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Abstract. This is an expository paper on ‘abelian’ extensions of (quasi-)
Hopf algebras, which can be managed by the abelian cohomology, with
emphasis on the author’s recent results which are motivated by an exact
sequence due to George Kac. The cohomology plays here an important
role in constructing and classifying those extensions, and even their cocycle
deformations. We see also a strong connection of Hopf algebra extensions
arising from a (matched) pair of Lie algebras with Lie bialgebra extensions.

Introduction

Let us first recall the theory of group extensions with abelian kernel [Mac,

Chap. IV, Sections 3,4]. Each extension M → Σ→ Π of a group Π by an abelian

group M gives rise to a Π-module structure on M . Those extensions which give

rise to a fixed Π-module structure form an abelian group, Opext(Π,M), which is

isomorphic to the cohomology H2(Π,M). The results were generalized by Singer

[S] (1972) and Hofstetter [H] (1994) for those Hopf algebra extensions

K → A→ H

which are abelian in the sense that H is cocommutative, K is commutative

and A is cleft as an H-comodule algebra: each such extension gives rise to

some structure, called a Singer pair structure (see Definition 2.2), on (H,K),

and those extensions which give rise to a fixed Singer pair structure form an

abelian group, Opext(H,K), which is isomorphic to some cohomology group.

But, Kac [K] (1968) had already obtained these results in the case when H = kF

(group algebra), K = kG (= (kG)∗) with F,G finite groups, and further proved

an interesting, exact cohomology sequence involving Opext(kF, kG), which we

The author gratefully acknowledges that many of his own results presented here were obtained
while he was staying at the University of Munich as a Humboldt Research Fellow (Novem-
ber 1996 – September 1997 and June 1998) and visiting the National University of Córdoba,
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call the Kac exact sequence. Unfortunately, Kac’ work on extensions had long

been overlooked by most of Hopf algebraists (perhaps, including Singer and

Hofstetter), and especially his exact sequence had been peculiar to the restricted

case as above. But, in these several years his work has been applied especially for

the classification problem of semisimple Hopf algebras; see [M1], [N], [Ka], and

also [IK]. In addition, the author [M] recently established the formulation of the

Kac exact sequence in the Lie algebra case (see below), and then Schauenburg

[Sb2] proved the sequence for general H and finite-dimensional K (see Remark

1.11 (3)).

This is an expository paper on abelian extensions of (quasi-)Hopf algebras

with emphasis on the author’s recent results which are motivated by the Kac ex-

act sequence. We will see the cohomology plays an important role in constructing

and classifying those extensions, and even their cocycle deformations.

The paper consists of two parts. Part I (Sections 1–4) begins with an elemen-

tary exposition of the Kac theory, which is followed by the generalized results

from [S], [H]. Then Section 3 is devoted to the study of cocycle deformations of

the middle term A by 2-cocycles for H (or by their liftings to A), with sample

computations. In Section 4, we study quasi-Hopf algebra extensions of a similar

form as above, but A is replaced by a quasi-Hopf algebra with Drinfeld asso-

ciator in K⊗3; parallel results to the Hopf algebra case are proved, including

the modified Kac exact sequence. In Part II (Sections 5–8), we let f, g denote

finite-dimensional Lie algebras in characteristic zero, and see a strong connection

between Hopf algebra extensions of the form (Ug)◦ → A→ U f and Lie bialgebra

extensions of the form g∗ → l→ f; the result proves a Lie algebra version of the

Kac exact sequence. Similar results are proved when g is nilpotent and the Hopf

dual (Ug)◦ of the universal envelope Ug is replaced by its irreducible component

(Ug)′ containing 1. In the final section these parallel results are unified and

generalized by introducing some topology onto Ug.

This paper may be regarded as an enlarged version of the Córdoba lecture

notes [M4], though some computational results are omitted here. Instead, proofs

of the results in Sections 7 and 8 are included. Sections 3 and 4 are also added;

they include unpublished results which are first presented with proofs. Follow-

ing M. Takeuchi’s suggestion, we emphasize categorical treatment of extensions,

which seems new.

We work over a fixed ground field k. Tensor products ⊗ and exterior products

∧ are taken over k, unless otherwise stated. For vector spaces V , W , we let

Hom(V,W ) denote the vector space of all linear maps V →W , and write V ∗ =

Hom(V, k), the dual vector space. By a module (resp., comodule), we mean a

left module (resp., right comodule) unless otherwise stated. The coproduct, the

counit and the antipode of a Hopf algebra are denoted, as usual, by ∆, ε and S,

respectively. We use the Sweedler notation such as ∆(a) =
∑

a1 ⊗ a2.
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PART I: KAC THEORY, ITS GENERALIZATION AND VARIATION

In this part, F and G denote groups, which are supposed to be finite unless

otherwise stated.

1. The Kac Theory

The theory will be reviewed from modern Hopf-algebraic view-point, but as

elementarily as possible.

Definition 1.1 [T1, Def. 2.1]. A matched pair (of groups) is a pair (F,G)

together with group actions G
C
←− G× F

B
−→ F on the sets such that

x B ab = (x B a)((x C a) B b),

xy C a = (x C (y B a))(y C a)

for a, b ∈ F , x, y ∈ G, or equivalently such that the cartesian product F × G

forms a group under the product

(a, x)(b, y) = (a(x B b), (x C b)y).

We denote this group by F BC G, following [Mj]. (It was originally denoted by

F

B
C G; see [T1, p. 842].)

The group F BC G includes subgroups F = F × 1 and G = 1 × G so that the

product map F ×G→ F BC G is a bijection. Conversely, if a group Σ includes

F , G as subgroups so that the product F×G→ Σ is a bijection, then the actions

G
C
←− G× F

B
−→ F determined by

ax = (a B x)(a C x) (a ∈ F, x ∈ G)

make (F,G) matched so that F BC G ∼= Σ.

Let kG denote the group Hopf algebra in which each element in G is grouplike.

Let kG denote the dual Hopf algebra (kG)∗ of kG; it is spanned by the orthogonal

idempotents ex defined by 〈ex, y〉 = δx,y, where x, y ∈ G. We may suppose

that kG is the algebra consisting of all maps G → k which has the pointwise

product, and so that the abelian group (kG)× of units in kG consists of all maps

G→ k× = k \ 0.

By a G-module, we mean a module over the integral group ring ZG, as usual.

Let C: G×F → G be an action on the set G, which corresponds to an action

⇀: F × kG → kG of algebra automorphisms so that

a ⇀ ex = exCa−1 (a ∈ F, x ∈ G).

Let σ : F × F → (kG)× be a ‘normalized’ 2-cocycle of the group F with coef-

ficients in (kG)×, which is an F -module under the action induced by ⇀. We
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identify σ naturally with the map (x, a, b) 7→ σ(a, b)(x), G × F × F → k×, and

denote the last value by σ(x; a, b). Then the 2-cocycle condition for σ is given by

σ(x C a; b, c)σ(x; a, bc) = σ(x; a, b)σ(x; ab, c),

while the normalization condition means here

σ(1; a, b) = σ(x; 1, b) = σ(x; a, 1) = 1,

where a, b, c ∈ F and x ∈ G. The familiar construction of crossed product makes

the tensor product kG⊗ kF =
⊕

a∈F k
Ga into an algebra with unit 1⊗ 1, whose

product is given by

(exa)(eyb) = ex(a ⇀ ey)σ(a, b)ab = δxCa,yσ(x; a, b)exab,

where a, b ∈ F and x, y ∈ G.

Suppose also that we are given an action B: G × F → F and a normalized

2-cocycle τ : G×G×F → k× of G with coefficients in the right G-module (kF )×.

They make kG⊗ kF into an algebra of right crossed product, and so by duality

make kG ⊗ kF into a coalgebra. One sees that the coalgebra structure is given

by

∆(exa) =
∑

y∈G

τ(xy−1, y; a)exy−1(y B a)⊗ eya,

ε(exa) = δ1,x.

Let kG #σ,τ kF denote the tensor product kG ⊗ kF with the described algebra

and coalgebra structures.

Lemma 1.2. kG #σ,τ kF is a bialgebra if and only if (F,G,C,B) is a matched

pair and

σ(xy; a, b)τ(x, y; ab)

= σ(x; y B a, (y C a) B b)σ(y; a, b)τ(x, y; a)τ(x C (y B a), y C a; b)

for all a, b ∈ F , x, y ∈ G. In this case, kG #σ,τ kF is necessarily a Hopf algebra.

The proof is straightforward; see the proof of [M4, Prop. 4.7]. If the conditions

given above are satisfied, the maps ι : kG → kG #σ,τ kF , ι(ex) = ex1 and

π : kG #σ,τ kF → kF , π(exa) = δ1,xa are obviously Hopf algebra maps. Further,

we will see

(kG #σ,τ kF ) = kG ι
−→ kG #σ,τ kF

π
−→ kF (1.3)

is a Hopf algebra extension.

Let (A) = K
ι
−→ A

π
−→ H be a sequence of finite-dimensional Hopf algebras.

Let K+ denote the kernel Ker(ε : K → k) of the counit. Regarding A as a

right (or left) H-comodule along π, let AcoH (or coHA) denote the subalgebra of

H-coinvariants. Thus, AcoH consists of a ∈ A such that
∑

a1⊗π(a2) = a⊗π(1).
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Definition 1.4. Suppose ι is an injection and π is a surjection, so that we

may regard ι as an inclusion and π as a quotient. The sequence (A) is called

an extension of H by K if it satisfies the following equivalent conditions: (a)

A/K+A = H; (b) A/AK+ = H; (c) K = AcoH ; (d) K = coHA. For two

extensions (A), (A′) of H by K, an equivalence (A) → (A′) is a Hopf algebra

map f : A → A′ which induces the identity maps on H and K. If such exists,

we say that (A) and (A′) are equivalent.

One sees easily from [Sw2, Lemmas 16.0.2–3] that Conditions (a)–(d) are equiv-

alent. We see easily that the sequence (1.3) is an extension of kF by kG.

If (A) is an extension of H by K, then A ⊃ K is a right H-Galois extension

in the sense of [Mo, Def. 8.1.1]. Since A is right K-free by the Nichols-Zöller

theorem, it follows that the map f giving an equivalence is necessarily an iso-

morphism, which justifies the term.

