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Abstract. A fundamental problem in the theory of Hopf algebras is the
classification and construction of finite-dimensional quasitriangular Hopf al-
gebras over C. Quasitriangular Hopf algebras constitute a very important
class of Hopf algebras, introduced by Drinfeld. They are the Hopf alge-
bras whose representations form a braided tensor category. However, this
intriguing problem is extremely hard and is still widely open. Triangular
Hopf algebras are the quasitriangular Hopf algebras whose representations
form a symmetric tensor category. In that sense they are the closest to
group algebras. The structure of triangular Hopf algebras is far from triv-
ial, and yet is more tractable than that of general Hopf algebras, due to
their proximity to groups. This makes triangular Hopf algebras an excel-
lent testing ground for general Hopf algebraic ideas, methods and conjec-
tures. A general classification of triangular Hopf algebras is not known yet.
However, the problem was solved in the semisimple case, in the minimal
triangular pointed case, and more generally for triangular Hopf algebras
with the Chevalley property. In this paper we report on all of this, and
explain in full details the mathematics and ideas involved in this theory.
The classification in the semisimple case relies on Deligne’s theorem on
Tannakian categories and on Movshev’s theory in an essential way. We
explain Movshev’s theory in details, and refer to [G5] for a detailed discus-
sion of the first aspect. We also discuss the existence of grouplike elements
in quasitriangular semisimple Hopf algebras, and the representation theory
of cotriangular semisimple Hopf algebras. We conclude the paper with a
list of open problems; in particular with the question whether any finite-
dimensional triangular Hopf algebra over C has the Chevalley property.

1. Introduction

A fundamental problem in the theory of Hopf algebras is the classification
and construction of finite-dimensional quasitriangular Hopf algebras (A,R) over
an algebraically closed field k. Quasitriangular Hopf algebras constitute a very
important class of Hopf algebras, which were introduced by Drinfeld [Dr1] in or-
der to supply solutions to the quantum Yang-Baxter equation that arises in
mathematical physics. Quasitriangular Hopf algebras are the Hopf algebras
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whose finite-dimensional representations form a braided rigid tensor category,
which naturally relates them to low dimensional topology. Furthermore, Drinfeld
showed that any finite-dimensional Hopf algebra can be embedded in a finite-
dimensional quasitriangular Hopf algebra, known now as its Drinfeld double or
quantum double. However, this intriguing problem turns out to be extremely
hard and it is still widely open. One can hope that resolving this problem first in
the triangular case would contribute to the understanding of the general prob-
lem.

Triangular Hopf algebras are the Hopf algebras whose representations form
a symmetric tensor category. In that sense, they are the class of Hopf algebras
closest to group algebras. The structure of triangular Hopf algebras is far from
trivial, and yet is more tractable than that of general Hopf algebras, due to
their proximity to groups and Lie algebras. This makes triangular Hopf algebras
an excellent testing ground for general Hopf algebraic ideas, methods and con-
jectures. A general classification of triangular Hopf algebras is not known yet.
However, there are two classes that are relatively well understood. One of them
is semisimple triangular Hopf algebras over k (and cosemisimple if the character-
istic of k is positive) for which a complete classification is given in [EG1, EG4].
The key theorem about such Hopf algebras states that each of them is obtained
by twisting a group algebra of a finite group [EG1, Theorem 2.1] (see also [G5]).

Another important class of Hopf algebras is that of pointed ones. These are
Hopf algebras whose all simple comodules are 1-dimensional. Theorem 5.1 in [G4]
(together with [AEG, Theorem 6.1]) gives a classification of minimal triangular
pointed Hopf algebras.

Recall that a finite-dimensional algebra is called basic if all of its simple mod-
ules are 1-dimensional (i.e., if its dual is a pointed coalgebra). The same Theorem
5.1 of [G4] gives a classification of minimal triangular basic Hopf algebras, since
the dual of a minimal triangular Hopf algebra is again minimal triangular.

Basic and semisimple Hopf algebras share a common property. Namely, the
Jacobson radical Rad(A) of such a Hopf algebra A is a Hopf ideal, and hence
the quotient A/Rad(A) (the semisimple part) is itself a Hopf algebra. The
representation-theoretic formulation of this property is: The tensor product of
two simple A-modules is semisimple. A remarkable classical theorem of Cheval-
ley [C, p. 88] states that, in characteristic 0, this property holds for the group
algebra of any (not necessarily finite) group. So we called this property of A the
Chevalley property [AEG].

In [AEG] it was proved that any finite-dimensional triangular Hopf algebra
with the Chevalley property is obtained by twisting a finite-dimensional trian-
gular Hopf algebra with R-matrix of rank ≤ 2, and that any finite-dimensional
triangular Hopf algebra with R-matrix of rank ≤ 2 is a suitable modification of
a finite-dimensional cocommutative Hopf superalgebra (i.e., the group algebra of
a finite supergroup). On the other hand, by a theorem of Kostant [Ko], a finite
supergroup is a semidirect product of a finite group with an odd vector space on
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which this group acts. Moreover, the converse result that any such Hopf algebra
does have the Chevalley property is also proved in [AEG]. As a corollary, we
proved that any finite-dimensional triangular Hopf algebra whose coradical is a
Hopf subalgebra (e.g., pointed) is obtained by twisting a triangular Hopf algebra
with R-matrix of rank ≤ 2.

The purpose of this paper is to present all that is currently known to us about
the classification and construction of finite-dimensional triangular Hopf algebras,
and to explain the mathematics and ideas involved in this theory.

The paper is organized as follows. In Section 2 we review some necessary
material from the theory of Hopf algebras. In particular the important notion
of a twist for Hopf algebras, which was introduced by Drinfeld [Dr1].

In Section 3 we explain in details the theory of Movshev on twisting in group
algebras of finite groups [Mov]. The results of [EG4, EG5] (described in Sections
4 and 5 below) rely, among other things, on this theory in an essential way.

In Section 4 we concentrate on the theory of triangular semisimple and co-
semisimple Hopf algebras. We first describe the classification and construction
of triangular semisimple and cosemisimple Hopf algebras over any algebraically
closed field k, and then describe some of the consequences of the classification
theorem, in particular the one concerning the existence of grouplike elements in
triangular semisimple and cosemisimple Hopf algebras over k [EG4]. The clas-
sification uses, among other things, Deligne’s theorem on Tannakian categories
[De1] in an essential way. We refer the reader to [G5] for a detailed discussion
of this aspect. The proof of the existence of grouplike elements relies on a the-
orem from [HI] on central type groups being solvable, which is proved using the
classification of finite simple groups. The classification in positive characteristic
relies also on the lifting functor from [EG5].

In Section 5 we concentrate on the dual objects of Section 4; namely, on
semisimple and cosemisimple cotriangular Hopf algebras over k, studied in [EG3].
We describe the representation theory of such Hopf algebras, and in particular
obtain that Kaplansky’s 6th conjecture [Kap] holds for them (i.e., they are of
Frobenius type).

In Section 6 we concentrate on the pointed case, studied in [G4] and [AEG,
Theorem 6.1]. The main result in this case is the classification of minimal trian-
gular pointed Hopf algebras.

In Section 7 we generalize and concentrate on the classification of finite-dimen-
sional triangular Hopf algebras with the Chevalley property, given in [AEG]. We
note that similarly to the case of semisimple Hopf algebras, the proof of the main
result of [AEG] is based on Deligne’s theorem [De1]. In fact, we used Theorem
2.1 of [EG1] to prove the main result of this paper.

In Section 8 we conclude the paper with a list of relevant questions raised in
[AEG] and [G4].
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Throughout the paper the ground field k is assumed to be algebraically closed.
The symbol C will always denote the field of complex numbers. For a Hopf
(super)algebra A, G(A) will denote its group of grouplike elements.

Acknowledgment. The work described in Sections 3–5 is joint with Pavel
Etingof, whom I am grateful to for his help in reading the manuscript. The
work described in Subsection 4.5 is joint also with Robert Guralnick and Jan
Saxl. The work described in Section 7 is joint with Nicholas Andruskiewitsch
and Pavel Etingof.

2. Preliminaries

In this Section we recall the necessary background needed for this paper. We
refer the reader to the books [ES, Kass, Mon, Sw] for the general theory of Hopf
algebras and quantum groups.

2.1. Quasitriangular Hopf algebras. We recall Drinfeld’s notion of a
(quasi)triangular Hopf algebra [Dr1]. Let (A,m,1,∆,ε,S) be a finite-dimensional
Hopf algebra over k, and let R =

∑
i ai ⊗ bi ∈ A ⊗ A be an invertible element.

Define a linear map fR : A∗ → A by fR(p) =
∑

i〈p, ai〉bi for p ∈ A∗. The tuple
(A,m, 1, ∆, ε, S, R) is said to be a quasitriangular Hopf algebra if the following
axioms hold:

(∆⊗ Id)(R) = R13R23, (Id⊗∆)(R) = R13R12 (2–1)

where Id is the identity map of A, and

∆cop(a)R = R∆(a) forany a ∈ A; (2–2)

or, equivalently, if fR : A∗ → Acop is a Hopf algebra map and (2–2) is satisfied.
The element R is called an R-matrix. Observe that using Sweedler’s notation
for the comultiplication [Sw], (2–2) is equivalent to

∑
〈p(1), a(2)〉a(1)fR

(p(2)) =
∑

〈p(2), a(1)〉fR
(p(1))a(2) (2–3)

for any p ∈ A∗ and a ∈ A.
A quasitriangular Hopf algebra (A,R) is called triangular if R−1 = R21; or

equivalently, if fR ∗fR21 = ε in the convolution algebra Homk(A∗, A), i.e. (using
Sweedler’s notation again)

∑
fR(p(1))fR21(p(2)) = 〈p, 1〉1 for any p ∈ A∗. (2–4)

Let
u :=

∑

i

S(bi)ai (2–5)

be the Drinfeld element of (A,R). Drinfeld showed [Dr2] that u is invertible and
that

S2(a) = uau−1 for any a ∈ A. (2–6)
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He also showed that (A,R) is triangular if and only if u is a grouplike element
[Dr2].

Suppose also that (A,m, 1, ∆, ε, S, R) is semisimple and cosemisimple over k.

Lemma 2.1.1. The Drinfeld element u is central , and

u = S(u). (2–7)

Proof. By [LR1] in characteristic 0, and by [EG5, Theorem 3.1] in positive
characteristic, S2 = I. Hence by (2–6), u is central. Now, we have (S⊗S)(R) =
R [Dr2], so S(u) =

∑
i S(ai)S2(bi) =

∑
i aiS(bi). This shows that tr(u) =

tr(S(u)) in every irreducible representation of A. But u and S(u) are central, so
they act as scalars in this representation, which proves (2–7). ¤

Lemma 2.1.2. In particular ,
u2 = 1. (2–8)

Proof. Since S(u) = u−1, the result follows from (2–7). ¤

Let us demonstrate that it is always possible to replace R with a new R-matrix
R̃ so that the new Drinfeld element ũ equals 1. Indeed, if k does not have
characteristic 2, set

Ru := 1
2 (1⊗ 1 + 1⊗ u + u⊗ 1− u⊗ u). (2–9)

If k is of characteristic 2 (in which case u = 1 by semisimplicity), set Ru := 1.
Set R̃ := RRu.

Lemma 2.1.3. (A, R̃) is a triangular semisimple and cosemisimple Hopf algebra
with Drinfeld element 1.

Proof. Straightforward. ¤

This observation allows to reduce questions about triangular semisimple and
cosemisimple Hopf algebras over k to the case when the Drinfeld element is 1.

Let (A,R) be any triangular Hopf algebra over k. Write R =
∑n

i=1 ai ⊗ bi in
the shortest possible way, and let Am be the Hopf subalgebra of A generated by
the ai’s and bi’s. Following [R2], we will call Am the minimal part of A. We will
call n = dim(Am) the rank of the R-matrix R. It is straightforward to verify
that the corresponding map fR : A∗copm → Am defined by fR(p) = (p⊗ I)(R) is
a Hopf algebra isomorphism. This property of minimal triangular Hopf algebras
will play a central role in our study of the pointed case (see Section 6 below). It
implies in particular that G(Am) ∼= G((Am)∗), and hence that the group G(Am)
is abelian (see e.g., [G2]). Thus, G(Am) ∼= G(Am)∨ (where G(Am)∨ denotes the
character group of G(Am)), and we can identify the Hopf algebras k[G(Am)∨]
and k[G(Am)]∗. Also, if (A,R) is minimal triangular and pointed then fR being
an isomorphism implies that A∗ is pointed as well.

Note that if (A,R) is (quasi)triangular and π : A → A′ is a surjective map of
Hopf algebras, then (A′, R′) is (quasi)triangular as well, where R′ := (π⊗π)(R).
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2.2. Hopf superalgebras.

2.2.1. Supervector spaces. We start by recalling the definition of the category
of supervector spaces. A Hopf algebraic way to define this category is as follows.
Let us assume that k = C.

Let u be the generator of the order-two group Z2, and let Ru ∈ C[Z2]⊗C[Z2]
be as in (2–9). Then (C[Z2], Ru) is a minimal triangular Hopf algebra.

Definition 2.2.1.1. The category of supervector spaces over C is the symmetric
tensor category Rep(C[Z2], Ru) of representations of the triangular Hopf algebra
(C[Z2], Ru). This category will be denoted by SuperVect.

For V ∈ SuperVect and v ∈ V , we say that v is even if uv = v and odd if
uv = −v. The set of even vectors in V is denoted by V0 and the set of odd
vectors by V1, so V = V0 ⊕ V1. We define the parity of a vector v to be p(v) = 0
if v is even and p(v) = 1 if v is odd (if v is neither odd nor even, p(v) is not
defined).

Thus, as an ordinary tensor category, SuperVect is equivalent to the category
of representations of Z2, but the commutativity constraint is different from that
of Rep(Z2) and equals β := RuP , where P is the permutation of components.
In other words, we have

β(v ⊗ w) = (−1)p(v)p(w)w ⊗ v, (2–10)

where both v, w are either even or odd.

2.2.2. Hopf superalgebras. Recall that in any symmetric (more generally,
braided) tensor category, one can define an algebra, coalgebra, bialgebra, Hopf
algebra, triangular Hopf algebra, etc, to be an object of this category equipped
with the usual structure maps (morphisms in this category), subject to the same
axioms as in the usual case. In particular, any of these algebraic structures in
the category SuperVect is usually identified by the prefix “super”. For example:

Definition 2.2.2.1. A Hopf superalgebra is a Hopf algebra in SuperVect.

More specifically, a Hopf superalgebra A is an ordinary Z2-graded associative
unital algebra with multiplication m, equipped with a coassociative map

∆ : A → A⊗A

(a morphism in SuperVect) which is multiplicative in the super-sense, and with
a counit and antipode satisfying the standard axioms. Here multiplicativity in
the super-sense means that ∆ satisfies the relation

∆(ab) =
∑

(−1)p(a2)p(b1)a1b1 ⊗ a2b2 (2–11)

for all a, b ∈ A (where ∆(a) =
∑

a1 ⊗ a2, ∆(b) =
∑

b1 ⊗ b2). This is because
the tensor product of two algebras A,B in SuperVect is defined to be A⊗B as



FINITE-DIMENSIONAL TRIANGULAR HOPF ALGEBRAS 75

a vector space, with multiplication

(a⊗ b)(a′ ⊗ b′) := (−1)p(a′)p(b)aa′ ⊗ bb′. (2–12)

Remark 2.2.2.2. Hopf superalgebras appear in [Ko], under the name of “graded
Hopf algebras”.

