 ≤ i ≤ n. By assumption resp. by Lemma 6.16, there is a Hopf algebra map

φ : B̂(V )#kΓ → A,φ(xi#g) = aig, 1 ≤ i ≤ n, g ∈ Γ.

By Theorem 5.8, A is generated in degree one, hence φ is surjective. We define
the root vector Ei,j ∈ A, 1 ≤ i < j ≤ n + 1, by (6–30), (6–31). By Lemma
6.17, EN

i,j =: ui,j ∈ kΓ for all 1 ≤ i < j ≤ n + 1. Then for all g ∈ Γ and i < j,
gEN

i,j = χN
i,j(g)EN

i,jg, hence gui,j = χN
i,j(g)ui,jg, and ui,j = χN

i,j(g)ui,j . By (6–35)
and Theorem 6.18 we therefore know that ui,j = ui,j(γ) for all i < j, for some
family γ = (γi,j)1≤i≤J≤n+1 of scalars in k such that for all i < j, γi,j = 0 if
gN

i,j = 1 or χN
i,j = ε. Hence φ indices a surjective Hopf algebra map Aγ → A

which is an isomorphism since dim(Aγ) = Nn(n+1)/2 ord(Γ) = dim(A) by (1). ¤

Remark 6.26. Up to isomorphism, Aγ does not change if we replace each xi by
a non-zero scalar multiple of itself. Hence in the definition of Aγ we may always
assume that

γi,i+1 = 0 or 1 for all 1 ≤ i ≤ n.

We close the paper with a very special case of Theorem 6.25. We obtain a large
class of non-isomorphic Hopf algebras which have exactly the same infinitesimal
braiding as u≥0

q (sln). Here q has order N , but the group is
∏n

i=1 Z/(Nmi) and
not (Z/(N))n as for u≥0

q (sln+1).

Example 6.27. Let N be > 2, q a root of unity of order N , and m1, . . . , mn

integers > 1 such that mi 6= mj for all i 6= j. Let Γ be the commutative
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group generated by g1, . . . , gn with relations gNmi
i = 1, 1 ≤ i ≤ n. Define

χ1, . . . , χn ∈ Γ̂ by

χj(gi) = qaij , where aii = 2 for all i, aij = −1 if |i−j| = 1, aij = 0 if |i−j| ≥ 2.

Then χN
i,j = ε and gN

i,j 6= 1 for all i < j. Thus for any family γ = (γi,j)1≤i<j≤n+1

of scalars in k, Aγ in Theorem 6.25 has infinitesimal braiding of type An.
Moreover, if γ, γ̃ are arbitrary such families with γi,i+1 = 1 = γ̃i,i+1 for all

1 ≤ i ≤ n, then
Aγ � Aeγ , if γ 6= γ̃.

Proof. We let x̃i and ẽi,j denote the elements of Aeγ corresponding to xi

and ei,j in Aγ as above, for all i and i < j. Suppose φ : Aγ → Aeγ is a
Hopf algebra isomorphism. By Lemma [AS3, Lemma 1.2] there exist non-zero
scalars α1, . . . , αn ∈ k and a permutation σ ∈ Sn such that φ(gi) = gσ(i) and
φ(xi) = αix̃σ(i) for all i. Since ord(gi) = miN 6= mjN = ord(gj) for all i 6= j, σ

must be the identity, and φ induces the identity on Γ by restriction. In particular,
1 − gN

i = φ(xN
i ) = αN

i x̃N
i = αN

i (1 − gN
i ), and αN

i = 1 for all i. Therefore we
obtain for all i < j,

ui,j(γ) = φ(eN
i,j) = αN

i αN
i+1 . . . αN

j−1ẽ
N
i,j = ui,j(γ̃),

and by Remark 6.19(2), γ = γ̃. ¤
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[AEG] N. Andruskiewitsch, P. Etingof and S. Gelaki, Triangular Hopf Algebras With
The Chevalley Property, Michigan Math. J. 49 (2001), 277–298.

[AG] N. Andruskiewitsch and M. Graña, Braided Hopf algebras over non-abelian
groups, Bol. Acad. Ciencias (Córdoba) 63 (1999), 45–78.
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