By [Sd, Thm. 2.4] or [MD, Thm. 3.5], a finite-dimensional extension (A) is

necessarily cleft (see Definition 2.5 below) in the sense there is a K-linear and

H-colinear isomorphism A ∼= K ⊗ H which preserves unit and counit. This is

easily proved in the special case when H = kF , K = kG, since then A is a

strictly graded F -algebra with neutral component kG so that it is necessarily a

crossed product. This proves also the following.

Proposition 1.5. Any extension (A) of kF by kG is equivalent to an extension

of the form (1.3).

For another choice (A) ∼ (kG #σ′,τ ′ kF ) of equivalence, the same matched pair

(F,G,C,B) forms the Hopf algebras kG #σ,τ kF and kG #σ′,τ ′ kF , since the

neutral components in A and in A∗ are commutative.

Definition 1.6. We say that (A) is associated with the matched pair (F,G,C,B)

thus uniquely determined by (A).

Two equivalent extensions of kF by kG are associated with the same matched

pair. In what follows, we fix a matched pair (F,G,C,B). We denote by

Opext(kF, kG)

the set of all equivalence classes of extensions associated with it. (The notation

stems from Opext(Π, A, ϕ) [Mac, Chap. IV, Sect. 3] for the group extensions of

a group Π by an abelian kernel A with fixed operators ϕ : Π→ AutA.)

We will give a cohomological description of Opext(kF, kG). Let Σ = F BC G

denote the group constructed by the fixed matched pair.

Let 0← Z← B· be the normalized bar resolution of the trivial F -module Z.

Thus,

B· = 0←− B0
d1←− B1

d2←− B2
d3←− · · ·



172 AKIRA MASUOKA

consists of the free F -modules Bp with basis [a1| · · · |ap], where 1 6= ai ∈ F , and

the differentials dp are defined by

dp[a1| · · · |ap] = a1[a2| · · · |ap]+

p−1
∑

i=1

(−1)i[a1| · · · |aiai+1| · · · |ap]+(−1)p[a1| · · · |ap−1].

The augmentation ε : B0 = ZF → Z is given by ε(a) = 1 for a ∈ F . Define an

action of G on the canonical Z-free basis of Bp by

x(a[a1| · · · |ap]) = x B a[(xC a) B a1|(xC aa1) B a2| · · · |(xC aa1 · · · ap−1) B ap],

where x ∈ G and 1 6= ai, a ∈ F . Then one sees that this together with the

original F -action makes Bp into a Σ-module, and that dp, ε are Σ-linear, where

Z is a trivial Σ-module. So, 0← Z← B· turns to be a complex of Σ-modules.

The symmetric argument using a mirror makes the normalized bar resolution

0←− Z
ε′

←− B′
· of the trivial rightG-module Z into a complex of right Σ-modules.

Regard it as a complex of left Σ-modules by twisting the action through the

inverse of Σ, and tensor it with B· over Z. Then we obtain the double complex

B′
· ⊗Z B· =

...
...





y





y

B′
1 ⊗Z B0

1⊗d1←−−−− B′
1 ⊗Z B1 ←−−−− · · ·





y

d′

1
⊗1





y

−d′

1
⊗1

B′
0 ⊗Z B0

1⊗d1←−−−− B′
0 ⊗Z B1 ←−−−− · · ·

of Σ-modules, where Σ acts diagonally on each term. Here and in what follows,

when we construct a double complex, we resort such a trick (sign trick) that

changes the sign of the differentials in odd columns (see above) unless otherwise

stated. One sees that each Σ-module B ′
q ⊗Z Bp is free with basis [xq| · · · |x1] ⊗

[a1| · · · |ap], where 1 6= ai ∈ F , 1 6= xi ∈ G. This implies the following.

Lemma 1.7. The total complex of B′
· ⊗Z B· gives a Σ-free resolution of Z via

the augmentation ε′ ⊗ ε : B′
0 ⊗Z B0 → Z.

Regard k× as a trivial Σ-module, and form the double complex

D·· = HomΣ(B′
· ⊗Z B·, k

×).

Since B′
q⊗ZBp has the Σ-free basis noted above, HomΣ(B′

q⊗ZBp, k
×) is identified

with the abelian group Map+(Gq×F p, k×) of all maps Gq×F p → k× satisfying

the normalization condition, where Xr denotes the cartesian product of r copies
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of X = F,G. Thus, D·· looks as follows.

D·· =

...
...

x





x





Map+(G, k×) −−−−→ Map+(G× F, k×) −−−−→ · · ·
x





x





k× −−−−→ Map+(F, k×) −−−−→ · · ·

Note that the edges in D·· consist of the standard complexes for computing

the group cohomologies H ·(F, k×), H ·(G, k×). Remove these edges from D·· to

obtain the following double complex.

A·· =

...
...

x





x





Map+(G2 × F, k×) −−−−→ Map+(G2 × F 2, k×) −−−−→ · · ·
x





x





Map+(G× F, k×) −−−−→ Map+(G× F 2, k×) −−−−→ · · ·

For example, the horizontal and vertical differentials ∂, ∂ ′ going into Map+(G2×

F 2, k×) are given by

∂τ(x, y; a, b) = τ(x C (y B a), y C a; b)τ(x, y; ab)−1τ(x, y; a)

∂′σ(x, y; a, b) = σ(y; a, b)σ(xy; a, b)−1σ(x; y B a, (y C a) B b),

where a, b ∈ F , x, y ∈ G, σ ∈ Map+(G × F 2, k×) and τ ∈ Map+(G2 × F, k×).

Let TotA·· denote the total complex of A··.

Proposition 1.8 (cf. [K, Thm. 5]). For a total 1-cocycle (σ, τ) in A··, we have

an extension (kG #σ,τ kF ) associated with the fixed matched pair (F,G,C,B).

The assignment (σ, τ) 7→ (kG #σ,τ kF ) induces a bijection

H1(TotA··) ∼= Opext(kF, kG).

Proof. By Lemma 1.2 and Proposition 1.5, the assignment gives a surjection

Z1(TotA··)→ Opext(kF, kG) from the group of total 1-cocycles.

Let (σ, τ), (σ′, τ ′) be total 1-cocycles. If ν : G × F → k× is a 0-cochain

such that σ′ = σ∂ν, τ ′ = τ∂′ν, then exa 7→ ν(x; a)exa gives an equivalence

(kG #σ′,τ ′ kF )
∼=
−→ (kG #σ,τ kF ). Conversely, one sees that any equivalence is

given in this way by some ν, in which case we have σ′ = σ∂ν, τ ′ = τ∂′ν by

simple computation. This proves the injectivity of the induced map. ˜
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The Baer product of group crossed products gives rise to a product on the set

Opext(kF, kG), which forms thereby an abelian semigroup; see Section 2 for more

general treatment. One sees that the bijection in the last proposition preserves

product, whence Opext(kF, kG) is a group. The unit is represented by the ex-

tension (kG #1,1 kF ) which is given by the constant cocycles (σ, τ) = (1, 1) with

value 1. We write simply (kG # kF ) for this extension, and let Aut(kG # kF )

denote the group of its auto-equivalences.

Proposition 1.9. For a total 0-cocycle ν in A··, exa 7→ ν(x; a)exa gives an

auto-equivalence of (kG # kF ). This gives an isomorphism

H0(TotA··) ∼= Aut(kG # kF ).

Proof. This follows by the argument given in the second paragraph of the last

proof if we suppose σ = σ′ = 1, τ = τ ′ = 1. ˜

Theorem 1.10 (cf. [K, (3.14)]). We have an exact sequence

0→ H1(F BC G, k×)→ H1(F, k×)⊕H1(G, k×) → Aut(kG # kF )

→ H2(F BC G, k×)→ H2(F, k×)⊕H2(G, k×) → Opext(kF, kG)

→ H3(F BC G, k×)→ H3(F, k×)⊕H3(G, k×),

where H · denotes the group cohomology with coefficients in the trivial module

k×.

Proof. Since A·· is regarded (by dimension shift) as a double subcomplex of

D·· such that the cokernel is the edges E ·· in D··, we have a short exact sequence

0 → A·· → D·· → E·· → 0 of double complexes, which induces a long exact

sequence of total cohomologies. It gives the desired sequence by Propositions 1.8

and 1.9, since we have also

Hn(TotD··) = Hn(F BC G, k×),

Hn(TotE··) = Hn(F, k×)⊕Hn(G, k×)

(n > 0),

(n > 0). ˜

Remark 1.11. (1) Using the Kac exact sequence just given, it can be proved

that the abelian group Opext(kF, kG) is torsion, but not necessarily finite; it is

finite if k is algebraically closed. On the other hand, Aut(kG # kF ) is always

finite. See [M4, Props. 7.7–8].

(2) Suppose k = C. Kac [K] actually worked on Hopf ∗-algebra (today called

Kac algebra) extensions of CF of C
G, where ∗-structures are given to CF by a∗ =

a−1 (a ∈ F ), and to C
G by (ex)∗ = ex (x ∈ G). See [IK] for new achievement. Let

Opext∗(CF,CG), Aut∗(CG # CF ) denote the groups of all ∗-equivalence classes

of Hopf ∗-algebra extensions, and of all ∗-auto-equivalences, respectively. These

are described cohomologically by the double complex which modifies A·· with C
×

replaced by T = {z ∈ C | |z| = 1}. In the same way as above, we have an exact

sequence consisting of these groups and group cohomologies with coefficients in
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T. By comparing it with the original sequence, it follows that the natural group

maps

Opext∗(CF,CG)→ Opext(CF,CG),

Aut∗(CG # CF ) ↪→ Aut(CG # CF )

are both isomorphisms, since the universal coefficient theorem implies that, for

Γ a finite group, Hn(Γ,T) ∼= Hn(Γ,C×) for n > 0. See [M3, Remark 2.4].

(3) Recently, Schauenburg [Sb2] proved the Kac exact sequence for cleft Hopf

algebra extensions K → A → H (see Definition 2.5 below) at least when H is

cocommutative and K is commutative and finite-dimensional; the group coho-

mologies were then replaced by the Sweedler cohomologies [Sw1] of the cocom-

mutative Hopf algebras H, K∗ and H BC K∗ with coefficients in k. He actually

deduced the sequence from nice, general results on monoidal equivalences of

(generalized) Hopf bimodule categories; see also [Sb4], a very readable article.