Similarly, a (quasi)triangular Hopf superalgebra (A, R) is a Hopf superalgebra
with an R-matrix (an even element R ∈ A⊗A) satisfying the usual axioms. As
in the even case, an important role is played by the Drinfeld element u of (A, R):

u := m ◦ β ◦ (Id⊗S)(R). (2–13)

For instance, (A, R) is triangular if and only if u is a grouplike element of A.
As in the even case, the tensorands of the R-matrix of a (quasi)triangular

Hopf superalgebra A generate a finite-dimensional sub Hopf superalgebra Am,
called the minimal part of A (the proof does not differ essentially from the proof
of the analogous fact for Hopf algebras). A (quasi)triangular Hopf superalgebra
is said to be minimal if it coincides with its minimal part. The dimension of the
minimal part is the rank of the R-matrix.

2.2.3. Cocommutative Hopf superalgebras.

Definition 2.2.3.1. We will say that a Hopf superalgebra A is commutative
(resp. cocommutative) if m = m ◦ β (resp. ∆ = β ◦∆).

Example 2.2.3.2 [Ko]. Let G be a group, and g a Lie superalgebra with an
action of G by automorphisms of Lie superalgebras. Let A := C[G]nU(g), where
U(g) denotes the universal enveloping algebra of g. Then A is a cocommutative
Hopf superalgebra, with ∆(x) = x⊗ 1 + 1⊗ x, x ∈ g, and ∆(g) = g ⊗ g, g ∈ G.
In this Hopf superalgebra, we have S(g) = g−1, S(x) = −x, and in particular
S2 = Id.

The Hopf superalgebra A is finite-dimensional if and only if G is finite, and
g is finite-dimensional and purely odd (and hence commutative). Then A =
C[G] n ΛV , where V = g is an odd vector space with a G-action. In this case,
A∗ is a commutative Hopf superalgebra.

Remark 2.2.3.3. We note that as in the even case, it is convenient to think
about A and A∗ in geometric terms. Consider, for instance, the finite-dimen-
sional case. In this case, it is useful to think of the “affine algebraic supergroup”
G̃ := GnV . Then one can regard A as the group algebra C[G̃] of this supergroup,
and A∗ as its function algebra F (G̃). Having this in mind, we will call the algebra
A a supergroup algebra.

It turns out that like in the even case, any cocommutative Hopf superalgebra is of
the type described in Example 2.2.3.2. Namely, we have the following theorem.

Theorem 2.2.3.4. ([Ko], Theorem 3.3) Let A be a cocommutative Hopf super-
algebra over C. Then A = C[G(A)]nU(P (A)), where U(P (A)) is the universal
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enveloping algebra of the Lie superalgebra of primitive elements of A, and G(A)
is the group of grouplike elements of A.

In particular, in the finite-dimensional case we get:

Corollary 2.2.3.5. Let A be a finite-dimensional cocommutative Hopf super-
algebra over C. Then A = C[G(A)] n ΛV , where V is the space of primitive
elements of A (regarded as an odd vector space) and G(A) is the finite group of
grouplikes of A. In other words, A is a supergroup algebra.

2.3. Twists. Let (A,m, 1, ∆, ε, S) be a Hopf algebra over a field k. We recall
Drinfeld’s notion of a twist for A [Dr1].

Definition 2.3.1. A quasitwist for A is an element J ∈ A⊗A which satisfies

(∆⊗ Id)(J)(J ⊗ 1) = (Id⊗∆)(J)(1⊗ J),

(ε⊗ Id)(J) = (Id⊗ε)(J) = 1.

}
(2–14)

An invertible quasitwist for A is called a twist.

Given a twist J for A, one can define a new Hopf algebra structure

(AJ ,m, 1,∆J , ε, SJ )

on the algebra (A,m, 1) as follows. The coproduct is determined by

∆J (a) = J−1∆(a)J for any a ∈ A, (2–15)

and the antipode is determined by

SJ(a) = Q−1S(a)Q for any a ∈ A, (2–16)

where Q := m◦(S⊗Id)(J). If A is (quasi)triangular with the universal R-matrix
R, then so is AJ , with the universal R-matrix RJ := J−1

21 RJ .

Example 2.3.2. Let G be a finite abelian group, and G∨ its character group.
Then the set of twists for A := k[G] is in one to one correspondence with the
set of 2-cocycles c of G∨ with coefficients in k∗, such that c(0, 0) = 1. Indeed,
let J be a twist for A, and define c : G∨ × G∨ → k∗ via c(χ, ψ) := (χ ⊗ ψ)(J).
Then it is straightforward to verify that c is a 2-cocycle of G∨ (see e.g., [Mov,
Proposition 3]), and that c(0, 0) = 1.

Conversely, let c : G∨ × G∨ → k∗ be a 2-cocycle of G∨ with coefficients
in k∗, such that c(0, 0) = 1. Note that the 2-cocycle condition implies that
c(0, χ) = 1 = c(χ, 0) for all χ ∈ G∨. For χ ∈ G∨, let Eχ := |G|−1

∑
g∈G χ(g)g

be the associated idempotent of A. Then it is straightforward to verify that
J :=

∑
χ,ψ∈G∨ c(χ, ψ)Eχ ⊗ Eψ is a twist for A (see e.g., [Mov, Proposition 3]).

Moreover it is easy to check that the above two assignments are inverse to each
other.
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Remark 2.3.3. Unlike for finite abelian groups, the study of twists for finite
non-abelian groups is much more involved. This was done in [EG2, EG4, Mov]
(see Section 4 below).

If J is a (quasi)twist for A and x is an invertible element of A such that ε(x) = 1,

then

Jx := ∆(x)J(x−1 ⊗ x−1) (2–17)

is also a (quasi)twist for A. We will call the (quasi)twists J and Jx gauge
equivalent. Observe that if (A, R) is a (quasi)triangular Hopf algebra, then the
map (AJ , RJ ) → (AJx

, RJx

) determined by a 7→ xax−1 is an isomorphism of
(quasi)triangular Hopf algebras.

Let A be a group algebra of a finite group. We will say that a twist J for A

is minimal if the right (and left) components of the R-matrix RJ := J−1
21 J span

A, i.e., if the corresponding triangular Hopf algebra (AJ , J−1
21 J) is minimal.

A twist for a Hopf algebra in any symmetric tensor category is defined in the
same way as in the usual case. For instance, if A is a Hopf superalgebra then a
twist for A is an invertible even element J ∈ A⊗A satisfying (2–14).

2.4. Projective representations and central extensions. Here we recall
some basic facts about projective representations and central extensions. They
can be found in textbooks, e.g. [CR, Section 11E].

A projective representation over k of a group H is a vector space V to-
gether with a homomorphism of groups πV : H → PGL(V ), where PGL(V ) ∼=
GL(V )/k∗ is the projective linear group.

A linearization of a projective representation V of H is a central extension Ĥ of
H by a central subgroup ζ together with a linear representation π̃

V
: Ĥ → GL(V )

which descends to πV . If V is a finite-dimensional projective representation of
H then there exists a linearization of V such that ζ is finite (in fact, one can
make ζ = Z/(dim(V ))Z).

Any projective representation V of H canonically defines a cohomology class
[V ] ∈ H2(H, k∗). The representation V can be lifted to a linear representation
of H if and only if [V ] = 0.

2.5. Pointed Hopf algebras. The Hopf algebras which are studied in Section
6 are pointed. Recall that a Hopf algebra A is pointed if its simple subcoalge-
bras are all 1-dimensional or equivalently (when A is finite-dimensional) if the
irreducible representations of A∗ are all 1-dimensional (i.e., A∗ is basic). For
any g, h ∈ G(A), we denote the vector space of g : h skew primitives of A by
Pg,h(A) := {x ∈ A | ∆(x) = x⊗g+h⊗x}. Thus the classical primitive elements
of A are P (A) := P1,1(A). The element g−h is always g : h skew primitive. Let
P ′g,h(A) denote a complement of spk{g − h} in Pg,h(A). Taft-Wilson theorem
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[TW] states that the first term A1 of the coradical filtration of A is given by:

A1 = k[G(A)]
⊕( ⊕

g,h∈G(A)

P ′g,h(A)

)
. (2–18)

In particular, if A is not cosemisimple then there exists g ∈ G(A) such that
P ′1,g(A) 6= 0.

If A is a Hopf algebra over the field k, which is generated as an algebra by a
subset S of G(A) and by g : g′ skew primitive elements, where g, g′ run over S,
then A is pointed and G(A) is generated as a group by S (see e.g., [R4, Lemma
1]).

3. Movshev’s Theory on the Algebra Associated with a Twist

In this section we describe Movshev’s theory on twisting in group algebras
of finite groups [Mov]. Our classification theory of triangular semisimple and
cosemisimple Hopf algebras [EG4] (see Section 4 below), and our study of the
representation theory of cotriangular semisimple and cosemisimple Hopf alge-
bras [EG3] (see Section 5 below) rely, among other things, on this theory in an
essential way.

Let k be an algebraically closed field whose characteristic is relatively prime
to |G|. Let A := k[G] be the group algebra of a finite group G, equipped with
the usual multiplication, unit, comultiplication, counit and antipode, denoted
by m, 1, ∆, ε and S respectively. Let J ∈ A ⊗ A. Movshev had the following
nice idea of characterizing quasitwists [Mov]. Let (AJ , ∆J , ε) where AJ = A as
vector spaces, and ∆J is the map

∆J : A → A⊗A, a 7→ ∆(a)J. (3–1)

Proposition 3.1. (AJ , ∆J , ε) is a coalgebra if and only if J is a quasitwist
for A.

Proof. Straightforward. ¤
Regard A as the left regular representation of G. Then (AJ , ∆J , ε) is a G-
coalgebra (i.e., ∆J(ga) = (g ⊗ g)∆J(a) and ε(ga) = ε(a) for all g ∈ G, a ∈ A).
In fact, we have the following important result.

Proposition 3.2 [Mov, Proposition 5]. Suppose that (C, ∆̃, ε̃) is a G-coalgebra
which is isomorphic to the regular representation of G as a G-module. Then there
exists a quasitwist J ∈ A⊗ A such that (C, ∆̃, ε̃) and (A, ∆J , ε) are isomorphic
as G-coalgebras. Moreover , J is unique up to gauge equivalence.

Proof. We can choose an element λ ∈ C such that the set {g ·λ | g ∈ G} forms
a basis of C, and ε̃(λ) = 1. Now, write ∆̃(λ) =

∑
a,b∈G γ(a, b)a ·λ⊗ b ·λ, and set

J :=
∑

a,b∈G

γ(a, b)a⊗ b ∈ A⊗A. (3–2)
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We have to show that J is a quasitwist for A. Indeed, let f : A → C be
determined by f(a) = a · λ. Clearly, f is an isomorphism of G-modules which
satisfies ∆̃(f(a)) = (f ⊗ f)∆J(a), a ∈ A. Therefore (AJ , ∆J , ε) is a coalgebra,
which is equivalent to saying that J is a quasitwist by Proposition 3.1. This
proves the first claim.

Suppose that (AJ′ , ∆J ′ , ε) and (AJ ,∆J , ε) are isomorphic as G-coalgebras via
φ : A → A. We have to show that J , J ′ are gauge equivalent. Indeed, φ is given
by right multiplication by an invertible element x ∈ A, φ(a) = ax. On one hand,
(φ ⊗ φ)(∆J(1)) = J(x ⊗ x), and on the other hand, ∆J ′(φ(1)) = ∆(x)J ′. The
equality between the two right hand sides implies the desired result. ¤
We now focus on the dual algebra (AJ)∗ of the coalgebra (AJ , ∆J , ε), and sum-
marize Movshev’s results about it [Mov]. Note that (AJ)∗ is a G-algebra which
is isomorphic to the regular representation of G as a G-module.

Proposition 3.3 [Mov, Propositions 6 and 7]. 1. The algebra (AJ)∗ is semi-
simple.

2. There exists a subgroup St of G (the stabilizer of a maximal two sided ideal I

of (AJ)∗) such that (AJ )∗ is isomorphic to the algebra of functions from the
set G/ St to the matrix algebra M|St|1/2(k).

Note that, in particular, the group St acts on the matrix algebra (AJ)∗/I ∼=
M|St|1/2(k). Hence this algebra defines a projective representation T : St →
PGL(|St|1/2, k) (since Aut(M|St|1/2(k)) = PGL(|St|1/2, k)).

Proposition 3.4 [Mov, Propositions 8 and 9]. T is irreducible, and the associ-
ated 2-cocycle c : St× St → k∗ is nontrivial .

Consider the twisted group algebra k[St]c. This algebra has a basis {Xg | g ∈ St}
with relations XgXh = c(g, h)Xgh, and a natural structure as a St-algebra given
by a ·Xg := XaXg(Xa)−1 for all a ∈ St (see also [Mov, Proposition 10]). Recall
that c is called nondegenerate if for all 1 6= g ∈ St, the map CSt(g) → k∗,
m 7→ c(m, g)/c(g,m) is a nontrivial homomorphism of the centralizer of g in
St to k∗. In [Mov, Propositions 11,12] Movshev reproduces the following well
known criterion for k[St]c to be a simple algebra (i.e., isomorphic to the matrix
algebra M|St|1/2(k)).

Proposition 3.5. The twisted group algebra k[St]c is simple if and only if c is
nondegenerate. Furthermore, if this is the case, then k[St]c is isomorphic to the
regular representation of St as a St-module.

Assume c is nondegenerate. By Proposition 3.2, the simple St-coalgebra (k[St]c)∗

is isomorphic to the St-coalgebra (k[St]J̃ ,∆J̃ ) for some unique (up to gauge
equivalence) quasitwist J̃ ∈ k[St]⊗ k[St].

Proposition 3.6 [Mov, Propositions 13 and 14]. J̃ is in fact a twist for k[St]
(i .e., it is invertible). Furthermore, J is the image of J̃ under the coalgebra
embedding (k[St]c)∗ ↪→ AJ .
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Proof. We only reproduce here the proof of the invertibility of J̃ (in a slightly
expanded form). Set C := k[St]J̃ . Suppose on the contrary that J̃ is not
invertible. Then there exists 0 6= L ∈ C∗ ⊗ C∗ such that J̃L = 0. Let
F : C ⊗ C → C ⊗ C be defined by F (x) = xL. Clearly, F is a morphism
of St×St-representations, and F ◦∆J̃ = 0. Thus the image Im(F ∗) of the mor-
phism of St× St-representations F ∗ : C∗ ⊗ C∗ → C∗ ⊗ C∗ is contained in the
kernel of the multiplication map m := (∆J̃)∗. Let U := (C∗⊗1)Im(F ∗)(1⊗C∗).
Clearly, U is contained in the kernel of m too. But, for any x ∈ U and g ∈ St,
(1⊗Xg)x(1⊗Xg)−1 ∈ U . Thus, U is a left C∗⊗C∗-module under left multiplica-
tion. Similarly, it is a right module over this algebra under right multiplication.
So, it is a bimodule over C∗ ⊗C∗. Since U 6= 0, this implies that U = C∗ ⊗C∗.
This is a contradiction, since we get that m = 0. Hence J̃ is invertible as de-
sired. ¤

Remark 3.7. In the paper [Mov] it is assumed that the characteristic of k is
equal to 0, but all the results generalize in a straightforward way to the case
when the characteristic of k is positive and relatively prime to the order of the
group G.

4. The Classification of Triangular Semisimple and
Cosemisimple Hopf Algebras

In this section we describe the classification of triangular semisimple and
cosemisimple Hopf algebras over any algebraically closed field k, given in [EG4].

4.1. Construction of triangular semisimple and cosemisimple Hopf al-
gebras from group-theoretical data. Let H be a finite group such that
|H| is not divisible by the characteristic of k. Suppose that V is an irre-
ducible projective representation of H over k satisfying dim(V ) = |H|1/2. Let
π : H → PGL(V ) be the projective action of H on V , and let π̃ : H → SL(V ) be
any lifting of this action (π̃ need not be a homomorphism). We have π̃(x)π̃(y) =
c(x, y)π̃(xy), where c is a 2-cocycle of H with coefficients in k∗. This cocycle is
nondegenerate (see Section 3) and hence the representation of H on Endk(V )
is isomorphic to the regular representation of H (see e.g., Proposition 3.5). By
Propositions 3.2 and 3.6, this gives rise to a twist J(V ) for k[H], whose equiva-
lence class is canonically associated to (H, V ).