But, we do not discuss these interesting results any more in this paper.

2. Generalities on Hopf Algebra Extensions

Let H, J be cocommutative Hopf algebras.

Definition 2.1 (cf. [Kas, Def. IX 2.2]). A matched pair of (cocommutative)

Hopf algebras is a pair (H,J) together with actions J
C
←− J ⊗ H

B
−→ H such

that (H,B) is a left J-module coalgebra, (J,C) is a right H-module coalgebra,

and
x B ab =

∑

(x1 B a1)((x2 C a2) B b),

xy C a =
∑

(x C (y1 B a1))(y2 C a2)

for a, b ∈ H, x, y ∈ J . The conditions are equivalent to that the tensor product

coalgebra H ⊗ J is a bialgebra, which is necessarily a Hopf algebra, with unit

1⊗ 1 under the product

(a⊗ x)(b⊗ y) =
∑

a(x1 B b1)⊗ (x2 C b2)y.

The Hopf algebra is denoted by H BC J , whose antipode is given by

S(a⊗ x) =
∑

(S(x2) B S(a2))⊗ (S(x1) C S(a1)).

If H = kF and J = kG are group Hopf algebras, then the structures of matched

pair of groups on (F,G) are obviously in 1-1 correspondence with the structures

of matched pair of Hopf algebras on (kF, kG).

In what follows, we suppose H is a cocommutative Hopf algebra and K is a

commutative Hopf algebra.

Definition 2.2. A Singer pair of Hopf algebras is a pair (H,K) together with

an action and a coaction,

⇀: H ⊗K → K and ρ : H → H ⊗K, ρ(a) =
∑

aH ⊗ aK ,
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such that (K,⇀) is an H-module algebra, (H, ρ) is a K-comodule coalgebra,

and
ρ(ab) =

∑

ρ(a1)(bH ⊗ (a2 ⇀ bK)),

∆(a ⇀ t) =
∑

((a1)H ⇀ t1)⊗ (a1)K(a2 ⇀ t2)

for a, b ∈ H, t ∈ K.

The notion was introduced by Singer [S] under the name ‘abelian matched pair’.

We propose the term given above to avoid confusion with the notion defined by

Definition 2.2.

Definition 2.3 [S, Def. 3.3]. Given a Singer pair (H,K,⇀, ρ), we define a

category C = C(H,K,⇀, ρ) as follows. An object in C is an H-module M

equipped with a K-comodule structure λ : M → M ⊗K, λ(m) =
∑

m0 ⊗m1

such that

λ(am) =
∑

(a1)Hm0 ⊗ (a1)K(a2 ⇀m1)

for a ∈ H, m ∈ M . A morphism in C is an H-linear and K-colinear map. In

fact, C forms a k-abelian category.

Remark 2.4. Suppose J is a finite-dimensional cocommutative Hopf algebra.

There is a 1-1 correspondence between the matched pair structures (C,B) on

(H,J) and the Singer pair structures (⇀,ρ) on (H,J ∗); it is given by the two

familiar correspondences between module actions C: J ⊗ H → J and ⇀: H ⊗

J∗ → J∗, and between module actions B: J ⊗H → H and comodule coactions

ρ : H → H⊗J∗. Similarly we see that the module category H BC J-Mod arising

from a matched pair (H,J,C,B) is isomorphic to the category C arising from

the corresponding Singer pair (H,J∗,⇀, ρ).

Definition 2.5. A sequence (A) = K
ι
−→ A

π
−→ H of Hopf algebras is called

a cleft extension of H by K if the following equivalent conditions (see [MD,

Prop. 3.2]) are satisfied, where A is regarded as a K-module along ι, and as an

H-comodule along π.

(a) There is a leftK-linear and rightH-colinear isomorphism ξ : A
∼=
−→ K⊗H;

(b) There is such an isomorphism ξ as in (a) which also preserves unit and

counit;

(c) A is right H-cleft [Mo, Def. 7.2.1] in the sense that there is a (convolution-)

invertible right H-colinear map H → A which preserves unit and counit, and ι

induces an isomorphism K
∼=
−→ AcoH ;

(d) A is left K-cocleft in the sense that there is an invertible left K-linear

map A → K which preserves unit and counit, and π induces an isomorphism

A/K+A
∼=
−→ H.

An equivalence between cleft extensions of H by K is defined in the same way

as in Definition 1.4.

Remark 2.6. (1) It follows by [Sb3] that, if (A) is a cleft extension of H by K,

the antipode of A is necessarily bijective since those of H and K are. Hence,
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Conditions (a)–(d) are equivalent to those conditions obtained by exchanging

‘left’ and ‘right’, since the antipode gives a right K-linear and left H-colinear

isomorphism A
∼=
−→ Aop,cop.

(2) Suppose a sequence (A) = K → A→ H is given. If (A) is a cleft extension,

then A is injective as a right H-comodule and K ∼= AcoH . One sees that the

converse holds true if H is irreducible, or in particular if H is the universal

envelope U f of a Lie algebra f, as will be the case in Part II.

Let ⇀: H ⊗ K → K be an action which makes K into an H-module algebra.

Let σ : H ⊗ H → K be an invertible linear map which satisfies the 2-cocycle

condition that
∑

[a1 ⇀ σ(b1, c1)]σ(a2, b2c2) =
∑

σ(a1, b1)σ(a2b2, c) (2.7)

and the normalization condition that

σ(1, a) = ε(a)1 = σ(a, 1), ε ◦ σ(a, b) = ε(a)ε(b), (2.8)

where a, b, c ∈ H. They make the tensor product K ⊗ H into an algebra of

crossed product [Mo, Def. 7.1.1]; it has unit 1⊗ 1 and its product is given by

(s⊗ a)(t⊗ b) =
∑

s(a1 ⇀ t)σ(a2, b1)⊗ a3b2, (2.9)

where a, b ∈ H and s, t ∈ K.

Dually, let ρ : H → H ⊗K be a coaction which makes H into a K-comodule

coalgebra, and let τ : H → K⊗K be an invertible linear map satisfying the dual

2-cocycle condition and the normalization condition. They make K ⊗ H into

a coalgebra of crossed coproduct. We denote by K#σ,τ H the tensor product

K ⊗H with the described algebra and coalgebra structures.

Lemma 2.10. K#σ,τ H is a bialgebra if and only if (H,K,⇀, ρ) is a Singer

pair and (σ, τ) is a total 1-cocycle in the double complex A··
0 defined below . In

this case, K#σ,τ H is necessarily a Hopf algebra with the antipode S given by

S(t# a)

=
∑

(σ−1(S(a1H1), a1H2)#S(a1H3))(S(ta1K)(1, S) ◦ τ−1(a2)# 1),
(2.11)

where (1, S)(s⊗ t) = sS(t).

This follows by [H, Props. 3.3, 3.8 and 3.13]. If the conditions given above are

satisfied, we obviously have a cleft extension

(K#σ,τ H) = K
ι
−→ K#σ,τ H

π
−→ H (2.12)

of H by K, where ι(t) = t# 1, π(t# a) = ε(t)a. Conversely, it follows from [Mo,

Prop. 7.2.3] and the dual result (see also [H, Prop. 3.6]) that any cleft extension

(A) of H by K is equivalent to some extension of the form (2.12), since we have

such an isomorphism ξ : A
∼=
−→ K ⊗ H as in Condition (b) in Definition 2.5.
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Here the Singer pair (H,K,⇀, ρ) which together with σ, τ forms K#σ,τ H is

uniquely determined by (A), being independent of choice of ξ.

Definition 2.13. In this case, we say that (A) is associated with the Singer

pair (H,K,⇀, ρ). We denote by
���������

(H,K) =
���������

(H,K,⇀, ρ)

the category of cleft extensions associated with a fixed Singer pair (H,K,⇀, ρ),

whose morphisms are equivalences between extensions so that this is a groupoid.

Remark 2.14. If H = kF , K = kG, then the Singer pair structures on (kF, kG)

are in 1-1 correspondence with the matched pair structures on (F,G). A cleft

extension associated with a Singer pair (kF, kG,⇀, ρ) is precisely an extension

associated with the corresponding matched pair (F,G,C,B) as defined by Def-

inition 1.6. For the 1-1 correspondence above, F may be infinite. We see also

that all results, except Remark 1.11, in the preceding section hold true even if F

is infinite. In particular, Conditions (a)–(d) in Definition 1.4 are still equivalent

for a sequence (A) = kG → A → kF with F infinite and, if they are satisfied,

(A) is necessarily a cleft extension.

In what follows we fix a Singer pair (H,K,⇀, ρ). Recall H is cocommutative

and K is commutative by assumption.

Let (A1), (A2) be in
�	���
���

(H,K). Form the tensor product A1⊗K A2 of the

left K-modules, on which two right H-comodule structures arise from the factors

A1 and A2. Take the cotensor product of these comodule structures. Then we

obtain the bi-tensor product A1 ⊗
H
K A2 as defined in [H, Sect. 4], which forms a

Hopf algebra with the structure induced from the Hopf algebra A1⊗A2 of tensor

product. Further, it forms naturally an extension (A1 ⊗
H
K A2) in

���������
(H,K).

We write

(A1) ∗ (A2) = (A1 ⊗
H
K A2).

One sees that (K#σ1,τ1
H) ∗ (K#σ2,τ2

H) = (K#σ,τ H), where σ = σ1σ2,

τ = τ1τ2, convolution products.

If σ : H ⊗H → K and τ : H → K ⊗K are trivial so that σ(a, b) = ε(a)ε(b)1,

τ(a) = ε(a)1 ⊗ 1, then K#σ,τ H is the Hopf algebra of bi-smash product [T1,

p.849], for which we write simply K#H. This forms an extension (K#H) in���������
(H,K).

Proposition 2.15.
���������

(H,K) forms a symmetric monoidal groupoid with

tensor product ∗ and unit object (K#H).

This is essentially proved in [H, Sect. 5]. The associativity constraint and the

symmetry are induced from the obvious isomorphisms (A1⊗A2)⊗A3

∼=
−→ A1⊗

(A2 ⊗A3) and A1 ⊗A2

∼=
−→ A2 ⊗A1, respectively.

We denote by

Opext(H,K) = Opext(H,K,⇀, ρ)
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the set of all isomorphism (or equivalence) classes in
�	���
���

(H,K), which is a

monoid under the product arising from ∗. Each object (A) in
�	� �����

(H,K)

has inverse (A−1) in the sense (A) ∗ (A−1) is isomorphic to the unit object

(K#H), since we have (A−1) = (K#σ−1,τ−1 H) if (A) ∼ (K#σ,τ H). Hence,

Opext(H,K) is in fact an abelian group.

We denote by Aut(K#H) the group of auto-equivalences of (K#H). The

group of auto-equivalences of any (A) in
���������

(H,K) is canonically isomorphic

to Aut(K#H), since (A)∗ gives a category equivalence.

In general, if M is a symmetric monoidal category with a small skeleton,

the groups K0(M) and K1(M) of M are defined; see [B, Chap. VII, Sect. 1].

Suppose each object in M has inverse in the sense as above. This is equivalent

to saying that all isomorphism classes of the objects in M form an abelian

group under the product arising from the tensor product. Then, K0(M) is

canonically isomorphic to this abelian group, while K1(M) is isomorphic to the

automorphism group of the unit object (or any object). Therefore those groups

of
���������

(H,K) are given by

K0 = Opext(H,K), K1 = Aut(K#H).

We follow Singer [S] to give cohomological description of these groups by

technique of simplicial homology. Recall first the category C = C(H,K,⇀, ρ) is

defined by Definition 2.3. We will denote by V ⊗n = V ⊗· · ·⊗V the n-fold tensor

product of a vector space V .

Let Comod-K denote the category of K-comodules. We define a functor

F : Comod-K → C, F(P ) = H ⊗ P (2.16)

by endowing the H-module H ⊗ P with the K-comodule structure a ⊗ p 7→
∑

(a1)H ⊗ p0 ⊗ (a1)K(a2 ⇀ p1), H ⊗ P → H ⊗ P ⊗ K. Since one sees that

this is left adjoint to the forgetful functor U : C → Comod-K, it follows by [W,

8.6.2, p.280] that the functor F ◦ U : C → C, which we denote simply by F,

forms a cotriple (F, ε, δ) on C, where ε : F → id, δ : F → F
2 are the natural

transformations defined by

εM : H ⊗M →M, εM (a⊗m) = am,

δM : H ⊗M → H ⊗H ⊗M, δM (a⊗m) = a⊗ 1⊗m

for M ∈ C. Regard k as an object in C with the trivial structure. Then we have

a simplicial object Φ·(k) = {Fp+1(k)}p≥0 in C; accompanied with the face and

degeneracy operators determined by ε and δ, it looks like

Φ·(k) = H
��- H⊗2

���--
H⊗3

����---
· · · (2.17)
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Dually we define a functor

G : H-Mod→ C, G(Q) = Q⊗K (2.18)

by endowing the K-comodule Q⊗K with an H-module structure via a(q⊗ t) =
∑

(a1)Hq⊗(a1)K(a2 ⇀ t), where a ∈ H, q⊗t ∈ Q⊗K. Since this is right adjoint

to the forgetful functor U : C → H-Mod, we have a triple (G = G ◦U, η, µ) on C,

where η : id→ G, µ : G
2 → G are the natural transformations defined by

ηM : M →M ⊗K, ηM (m) =
∑

m0 ⊗m1,

µM : M ⊗K ⊗K →M ⊗K, µM (m⊗ s⊗ t) = m⊗ ε(s)t.

We have also a cosimplicial object Ψ·(k) = {Gq+1(k)}q≥0 in C, which looks like

Ψ·(k) = K
--� K⊗2

---��
K⊗3

----���
· · · (2.19)

If M,N ∈ C, then M ⊗ N is an object in C with the diagonal H-action and

K-coaction. Thus, C = (C,⊗, k) forms a symmetric monoidal category with the

obvious symmetry. Let Cc denote the category of cocommutative coalgebras in

C. Since H is in Cc, it follows that for C ∈ Cc, the coalgebra F(C) = H ⊗ C

of tensor product is in Cc. Therefore, (F, ε, δ) is regarded as a cotriple on Cc so

that Φ·(k) is a simplicial object in Cc. Similarly, (G, η, µ) is regarded as a triple

on the category Ca of commutative algebras in C so that Ψ·(k) is a cosimplicial

object in Ca.

Let RegK
H (resp., Reg) denote the abelian group of (convolution-)invertible,

H-linear and K-colinear (resp., k-linear) maps. If C ∈ Cc, A ∈ Ca, then an

isomorphism

RegK
H (F(C),G(A)) ∼= Reg(C,A) (2.20)

is given by f 7→ (c 7→ (1⊗ ε) ◦ f(1⊗ c)).

Form the double cosimplicial object RegK
H(Φ·(k),Ψ

·(k)) in the category of

abelian groups; by (2.20), it looks like

...

666
??

...

666
??

Reg(k,K)
--� Reg(H,K)

---��
· · ·

66
?

66
?

Reg(k, k)
--� Reg(H, k)

---��
· · ·
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Further, form the associated normalized double complex, whose term

Reg+(H⊗p,K⊗q)

in the (p, q)-th position consists of the invertible linear maps H⊗p → K⊗q satis-

fying the normalization condition such as given in (2.8). Remove the edges from

the double complex just formed to obtain

A··
0 =

...
...

x





x





Reg+(H,K⊗2) −−−−→ Reg+(H⊗2,K⊗2) −−−−→ · · ·
x





x





Reg+(H,K) −−−−→ Reg+(H⊗2,K) −−−−→ · · ·

One sees that, if H = kF , K = kG in particular, A··
0 is identified with A··

which was defined in the preceding section.

Proposition 2.20 [H, Props. 3.15, 6.5].

(1) The assignment (σ, τ) 7→ (K#σ,τ H), where (σ, τ) is a total 1-cocycle in A··
0 ,

induces an isomorphism

H1(TotA··
0 ) ∼= Opext(H,K).

(2) For a total 0-cocycle ν : H → K in A··
0 , t# a 7→

∑

tν(a1)# a2 gives an

auto-equivalence of (K#H). This gives an isomorphism

H0(TotA··
0 ) ∼= Aut(K#H).

3. Cocycle Deformations Arising in Extensions

Let A be a Hopf algebra. A (normalized) 2-cocycle for A is an invertible linear

map σ : A⊗A→ k which satisfies the conditions given by (2.7) and (2.8) if we

suppose therein H = A and K = k, the trivial A-module algebra. The cocycle

deformation Aσ by such σ is the coalgebra A endowed with the twisted product

· defined by

a · b =
∑

σ(a1, b1)a2b2σ
−1(a3, b3),

where a, b ∈ A; this is in fact a Hopf algebra with the same unit 1 and the twisted

antipode Sσ given by

Sσ(a) =
∑

σ(a1, S(a2))S(a3)σ
−1(S(a4), a5),

where a ∈ A; see [D2, Thm. 1.6]. If B = Aσ, then σ−1 is regarded as a 2-

cocycle for B, and we have Bσ−1

= A. This allows us to say that A and

B are cocycle deformations of each other. If this is the case, the right (or

equivalently left) comodule categories Comod-A and Comod-B are k-linearly
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monoidally equivalent. The converse holds true, if A or B, then necessarily

both are finite-dimensional or pointed. See [Sb1, Sect. 5]. Here recall that the

comodules over a bialgebra form a monoidal category in the obvious manner.

Let (H,K,⇀, ρ) be a Singer pair of Hopf algebras. Let (A) = K
ι
−→ A

π
−→ H

be a cleft extension associated with the pair. A 2-cocycle θ : H ⊗ H → k for

H is regarded as a 2-cocycle for A, composed with π ⊗ π. We see that the

cocycle deformation Aθ by such θ forms a cleft extension (Aθ) = K
ι
−→ Aθ π

−→

Hθ = H associated with the same Singer pair. Here note Hθ = H, since H is

cocommutative. (The deformation, as above, by lifted 2-cocycles dualizes the

construction in [L], [EV].)

The 2nd Sweedler cohomology H2(H, k) [Sw1, Sect. 2] with coefficients in

the trivial H-module algebra k is the 2nd cohomology of the bottom complex

which was removed when we constructed A··
0 ; see Section 2. The removed vertical

differential ∂′ : Reg+(H⊗2, k)→ Reg+(H⊗2,K) is given by

∂′θ(a, b) =
∑

θ(a1H , b1H)a1K(a2 ⇀ b1K)θ−1(a3, b2),

where θ ∈ Reg+(H⊗2, k). We see that, if θ is a 2-cocycle for H, then (∂ ′θ, ε),

where ε is the identity in Reg+(H,K⊗2), is a total 1-cocycle in A··
0 , and that

θ 7→ (∂′θ, ε) induces a group map H2(H, k) → H1(TotA··
0 ) ∼= Opext(H,K),

which we denote by

δ : H2(H, k)→ Opext(H,K).

Proposition 3.1. Let (A), (A′) be in
���������

(H,K). There is a 2-cocycle θ for

H such that (Aθ) is equivalent to (A′) if and only if (A) and (A′) are equal in

the cokernel Opext(H,K)/ Im δ of δ.

Proof. This follows since we see that, if (A) is given by a total 1-cocycle (σ, τ)

in A··
0 , then (Aθ) is given by (σ∂′θ, τ). ˜

We will give some results of sample computations in the special case when H =

kF , K = kG. The map δ is then identified with

δ : H2(F, k×)→ Opext(kF, kG)

which arises from ∂′ : Map+(F 2, k×)→ Map+(G× F 2, k×) given by

∂′θ(x; a, b) = θ(x B a, (x C a) B b)θ(a, b)−1,

where a, b ∈ F , x ∈ G and θ ∈ Map+(F 2, k×). Note that this δ is involved in

the Kac exact sequence.

If triv : G × F → G denotes the trivial action, any action B: G × F → F

by group automorphisms forms a matched pair (F,G, triv,B) of groups, so that

F BC G = F >C G, the semi-direct product given by B.