Now, for any group G ⊇ H, whose order is relatively prime to the character-
istic of k, define a triangular semisimple Hopf algebra

F (G,H, V ) :=
(
k[G]J(V ), J(V )−1

21 J(V )
)
. (4–1)

We wish to show that it is also cosemisimple.

Lemma 4.1.1. The Drinfeld element of the triangular semisimple Hopf algebra
(A,R) := F (G, H, V ) equals 1.
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Proof. The Drinfeld element u is a grouplike element of A, and for any finite-
dimensional A-module V one has tr|V (u) = dimRepk(A)(V ) = dim(V ) (since
Repk(A) is equivalent to Repk(G), see e.g., [G5]). In particular, we can set V to
be the regular representation, and find that tr|A(u) = dim(A) 6= 0 in k. But it
is clear that if g is a nontrivial grouplike element in any finite-dimensional Hopf
algebra A, then tr|A(g) = 0. Thus, u = 1. ¤

Remark 4.1.2. Lemma 4.1.1 fails for infinite-dimensional cotriangular Hopf
algebras, which shows that this lemma can not be proved by an explicit com-
putation. We refer the reader to [EG6] for the study of infinite-dimensional
cotriangular Hopf algebras which are obtained from twisting in function alge-
bras of affine proalgebraic groups.

Corollary 4.1.3. The triangular semisimple Hopf algebra (A,R):=F (G,H, V )
is also cosemisimple.

Proof. Since u = 1, one has S2 = Id and so A is cosemisimple (as dim A 6= 0).
¤

Thus we have assigned a triangular semisimple and cosemisimple Hopf algebra
with Drinfeld element u = 1 to any triple (G,H, V ) as above.

4.2. The classification in characteristic 0. In this subsection we assume
that k is of characteristic 0. We first recall Theorem 2.1 from [EG1] and Theorem
3.1 from [EG4], and state them in a single theorem which is the key structure
theorem for triangular semisimple Hopf algebras over k.

Theorem 4.2.1. Let (A,R) be a triangular semisimple Hopf algebra over an
algebraically closed field k of characteristic 0, with Drinfeld element u. Set R̃ :=
RRu. Then there exist a finite group G, a subgroup H ⊆ G and a minimal twist
J ∈ k[H]⊗k[H] such that (A, R̃) and (k[G]J , J−1

21 J) are isomorphic as triangular
Hopf algebras. Moreover , the data (G, H, J) is unique up to isomorphism of
groups and gauge equivalence of twists. That is, if there exist a finite group G′,
a subgroup H ′ ⊆ G′ and a minimal twist J ′ ∈ k[H ′]⊗k[H ′] such that (A, R̃) and
(k[G′]J

′
, J

′−1
21 J ′) are isomorphic as triangular Hopf algebras, then there exists

an isomorphism of groups φ : G → G′ such that φ(H) = H ′ and (φ⊗ φ)(J) and
J ′ are gauge equivalent as twists for k[H ′].

The proof of this theorem relies, among other things, on the following (special
case of a) deep theorem of Deligne on Tannakian categories [De1] in an essential
way.

Theorem 4.2.2. Let k be an algebraically closed field of characteristic 0, and
(C,⊗,1, a, l, r, c) a k-linear abelian symmetric rigid category with End(1) = k,
which is semisimple with finitely many irreducible objects. If categorical dimen-
sions of objects are nonnegative integers, then there exist a finite group G and
an equivalence of symmetric rigid categories F : C → Repk(G).
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We refer the reader to [G5, Theorems 5.3, 6.1, Corollary 6.3] for a complete
and detailed proof of [EG1, Theorem 2.1] and [EG4, Theorem 3.1], along with a
discussion of Tannakian categories.

Let (A,R) be a triangular semisimple Hopf algebra over k whose Drinfeld
element u is 1, and let (G,H, J) be the associated group-theoretic data given in
Theorem 4.2.1.

Proposition 4.2.3. The H-coalgebra (k[H]J , ∆J) (see (3–1)) is simple, and is
isomorphic to the regular representation of H as an H-module.

Proof. By Proposition 3.6, J is the image of J̃ under the embedding k[St]J̃ ↪→
k[H]J . Since J is minimal and St ⊆ H, it follows that St = H. Hence the result
follows from the discussion preceding Proposition 3.6. ¤

We are now ready to prove our first classification result.

Theorem 4.2.4. The assignment F : (G,H, V ) 7→ (A,R) is a bijection between

1. isomorphism classes of triples (G,H, V ) where G is a finite group, H is a
subgroup of G, and V is an irreducible projective representation of H over k

satisfying dim(V ) = |H|1/2, and
2. isomorphism classes of triangular semisimple Hopf algebras over k with Drin-

feld element u = 1.

Proof. We need to construct an assignment F ′ in the other direction, and
check that both F ′ ◦ F and F ◦ F ′ are the identity assignments.

Let (A,R) be a triangular semisimple Hopf algebra over k whose Drinfeld
element u is 1, and let (G, H, J) be the associated group-theoretic data given
in Theorem 4.2.1. By Proposition 4.2.3, the H-algebra (k[H]J)∗ is simple. So
we see that (k[H]J )∗ is isomorphic to Endk(V ) for some vector space V , and we
have a homomorphism π : H → PGL(V ). Thus V is a projective representation
of H. By Proposition 3.4, this representation is irreducible, and it is obvious
that dim(V ) = |H|1/2.

It is clear that the isomorphism class of the representation V does not change
if J is replaced by a twist J ′ which is gauge equivalent to J as twists for k[H].
Thus, to any isomorphism class of triangular semisimple Hopf algebras (A,R)
over k, with Drinfeld element 1, we have assigned an isomorphism class of triples
(G,H, V ). Let us write this as

F ′(A,R) := (G,H, V ). (4–2)

The identity F ◦ F ′ = id follows from Proposition 3.2. Indeed, start with
(A,R) ∼= (k[G]J , J−1

21 J), where J is a minimal twist for k[H], H a subgroup of
G. Then by Proposition 4.2.3, we have that (k[H]J , ∆J) is a simple H-coalgebra
which is isomorphic to the regular representation of H. Now let V be the as-
sociated irreducible projective representation of H, and J(V ) the associated
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twist as in (4–1). Then (k[H]J , ∆J) and (k[H]J(V ),∆J(V )) are isomorphic as
H-coalgebras, and the claim follows from Proposition 3.2.

The identity F ′◦F = id follows from the uniqueness part of Theorem 4.2.1. ¤

Remark 4.2.5. Observe that it follows from Theorem 4.2.4 that the twist J(V )
associated to (H, V ) is minimal.

Now let (G,H, V, u) be a quadruple, in which (G, H, V ) is as above, and u is
a central element of G of order ≤ 2. We extend the map F to quadruples by
setting

F (G,H, V, u) := (A,RRu) where (A,R) := F (G,H, V ). (4–3)

Theorem 4.2.6. The assignment F given in (4–3) is a bijection between

1. isomorphism classes of quadruples (G,H, V, u) where G is a finite group, H

is a subgroup of G, V is an irreducible projective representation of H over k

satisfying dim(V ) = |H|1/2, and u ∈ G is a central element of order ≤ 2, and
2. isomorphism classes of triangular semisimple Hopf algebras over k.

Proof. Define F ′ by F ′(A,R) := (F ′(A,RRu), u), where F ′(A,RRu) is defined
in (4–2). Using Theorem 4.2.4, it is straightforward to see that both F ′ ◦ F and
F ◦ F ′ are the identity assignments. ¤

Theorem 4.2.6 implies the following classification result for minimal triangular
semisimple Hopf algebras over k.

Proposition 4.2.7. F (G,H, V, u) is minimal if and only if G is generated by
H and u.

Proof. As we have already pointed out in Remark 4.2.5, if (A, R) := F (G,H, V )
then the sub Hopf algebra k[H]J ⊆ A is minimal triangular. Therefore, if u = 1
then F (G,H, V ) is minimal if and only if G = H. This obviously remains true
for F (G,H, V, u) if u 6= 1 but u ∈ H. If u /∈ H then it is clear that the R-
matrix of F (G,H, V, u) generates k[H ′], where H ′ = H ∪ uH. This proves the
proposition. ¤

Remark 4.2.8. As was pointed out already by Movshev, the theory developed
in [Mov] and extended in [EG4] is an analogue, for finite groups, of the theory of
quantization of skew-symmetric solutions of the classical Yang-Baxter equation,
developed by Drinfeld [Dr3]. In particular, the operation F is the analogue of
the operation of quantization in [Dr3].

4.3. The classification in positive characteristic. In this subsection we
assume that k is of positive characteristic p, and prove an analogue of Theorem
4.2.6 by using this theorem itself and the lifting techniques from [EG5].

We first recall some notation from [EG5]. Let O := W (k) be the ring of
Witt vectors of k (see e.g., [Se, Sections 2.5, 2.6]), and K the field of fractions
of O. Recall that O is a local complete discrete valuation ring, and that the
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characteristic of K is zero. Let m be the maximal ideal in O, which is generated
by p. One has mn/mn+1 = k for any n ≥ 0 (here m0 := O).

Let F be the assignment defined in (4–3). We now have the following classi-
fication result.

Theorem 4.3.1. The assignment F is a bijection between

1. isomorphism classes of quadruples (G,H, V, u) where G is a finite group of
order prime to p, H is a subgroup of G, V is an irreducible projective rep-
resentation of H over k satisfying dim(V ) = |H|1/2, and u ∈ G is a central
element of order ≤ 2, and

2. isomorphism classes of triangular semisimple and cosemisimple Hopf algebras
over k.

Proof. As in the proof of Theorem 4.2.6 we need to construct the assignment
F ′.

Let (A,R) be a triangular semisimple and cosemisimple Hopf algebra over k.
Lift it (see [EG5]) to a triangular semisimple Hopf algebra (Ā, R̄) over K. By
Theorem 4.2.6, we have that (Ā⊗K K̄, R̄) = F (G,H, V, u). We can now reduce
V “mod p” to get Vp which is an irreducible projective representation of H over
the field k. This can be done since V is defined by a nondegenerate 2-cocycle
c (see Section 3) with values in roots of unity of degree |H|1/2 (as the only
irreducible representation of the simple H-algebra with basis {Xh | h ∈ H}, and
relations XgXh = c(g, h)Xgh). This cocycle can be reduced mod p and remains
nondegenerate (since the groups of roots of unity of order |H|1/2 in k and K are
naturally isomorphic), so it defines an irreducible projective representation Vp.
Define F ′(A,R) := (G, H, Vp, u). It is shown like in characteristic 0 that F ◦ F ′

and F ′ ◦ F are the identity assignments. ¤

The following is the analogue of Theorem 4.2.1 in positive characteristic.

Corollary 4.3.2. Let (A, R) be a triangular semisimple and cosemisimple Hopf
algebra over any algebraically closed field k, with Drinfeld element u. Set R̃ :=
RRu. Then there exist a finite group G, a subgroup H ⊆ G and a minimal twist
J ∈ k[H]⊗k[H] such that (A, R̃) and (k[G]J , J−1

21 J) are isomorphic as triangular
Hopf algebras. Moreover , the data (G, H, J) is unique up to isomorphism of
groups and gauge equivalence of twists.

Proposition 4.3.3. Proposition 4.2.7 holds in positive characteristic as well .

Proof. As before, if (A,R) := F (G,H, V ), the sub Hopf algebra k[H]J ⊆ A is
minimal triangular. This follows from the facts that it is true in characteristic 0,
and that the rank of a triangular structure does not change under lifting. Thus,
Proposition 4.2.7 holds in characteristic p. ¤

Remark. The class of finite-dimensional triangular cosemisimple Hopf algebras
over k is invariant under twisting (see Remark 3.7 in [AEGN]). Using this and
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Theorem 4.2.6, we were able in Theorem 6.3 of [AEGN] to classify the isomor-
phism classes of finite-dimensional triangular cosemisimple Hopf algebras over
k. Namely, we proved that the classification is the same as in characteristic 0
(see Theorem 4.2.6) except that the subgroup H has to be of order coprime to
the characteristic of k.

4.4. The solvability of the group underlying a minimal triangular
semisimple Hopf algebra. In this subsection we consider finite groups which
admit a minimal twist as studied in [EG4]. We also consider the existence of
nontrivial grouplike elements in triangular semisimple and cosemisimple Hopf
algebras, following [EG4].

A classical fact about complex representations of finite groups is that the
dimension of any irreducible representation of a finite group K does not exceed
|K : Z(K)|1/2, where Z(K) is the center of K. Groups of central type are those
groups for which this inequality is in fact an equality. More precisely, a finite
group K is said to be of central type if it has an irreducible representation V

such that dim(V )2 = |K : Z(K)| (see e.g., [HI]). We shall need the following
theorem (conjectured by Iwahori and Matsumoto in 1964) whose proof uses the
classification of finite simple groups.

Theorem 4.4.1 [HI, Theorem 7.3]. Any group of central type is solvable.

As corollaries, we have the following results.

Corollary 4.4.2. Let H be a finite group which admits a minimal twist . Then
H is solvable.

Proof. We may assume that k has characteristic 0 (otherwise we can lift
to characteristic 0). As we showed in the proof of Theorem 4.2.4, H has an
irreducible projective representation V with dim(V ) = |H|1/2. Let K be a finite
central extension of H with central subgroup Z, such that V lifts to a linear
representation of K. We have dim(V )2 = |K : Z|. Since dim(V )2 ≤ |K : Z(K)|
we get that Z = Z(K) and hence that K is a group of central type. But by
Theorem 4.4.1, K is solvable and hence H ∼= K/Z(K) is solvable as well. ¤
Remark 4.4.3. Movshev conjectures in the introduction to [Mov] that any finite
group with a nondegenerate 2-cocycle is solvable. As explained in the Proof of
Corollary 4.4.2, this result follows from Theorem 4.4.1.

Corollary 4.4.4. Let A be a triangular semisimple and cosemisimple Hopf
algebra over k of dimension bigger than 1. Then A has a nontrivial grouplike
element .

Proof. We can assume that the Drinfeld element u is equal to 1 and that A

is not cocommutative. Let Am be the minimal part of A. By Corollary 4.4.2,
Am = k[H]J for a solvable group H, |H| > 1. Therefore, Am has nontrivial
1-dimensional representations. Since Am

∼= A∗opm as Hopf algebras, we get that
Am, and hence A, has nontrivial grouplike elements. ¤
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4.5. Biperfect quasitriangular semisimple Hopf algebras. Corollary
4.4.4 motivates the following question. Let (A,R) be a quasitriangular semi-
simple Hopf algebra over k with characteristic 0 (e.g., the quantum double of
a semisimple Hopf algebra), and let dim(A) > 1. Is it true that A possesses a
nontrivial grouplike element? We now follow [EGGS] and show that the answer
to this question is negative.

Let G be a finite group. If G1 and G2 are subgroups of G such that G = G1G2

and G1∩G2 = 1, we say that G = G1G2 is an exact factorization. In this case G1

can be identified with G/G2, and G2 can be identified with G/G1 as sets, so G1

is a G2-set and G2 is a G1-set. Note that if G = G1G2 is an exact factorization,
then G = G2G1 is also an exact factorization by taking the inverse elements.

Following Kac [KaG] and Takeuchi [T], one constructs a semisimple Hopf
algebra from these data, as follows: Take the vector space H := C[G2]∗⊗C[G1].
Introduce a product on H by:

(ϕ⊗ a)(ψ ⊗ b) = ϕ(a · ψ)⊗ ab (4–4)

for all ϕ,ψ ∈ C[G2]∗ and a, b ∈ G1. Here · denotes the associated action of G1

on the algebra C[G2]∗, and ϕ(a · ψ) is the multiplication of ϕ and a · ψ in the
algebra C[G2]∗.