Fix an integer n > 1. Suppose F = Zn ⊕ Zn, where Zn denotes the additive

group of integers modulo n. Fix a matched pair (F,Z2, triv,B) of groups, where
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B: Z2 × F → F is defined by

0 B (i, j) = (i, j), 1 B (i, j) = (j, i).

Let µn(k) denote the group of all n-th roots of 1 in k. Let ζ ∈ µn(k). Then,

θζ : F × F → k×, θζ((i, j), (k, l)) = ζ il

is a group 2-cocycle. We define a Hopf algebra Aζ including kZ2 as a central

Hopf subalgebra as follows; Aζ is generated by elements a+, a− over kZ2 , and is

defined by the relations

an
± = 1, a−a+ = (e0 + ζe1)a+a−

together with the structures

∆(a±) = a± ⊗ e0a± + a∓ ⊗ e1a±, ε(a±) = 1, S(a±) = e0a
−1
± + e1a

−1
∓ .

Thus, Aζ is not cocommutative, and is commutative only if ζ = 1. If π : Aζ → kF

denotes the Hopf algebra map determined by π(e0) = 1, π(e1) = 0, π(a+) = (1, 0)

and π(a−) = (0, 1), then we see that (Aζ) = kZ2 ↪→ Aζ
π
−→ kF is an extension

associated with the fixed matched pair.

Proposition 3.2. Suppose (k×)n = k×. Then, ζ 7→ θζ and ζ 7→ (Aζ) induce

isomorphisms

µn(k) ∼= H2(F, k×), µn(k) ∼= Opext(kF, kZ2),

respectively . The map δ : H2(F, k×)→ Opext(kF, kZ2) is induced by θζ 7→ (Aζ2).

Therefore, if n is odd , then δ is an isomorphism so that every Aζ is a cocycle

deformation of the commutative Hopf algebra A1.

Proof. It is easy to see the first isomorphism. The group Opext(kZ2, k
F )

associated with the matched pair (Z2, F,B, triv) is computed by [M2, Thm. 2.1

and corrigendum], whose proof gives the second isomorphism since (A) 7→ (A∗)

induces an isomorphism Opext(kF, kZ2) ∼= Opext(kZ2, k
F ); see [M4, Exercise

5.5]. Since we compute

∂′θζ(1; (0, 1), (1, 0))/∂ ′θζ(1; (1, 0), (0, 1)) = ζ2,

it follows that δθζ is equivalent to (Aζ2). ˜

Next, we suppose F = Z ⊕ Z. By a slight modification we define the matched

pair (F,Z2, triv,B), the group 2-cocycle θζ for F , and the extension (Aζ) asso-

ciated with the matched pair, where ζ ∈ k×. The modification will be obvious

except that we replace the relation an
± = 1 for Aζ by the condition that a± are

invertible. We see that ζ 7→ θζ induces an isomorphism k× ∼= H2(F, k×). A

slight modification of the last proof proves the following.
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Proposition 3.3. Suppose (k×)2 = k×. Then, ζ 7→ (Aζ) induces an isomor-

phism k× ∼= Opext(kF, kZ2). The map δ : H2(F, k×) → Opext(kF, kZ2) is a

surjection, induced by θζ 7→ (Aζ2). Therefore every Aζ is a cocycle deformation

of the commutative Hopf algebra A1.

Remark 3.4. Suppose k = C, and ζ ∈ C with |ζ| = 1. Then, Aζ is a Hopf

∗-algebra with the ∗-structure e∗i = ei (i = 0, 1), a∗± = a−1
± . By (the proof

of) the last proposition, Aζ is isomorphic to the cocycle deformation (A1)
σ by

σ = θ√ζ via ei 7→ ei, a± 7→ a±, which preserves ∗-structure, too. Suppose

ζ = q2 with q ∈ C. Then, Aq2 is isomorphic to the coordinate Hopf ∗-algebra

A(DT 2
q ) of the quantum double torus DT 2

q due to Hajac and Masuda [HM]: in

fact, e0 7→ D−1ad, a+ 7→ a+ c, a− 7→ b+ d give an isomorphism Aq2
∼= A(DT 2

q ).

This concludes that their results [HM, Sect. 3] on unitary representations of

DT 2
q coincide completely with the results for the ‘classical’ double torus DT 2

with coordinate Hopf ∗-algebra A1.

4. Quasi-Hopf Algebras Obtained by Extension

A quasi-bialgebra is a quadruple (A,∆, ε,Φ) which consists of an algebra A,

algebra maps ∆ : A → A ⊗ A, ε : A → k, and an invertible element Φ ∈

A ⊗ A ⊗ A, called the Drinfeld associator, such that Conditions (2.1)–(2.4) in

[BP, Def. 2.1] are fulfilled, or equivalently such that the module category A-Mod

forms a monoidal category, where the tensor product is the usual one V ⊗W

of vector spaces on which A acts through ∆, the unit object is k on which A

acts through ε, the left and right unit constraints are the obvious isomorphisms

k ⊗ V = V = V ⊗ k, and the associativity constraint is given by u ⊗ v ⊗ w 7→

Φ(u⊗v⊗w), (U ⊗V )⊗W
∼=
−→ U ⊗ (V ⊗W ). Among the conditions just refered

to, (2.2) is the usual counit property, and (2.1) is

(1⊗∆) ◦∆(a) = Φ(∆⊗ 1) ◦∆(a)Φ−1 (a ∈ A).

Hence a commutative quasi-bialgebra is necessarily an ordinary bialgebra.

The notion was first introduced by Drinfeld, which we define here in a stricter

sense than original, assuming that the unit constraints are given by the obvious

isomorphisms; cf [Kas, Prop. XV 1.2].

Let A = (A,∆, ε,Φ) be a quasi-bialgebra. A gauge transformation on A is an

invertible element ϕ ∈ A⊗A satisfying the normalization condition

(1⊗ ε)(ϕ) = 1⊗ 1 = (ε⊗ 1)(ϕ).

By such ϕ, one constructs a new quasi-bialgebra Aϕ = (A,∆ϕ, ε,Φϕ), where ∆ϕ

and Φϕ are defined by

∆ϕ(a) = ϕ∆(a)ϕ−1 (a ∈ A),

Φϕ = (1⊗ ϕ)(1⊗∆)(ϕ)Φ(∆ ⊗ 1)(ϕ−1)(ϕ−1 ⊗ 1),
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respectively, so that A-Mod and Aϕ-Mod are monoidally equivalent in a natural

manner; see [Kas, Prop. XV 3.2, Thm. XV 3.5]. This generalizes the dual notion

of cocycle deformation (see Section 3) of an ordinary bialgebra.

A map f : A → A′ of quasi-bialgebras is a linear map which preserves the

structures, and so in particular (f ⊗ f ⊗ f)(Φ) = Φ′.

Let (H,K,⇀, ρ) be a Singer pair of Hopf algebras. Let

σ : H ⊗H → K, τ : H → K ⊗K, Φ ∈ K ⊗K ⊗K

be two invertible linear maps and an invertible element which all satisfy the

normalization condition. On the tensor product K ⊗ H, ⇀ and σ define such

a product with unit 1 ⊗ 1 as defined by the formula (2.9); ρ and τ define a

coproduct with counit ε ⊗ ε dually by the crossed coproduct construction. Let

K#σ,τ H denote K⊗H with these structures. Identify Φ with its natural image

(ι ⊗ ι ⊗ ι)(Φ) in (K#σ,τ H)⊗3, where ι(t) = t# 1 for t ∈ K, and denote the

image by Φ, too. We see directly the following.

Lemma 4.1 (cf. [BP, Remark 3.2]). K#σ,τ H is a quasi-bialgebra with Drinfeld

associator Φ, if and only if (σ, τ,Φ) is a total 2-cocycle in the double complex

A··
1 given below . In this case, K#σ,τ H is necessarily a quasi-Hopf algebra in

the sense defined by [Kas, Def. XV 5.1], whose requirement is fulfilled by the

map S defined by the same formula as (2.11), and by α =
∑

S(Φ1)Φ2S(Φ3)# 1,

β = 1# 1, if we write Φ =
∑

Φ1 ⊗ Φ2 ⊗Φ3.

The double complex

A··
1 =

...
x





Reg+(k,K⊗3) −−−−→
... · · ·

x





x





Reg+(k,K⊗2) −−−−→ Reg+(H,K⊗2) −−−−→
... · · ·

x





x





x





Reg+(k,K) −−−−→ Reg+(H,K) −−−−→ Reg+(H⊗2,K) −−−−→ ·· ·

enlarges A··
0 by joining the most left vertical complex which was removed when

we constructed A··
0 . Note that Φ is regarded as an element in Reg+(k,K⊗3).

The joined complex is the standard complex for computing the Doi cohomology

H ·(k,K) [D1, Sect. 2.6], where k is the trivial K-comodule coalgebra. (Note

H ·(k,K) is denoted by Coalg-H ·(k,K) in [D1].)
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Since K is commutative, a Drinfeld associator of K is none other than an el-

ement in Reg+(k,K⊗3) which vanishes through the vertical differential. There-

fore, if (σ, τ,Φ) is a total 2-cocycle in A··
1 , then ι : (K,Φ) → (K#σ,τ H,Φ),

ι(t) = t# 1 is a quasi-bialgebra map. We regard H as a quasi-bialgebra with

trivial Drinfeld associator, so that π : K#σ,τ H → H, π(t# a) = ε(t)a is a

quasi-bialgebra map. We let

(K#σ,τ H,Φ) = K
ι
−→ K#σ,τ H

π
−→ H

denote the sequence of quasi-bialgebras thus obtained.

Definition 4.2. A sequence (A,Φ) = K → A→ H of quasi-bialgebras together

with a Drinfeld associator Φ of K is called a cleft extension of H by K, if it is

equivalent to some (K#σ,τ H,Φ) in the sense that there is a quasi-bialgebra

isomorphism A
∼=
−→ K#σ,τ H which induces the identity maps on H and K.

We say that (A,Φ) is associated with the Singer pair (H,K,⇀, ρ) which forms

K#σ,τ H. (This is well-defined; see Proposition 4.5 below.)

If (A,Φ) is a cleft extension of H by K, then A is an (ordinary) H-comodule

algebra as well as a K-module, and satisfies Conditions (a), (b) in Definition

2.5. Suppose Φ = 1, the unit of K⊗3. Then, (A, 1) is a cleft quasi-bialgebra

extension in the sense above if and only if it is a cleft Hopf algebra extension in

the sense of Definition 2.5.

Let (A,Φ) = K
ι
−→ A

π
−→ H be a cleft extension, and let ϕ be a gauge

transformation on K. Then, (ι ⊗ ι)(ϕ) is a gauge transformation on A, which

we denote by ϕ, too. We see easily the following.