Identify the vector spaces

H ⊗H = (C[G2]⊗ C[G2])∗ ⊗ (C[G1]⊗ C[G1])

= HomC(C[G2]⊗ C[G2],C[G1]⊗ C[G1])

in the usual way, and introduce a coproduct on H by:

(∆(ϕ⊗ a))(b⊗ c) = ϕ(bc)a⊗ b−1 · a (4–5)

for all ϕ ∈ C[G2]∗, a ∈ G1 and b, c ∈ G2. Here · denotes the action of G2 on G1.
Introduce a counit on H by:

ε(ϕ⊗ a) = ϕ(1G) (4–6)

for all ϕ ∈ C[G2]∗ and a ∈ G1.
Finally, identify the vector spaces H = C[G2]∗⊗C[G1] = HomC(C[G2],C[G1])

in the usual way, and introduce an antipode on H by

S

( ∑

a∈G1

ϕa ⊗ a

)
(x) =

∑

a∈G1

ϕ
(x−1·a)−1

(
(a−1 · x)−1

)
a (4–7)

for all
∑

a∈G1
ϕa ⊗ a ∈ H and x ∈ G2, where the first · denotes the action of G2

on G1, and the second one denotes the action of G1 on G2.

Theorem 4.5.1 [KaG, T]. The multiplication, comultiplication, counit and an-
tipode described in (4–4)-(4–7) determine a semisimple Hopf algebra structure
on the vector space H := C[G2]∗ ⊗ C[G1].
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The Hopf algebra H is called the bicrossproduct Hopf algebra associated with
G,G1, G2, and is denoted by H(G, G1, G2).

Theorem 4.5.2 [Ma2]. H(G,G2, G1) ∼= H(G,G1, G2)∗ as Hopf algebras.

Let us call a Hopf algebra H biperfect if the groups G(H), G(H∗) are both
trivial. We are ready now to prove:

Theorem 4.5.3. H(G,G1, G2) is biperfect if and only if G1, G2 are self nor-
malizing perfect subgroups of G.

Proof. It is well known that the category of finite-dimensional representations
of H(G,G1, G2) is equivalent to the category of G1-equivariant vector bundles on
G2, and hence that the irreducible representations of H(G,G1, G2) are indexed
by pairs (V, x) where x is a representative of a G1-orbit in G2, and V is an
irreducible representation of (G1)x, where (G1)x is the isotropy subgroup of x.
Moreover, the dimension of the corresponding irreducible representation is

dim(V )|G1|
|(G1)x| .

Thus, the 1-dimensional representations of H(G,G1, G2) are indexed by pairs
(V, x) where x is a fixed point of G1 on G2 = G/G1 (i.e., x ∈ NG(G1)/G1), and
V is a 1-dimensional representation of G1. The result follows now using Theorem
4.5.2. ¤

By Theorem 4.5.3, in order to construct an example of a biperfect semisimple
Hopf algebra, it remains to find a finite group G which admits an exact factor-
ization G = G1G2, where G1, G2 are self normalizing perfect subgroups of G.
Amazingly the Mathieu simple group G := M24 of degree 24 provides such an
example!

Theorem 4.5.4. The group G contains a subgroup G1
∼= PSL(2, 23), and a

subgroup G2
∼= A7n (Z2)4 where A7 acts on (Z2)4 via the embedding A7 ⊂ A8 =

SL(4, 2) = Aut((Z2)4) (see [AT]). These subgroups are perfect , self normalizing
and G admits an exact factorization G = G1G2. In particular , H(G,G1, G2) is
biperfect .

We suspect that not only is M24 the smallest example but it may be the only
finite simple group with a factorization with all the needed properties.

Clearly, the Drinfeld double D(H(G,G1, G2)) is an example of a biperfect
quasitriangular semisimple Hopf algebra.

4.6. Minimal triangular Hopf algebras constructed from a bijective 1-
cocycle. In this subsection we describe an explicit way of constructing minimal
twists for certain solvable groups (hence of central type groups) given in [EG2].
For simplicity we let k := C.
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Definition 4.6.1. Let G,A be finite groups and ρ : G → Aut(A) a homomor-
phism. By a 1-cocycle of G with coefficients in A we mean a map π : G → A

which satisfies the equation

π(gg′) = π(g)(g · π(g′)), g, g′ ∈ G, (4–8)

where ρ(g)(x) = g · x for g ∈ G, x ∈ A.

We will be interested in the case when π is a bijection (so in particular, |G| = |A|),
because of the following proposition.

Proposition 4.6.2. Let G, A be finite groups, π : G → A a bijective 1-cocycle,
and J a twist for C[A] which is G-invariant . Then J̄ := (π−1 ⊗ π−1)(J) is a
quasitwist for C[G].

Proof. It is obvious that the second equation of (2–14) is satisfied for J̄ . So
we only have to prove the first equation of (2–14) for J̄ . Write J =

∑
axyx⊗ y.

Then

(π ⊗ π ⊗ π)((∆⊗ Id)(J̄)(J̄ ⊗ 1))

=
∑

x,y,z,t∈A

axyaztπ(π−1(x)π−1(z))⊗ π(π−1(x)π−1(t))⊗ π(π−1(y))

=
∑

x,y,z,t∈A

axyaztx(π−1(x)z)⊗ x(π−1(x)t)⊗ y.

Using the G-invariance of J , we can remove the π−1(x) in the last expression
and get

(π ⊗ π ⊗ π)((∆⊗ Id)(J̄)(J̄ ⊗ 1)) = (∆⊗ Id)(J)(J ⊗ 1). (4–9)

Similarly,

(π ⊗ π ⊗ π)((Id⊗∆)(J̄)(1⊗ J̄)) = (Id⊗∆)(J)(1⊗ J). (4–10)

But J is a twist, so the right hand sides of (4–9) and (4–10) are equal. Since π

is bijective, this implies equation (2–14) for J̄ . ¤
Now, given a quadruple (G, A, ρ, π) as above such that A is abelian, define G̃ :=
GnA∨, Ã := A×A∨, ρ̃ : G̃ → Aut(Ã) by ρ̃(g) = ρ(g)×ρ∗(g)−1, and π̃ : G̃ → Ã

by π̃(a∗g) = π(g)a∗ for a∗ ∈ A∨, g ∈ G. It is straightforward to check that π̃ is a
bijective 1-cocycle. We call the quadruple (G̃, Ã, ρ̃, π̃) the double of (G,A, ρ, π).

Consider the element J ∈ C[Ã]⊗ C[Ã] given by

J := |A|−1
∑

x∈A,y∗∈A∨
e(x,y∗)x⊗ y∗,

where (, ) is the duality pairing between A and A∨. It is straightforward to check
that J is a twist for C[Ã], and that it is G-invariant. This allows to construct
the corresponding element

J̄ := |A|−1
∑

x∈A,y∗∈A∨
e(x,y∗)π−1(x)⊗ y∗ ∈ C[G̃]⊗ C[G̃]. (4–11)
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Proposition 4.6.3. J̄ is a twist for C[G̃], and

J̄−1 = |A|−1
∑

z∈A,t∗∈A∨
e−(z,t∗)π−1(T (z))⊗ t∗, (4–12)

where T : A → A is a bijective map (not a homomorphism, in general) defined
by

π−1(x−1)π−1(T (x)) = 1.

Proof. Denote the right hand side of (4–12) by J ′. We need to check that
J ′ = J̄−1. It is enough to check it after evaluating any a ∈ A on the second
component of both sides. We have

(1⊗ a)(J̄) = |A|−1
∑
x,y∗

e(xa,y∗)π−1(x) = π−1(a−1)(1⊗ a)(J ′)

= |A|−1
∑
x,y∗

e−(xa−1,y∗)π−1(T (x)) = π−1(T (a)).

This concludes the proof of the proposition. ¤

We can now prove:

Theorem 4.6.4. Let J̄ be as in (4–11). Then J̄ is a minimal twist for C[G̃],
and it gives rise to a minimal triangular semisimple Hopf algebra (C[G̃]J̄ , RJ̄),
with universal R-matrix

RJ̄ = |A|−2
∑

x,y∈A
x∗, y∗∈A∨

e(x,y∗)−(y,x∗)x∗π−1(x)⊗ π−1(T (y))y∗.

Proof. Minimality of J̄ follows from the fact that {x∗π−1(x) | x∗ ∈ A∨, x ∈ A}
and {π−1(T (y))y∗ | y ∈ A, y∗ ∈ A∨} are bases of C[G̃], and the fact that the
matrix cxx∗,yy∗ = e(x,y∗)−(y,x∗) is invertible (because it is proportional to the
matrix of Fourier transform on A×A∨). ¤

Remark 4.6.5. By Theorem 4.6.4, every bijective 1-cocycle π : G → A gives
rise to a minimal triangular structure on C[GnA∨]. So it remains to construct
a supply of bijective 1-cocycles. This was done in [ESS]. The theory of bijective
1-cocycles was developed in [ESS], because it was found that they correspond
to set-theoretical solutions of the quantum Yang-Baxter equation. In particular,
many constructions of these 1-cocycles were found. We refer the reader to [ESS]
for further details.

We now give two examples of nontrivial minimal triangular semisimple Hopf
algebras. The first one has the least possible dimension; namely, dimension 16,
and the second one has dimension 36.

Example 4.6.6. Let G := Z2 × Z2 with generators x, y, and A := Z4 with
generator a. Define an action of G on A by letting x act trivially, and y act
as an automorphism via y · a = a−1. Eli Aljadeff pointed out to us that the
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group G̃ := (Z2 × Z2) n Z4 has a 2-cocycle c with coefficients in C∗, such that
the twisted group algebra C[G̃]c is simple. This implies that G̃ has a minimal
twist (see Subsection 4.1). We now use Theorem 4.6.4 to explicitly construct our
example.

Define a bijective 1-cocycle π : G → A as follows: π(1) = 1, π(x) = a2, π(y) =
a and π(xy) = a3. Then by Theorem 4.6.4, C[G̃]J̄ is a non-commutative and
non-cocommutative minimal triangular semisimple Hopf algebra of dimension 16.

We remark that it follows from the classification of semisimple Hopf algebras of
dimension 16 [Kash], that the Hopf algebra C[G̃]J̄ constructed above, appeared
first in [Kash]. However, our triangular structure on this Hopf algebra is new.
Indeed, Kashina’s triangular structure on this Hopf algebra is not minimal, since
it arises from a twist of a subgroup of G̃ which is isomorphic to Z2 × Z2.

Example 4.6.7. Let G := S3 be the permutation group of three letters, and
A := Z2×Z3. Define an action of G on A by s(a, b) = (a, (−1)sign(s)b) for s ∈ G,
a ∈ Z2 and b ∈ Z3. Define a bijective 1-cocycle π = (π1, π2) : G → A as follows:
π1(s) = 0 if s is even and π1(s) = 1 if s is odd, and π2(id) = 0, π2((123)) = 1,
π2((132)) = 2, π2((12)) = 2, π2((13)) = 0 and π2((23)) = 1. Then by Theorem
4.6.4, C[G̃]J̄ is a noncommutative and noncocommutative minimal triangular
semisimple Hopf algebra of dimension 36.

We now wish to determine the group-theoretical data corresponding, under the
bijection of the classification given in Theorem 4.2.6, to the minimal triangular
semisimple Hopf algebras constructed in Theorem 4.6.4.

Let H := GnA∨. Following Theorem 4.6.4, we can associate to this data the
element

J := |A|−1
∑

g∈G,b∈A∨
e(π(g),b)b⊗ g

(for convenience we use the opposite element to the one we used before). We
proved that this element is a minimal twist for C[H], so C[H]J is a minimal
triangular semisimple Hopf algebra with Drinfeld element u = 1. Now we wish
to find the irreducible projective representation V of H which corresponds to
C[H]J under the correspondence of Theorem 4.2.6.

Let V := Fun(A,C) be the space of C-valued functions on A. It has a basis
{δa | a ∈ A} of characteristic functions of points. Define a projective action φ of
H on V by

φ(b)δa = e−(a,b)δa, φ(g)δa = δg·a+π(g) and φ(bg) = φ(b)φ(g) (4–13)

for g ∈ G and b ∈ A∨. It is straightforward to verify that this is indeed a
projective representation.

Proposition 4.6.8. The representation V is irreducible, and corresponds to
C[H]J under the bijection of the classification given in Theorem 4.2.6.
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Proof. It is enough to show that the H-algebras (C[H]J )∗ and EndC(V ) are
isomorphic.

Let us compute the multiplication in the algebra (C[H]J)∗. We have

∆J(bg) = |A|−1
∑

g′∈G,b′∈A∨
e(π(g′),b′)b(g · b′)g ⊗ bgg′. (4–14)

Let {Ybg} be the dual basis of (C[H]J)∗ to the basis {bg} of C[H]J . Let ∗ denote
the multiplication law dual to the coproduct ∆J . Then, dualizing equation
(4–14), we have

Yb2g2 ∗ Yb1g1 = e(π(g1)−π(g2),b2−b1)Yb1g2 (4–15)

for g1, g2 ∈ G and b1, b2 ∈ A∨ (here for convenience we write the operations in
A and A∨ additively). Define Zbg := e(π(g),b)Ybg for g ∈ G and b ∈ A∨. In the
basis {Zbg} the multiplication law in (C[H]J)∗ is given by

Zb2g2 ∗ Zb1g1 = e(π(g1),b2)Zb1g2 . (4–16)

Now let us introduce a left action of (C[H]J)∗ on V . Set

Zbgδa := e(a,b)δπ(g). (4–17)

It is straightforward to check, using (4–16), that (4–17) is indeed a left action. It
is also straightforward to compute that this action is H-invariant. Thus, (4–17)
defines an isomorphism (C[H]J)∗ → Endk(V ) as H-algebras, which proves the
proposition. ¤

5. The Representation Theory of Cotriangular Semisimple
and Cosemisimple Hopf Algebras

If (A,R) is a minimal triangular Hopf algebra then A and A∗op are isomorphic
as Hopf algebras. But any nontrivial triangular semisimple and cosemisimple
Hopf algebra A, over any algebraically closed field k, which is not minimal, gives
rise to a new Hopf algebra A∗, which is also semisimple and cosemisimple. These
are very interesting semisimple and cosemisimple Hopf algebras which arise from
finite groups, and they are abundant by the constructions given in [EG2, EG4]
(see Section 4). Generally, the dual Hopf algebra of a triangular Hopf algebra is
called cotriangular in the literature.

In this section we explicitly describe the representation theory of cotriangular
semisimple and cosemisimple Hopf algebras A∗ = (k[G]J )∗ studied in [EG3], in
terms of representations of some associated groups. As a corollary we prove that
Kaplansky’s 6th conjecture [Kap] holds for A∗; that is, that the dimension of
any irreducible representation of A∗ divides the dimension of A.
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5.1. The algebras associated with a twist. Let A := k[H] be the group
algebra of a finite group H whose order is relatively prime to the characteristic
of k. Let J ∈ A ⊗ A be a minimal twist, and A1 := (AJ , ∆J , ε) be as in (3–1).
Similarly, we define the coalgebra A2 := (JA,J ∆, ε), where JA = k[H] as vector
spaces, and

J∆ : A → A⊗A, J∆(a) = J−1∆(a) (5–1)

for all a ∈ A. Note that since J is a twist, J∆ is indeed coassociative. For h ∈ H,
let δh : k[H] → k be the linear map determined by δh(h) = 1 and δh(h′) = 0
for h 6= h′ ∈ H. Clearly the set {δh | h ∈ H} forms a linear basis of the dual
algebras (A1)∗ and (A2)∗.