Lemma 4.3. (Aϕ,Φϕ) = K
ι
−→ Aϕ

π
−→ H is a cleft extension associated with

the same Singer pair as (A,Φ). (Note Φϕ = Φ∂′ϕ.)

Definition 4.4. A quasi-equivalence between cleft extensions is a pair (f, ϕ) :

(A,Φ) → (A′,Φ′), where f : A → A′ is a linear map and ϕ is a gauge trans-

formation on K, such that f gives an equivalence (Aϕ,Φϕ)
∼=
−→ (A′,Φ′). Its

composite with another quasi-equivalence (f ′, ϕ′) : (A′,Φ′) → (A′′,Φ′′) is the

quasi-equivalence (A,Φ)→ (A′′,Φ′′) defined by

(f ′, ϕ′) ◦ (f, ϕ) = (f ′ ◦ f, ϕ′ϕ).

The quasi-equivalence defines a equivalence relation among all cleft extensions

of H by K. It is easy to see the following.

Proposition 4.5. Two cleft extensions of H by K are associated with the same

Singer pair if they are quasi-equivalent to each other .

Let γ be an invertible element in K such that ε(γ) = 1. Its image under the

vertical differential ∂ ′ : Reg+(k,K)→ Reg+(k,K⊗2) in A··
1 is given by

∂′γ = (γ ⊗ γ)∆(γ−1),
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which is hence a gauge transformation on K.

Lemma 4.6. For any cleft extension (A,Φ) of H by K, (inn γ, ∂ ′γ) : (A,Φ)
∼=
−→

(A,Φ) is a quasi-auto-equivalence, where inn γ(a) = γ−1aγ for a ∈ A.

Proof. This follows easily if one notices that Φ∂′γ = Φ ∂′
2
γ = Φ. ˜

Definition 4.7 (cf. [Sb2, Def. 6.2.5]). Two quasi-equivalences (f, ϕ), (f ′, ϕ′) :

(A,Φ) → (A′,Φ′) are said to be cohomologous if there is γ ∈ Reg+(k,K) such

that (f ′, ϕ′) = (inn γ, ∂′γ) ◦ (f, ϕ).

This defines an equivalence relation among quasi-equivalences, which is compat-

ible with the composition since we have (f, ϕ)◦(inn γ, ∂ ′γ) = (inn γ, ∂′γ)◦(f, ϕ).

Definition 4.8. We denote by
�	���
���

′(H,K) =
���������

′(H,K,⇀, ρ)

the groupoid of cleft extensions of quasi-bialgebras which are associated with a

fixed Singer pair (H,K,⇀, ρ); the morphisms are cohomology classes of quasi-

equivalences.

For (Ai,Φi) in
�	���
���

′(H,K), where i = 1, 2, we define by using the bi-tensor

product ⊗H
K

(A1,Φ1) ∗ (A2,Φ2) = (A1 ⊗
H
K A2,Φ1Φ2),

which is naturally an object in
���������

′(H,K). As a variation of Proposition 2.15

we have the following.

Proposition 4.9.
���������

′(H,K) forms a symmetric monoidal groupoid with

tensor product ∗ and unit object (K#H, 1), in which each object has inverse.

Fix a Singer pair (H,K,⇀, ρ). We denote by

Opext′(H,K), Aut′(K#H, 1)

the group of all quasi-equivalence classes in
������� �

′(H,K) and the cohomology

group of all quasi-auto-equivalences of (K#H, 1), respectively. They give re-

spectively the K0 and K1 groups of
���������

′(H,K).

Proposition 4.10.

(1) The assignment

(σ, τ,Φ) 7→ (K #
σ,τ

H,Φ),

where (σ, τ,Φ) is a total 2-cocycle in A··
1 , induces an isomorphism

H2(TotA··
1 ) ∼= Opext′(H,K).

(2) To a total 1-cocycle (ν, ϕ) in A··
1 , there is assigned a quasi-auto-equivalence

(fν , ϕ) of (K#H, 1), where fν(t# a) =
∑

tν(a1)# a2. This assignment in-

duces an isomorphism

H1(TotA··
1 ) ∼= Aut′(K#H, 1).
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The proof is straightforward.

Note that A··
0 is regarded as a double subcomplex of A··

1 such that the cokernel

is the standard complex for computing the Doi cohomology H ·(k,K). The short

exact sequence of complexes thus obtained gives rise to the following.

Theorem 4.11. We have an exact sequence

1→ G(K)H → H1(k,K) → Aut(K#H) → Aut′(K#H, 1)

→ H2(k,K)→ Opext(H,K)→ Opext′(H,K)→ H3(k,K),

where G(K)H denotes the group of H-invariant grouplikes in K.

Let us call the last group map

β : Opext′(H,K)→ H3(k,K),

which is induced by (K#σ,τ H,Φ) 7→ Φ. We will see that β is a split surjection

in some special case, though it is not even a surjection in general. Suppose H is

finite-dimensional, and K = H∗. Let (H,H,C, triv) be the matched pair of Hopf

algebras defined by the adjoint action C: H⊗H → H, x C a =
∑

S(a1)xa2 and

the trivial action triv : H⊗H → H, x B a = ε(x)a. By Remark 2.4, it gives rise

to a Singer pair (H,H∗,⇀, triv). We have an identification Reg+(k, (H∗)⊗3) =

Reg+(H⊗3, k). For Φ ∈ Reg+(H⊗3, k), define σΦ, τΦ ∈ Reg+(H⊗3, k) by

σΦ(x; a, b) =
∑

Φ−1(x, a, b)Φ(a, x C a, b)Φ−1(a, b, x C ab)

τΦ(x, y; a) =
∑

Φ−1(x, y, a)Φ(x, a, y C a)Φ−1(a, x C a, y C a),

where a, b, x, y ∈ H. Here we wrote as ∆(a) =
∑

a⊗ a, omitting the subscripts

of numbers; it would be allowed since H is cocommutative. Further, identify σΦ,

τΦ with

H ⊗H → H∗, a⊗ b 7→ (x 7→ σΦ(x; a, b)),

H → H∗ ⊗H∗ = (H ⊗H)∗, a 7→ (x⊗ y 7→ τΦ(x, y; a)),

respectively. Then we see σΦ ∈ Reg+(H⊗2,H∗), τΦ ∈ Reg+(H, (H∗)⊗2).

Proposition 4.12. If Φ is a Drinfeld associator on H∗, then (σΦ, τΦ,Φ) is a to-

tal 2-cocycle in the double complex A··
1 defined by the Singer pair (H,H∗,⇀, triv).

The assignment Φ 7→ (H∗ #σΦ,τΦ
H,Φ) induces a group map β̄ : H3(k,H∗) →

Opext′(H,H∗) such that β ◦ β̄ = 1.

This is a reformulation of part of [BP, Theorem 3.1]; it proves further that the

quasi-Hopf algebra (H∗ #σΦ,τΦ
H,Φ) is quasi-triangular, generalizing [DPR] in

which H = kG, a finite group Hopf algebra.

Suppose a matched pair (F,G,C,B) of groups, where G is finite, is given. By

the same way of proving Theorem 1.10, we have the following variation of the

Kac exact sequence.
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Theorem 4.13. We have an exact sequence

1→ X(G)F → H1(F BC G, k×)→ H1(F, k×)

→ Aut′(kG # kF, 1)→ H2(F BC G, k×)→ H2(F, k×)

→ Opext′(kF, kG) → H3(F BC G, k×)→ H3(F, k×),

where X(G)F denotes the group of the group maps f : G→ k× such that f(x C

a) = f(x) for all x ∈ G, a ∈ F .

PART II: HOPF ALGEBRA EXTENSIONS ARISING FROM LIE ALGEBRAS

In this part, f and g denote finite-dimensional Lie algebras. The characteristic

ch k of k will be supposed to be zero in Sections 6–8.

5. Lie Bialgebra Extensions

We show some results for Lie (bi)algebras that are parallel to those for groups

given in Section 1.

Definition 5.1 [Mj, Def. 8.3.1]. A matched pair of Lie algebras is a pair (f, g)

together with Lie module actions g
C
←− g⊗ f

B
−→ f such that

x B [a, b] = [x B a, b] + [a, x B b] + (x C a) B b− (x C b) B a,

[x, y] C a = [x, y C a] + [x C a, y] + x C (y B a)− y C (x B a)

for a, b ∈ f, x, y ∈ g, or equivalently such that the direct sum f ⊕ g of vector

spaces forms a Lie algebra under the bracket

[a⊕ x, b⊕ y] = ([a, b] + x B b− y B a)⊕ ([x, y] + x C b− y C a).

This Lie bialgebra is denoted by f BC g.

The universal envelope U f of f forms a cocommutative Hopf algebra in which

each element in f is primitive.

Proposition 5.2 [M, Prop. 2.4]. Actions g
C
←− g ⊗ f

B
−→ f which make (f, g)

into a matched pair of Lie algebras are extended uniquely to actions Ug
C
←−

Ug ⊗ U f
B
−→ U f which make (U f, Ug) into a matched pair of Hopf algebras.

The resulting Hopf algebra Ug BC U f is naturally isomorphic to U(g BC f). If

ch k = 0, any matched pair structure on (U f, Ug) is obtained in this way .

The last assertion follows, since in characteristic zero, the primitives in Ug BC U f

are exactly (g ⊗ k) ⊕ (k ⊗ f) = g ⊕ f, which forms hence a Lie algebra, and so

(f, g) is matched in such a way that the Lie algebra equals g BC f.
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Let ⇀: f ⊗ g∗ → g∗ be an action by which g∗ is an f-Lie module. Then its

transpose C: g ⊗ f → g makes g into a (right) f-Lie module. Let ρ : f → f ⊗ g∗,

ρ(a) =
∑

a[0] ⊗ a[1] be a coaction by which f is a g∗-Lie comodule. This is

equivalent to that the action B: g ⊗ f → f defined by x B a =
∑

a[0]〈x, a[1]〉

(x ∈ g, a ∈ f) makes f into a g-Lie module.

Definition 5.3. (f, g∗,⇀, ρ) is called a Singer pair of Lie bialgebras (though

called a matched pair in [Mj, p.383]), if (f, g,C,B) is a matched pair of Lie

algebras.