Theorem 5.1.1. 1. (A1)∗ and (A2)∗ are H-algebras via

ρ1(h)δy = δhy, ρ2(h)δy = δyh−1

respectively .
2. (A1)∗ ∼= (A2)∗op as H-algebras (where H acts on (A2)∗op as it does on (A2)∗).
3. The algebras (A1)∗ and (A2)∗ are simple, and are isomorphic as H-modules

to the regular representation RH of H.

Proof. The proof of part 1 is straightforward.
The proof of part 3 follows from Proposition 4.2.3 and Part 2.
Let us prove part 2. It is straightforward to verify that (S ⊗ S)(J) =

(Q ⊗ Q)J−1
21 ∆(Q)−1 where Q is as in (2–16) (see e.g., (2.17) in [Ma1, Section

2.3]). Hence the map (A2)∗ → (A1)∗op, δx 7→ δS(x)Q−1 determines an H-algebra
isomorphism. ¤

Since the algebras (A1)∗, (A2)∗ are simple, the actions of H on (A1)∗, (A2)∗

give rise to projective representations H → PGL(|H|1/2, k). We will denote
these projective representations by V1, V2 (they can be thought of as the simple
modules over (A1)∗, (A2)∗, with the induced projective action of H). Note that
Part 2 of Theorem 5.1.1 implies that V1, V2 are dual to each other, hence that
[V1] = −[V2].

5.2. The main result. Let (A,R) be a triangular semisimple and cosemisimple
Hopf algebra over k, with Drinfeld element u = 1, and let H, G and J be as
before. Consider the dual Hopf algebra A∗. It has a basis of δ-functions δg. The
first simple but important fact about the structure of A∗ as an algebra is the
following:

Proposition 5.2.1. Let Z be a double coset of H in G, and (A∗)Z :=⊕g∈Zkδg⊂
A∗. Then (A∗)Z is a subalgebra of A∗, and A∗ = ⊕Z(A∗)Z as algebras.

Proof. Straightforward. ¤

Thus, to study the representation theory of A∗, it is sufficient to describe the
representations of (A∗)Z for any Z.
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Let Z be a double coset of H in G, and let g ∈ Z. Let Kg := H ∩ gHg−1,
and define the embeddings θ1, θ2 : Kg → H given by θ1(a) = g−1ag, θ2(a) = a.
Denote by Wi the pullback of the projective H-representation Vi to Kg by means
of θi, i = 1, 2.

Our main result is the following theorem, which is proved in the next subsec-
tion.

Theorem 5.2.2. Let W1, W2 be as above, and let (K̂g, π̃W
) be any linearization

of the projective representation W := W1 ⊗W2 of Kg. Let ζ be the kernel of the
projection K̂g → Kg, and χ : ζ → k∗ be the character by which ζ acts in W .
Then there exists a 1–1 correspondence between

1. isomorphism classes of irreducible representations of (A∗)Z and
2. isomorphism classes of irreducible representations of K̂g with ζ acting by χ.

Moreover , if a representation Y of (A∗)Z corresponds to a representation X of
K̂g, then

dim(Y ) =
|H|
|Kg| dim(X).

As a corollary we get Kaplansky’s 6th conjecture [Kap] for cotriangular semi-
simple and cosemisimple Hopf algebras.

Corollary 5.2.3. The dimension of any irreducible representation of a cotri-
angular semisimple and cosemisimple Hopf algebra over k divides the dimension
of the Hopf algebra.

Proof. Since dim(X) divides |Kg| (see e.g., [CR, Proposition 11.44]), we have

|G|
|H|
|Kg| dim(X)

=
|G|
|H|

|Kg|
dim(X)

and the result follows. ¤

In some cases the classification of representations of (A∗)Z is even simpler.
Namely, let g ∈ Aut(Kg) be given by g(a) = g−1ag. Then we have:

Corollary 5.2.4. If the cohomology class [W1] is g-invariant then irreducible
representations of (A∗)Z correspond in a 1–1 manner to irreducible representa-
tions of Kg, and if Y corresponds to X, then

dim(Y ) =
|H|
|Kg| dim(X).

Proof. plus 3mu For any α ∈ AutKg and f ∈ Hom((Kg)n, k∗), let α ◦ f ∈
Hom((Kg)n, k∗) be given by (α ◦ f)(h1, . . . , hn) = f(α(h1), . . . , α(hn)) (which
determines the action of α on Hi(Kg, k

∗)). Then it follows from the identity
[V1] = −[V2] that [W1] = −g ◦ [W2]. Thus, in our situation [W ] = 0, hence W

comes from a linear representation of Kg. Thus, we can set K̂g = Kg in the
theorem, and the result follows. ¤
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Example 5.2.5. Let k := C. Let p > 2 be a prime number, and H :=
(Z/pZ)2 with the standard symplectic form ( · , · ) : H × H → k∗ given by(
(x, y), (x′, y′)

)
= e2πi(xy′−yx′)/p. Then the element J := p−2

∑
a,b∈H(a, b)a⊗ b

is a minimal twist for C[H]. Let g ∈ GL2(Z/pZ) be an automorphism of H,
and G0 be the cyclic group generated by g. Construct the group G := G0 nH.
It is easy to see that in this case, the double cosets are ordinary cosets gkH,
and Kgk = H. Moreover, one can show either explicitly or using Proposition
3.4, that [W1] is a generator of H2(H,C∗) which is isomorphic to Z/pZ. The
element gk acts on [W1] by multiplication by det(gk). Therefore, by Corollary
5.2.4, the algebra (A∗)gkH has p2 1-dimensional representations (corresponding
to linear representations of H) if det(gk) = 1.

However, if det(gk) 6= 1, then [W ] generates H2(H,C∗). Thus, W comes from
a linear representation of the Heisenberg group Ĥ (a central extension of H by
Z/pZ) with some central character χ. Thus, (A∗)gkH has one p-dimensional
irreducible representation, corresponding to the unique irreducible representation
of Ĥ with central character χ (which is W ).

5.3. Proof of Theorem 5.2.2. Let Z ⊂ G be a double coset of H in G. For
any g ∈ Z define the linear map

Fg : (A∗)Z → (A2)∗ ⊗ (A1)∗, δy 7→
∑

h,h′∈H:y=hgh′
δh ⊗ δh′ .

Proposition 5.3.1. Let ρ1, ρ2 be as in Theorem 5.1.1. Then:

1. The map Fg is an injective homomorphism of algebras.
2. Faga′(ϕ) = (ρ2(a)⊗ ρ1(a′)−1)Fg(ϕ) for any a, a′ ∈ H, ϕ ∈ (A∗)Z .

Proof. 1. It is straightforward to verify that the map (Fg)∗ : A2 ⊗ A1 → AZ

is determined by h ⊗ h′ 7→ hgh′, and that it is a surjective homomorphism of
coalgebras. Hence the result follows.

2. Straightforward. ¤
For any a ∈ Kg define ρ(a) ∈ Aut((A2)∗ ⊗ (A1)∗) by ρ(a) = ρ2(a) ⊗ ρ1(ag),
where ag := g−1ag and ρ1, ρ2 are as in Theorem 5.1.1. Then ρ is an action of
Kg on (A2)∗ ⊗ (A1)∗.

Proposition 5.3.2. Let Ug := ((A2)∗⊗(A1)∗)ρ(Kg) be the algebra of invariants.
Then Im(Fg) = Ug, so (A∗)Z

∼= Ug as algebras.

Proof. It follows from Proposition 5.3.1 that Im(Fg) ⊆ Ug, and rk(Fg) =
dim((A∗)Z) = |H|2/|Kg|. On the other hand, by Theorem 5.1.1, (A1)∗, (A2)∗

are isomorphic to the regular representation RH of H. Thus, (A1)∗ and (A2)∗

are isomorphic to (|H|/|Kg|)RKg as representations of Kg, via ρ1(a) and ρ2(ag).
Thus,

(A2)∗ ⊗ (A1)∗ ∼= |H|2
|Kg|2 (RKg ⊗RKg ) ∼= |H|2

|Kg|RKg .

So Ug has dimension |H|2/|Kg|, and the result follows. ¤
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Now we are in a position to prove Theorem 5.2.2. Since W1 ⊗W ∗
1
∼= (A1)∗ and

W2 ⊗W ∗
2
∼= (A2)∗, it follows from Theorem 5.1.1 that W1 ⊗W2 ⊗W ∗

1 ⊗W ∗
2
∼=

(|H|2/|Kg|)RKg as K̂g modules. Thus, if χ
W

is the character of W := W1 ⊗W2

as a K̂g module then

|χ
W

(x)|2 = 0, x /∈ ζ and |χ
W

(x)|2 = |H|2, x ∈ ζ.

Therefore,

χW (x) = 0, x /∈ ζ and χW (x) = |H| · xW , x ∈ ζ,

where x
W

is the root of unity by which x acts in W . Now, it is clear from the
definition of Ug (see Proposition 5.3.2) that Ug = EndK̂g

(W ). Thus if W =⊕
M∈Irr(K̂g) W (M) ⊗ M , where W (M) := HomK̂g

(M, W ) is the multiplicity
space, then

Ug =
⊕

M :W (M)6=0

Endk(W (M)).

So {W (M) | W (M) 6= 0} is the set of irreducible representations of Ug. Thus
the following result implies the theorem:

Lemma. 1. W (M) 6= 0 if and only if for all x ∈ ζ, x|M = x|W .

2. If W (M) 6= 0 then dim(W (M)) =
|H|
|Kg| dim(M).

Proof. The “only if” part of 1 is clear. For the “if” part compute dim(W (M))
as the inner product (χ

W
, χ

M
). We have

(χW , χM ) =
∑

x∈ζ

|H|
|K̂g|

x|W · dim(M) · x̄|M .

If x|M = x|W then

(χ
W

, χ
M

) =
∑

x∈ζ

|H|
|K̂g|

dim(M) =
|H||ζ|
|K̂g|

dim(M) =
|H|
|Kg| dim(M).

This proves part 2 as well. ¤

This concludes the proof of the theorem. ¤

6. The Pointed Case

In this section we consider finite-dimensional triangular pointed Hopf algebras
over an algebraically closed field k of characteristic 0, and in particular describe
the classification and explicit construction of minimal triangular pointed Hopf
algebras, given in [G4]. Throughout the section, unless otherwise specified, the
ground field k will be assumed to be algebraically closed with characteristic 0.
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6.1. The antipode of triangular pointed Hopf algebras. In this subsection
we prove that the fourth power of the antipode of any triangular pointed Hopf
algebra (A,R) is the identity. Along the way we prove that the group algebra of
the group of grouplike elements of AR (which must be abelian) admits a minimal
triangular structure and consequently that A has the structure of a biproduct
[R1].

Theorem 6.1.1. Let (A,R) be a minimal triangular pointed Hopf algebra over
k with Drinfeld element u, and set K := k[G(A)]. Then there exists a projection
of Hopf algebras π : A → K, and consequently A = B ×K is a biproduct where
B := {x ∈ A | (I ⊗ π)∆(x) = x ⊗ 1} ⊆ A. Moreover , K admits a minimal
triangular structure with Drinfeld element u

K
= u.

Proof. Since G(A) is abelian, K∗ ∼= K and K ∼= k[G(A∗cop)] as Hopf alge-
bras. Hence, dim(K∗) = dim(k[G(A∗)]). Consider the series of Hopf algebra
homomorphisms

K
i

↪→ Acop (fR)−1

−→ A∗ i∗−→ K∗,

where i is the inclusion map. Since A∗ is pointed it follows from the above
remarks that i∗|k[G(A∗)] : k[G(A∗)] → K∗ is an isomorphism of Hopf algebras
(see e.g., [Mon, 5.3.5] ), and hence that i∗ ◦ (fR)−1 ◦ i determines a minimal
quasitriangular structure on K∗. This structure is in fact triangular since (fR)−1

determines a triangular structure on A∗. Clearly, (i∗◦(fR)−1◦i)(u) = (u
K∗ )

−1 =
u

K∗ is the Drinfeld element of K∗. Since K and K∗ are isomorphic as Hopf
algebras we conclude that K admits a minimal triangular structure with Drinfeld
element u

K
= u.

Finally, set ϕ := i∗ ◦ (fR)−1 ◦ i and π := ϕ−1 ◦ i∗ ◦ (fR)−1. Then π : A → K

is onto, and moreover π ◦ i = ϕ−1 ◦ i∗ ◦ (fR)−1 ◦ i = ϕ−1 ◦ ϕ = idK . Hence π

is a projection of Hopf algebras and by [R1], A = B ×K is a biproduct where
B := {x ∈ A | (I ⊗ π)∆(x) = x⊗ 1} as desired. This concludes the proof of the
theorem. ¤

Theorem 6.1.2. Let (A,R) be any triangular pointed Hopf algebra with antipode
S and Drinfeld element u over any field k of characteristic 0. Then S4 = Id.
If in addition Am is not semisimple and A is finite-dimensional then dim(A) is
divisible by 4.

Proof. We may assume that k is algebraically closed. By (2–6), S2(a) = uau−1

for all a ∈ A. Let K := k[G(Am)]. Since u ∈ Am, and by Theorem 6.1.1, u = uK

and (uK )2 = 1, we have that S4 = Id.
In order to prove the second claim, we may assume that (A,R) is minimal

(since by [NZ], dim(Am) divides dim(A)). Since A is not semisimple it fol-
lows from [LR1] that S2 6= Id, and hence that u 6= 1. In particular, |G(A)|
is even. Now, let B be as in Theorem 6.1.1. Since S2(B) = B, B has a ba-
sis

{
ai, bj | S2(ai) = ai, S

2(bj) = −bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
. Hence by Theorem
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6.1.1,
{aig, bjg | g ∈ G(A), 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis of A. Since by [R3], tr(S2) = 0, we have 0 = tr(S2) = |G(A)|(n−m),
which implies that n = m, and hence that dim(B) is even as well. ¤
In fact, the first part of Theorem 6.1.2 can be generalized.

Theorem 6.1.3. Let (A,R) be a finite-dimensional quasitriangular Hopf algebra
with antipode S over any field k of characteristic 0, and suppose that the Drinfeld
element u of A acts as a scalar in any irreducible representation of A (e.g ., when
A∗ is pointed). Then u = S(u) and in particular S4 = Id.

Proof. We may assume that k is algebraically closed. In any irreducible repre-
sentation V of A, tr|V (u) = tr|V (S(u)) (see Subsection 2.1). Since S(u) also acts
as a scalar in V (the dual of S(u)|V equals u|V ∗) it follows that u = S(u) in any
irreducible representation of A. Therefore, there exists a basis of A in which the
operators of left multiplication by u and S(u) are represented by upper triangu-
lar matrices with the same main diagonal. Hence the special grouplike element
uS(u)−1 is unipotent. Since it has a finite order we conclude that uS(u)−1 = 1,
and hence that S4 = Id. ¤
Remark 6.1.4. If (A,R) is a minimal triangular pointed Hopf algebra then
all its irreducible representations are 1-dimensional. Hence Theorem 6.1.3 is
applicable, and the first part of Theorem 6.1.2 follows.

Example 6.1.5. Let A be Sweedler’s 4-dimensional Hopf algebra [Sw]. It is
generated as an algebra by a grouplike element g and a 1 : g skew primitive
element x satisfying the relations g2 = 1, x2 = 0 and gx = −xg. It is known
that A admits minimal triangular structures all of which with g as the Drinfeld
element [R2]. In this example, K = k[〈g〉] and B = sp{1, x}. Note that g is
central in K but is not central in A, so (S|K)2 = Id but S2 6= Id in A. However,
S4 = Id.

6.2. Construction of minimal triangular pointed Hopf algebras. In
this section we give a method for the construction of minimal triangular pointed
Hopf algebras which are not necessarily semisimple.