A finite-dimensional vector space l is called a Lie coalgebra with co-bracket δ :

l→ l⊗l, if the dual space l∗ is a Lie algebra with bracket δ∗ : l∗⊗l∗ = (l⊗l)∗ → l∗.

l is called a Lie bialgebra [Dr], if it is a Lie algebra and Lie coalgebra such that

δ[a, b] = aδ(b) + δ(a)b (a, b ∈ l),

where a(x⊗ y) = [a, x]⊗ y + x⊗ [a, y], (x⊗ y)b = [x, b]⊗ y + x⊗ [y, b].

We regard f as a Lie bialgebra with zero co-bracket. Naturally, g∗ is a Lie

coalgebra, which we regard as a Lie bialgebra with zero bracket. By a (Lie

bialgebra) extension of f by g∗, we mean a sequence (l) = g∗ → l → f of Lie

bialgebras and Lie bialgebra maps which is a short exact sequence of vector

spaces. An equivalence between two such extensions is defined in the obvious

way.

Given an f-Lie module action ⇀: f⊗ g∗ → g∗ together with a (Lie) 2-cocycle

σ : f∧f→ g∗ with coefficients in the f-Lie module (g∗,⇀), a Lie algebra g∗ >Cσ f

of crossed sum is constructed on the vector space g∗ ⊕ f by the bracket

[s⊕ a, t⊕ b] = (a ⇀ t− b ⇀ s+ σ(a, b))⊕ [a, b].

Given also a right g-Lie module action ↼: f∗ ⊗ g→ f∗ together with a 2-cocycle

τ : g ∧ g → f∗ with coefficients in (f∗,↼), a Lie algebra g B<τ f∗ is constructed

similarly, whose dual Lie coalgebra is denoted by g∗ I<τ f. Denote by g∗ ICσ,τ f

the Lie algebra and Lie coalgebra thus obtained.

Lemma 5.4 [M, Prop. 1.8]. g∗ ICσ,τ f is a Lie bialgebra if and only if ⇀ and

the dual coaction ρ = (↼)∗ : f→ f⊗ g∗ of ↼ make (f, g∗) into a Singer pair and

(σ, τ) is a total 1-cocycle in the double complex C ··
0 defined below .

If these conditions are satisfied, the Lie bialgebra forms a Lie bialgebra extension

(g∗
ICσ,τ f) = g∗ → g∗

ICσ,τ f→ f,

in which the maps are the natural inclusion and the projection.

Any extension (l) of f by g∗ is equivalent to some (g∗ ICσ,τ f), since an

identification l = g∗⊕ f of vector spaces gives rise to a ‘bicrossed sum’ structure.

Here the Singer pair (f, g∗,⇀, ρ) which forms g∗ ICσ,τ f is uniquely determined

by (l), being independent of the way of identification l = g∗ ⊕ f.
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Definition 5.5. In this case, we say that (l) is associated with the Singer pair

(f, g∗,⇀, ρ). We denote by
���������

(f, g∗) =
�	� �����

(f, g∗,⇀, ρ)

the groupoid of Lie bialgebra extensions associated with a fixed Singer pair

(f, g∗,⇀, ρ), whose morphisms are equivalences.

In what follows we fix a Singer pair (f, g∗,⇀, ρ) of Lie bialgebras.

Let (l1), (l2) be in
�	���
���

(f, g∗). From the direct sum (l1 ⊕ l2), form first the

pullback (l′) along the diagonal map a 7→ a⊕ a, f→ f⊕ f, and then the pushout

(l) along the addition s⊕ t 7→ s+ t, g∗ ⊕ g∗ → g∗, as follows.

(l1 ⊕ l2) = g∗ ⊕ g∗ - l1 ⊕ l2 - f⊕ f

6

J

p.b. 6

J

(l′) = g∗ ⊕ g∗ - l′ - f

??
p.o. ??

(l) = g∗ - l - f

One sees that (l) is in
���������

(f, g∗), which we denote by (l1)∗(l2). If we form first

pushout and then pullback, obtained is an extension of the same kind, which

is equivalent to (l) through the isomorphism induced from the identity map on

l1 ⊕ l2. We see that (g∗ ICσ1,τ1
f) ∗ (g∗ ICσ2,τ2

f) = (g∗ ICσ,τ f), where

σ = σ1 + σ2, τ = τ1 + τ2.

If σ and τ are both zero maps, we write simply g∗ IC f for g∗ IC0,0 f.

Proposition 5.6.
�	� �����

(f, g∗) forms a symmetric monoidal groupoid with ten-

sor product ∗ and unit object (g∗ IC f), in which each object has inverse.

The associativity constraint and the symmetry are induced from the obvious

isomorphisms (l1⊕ l2)⊕ l3
∼=
−→ l1⊕ (l2⊕ l3), l1⊕ l2

∼=
−→ l2⊕ l1, respectively. If we

write l0 = g∗ IC f, the projection l0 ⊕ l1 → l1 induces the (left) unit constraint.

If (l) is equivalent to (g∗ ICσ,τ f), it has inverse (g∗ IC−σ,−τ f).

We denote by

Opext(f, g∗) = Opext(f, g∗,⇀, ρ)

all isomorphism (or equivalence) classes in
���������

(f, g∗), which form naturally a

group. We denote by Aut(g∗ IC f) the group of auto-equivalences of (g∗ IC f).

The K0 and K1 groups of
���������

(f, g∗) are given by

K0 = Opext(f, g∗), K1 = Aut(g∗
IC f).

For cohomological description of the groups, note first that by Definition 5.3,

a matched pair (f, g,C,B) is obtained from the fixed Singer pair. Write H = U f,
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J = Ug. By Proposition 5.2, we have a matched pair (H,J,C,B) of Hopf

algebras so that H BC J = U(f BC g).

Let

V·(f) = 0← H ← H ⊗ f← H ⊗∧2f← · · ·

be the Chevalley-Eilenberg complex; the differentials are given by

∂(u〈a1, . . . , ap〉) =

p
∑

i=1

(−1)i+1uai〈a1, . . . , âi, · · · , ap〉

+
∑

i<j

(−1)i+ju〈[ai, aj ], a1, . . . , âi, . . . , âj , . . . , ap〉

for u ∈ H, 〈a1, . . . , ap〉 := a1∧· · ·∧ap ∈ ∧
pf, where âi denotes the omitted term.

This gives an H-free resolution 0← k ← V·(f) of the trivial H-module k, whose

augmentation H → k is the counit ε of H. Regard each P = ∧pf as a J-module

with the diagonal action. As a general fact, H ⊗P is an H BC J-module, where

H acts on the factor H and J acts by

x(a⊗ p) =
∑

(x1 B a1)⊗ (x2 C a2)p (x ∈ J, a⊗ p ∈ H ⊗ P ).

It follows by [M, Lemma 2.6] that ∂ and ε are H BC J-linear, where k is the

trivial H BC J-module.

Similarly the right version

V ′
· (g) = 0← J ← g⊗ J ← ∧2g⊗ J ← · · ·

of the Chevalley-Eilenberg complex gives a right H BC J-resolution of k. Regard

0 ← k ← V ′
· (g) as a left H BC J-resolution by twisting the action through the

antipode, and form the double complex V ′
· (g)⊗V·(f) with a sign trick applied as

before. Each term in the double complex is of the form (Q⊗ J)⊗ (H ⊗P ) with

P = ∧pf, Q = ∧qg; this is an H BC J-free module whose free basis is given by

any basis of the vector space (Q⊗ k)⊗ (k ⊗ P ), so that we have

HomHBCJ((Q⊗ J)⊗ (H ⊗ P ),M) = Hom(Q⊗ P,M)

for an H BC J-module M . Thus the total complex of V ′
· (g) ⊗ V·(f) gives a

non-standard H BC J-free resolution of k.

Form the double complex HomHBCJ(V ′
· (g)⊗V·(f), k), and then remove from it

the edges, which consist of the standard complexes for computing the Lie algebra
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cohomologies H ·(f, k), H ·(g, k). We obtain the desired complex:

C ··
0 =

...
...

x





x





Hom(∧2g⊗ f, k) −−−−→ Hom(∧2g⊗ ∧2f, k) −−−−→ · · ·
x





x





Hom(g⊗ f, k) −−−−→ Hom(g⊗ ∧2f, k) −−−−→ · · ·

Proposition 5.7 [M, Prop. 2.9].

(1) Let (σ, τ) be a total 1-cocycle in C ··
0 , and identify σ : g ⊗ ∧2f → k, τ :

∧2g ⊗ f → k naturally with linear maps ∧2f → g∗, ∧2g → f∗, respectively ,

which are indeed Lie 2-cocycles. Then, (g∗ ICσ,τ f) is in
�	� �����

(f, g∗). The

assignment (σ, τ) 7→ (g∗ ICσ,τ f) induces an isomorphism

H1(TotC ··
0 ) ∼= Opext(f, g∗).

(2) Let ν : g ⊗ f → k be a total 0-cocycle in C ··
0 , and identify it naturally with

a linear map f → g∗. Then an auto-equivalence of (g∗ IC f) is given by

s⊕ a 7→ (s+ ν(a))⊕ a. The assignment gives an isomorphism

H0(TotC ··
0 ) ∼= Aut(g∗

IC f).

From the construction of C ··
0 , we see that the next result follows in the same way

as in the group case.

Theorem 5.8 [M, Thm. 2.10]. We have an exact sequence

0→H1(f BC g, k)→H1(f, k)⊕H1(g, k) → Aut(g∗ IC f)

→H2(f BC g, k)→H2(f, k)⊕H2(g, k) → Opext(f, g∗)

→H3(f BC g, k)→H3(f, k)⊕H3(g, k),

where H · denotes the Lie algebra cohomology with coefficients in the trivial Lie

module k.

This exact sequence and the Hochschild-Serre spectral sequence imply the fol-

lowing.

Corollary 5.9 [M, Cor. 2.11]. Suppose ch k = 0. If either (a) f is semisimple

and ⇀ is zero or (b) g is semisimple and ρ is zero, then the groups Opext(f, g∗)

and Aut(g∗ IC f) are both trivial .