Let G be a finite abelian group, and F : G×G → k∗ be a non-degenerate skew
symmetric bilinear form on G. That is, F (xy, z) = F (x, z)F (y, z), F (x, yz) =
F (x, y)F (x, z), F (1, x) = F (x, 1) = 1, F (x, y) = F (y, x)−1 for all x, y, z ∈ G,
and the map f : G → G∨ defined by 〈f(x), y〉 = F (x, y) for all x, y ∈ G is an
isomorphism. Let UF : G → {−1, 1} be defined by UF (g) = F (g, g). Then UF is
a homomorphism of groups. Denote U−1

F (−1) by IF .

Definition 6.2.1. Let k be an algebraically closed field of characteristic zero. A
datum D = (G,F, n) is a triple where G is a finite abelian group, F : G×G → k∗

is a non-degenerate skew symmetric bilinear form on G, and n is a non-negative
integer function IF → Z+, g 7→ ng.
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Remark 6.2.2. (1) The map f : k[G] → k[G∨] determined by 〈f(g), h〉 =
F (g, h) for all g, h ∈ G determines a minimal triangular structure on k[G∨].
(2) If IF is not empty then G has an even order.

To each datum D we associate a Hopf algebra H(D) in the following way. For
each g ∈ IF , let Vg be a vector space of dimension ng, and let B =

⊕
g∈IF

Vg.
Then H(D) is generated as an algebra by G ∪ B with the following additional
relations (to those of the group G and the vector spaces Vg’s):

xy = F (h, g)yx and xa = F (a, g)ax (6–1)

for all g, h ∈ IF , x ∈ Vg, y ∈ Vh and a ∈ G.
The coalgebra structure of H(D) is determined by letting a ∈ G be a grouplike

element and x ∈ Vg be a 1 : g skew primitive element for all g ∈ IF . In particular,
ε(a) = 1 and ε(x) = 0 for all a ∈ G and x ∈ Vg.

In the special case where G = Z2 = {1, g}, F (g, g) = −1 and n := ng, the
associated Hopf algebra will be denoted by H(n). Clearly, H(0) = kZ2, H(1)
is Sweedler’s 4-dimensional Hopf algebra, and H(2) is the 8-dimensional Hopf
algebra studied in [G1, Section 2.2] in connection with KRH invariants of knots
and 3-manifolds. We remark that the Hopf algebras H(n) are studied in [PO1,
PO2] where they are denoted by E(n).

For a finite-dimensional vector space V we let
∧

V denote the exterior algebra
of V . Set B :=

⊗
g∈IF

∧
Vg.

Proposition 6.2.3. 1. The Hopf algebra H(D) is pointed and G(H(D)) = G.
2. H(D) = B × k[G] is a biproduct .
3. H(D)1 = k[G]

⊕
(k[G]B), and Pa,b(H(D)) = sp{a−b}⊕

aVa−1b for all a, b ∈
G (here we agree that Va−1b = 0 if a−1b /∈ IF ).

Proof. Part 1 follows since (by definition) H(D) is generated as an algebra by
grouplike elements and skew primitive elements. Now, it is straightforward to
verify that the map π : H(D) → k[G] determined by π(a) = a and π(x) = 0
for all a ∈ G and x ∈ B, is a projection of Hopf algebras. Since B = {x ∈
H(D) | (I ⊗ π)∆(x) = x ⊗ 1}, Part 2 follows from [R1]. Finally, by Part 2,
B is a braided graded Hopf algebra in the Yetter-Drinfeld category k[G]

k[G]YD (see
e.g., [AS]) with respect to the grading where the elements of B are homogeneous
of degree 1. Write B =

⊕
n≥0 B(n), where B(n) denotes the homogeneous

component of degree n. Then, B(0) = k1 = B1 (since B ∼= H(D)/H(D)k[G]+ as
coalgebras, it is connected). Furthermore, by similar arguments used in the proof
of [AS, Lemma 3.4], P (B) = B(1) = B. But then by [AS, Lemma 2.5], H(D)
is coradically graded (where the nth component H(D)(n) is just B(n) × k[G])
which means by definition that H(D)1 = H(D)(0)

⊕
H(D)(1) = k[G]

⊕
(k[G]B)

as desired. The second statement of Part 3 follows now, using (1), by counting
dimensions. ¤
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In the following we determine all the minimal triangular structures on H(D).
Let f : k[G] → k[G∨] be the isomorphism from Remark 6.2.2(1), and set I ′F :=
{g ∈ IF | ng 6= 0}. Let Φ be the set of all isomorphisms ϕ : G∨ → G satisfying
ϕ∗(α) = ϕ(α−1) for all α ∈ G∨, and (ϕ ◦ f)(g) = g for all g ∈ I ′F (here we
identify G with G∨∨).

Extend any α ∈ G∨ to an algebra homomorphism H(D) → k by setting
α(z) = 0 for all z ∈ B. Extend any x ∈ V ∗

g to Px ∈ H(D)∗ by setting 〈Px, ay〉 = 0
for all a ∈ G and y ∈ ⊗

g∈IF

∧
Vg of degree different from 1, and < Px, ay >=

δg,h〈x, y〉 for all a ∈ G and y ∈ Vh. We shall identify the vector spaces V ∗
g and

{Px | x ∈ V ∗
g } via the map x 7→ Px.

For g ∈ I ′F , let Sg(k) be the set of all isomorphisms Mg : V ∗
g → Vg−1 . Let

S(k) ⊆ ×g∈I′F Sg(k) be the set of all tuples (Mg) satisfying M∗
g = Mg−1 for all

g ∈ I ′F .

Theorem 6.2.4. (1) For each T := (ϕ, (Mg)) ∈ Φ× S(k), there exists a unique
Hopf algebra isomorphism fT : H(D)∗cop → H(D) determined by α 7→ ϕ(α) and
Px 7→ Mg(x) for α ∈ G∨ and x ∈ V ∗

g .
(2) There is a one to one correspondence between Φ×S(k) and the set of minimal
triangular structures on H(D) given by T 7→ fT .

Proof. We first show that fT is a well defined isomorphism of Hopf algebras.
Using Proposition 6.2.3(2), it is straightforward to verify that

∆(Px) = ε⊗ Px + Px ⊗ f(g−1),

Pxα = 〈α, g〉αPx, and

PxPy = F (h, g)PyPx

for all α ∈ G∨, g, h ∈ IF , x ∈ V ∗
g and y ∈ V ∗

h . Let B∗ := {Px | x ∈ V ∗
g , g ∈ IF },

and H be the sub Hopf algebra of H(D)∗cop generated as an algebra by G∨∪B∗.
Then, using (4) and our assumptions on T , it is straightforward to verify that
the map f−1

T : H(D) → H determined by a 7→ ϕ−1(a) and z 7→ M−1
g (z) for

a ∈ G and z ∈ Vg−1 , is a surjective homomorphism of Hopf algebras. Let us
verify for instance that f−1

T (za) = F (a, g)f−1
T (az). Indeed, this is equivalent

to 〈ϕ−1(a), g〉 = 〈f(a), g〉 which in turn holds by our assumptions on ϕ. Now,
using Proposition 4.3(3), it is straightforward to verify that f−1

T is injective
on Pa,b(H(D)) for all a, b ∈ G. Since H(D) is pointed, f−1

T is also injective
(see e.g., [Mon, Corollary 5.4.7]). This implies that H = H(D)∗cop, and that
fT : H(D)∗cop → H(D) is an isomorphism of Hopf algebras as desired. Note
that in particular, G∨ = G(H(D)∗).

The fact that fT satisfies (2–3) follows from a straightforward computation
(using (6–1)) since it is enough to verify it for algebra generators p ∈ G∨ ∪ B∗

of H(D)∗cop, and a ∈ G ∪B of H(D).
We have to show that fT satisfies (2.3.1). Indeed, it is straightforward to verify

that f∗T : H(D)∗op → H(D) is determined by α 7→ ϕ(α−1) and Px 7→ gMg(x)
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for α ∈ G∨ and x ∈ V ∗
g . Hence, f∗T = fT ◦ S, where S is the antipode of H(D)∗,

as desired.
We now have to show that any minimal triangular structure on H(D) comes

from fT for some T . Indeed, let f : H(D)∗cop → H(D) be any Hopf iso-
morphism. Then f must map G∨ onto G, {f(g−1) | g ∈ I ′F } onto I ′F , and
Pf(g−1),ε(H(D)∗cop) bijectively onto P1,ϕ(f(g−1))(H(D)). Therefore there ex-
ists an invertible operator Mg : V ∗

g → Vϕ(f(g−1)) such that f is determined
by α 7→ ϕ(α) and Px 7→ Mg(x). Suppose f satisfies (2–3). Then letting p = Px

and a ∈ G in (2–3) yields af(Px) = F (a, g)f(Px)a for all a ∈ G. But by (6–1),
this is equivalent to (ϕ ◦ f)(g) = g for all g ∈ I ′F . Since by Theorem 6.1.1,
ϕ : k[G∨] → k[G] determines a minimal triangular structure on k[G] it follows
that ϕ ∈ Φ. Since f : H(D)∗cop → H(D) satisfies (2.3.1), (Mg) ∈ S(k), and
hence f is of the form fT for some T as desired. ¤
For a triangular structure on H(D) corresponding to the map fT , we let RT

denote the corresponding R-matrix.

Remark 6.2.5. Note that if ng−1 6= ng for some g ∈ I ′F , then S(k) is empty
and H(D) does not have a minimal triangular structure.

6.3. The classification of minimal triangular pointed Hopf algebras. In
this subsection we use Theorems 6.1.1, 6.1.2 and [AEG, Theorem 6.1] to classify
minimal triangular pointed Hopf algebras. Namely, we prove:

Theorem 6.3.1. Let (A,R) be a minimal triangular pointed Hopf algebra over
an algebraically closed field k of characteristic 0. There exist a datum D and
T ∈ Φ× S(k) such that (A,R) ∼= (H(D), RT ) as triangular Hopf algebras.

Before we prove Theorem 6.3.1 we need to fix some notation and prove a few
lemmas.

In what follows, (A,R) will always be a minimal triangular pointed Hopf
algebra over k, G := G(A) and K := k[G(A)]. For any g ∈ G, P1,g(A) is a
〈g〉-module under conjugation, and sp{1 − g} is a submodule of P1,g(A). Let
Vg ⊂ P1,g(A) be its complement, and set ng := dim(Vg).

By Theorem 6.1.1, A = B×K where B = {x ∈ A | (I⊗π)∆(x) = x⊗1} ⊆ A

is a left coideal subalgebra of A (equivalently, B is an object in the Yetter-
Drinfeld category k[G]

k[G]YD). Note that B ∩ K = k1. Let ρ : B → K ⊗ B be
the associated comodule structure and write ρ(x) =

∑
x1 ⊗ x2, x ∈ B. By

[R1], B ∼= A/AK+ as coalgebras, hence B is a connected pointed coalgebra. Let
P (B) := {x ∈ B | ∆B(x) = x⊗ 1 + 1⊗ x} be the space of primitive elements of
B.

Lemma 6.3.2. For any g ∈ G, Vg = {x ∈ P (B) | ρ(x) = g ⊗ x}.
Proof. Let x ∈ Vg. Since g acts on Vg by conjugation we may assume by [G1,
Lemma 0.2], that gx = ωxg for some 1 6= ω ∈ k. Since π(x) and π(g) = g

commute we must have that π(x) = 0. But then (I ⊗ π)∆(x) = x⊗ 1 and hence
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x ∈ B. Since ∆(x) =
∑

x1 × x1
2 ⊗ x2

2 × 1, applying the maps ε⊗ I ⊗ I ⊗ ε and
I ⊗ ε⊗ I ⊗ ε to both sides of the equation

∑
x1 × x1

2 ⊗ x2
2 × 1 = x× 1⊗ 1× 1 +

1× g ⊗ x× 1, yields that x ∈ P (B) and ρ(x) = g ⊗ x as desired.
Suppose that x ∈ P (B) satisfies ρ(x) = g ⊗ x. Since ∆(x) = x⊗ 1 + ρ(x), it

follows that x ∈ Vg as desired. ¤

Lemma 6.3.3. For every x ∈ Vg, x2 = 0 and gx = −xg.

Proof. Suppose Vg 6= 0 and let 0 6= x ∈ Vg. Then S2(x) = g−1xg, g−1xg 6= x

by [G1, Lemma 0.2], and g−1xg ∈ Vg. Since by Theorem 6.1.2, S4 = Id it follows
that g2 and x commute, and hence that gx = −xg for every x ∈ Vg.

Second we wish to show that x2 = 0. By Lemma 6.3.2, x ∈ B and hence
x2 ∈ B (B is a subalgebra of A). Since ∆(x2) = x2 ⊗ 1 + g2 ⊗ x2, and x2 and
g2 commute, it follows from [G1, Lemma 0.2] that x2 = α(1− g2) ∈ K for some
α ∈ k. We thus conclude that x2 = 0, as desired. ¤

Recall that the map fR : A∗cop → A is an isomorphism of Hopf algebras, and let
F : G×G → k∗ be the associated non-degenerate skew symmetric bilinear form
on G defined by F (g, h) := 〈f−1

R (g), h〉 for every g, h ∈ G.

Lemma 6.3.4. For any x ∈ Vg and y ∈ Vh, xy = F (h, g)yx.

Proof. If either Vg = 0 or Vh = 0, there is nothing to prove. Suppose Vg, Vh 6= 0,
and let 0 6= x ∈ Vg and 0 6= y ∈ Vh. Set P := f−1

R (x). Then P ∈ Pf−1
R (g),ε(A

∗cop).
Substituting p := P and a := y in equation (2–3) yields yx − F (g, h)xy =
〈P, y〉(1−gh). Since 〈P, y〉(1 − gh) ∈ B ∩ K, it is equal to 0, and hence yx =
F (g, h)xy. ¤

Lemma 6.3.5. For any a ∈ G and x ∈ Vg, xa = F (a, g)ax.

Proof. Set P := f−1
R (x). Then the result follows by letting p := P and a ∈ G

in (2–3), and noting that P ∈ Pf−1
R (g),ε(A

∗cop). ¤

We can now prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Let n : IF → Z+ be the nonnegative integer
function defined by n(g) = ng, and let D := (G, F, n). By [AEG, Theorem
6.1], A is generated as an algebra by G ∪ (

⊕
g∈IF

Vg). By Lemmas 6.3.3-6.3.5,
relations (6–1) are satisfied. Therefore there exists a surjection of Hopf algebras
ϕ : H(D) → A. Using Proposition 4.3(3), it is straightforward to verify that
ϕ is injective on Pa,b(H(D)) for all a, b ∈ G. Since H(D) is pointed, ϕ is also
injective (see e.g., [Mon, Corollary 5.4.7]). Hence ϕ is an isomorphism of Hopf
algebras. The rest of the theorem follows now from Theorem 6.2.4. ¤

Remark 6.3.6. Theorem 6.1 in [AEG] states that a finite-dimensional cotri-
angular pointed Hopf algebra is generated by its grouplike and skewprimitive
elements. This confirms the conjecture that this is the case for any finite-
dimensional pointed Hopf algebra over C [AS2], in the cotriangular case. The
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proof uses a categorical point of view (or, alternatively, the Lifting method; see
[AS1, AS2]).

7. Triangular Hopf Algebras with the Chevalley Property

As we said in the introduction, semisimple cosemisimple triangular Hopf alge-
bras and minimal triangular pointed Hopf algebras share in common the Cheval-
ley property. In this section we describe the classification of finite-dimensional
triangular Hopf algebras with the Chevalley property, given in [AEG].

7.1. Triangular Hopf algebras with Drinfeld element of order ≤ 2. We
start by classifying triangular Hopf algebras with R-matrix of rank ≤ 2. We
show that such a Hopf algebra is a suitable modification of a cocommutative
Hopf superalgebra (i.e., the group algebra of a supergroup). On the other hand,
by Corollary 2.2.3.5, a finite supergroup is a semidirect product of a finite group
with an odd vector space on which this group acts.

7.1.1. The correspondence between Hopf algebras and superalgebras. We start
with a correspondence theorem between Hopf algebras and Hopf superalgebras.

Theorem 7.1.1.1. There is a one to one correspondence between

1. isomorphism classes of pairs (A, u) where A is an ordinary Hopf algebra, and
u is a grouplike element in A such that u2 = 1, and

2. isomorphism classes of pairs (A, g) where A is a Hopf superalgebra, and g is
a grouplike element in A such that g2 = 1 and gxg−1 = (−1)p(x)x (i .e., g acts
on x by its parity),

such that the tensor categories of representations of A and A are equivalent .

Proof. Let (A, u) be an ordinary Hopf algebra with comultiplication ∆, counit
ε, antipode S, and a grouplike element u such that u2 = 1. Let A = A regarded
as a superalgebra, where the Z2-grading is given by the adjoint action of u. For
a ∈ A, let us define ∆0, ∆1 by writing ∆(a) = ∆0(a) + ∆1(a), where ∆0(a) ∈
A ⊗ A0 and ∆1(a) ∈ A ⊗ A1. Define a map ∆̃ : A → A ⊗ A by ∆̃(a) :=
∆0(a) − (−1)p(a)(u ⊗ 1)∆1(a). Define S̃(a) := up(a)S(a), a ∈ A. Then it is
straightforward to verify that (A, ∆̃, ε, S̃) is a Hopf superalgebra.

The element u remains grouplike in the new Hopf superalgebra, and acts by
parity, so we can set g := u.

Conversely, suppose that (A, g) is a pair where A is a Hopf superalgebra with
comultiplication ∆̃, counit ε, antipode S̃, and a grouplike element g, with g2 = 1,
acting by parity. For a ∈ A, let us define ∆̃0, ∆̃1 by writing ∆̃(a) = ∆̃0(a) +
∆̃1(a), where ∆̃0(a) ∈ A⊗A0 and ∆̃1(a) ∈ A⊗A1. Let A = A as algebras, and
define a map ∆ : A → A⊗ A by ∆(a) := ∆̃0(a)− (−1)p(a)(g ⊗ 1)∆̃1(a). Define
S(a) := gp(a)S̃(a), a ∈ A. Then it is straightforward to verify that (A,∆, ε, S)
is an ordinary Hopf algebra, and we can set u := g.
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It is obvious that the two assignments constructed above are inverse to each
other. The equivalence of tensor categories is straightforward to verify. The
theorem is proved. ¤

Theorem 7.1.1.1 implies the following. Let A be any Hopf superalgebra, and
C[Z2]nA be the semidirect product, where the generator g of Z2 acts on A by
gxg−1 = (−1)p(x)x. Then we can define an ordinary Hopf algebra A, which is
the one corresponding to (C[Z2] n A, g) under the correspondence of Theorem
7.1.1.1.

The constructions of this subsection have the following explanation in terms
of Radford’s biproduct construction [R1]. Namely A is a Hopf algebra in the
Yetter-Drinfeld category of C[Z2], so Radford’s biproduct construction yields a
Hopf algebra structure on C[Z2] ⊗ A, and it is straightforward to see that this
Hopf algebra is exactly A. Moreover, it is clear that for any pair (A, u) as in
Theorem 7.1.1.1, gu is central in A and A = A/(gu− 1).

7.1.2. Correspondence of twists. Let us say that a twist J for a Hopf algebra A

with an involutive grouplike element g is even if it is invariant under Ad(g).

Proposition 7.1.2.1. Let (A, g) be a pair as in Theorem 7.1.1.1, and let A be
the associated ordinary Hopf algebra. Let J ∈ A⊗A be an even element . Write
J = J0 + J1, where J0 ∈ A0 ⊗A0 and J1 ∈ A1 ⊗A1. Define J := J0 − (g ⊗ 1)J1.
Then J is an even twist for A if and only if J is a twist for A. Moreover , AJ

corresponds to AJ under the correspondence in Theorem 7.1.1.1. Thus, there is
a one to one correspondence between even twists for A and twists for A, given
by J → J.

Proof. Straightforward. ¤

7.1.3. The Correspondence between triangular Hopf algebras and superalge-

bras. Let us now return to our main subject, which is triangular Hopf algebras
and superalgebras. For triangular Hopf algebras whose Drinfeld element u is
involutive, we will make the natural choice of the element u in Theorem 7.1.1.1,
namely define it to be the Drinfeld element of A.

Theorem 7.1.3.1. The correspondence of Theorem 7.1.1.1 extends to a one to
one correspondence between

1. isomorphism classes of ordinary triangular Hopf algebras A with Drinfeld el-
ement u such that u2 = 1, and

2. isomorphism classes of pairs (A, g) where A is a triangular Hopf superalgebra
with Drinfeld element 1 and g is an element of G(A) such that g2 = 1 and
gxg−1 = (−1)p(x)x.

Proof. Let (A,R) be a triangular Hopf algebra with u2 = 1. Since (S⊗S)(R) =
R and S2 = Ad(u) [Dr2], u⊗u and R commute. Hence we can write R = R0+R1,
where R0 ∈ A0 ⊗A0 and R1 ∈ A1 ⊗A1. Let R := (R0 + (1⊗ u)R1)Ru. Then R
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is even. Indeed, since

R0 = 1/2(R + (u⊗ 1)R(u⊗ 1)) and

R1 = 1/2(R− (u⊗ 1)R(u⊗ 1)),

u⊗ u and R commute.
It is now straightforward to show that (A, R) is triangular with Drinfeld el-

ement 1. Let us show for instance that R−1 = R21. Let us use the notation
a ∗ b,X21 for multiplication and opposition in the tensor square of a superalge-
bra, and the notation ab,Xop for usual algebras. Then,

R ∗ R21 = (R0 + (1⊗ u)R1)Ru ∗ (Rop
0 − (u⊗ 1)Rop

1 )Ru.

Since, RuR0 = R0Ru, RuR1 = −(u⊗ u)R1Ru, we get that the RHS equals

(R0+(1⊗u)R1)∗(Rop
0 +(1⊗u)Rop

1 ) = R0R
op
0 +R1R

op
1 +(1⊗u)(R1R

op
0 +R0R

op
1 ).

But, R0R
op
0 + R1R

op
1 = 1 and (1⊗ u)(R1R

op
0 + R0R

op
1 ) = 0, since RRop = 1, so

we are done.
Conversely, suppose that (A, g) is a pair where A is a triangular Hopf superal-

gebra with R-matrix R and Drinfeld element 1. Let R = R0 + R1, where R0 has
even components, and R1 has odd components. Let R := (R0 + (1 ⊗ g)R1)Rg.
Then it is straightforward to show that (A,R) is triangular with Drinfeld ele-
ment u = g. The theorem is proved. ¤

Corollary 7.1.3.2. If (A, R) is a triangular Hopf superalgebra with Drinfeld
element 1, then the Hopf algebra A is also triangular , with the R-matrix

R := (R0 + (1⊗ g)R1)Rg, (7–1)

where g is the grouplike element adjoined to A to obtain A. Moreover , A is
minimal if and only if so is A.

Proof. Clear. ¤

The following corollary, combined with Kostant’s theorem, gives a classification
of triangular Hopf algebras with R-matrix of rank ≤ 2 (i.e., of the form Ru as
in (2–9), where u is a grouplike of order ≤ 2).

Corollary 7.1.3.3. The correspondence of Theorem 7.1.3.1 restricts to a one
to one correspondence between

1. isomorphism classes of ordinary triangular Hopf algebras with R-matrix of
rank ≤ 2, and

2. isomorphism classes of pairs (A, g) where A is a cocommutative Hopf superal-
gebra and g is an element of G(A) such that g2 = 1 and gxg−1 = (−1)p(x)x.
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Proof. Let (A,R) be an ordinary triangular Hopf algebra with R− matrix
of rank ≤ 2. In particular, the Drinfeld element u of A satisfies u2 = 1, and
R = Ru. Hence by Theorem 7.1.3.1, (A, ∆̃,R) is a triangular Hopf superalgebra.
Moreover, it is cocommutative since R = RuRu = 1.

Conversely, for any (A, g), by Theorem 7.1.3.1, the pair (A,Rg) is an ordinary
triangular Hopf algebra, and clearly the rank of Rg is ≤ 2. ¤

In particular, Corollaries 2.2.3.5 and 7.1.3.3 imply that finite-dimensional tri-
angular Hopf algebras with R-matrix of rank ≤ 2 correspond to supergroup
algebras. In view of this, we make the following definition.

Definition 7.1.3.4. A finite-dimensional triangular Hopf algebra with R-
matrix of rank ≤ 2 is called a modified supergroup algebra.

7.1.4. Construction of twists for supergroup algebras.

Proposition 7.1.4.1. Let A = C[G]nΛV be a supergroup algebra. Let r ∈ S2V .
Then J := er/2 is a twist for A. Moreover , ((ΛV )J, J−1

21 J) is minimal triangular
if and only if r is nondegenerate.

Proof. Straightforward. ¤

Example 7.1.4.2. Let G be the group of order 2 with generator g. Let V := C
be the nontrivial 1-dimensional representation of G, and write ΛV = sp{1, x}.
Then the associated ordinary triangular Hopf algebra to (A, g) := (C[G]nΛV, g)
is Sweedler’s 4-dimensional Hopf algebra A [Sw] (see Example 6.1.5) with the
triangular structure Rg. It is known [R2] that the set of triangular structures on
A is parameterized by C; namely, R is a triangular structure on A if and only if

R = Rλ := Rg − λ

2
(x⊗ x− gx⊗ x + x⊗ gx + gx⊗ gx), λ ∈ C.

Clearly, (A, Rλ) is minimal if and only if λ 6= 0.
Let r ∈ S2V be defined by r := λx⊗ x, λ ∈ C. Set Jλ := er/2 = 1 + 1

2λx⊗ x;
it is a twist for A. Hence, Jλ := 1− 1

2λgx⊗x is a twist for A. It is easy to check
that Rλ = (Jλ)−1

21 RgJλ. Thus, (A,Rλ) = (A,R0)Jλ .

Remark 7.1.4.3. In fact, Radford’s classification of triangular structures on A

can be easily deduced from Lemma 7.3.2.6 below.

7.2. The Chevalley property. Recall that in the introduction we made the
following definition.

Definition 7.2.1. A Hopf algebra A over C is said to have the Chevalley
property if the tensor product of any two simple A-modules is semisimple. More
generally, let us say that a tensor category has the Chevalley property if the
tensor product of two simple objects is semisimple.

Let us give some equivalent formulations of the Chevalley property.
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Proposition 7.2.2. Let A be a finite-dimensional Hopf algebra over C. The
following conditions are equivalent :

1. A has the Chevalley property .
2. The category of (right) A∗-comodules has the Chevalley property .
3. Corad(A∗) is a Hopf subalgebra of A∗.
4. Rad(A) is a Hopf ideal and thus A/Rad(A) is a Hopf algebra.
5. S2 = Id on A/Rad(A), or equivalently on Corad(A∗).

Proof. (1 ⇔ 2) Clear, since the categories of left A-modules and right A∗-
comodules are equivalent.

(2 ⇒ 3) Recall the definition of a matrix coefficient of a comodule V over A∗.
If ρ : V → V ⊗A∗ is the coaction, v ∈ V , α ∈ V ∗, then

φV
v,α := (α⊗ Id)ρ(v) ∈ A∗.

It is well-known that:
(a) The coradical of A∗ is the linear span of the matrix coefficients of all

simple A∗-comodules.
(b) The product in A∗ of two matrix coefficients is a matrix coefficient of the

tensor product. Specifically,

φV
v,αφW

w,β = φV⊗W
v⊗w,α⊗β .

It follows at once from (a) and (b) that Corad(A∗) is a subalgebra of A∗. Since
the coradical is stable under the antipode, the claim follows.

(3 ⇔ 4) To say that Rad(A) is a Hopf ideal is equivalent to saying that
Corad(A∗) is a Hopf algebra, since Corad(A∗) = (A/Rad(A))∗.

(4 ⇒ 1) If V, W are simple A-modules then they factor through A/Rad(A).
But A/Rad(A) is a Hopf algebra, so V ⊗W also factors through A/Rad(A), so
it is semisimple.

(3 ⇒ 5) Clear, since a cosemisimple Hopf algebra is involutory.
(5 ⇒ 3) Consider the subalgebra B of A∗ generated by Corad(A∗). This

is a Hopf algebra, and S2 = Id on it. Thus, B is cosemisimple and hence
B = Corad(A∗) is a Hopf subalgebra of A∗. ¤

Remark 7.2.3. The assumption that the base field has characteristic 0 is needed
only in the proof of (5 ⇔ 3)

7.3. The classification of triangular Hopf algebras with the Chevalley
property.

7.3.1. The main theorem. The main result of Section 7 is the following theorem.

Theorem 7.3.1.1. Let A be a finite-dimensional triangular Hopf algebra over
C. Then the following are equivalent :

1. A is a twist of a finite-dimensional triangular Hopf algebra with R-matrix of
rank ≤ 2 (i .e., of a modified supergroup algebra).
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2. A has the Chevalley property .

7.3.2. Proof of the main theorem. The proof will take the remainder of this
subsection. We shall need the following result, whose proof is given in [AEG].

Theorem 7.3.2.1. Let A be a local finite-dimensional Hopf superalgebra (not
necessarily supercommutative). Then A = ΛV ∗ for a finite-dimensional vector
space V . In other words, A is the function algebra of an odd vector space V .

Remark 7.3.2.2. Note that in the commutative case Theorem 7.3.2.1 is a
special case of Proposition 3.2 of [Ko].

We start by giving a super-analogue of Theorem 3.1 in [G4].

Lemma 7.3.2.3. Let A be a minimal triangular pointed Hopf superalgebra. Then
Rad(A) is a Hopf ideal , and A/Rad(A) is minimal triangular .

Proof. The proof is a tautological generalization of the proof of Theorem 3.1
in [G4] to the super case.

First of all, it is clear that Rad(A) is a Hopf ideal, since its orthogonal com-
plement (the coradical of A∗) is a sub Hopf superalgebra (as A∗ is isomorphic to
Acop as a coalgebra, and hence is pointed). Thus, it remains to show that the tri-
angular structure on A descends to a minimal triangular structure on A/Rad(A).
For this, it suffices to prove that the composition of the Hopf superalgebra maps

Corad(A∗cop) ↪→ A∗cop → A → A/Rad(A)

(where the middle map is given by the R-matrix) is an isomorphism. But this
follows from the fact that for any surjective coalgebra map η : C1 → C2, the
image of the coradical of C1 contains the coradical of C2 (see e.g., [Mon, Corollary
5.3.5]): One needs to apply this statement to the map A∗cop → A/Rad(A). ¤

Lemma 7.3.2.4. Let A be a minimal triangular pointed Hopf superalgebra,
such that the R-matrix R of A is unipotent (which is to say , R − 1 ⊗ 1 is 0
in A/Rad(A)⊗A/Rad(A)). Then A = ΛV as a Hopf superalgebra, and R = er,
where r ∈ S2V is a nondegenerate symmetric (in the usual sense) bilinear form
on V ∗.

Proof. By Lemma 7.3.2.3, Rad(A) is a Hopf ideal, and A/Rad(A) is minimal
triangular. But the R-matrix of A/Rad(A) must be 1 ⊗ 1, so A/Rad(A) is
1-dimensional. Hence A is local, so by Theorem 7.3.2.1, A = ΛV . If R is a
triangular structure on A then it comes from an isomorphism ΛV ∗ → ΛV of
Hopf superalgebras, which is induced by a linear isomorphism r : V ∗ → V . So
R = er, where r is regarded as an element of V ⊗ V . Since RR21 = 1, we
have r + r21 = 0 (where r21 = −rop is the opposite of r in the supersense), so
r ∈ S2V . ¤

Remark 7.3.2.5. The classification of pointed finite-dimensional Hopf algebras
with coradical of dimension 2 is known [CD, N]. In [AEG] we used the Lifting
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method [AS1, AS2] to give an alternative proof. Below we shall need the following
more precise version of this result in the triangular case.

Lemma 7.3.2.6. Let A be a minimal triangular pointed Hopf algebra, whose
coradical is C[Z2] = sp{1, u}, where u is the Drinfeld element of A. Then
A = (ΛV )J with the triangular structure of Corollary 7.1.3.2, where J = er/2,
with r ∈ S2V a nondegenerate element . In particular , A is a twist of a modified
supergroup algebra.

Proof. Let A be the associated triangular Hopf superalgebra to A, as described
in Theorem 7.1.3.1. Then the R-matrix of A is unipotent, because it turns into
1⊗ 1 after killing the radical.

Let Am be the minimal part of A. By Lemma 7.3.2.4, Am = ΛV and R = er,
r ∈ S2V . So if J := er/2 then AJ−1

has R-matrix equal to 1 ⊗ 1. Thus,
AJ−1

is cocommutative, so by Corollary 2.2.3.5, it equals C[Z2] n ΛV . Hence
A = C[Z2]n (ΛV )J, and the result follows from Proposition 7.1.2.1. ¤

We shall need the following lemma.

Lemma 7.3.2.7. Let B ⊆ A be finite-dimensional associative unital algebras.
Then any simple B-module is a constituent (in the Jordan-Holder series) of
some simple A-module.

Proof. Since A, considered as a B-module, contains B as a B-module, any
simple B-module is a constituent of A.

Decompose A (in the Grothendieck group of A) into simple A-modules: A =∑
Vi. Further decomposing as B-modules, we get Vi =

∑
Wij , and hence

A =
∑

i

∑
j Wij . Now, by Jordan-Holder theorem, since A (as a B-module)

contains all simple B-modules, any simple B-module X is in {Wij}. Thus, X is
a constituent of some Vi, as desired. ¤

Proposition 7.3.2.8. Any minimal triangular Hopf algebra A with the Cheval-
ley property is a twist of a triangular Hopf algebra with R-matrix of rank ≤ 2.

Proof. By Proposition 7.2.2, the coradical A0 of A is a Hopf subalgebra,
since A ∼= A∗cop, being minimal triangular. Consider the Hopf algebra map
ϕ : A0 → A∗cop/Rad(A∗cop), given by the composition of the following maps:

A0 ↪→ A ∼= A∗cop → A∗cop/Rad(A∗cop),

where the second map is given by the R-matrix. We claim that ϕ is an iso-
morphism. Indeed, A0 and A∗cop/Rad(A∗cop) have the same dimension, since
Rad(A∗cop) = (A0)⊥, and ϕ is injective, since A0 is semisimple by [LR]. Let
π : A → A0 be the associated projection.

We see, arguing exactly as in [G4, Theorem 3.1], that A0 is also minimal
triangular, say with R-matrix R0.
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Now, by [EG1, Theorem 2.1], we can find a twist J in A0⊗A0 such that (A0)J

is isomorphic to a group algebra and has R-matrix (R0)J of rank ≤ 2. Notice
that here we are relying on Deligne’s theorem, as mentioned in the introduction.

Let us now consider J as an element of A0⊗A0 and the twisted Hopf algebra
AJ , which is again triangular.

The projection π : AJ → (A0)J is still a Hopf algebra map, and sends RJ to
(R0)J . It induces a projection (AJ)m → C[Z2], whose kernel Km is contained in
the kernel of π. Because any simple (AJ)m-module is contained as a constituent
in a simple A-module (see Lemma 7.3.2.7), Km = Rad((AJ)m). Hence, (AJ)m is
minimal triangular and (AJ )m/Rad((AJ)m) = (C[Z2], Ru). It follows, again by
minimality, that (AJ)m is also pointed with coradical isomorphic to C[Z2]. So
by Lemma 7.3.2.6, (AJ)m, and hence AJ , can be further twisted into a triangular
Hopf algebra with R-matrix of rank ≤ 2, as desired. ¤

Now we can prove the main theorem.

Proof of Theorem 7.3.1.1. (2 ⇒ 1) By Proposition 7.2.2, A/Rad(A) is a
semisimple Hopf algebra. Let Am be the minimal part of A, and A′m be the
image of Am in A/Rad(A). Then A′m is a semisimple Hopf algebra.

Consider the kernel K of the projection Am → A′m. Then K = Rad(A)∩Am.
This means that any element k ∈ K is zero in any simple A-module. This implies
that k acts by zero in any simple Am-module, since by Lemma 7.3.2.7, any simple
Am-module occurs as a constituent of some simple A-module. Thus, K is con-
tained in Rad(Am). On the other hand, Am/K is semisimple, so K = Rad(Am).
This shows that Rad(Am) is a Hopf ideal. Thus, Am is minimal triangular satis-
fying the conditions of Proposition 7.3.2.8. By Proposition 7.3.2.8, Am is a twist
of a triangular Hopf algebra with R-matrix of rank ≤ 2. Hence A is a twist of
a triangular Hopf algebra with R-matrix of rank ≤ 2 (by the same twist), as
desired.

(1 ⇒ 2) By assumption, Rep(A) is equivalent to Rep(G̃) for some supergroup
G̃ (as a tensor category without braiding). But we know that supergroup alge-
bras have the Chevalley property, since, modulo their radicals, they are group
algebras. This concludes the proof of the main theorem. ¤

Remark 7.3.2.9. Notice that it follows from the proof of the main theorem
that any triangular Hopf algebra with the Chevalley property can be obtained
by twisting of a triangular Hopf algebra with R-matrix of rank ≤ 2 by an even
twist.

Definition 7.3.2.10. If a triangular Hopf algebra A over C satisfies condition
1. or 2. of Theorem 7.3.1.1, we will say that H is of supergroup type.

7.3.3. Corollaries of the main theorem.

Corollary 7.3.3.1. A finite-dimensional triangular Hopf algebra A is of su-
pergroup type if and only if so is its minimal part Am.
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Proof. If A is of supergroup type then Rad(A) is a Hopf ideal, so like in the
proof of Theorem 7.3.1.1 (2 ⇒ 1) we conclude that Rad(Am) is a Hopf ideal,
i.e., Am is of supergroup type.

Conversely, if Am is of supergroup type then Am is a twist of a triangular
Hopf algebra with R-matrix of rank ≤ 2. Hence A is a twist of a triangular Hopf
algebra with R-matrix of rank ≤ 2 (by the same twist), so A is of supergroup
type. ¤

Corollary 7.3.3.2. A finite-dimensional triangular Hopf algebra whose corad-
ical is a Hopf subalgebra is of supergroup type. In particular , this is the case for
finite-dimensional triangular pointed Hopf algebras.

Proof. This follows from Corollary 7.3.3.1. ¤

Corollary 7.3.3.3. Any finite-dimensional triangular basic Hopf algebra is of
supergroup type.

Proof. A basic Hopf algebra automatically has the Chevalley property since
all its irreducible modules are 1-dimensional. Hence the result follows from the
main theorem. ¤

Remark 7.3.3.4. The classification in Theorem 7.3.1.1 can be made more ef-
fective and explicit. Indeed, Theorem 2.2 in [EG7] states a bijection between
the set of isomorphism classes of finite-dimensional triangular Hopf algebras
with the Chevalley property and the set of isomorphism classes of septuples
(G,W,H, Y,B, V, u) where G is a finite group, W is a finite-dimensional repre-
sentation of G, H is a subgroup of G, Y is an H−invariant subspace of W, B is
an H−invariant non-degenerate element in S2Y, V is an irreducible projective
representation of H of dimension |H|1/2, and u ∈ G is a central element of order
≤ 2 acting by −1 on W . In the semisimple case, the septuples reduce to the
quadruples of Theorem 4.2.6. In the minimal pointed case, we recover Theorem
6.3.1.

7.4. Categorical dimensions in symmetric categories with finitely
many irreducibles are integers. In [AEG] we classified finite-dimensional
triangular Hopf algebras with the Chevalley property. We also gave one result
that is valid in a greater generality for any finite-dimensional triangular Hopf al-
gebra, and even for any symmetric rigid category with finitely many irreducible
objects.

Let C be a C-linear abelian symmetric rigid category with 1 as its unit object,
and suppose that End(1) = C. Recall that there is a natural notion of dimension
in C, generalizing the ordinary dimension of an object in Vect, and having the
properties of being additive and multiplicative with respect to the tensor product.
Let β denote the commutativity constraint in C, and for an object V , let evV ,
coevV denote the associated evaluation and coevaluation morphisms.
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Definition 7.4.1 [DM]. The categorical dimension dimc(V ) ∈ C of V ∈ C is
the morphism

dimc(V ) : 1 evV−→ V ⊗ V ∗ βV,V ∗−→ V ∗ ⊗ V
coevV−→ 1. (7–2)

The main result of this subsection is the following:

Theorem 7.4.2. In any C-linear abelian symmetric rigid tensor category C

with finitely many irreducible objects, the categorical dimensions of objects are
integers.

Proof. First note that the categorical dimension of any object V of C is an
algebraic integer. Indeed, let V1 . . . , Vn be the irreducible objects of C. Then
{V1 . . . , Vn} is a basis of the Grothendieck ring of C. Write V ⊗Vi =

∑
j Nij(V )Vj

in the Grothendieck ring. Then Nij(V ) is a matrix with integer entries, and
dimc(V ) is an eigenvalue of this matrix. Thus, dimc(V ) is an algebraic integer.

Now, if dimc(V ) = d then it is easy to show (see e.g. [De1]) that

dimc(SkV ) = d(d + 1) · · · (d + k − 1)/k!,

and
dimc(ΛkV ) = d(d− 1) · · · (d− k + 1)/k!,

hence they are also algebraic integers. So the theorem follows from:

Lemma. Suppose d is an algebraic integer such that d(d+1) · · · (d+k−1)/k! and
d(d− 1) · · · (d− k + 1)/k! are algebraic integers for all k. Then d is an integer .

Proof. Let Q be the minimal monic polynomial of d over Z. Since

d(d− 1) · · · (d− k + 1)/k!

is an algebraic integer, so are the numbers d′(d′ − 1) · · · (d′ − k + 1)/k!, where d′

is any algebraic conjugate of d. Taking the product over all conjugates, we get
that

N(d)N(d− 1) · · ·N(d− k + 1)/(k!)n

is an integer, where n is the degree of Q. But N(d−x) = (−1)nQ(x). So we get
that Q(0)Q(1) · · ·Q(k − 1)/(k!)n is an integer. Similarly from the identity for
SkV , it follows that Q(0)Q(−1) · · ·Q(1 − k)/(k!)n is an integer. Now, without
loss of generality, we can assume that Q(x) = xn + axn−1 + · · ·, where a ≤ 0
(otherwise replace Q(x) by Q(−x); we can do it since our condition is symmetric
under this change). Then for large k, we have Q(k − 1) < kn, so the sequence
bk := Q(0)Q(1) · · ·Q(k − 1)/k!n is decreasing in absolute value or zero starting
from some place. But a sequence of integers cannot be strictly decreasing in
absolute value forever. So bk = 0 for some k, hence Q has an integer root. This
means that d is an integer (i.e., Q is linear), since Q must be irreducible over the
rationals. This concludes the proof of the lemma, and hence of the theorem. ¤

¤
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Corollary 7.4.3. For any triangular Hopf algebra A (not necessarily finite-
dimensional), the categorical dimensions of its finite-dimensional representations
are integers.

Proof. It is enough to consider the minimal part Am of A which is finite-
dimensional, since dimc(V ) = tr(u|V ) for any module V (where u is the Drinfeld
element of A), and u ∈ Am. Hence the result follows from Theorem 7.4.2. ¤

Remark 7.4.4. Theorem 7.4.2 is false without the finiteness conditions. In
fact, in this case any complex number can be a dimension, as is demonstrated
in examples constructed by Deligne [De2, p. 324–325]. Also, it is well known
that the theorem is false for ribbon, nonsymmetric categories (e.g., for fusion
categories of semisimple representations of finite-dimensional quantum groups
at roots of unity [L], where dimensions can be irrational algebraic integers).

Remark 7.4.5. In any rigid braided tensor category with finitely many irre-
ducible objects, one can define the Frobenius-Perron dimension of an object V ,
FPdim(V ), to be the largest positive eigenvalue of the matrix of multiplication
by V in the Grothendieck ring. This dimension is well defined by the Frobenius-
Perron theorem, and has the usual additivity and multiplicativity properties.
For example, for the category of representations of a quasi-Hopf algebra, it is
just the usual dimension of the underlying vector space. If the answer to Ques-
tion 8.7 is positive then FPdim(V ) for symmetric categories is always an integer,
which is equal to dimc(V ) modulo 2. It would be interesting to check this, at
least in the case of modules over a triangular Hopf algebras, when the integrality
of FPdim is automatic (so only the mod 2 congruence has to be checked).

8. Questions

We conclude the paper with some natural questions motivated by the above
results [AEG, G4].

Question 8.1. Let (A, R) be any finite-dimensional triangular Hopf algebra
with Drinfeld element u. Is it true that S4 = Id? Does u satisfy u2 = 1? Is it
true that S4 = Id implies u2 = 1?

Remark 8.2. A positive answer to the second question in Question 8.1 will
imply that an odd-dimensional triangular Hopf algebra must be semisimple.

Note that if A is of supergroup type, then the answer to Question 8.1 is
positive. Indeed, since S2 = Id on the semisimple part of A, u acts by a scalar
in any irreducible representation of A. In fact, since tr(u) = tr(u−1), we have
that u = 1 or u = −1 on any irreducible representation of A, and hence u2 = 1
on any irreducible representation of A. Thus, u2 is unipotent. But it is of finite
order (as it is a grouplike element), so it is equal to 1 as desired.
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Question 8.3. Does any finite-dimensional triangular Hopf algebra over C
have the Chevalley property (i.e., is of supergroup type)? Is it true under the
assumption that S4 = Id or at least under the assumption that u2 = 1?

Remark 8.4. Note that the answer to question 8.3 is negative in the infinite
dimensional case. Namely, although the answer is positive in the cocommutative
case (by [C]), it is negative already for triangular Hopf algebras with R-matrix of
rank 2, which correspond to cocommutative Hopf superalgebras. Indeed, let us
take the cocommutative Hopf superalgebra A := U(gl(n|n)) (for the definition
of the Lie superalgebra gl(n|n), see [KaV, p. 29]). The associated triangular
Hopf algebra A does not have the Chevalley property, since it is well known
that Chevalley theorem fails for Lie superalgebras (e.g., gl(n|n)); more precisely,
already the product of the vector and covector representations for this Lie su-
peralgebra is not semisimple.

Remark 8.5. It follows from Corollary 7.3.3.1 that a positive answer to Question
8.3 in the minimal case would imply the general positive answer.

Here is a generalization of Question 8.3.

Question 8.6. Does any C-linear abelian symmetric rigid tensor category, with
End(1) = C and finitely many simple objects, have the Chevalley property?

Even a more ambitious question:

Question 8.7. Is such a category equivalent to the category of representations
of a finite-dimensional triangular Hopf algebra with R-matrix of rank ≤ 2? In
particular, is it equivalent to the category of representations of a supergroup, as
a category without braiding? Are these statements valid at least for categories
with Chevalley property? For semisimple categories?

Remark 8.8. Note that Theorem 7.4.2 can be regarded as a piece of supporting
evidence for a positive answer to Question 8.7.
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[CD] S. Caenepeel and S. Dăscălescu, On pointed Hopf algebras of dimension 2n, Bull.
London Math. Soc. 31 (1999), 17–24

[CR] C. Curtis and I. Reiner, Methods of representation theory 1, John Wiley & Sons,
Inc. (1981).

[De1] P. Deligne, Categories tannakiennes, In The Grothendick Festschrift, Vol. II,
Prog. Math. 87 (1990), 111–195.
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