Throughout in the following sections we suppose ch k = 0.
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6. Hopf Algebra Extensions of U f by the Full Dual (Ug)◦

Let (Ug)◦ denote the Hopf dual of Ug, which consists of the elements in (Ug)∗

annihilating some two-sided (or equivalently one-sided) ideal in Ug of cofinite

dimension; see [Mo, Sect. 9.1]. Thus, (Ug)◦ is a commutative Hopf algebra; it

is finitely generated if and only if g is perfect in the sense g = [g, g]; see [Ho2,

p.261]. If k is algebraically closed, it follows by [Ho1, Sect. 3] that a commutative

Hopf algebra is of the form (Ug)◦ with g perfect if and only if it is isomorphic to

the coordinate Hopf algebra O(G) of a simply connected affine algebraic group

G with G = [G,G].

Given a Singer pair (f, g∗,⇀, ρ) of Lie bialgebras, we have by Definition 5.3

a matched pair (f, g,C,B) of Lie algebras and so by Proposition 5.2 such a pair

(U f, Ug,C,B) of Hopf algebras. Since the action B: Ug ⊗ U f → U f makes U f

into a locally finite Ug-module, it gives rise to a comodule coaction ρ′ : U f →

U f ⊗ (Ug)◦. By [M, Lemma 4.1], the transpose ⇀′: U f ⊗ (Ug)∗ → (Ug)∗ of

the other action C: Ug ⊗ U f → Ug stabilizes (Ug)◦, and the induced action

⇀′: U f ⊗ (Ug)◦ → (Ug)◦ together with ρ′ makes (U f, (Ug)◦) into a Singer pair

of Hopf algebras.

Proposition 6.1 [M, Prop. 4.3]. The assignment (⇀,ρ) 7→ (⇀′, ρ′) thus ob-

tained gives an injection from the set of structures of Singer pair of Lie bialgebras

on (f, g∗) into the set of structures of such pair of Hopf algebras on (U f, (Ug)◦).

This is a bijection if g is perfect .

Write K = (Ug)◦, and let $ : K+ → g∗ denote the ‘restriction’ map induced

from the inclusion g ↪→ Ug, which is a surjection by the Ado theorem. It follows

from the proof of [M, Prop. 4.3] that a structure (⇀′, ρ′) arises from some (⇀,ρ)

if and only if ⇀′ stabilizes the kernel Ker$ of $, in which case the induced

action f ⊗ g∗ → g∗ is the desired ⇀. (Note that ⇀′ necessarily stabilizes K+,

since ε(a ⇀′ t) = ε(a)ε(t) by [T1, Lemma 1.2].) This is always the case if g is

perfect, since then (and only then) Ker$ = (K+)2.

Let (f, g∗,⇀, ρ) be a Singer pair of Lie bialgebras. It gives rise to a Singer

pair (U f, (Ug)◦,⇀′, ρ′) of Hopf algebras, as was seen above. Suppose that we

are given a cleft extension (see Remark 2.6 (2))

(A) = (Ug)◦
ι
−→ A

π
−→ U f

associated with the last pair. Regard A as a Lie algebra with the bracket [a, b] =

ab− ba, as usual, and as a Lie coalgebra with the co-bracket δ(a) =
∑

a1⊗ a2−
∑

a1 ⊗ a1 (note that A is not necessarily a Lie bialgebra). Let L+
A denote the

subspace of A consisting of the elements a such that ε(a) = 0 and (1⊗π)◦∆(a) =

a ⊗ 1 + 1 ⊗ c for some c ∈ f. Then, L+
A is seen to be a Lie subalgebra and Lie

subcoalgebra of A, and we have an extension (L+
A) = K+ ι

−→ L+
A

π
−→ f of Lie

algebras and at the same time of Lie coalgebras, where K = (Ug)◦. Since the

restriction $ : K+ → g∗ is a surjection of Lie algebras and Lie coalgebras, we
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have an extension

(lA) = g∗ → lA → f,

where lA = L+
A/ι(Ker$). It is proved that (lA) is in

���������
(f, g∗,⇀, ρ); see the

paragraph preceding [M, Example 4.19].

Theorem 6.2. The assignment (A) 7→ (lA) gives a symmetric monoidal equiv-

alence ���������
(U f, (Ug)◦,⇀′, ρ′)

≈
−→

�	����� �
(f, g∗,⇀, ρ).

Let (A1), (A2) be in
���������

(U f, (Ug)◦,⇀′, ρ′), and form A = A1 ⊗
K
H A2. From

the extension

K+ ⊕K+ → L+
A1
⊕ L+

A2
→ f⊕ f,

construct an extension (L+
A1

) ∗ (L+
A2

) of f by K+, as before, by forming first a

pullback along the diagonal map f→ f⊕ f and then a pushout along the addition

K+⊕K+ → K+. One sees that a⊕b 7→ a⊗1+1⊗b, L+
A1
⊕L+

A2
→ A1⊗A2 induces

an equivalence (L+
A1

) ∗ (L+
A2

)
∼=
−→ (LA), and it in turn induces (lA1

) ∗ (lA2
)

∼=
−→

(lA); this gives the monoidal structure of the functor (A) 7→ (lA).

We see easily that (A) 7→ (lA) gives a symmetric monoidal functor, and so

that it induces group maps

κ0 : Opext(U f, (Ug)◦)→ Opext(f, g∗),

κ1 : Aut((Ug)◦ #U f) → Aut(g∗ IC f)

between the K0, K1 groups, which will be explicitly described by Proposition

6.5. We remark that κ0, κ1 just given coincide respectively with κ1, κ0 in [M,

Thm. 4.11]; thus the notations are reverse. Since κ0 and κ1 are isomorphisms

by [M, Thm. 4.11], we see from the following standard fact that the functor is

equivalence, which proves Theorem 6.2: a symmetric monoidal functor between

symmetric monoidal groupoids in which each object has inverse is an equivalence,

if and only if the induced maps between the mutual K0, K1 groups are both

isomorphisms. ˜

Since κ0 and κ1 are isomorphisms, the sequence given in Theorem 5.8 remains

exact if the groups Opext(f, g∗), Aut(g∗ IC f) are replaced by Opext(U f, (Ug)◦),

Aut((Ug)◦ #U f), respectively. The exact sequence thus obtained cannot be

covered by the generalized Kac exact sequence [Sb2] (see Remark 1.11 (3)), for

which the kernel of extensions is supposed to be finite-dimensional, while we

have the infinite-dimensional kernel (Ug)◦ unless g = 0.

Combined with Corollary 5.9, the isomorphisms prove also the following.

Corollary 6.3 [M, Cor. 4.13]. The groups Opext(U f, (Ug)◦), Aut(U f, (Ug)◦)

associated with a Singer pair (U f, (Ug)◦,⇀, ρ) are both trivial , if either (a) f is

semisimple and ⇀ is trivial or (b) g is semisimple and ρ is trivial .

Combined with the last statement of Proposition 6.1, the theorem gives also the

following corollary.
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Corollary 6.4 (cf. [M, Thm. 4.14]). If g is perfect , we have a natural equiv-

alence from the groupoid
� � �

(U f, (Ug)◦) of all cleft extensions of U f by (Ug)◦

to the groupoid
� ���

(f, g∗) of all Lie bialgebra extensions of f by g∗.

As in Theorem 6.2, let (U f, (Ug)◦,⇀′, ρ′) be a Singer pair which arises from

such a pair (f, g∗,⇀, ρ), and consider the double complexes A··
0 , C ··

0 defined by

these pairs. Through the isomorphisms given by Propositions 2.21 and 5.7, let

us regard κ0, κ1 as isomorphisms

κ1−n : Hn(TotA··
0 )

∼=
−→ Hn(TotC ··

0 ) (n = 0, 1).

Proposition 6.5.

(1) Let (σ, τ) be a total 1-cocycle in A··
0 consisting of σ : U f ⊗ U f → (Ug)◦ and

τ : U f→ (Ug)◦ ⊗ (Ug)◦. Then the linear maps σ̄ : f ∧ f→ g∗, τ̄ : f→ (g ∧ g)∗

determined by
〈σ̄(a ∧ b), x〉 = 〈σ(a, b) − σ(b, a), x〉,

〈τ̄(a), x ∧ y〉 = 〈τ(a), x⊗ y − y ⊗ x〉,

where a, b ∈ f, x, y ∈ g, form a total 1-cocycle (σ̄, τ̄) in C ··
0 (under the nat-

ural identification as in Proposition 5.7). The isomorphism κ0 is induced by

(σ, τ) 7→ (σ̄, τ̄).

(2) Let ν : U f→ (Ug)◦ be a total 0-cocycle in A··
0 . Then the linear map ν̄ : f→ g∗

determined by

〈ν̄(a), x〉 = 〈ν(a), x〉,

where a ∈ f, x ∈ g, is a total 0-cocycle in C ··
0 , and κ1 is given by ν 7→ ν̄.

The result of Part 1 is given by the second paragraph following [M, Remark

4.15]. Part 2 is seen more easily.

7. Hopf Algebra Extensions of U f by the Irreducible (Ug)′

with g Nilpotent

Let (Ug)′ denote the largest irreducible subcoalgebra, necessarily a Hopf sub-

algebra, of (Ug)◦ containing 1, which consists of the elements in (Ug)∗ annihi-

lating some power of (Ug)+; see [Mo, Def. 9.2.2]. The next proposition follows

from [Ho2, Thm. XVI 4.2].

Proposition 7.1. For a commutative Hopf algebra K, the following conditions

are equivalent :

(a) K is of the form (Ug)′, where g is nilpotent ;

(b) K is the coordinate Hopf algebra O(G) of a unipotent affine algebraic group

G;

(c) K is finitely generated as an algebra and irreducible as a coalgebra, and the

intersection of all ideals in K of codimension 1 is zero (the last condition can

be removed if k is algebraically closed).
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In what follows in this section, we suppose that g is nilpotent. We will show

parallel results of those in the preceding section, replacing (Ug)◦ by (Ug)′.

Proposition 7.2. There is a natural 1-1 correspondence between (a) the set of

structures (⇀,ρ) of Singer pair of Lie bialgebras on (f, g∗) such that the action

B: g ⊗ f → f corresponding to ρ is nilpotent (in the sense gl B f = 0 for some

integer l > 0) and (b) the set of structures (⇀′, ρ′) of Singer pair of Hopf algebras

on (U f, (Ug)′).

Proof. Let (⇀,ρ) be in (a), and let (C,B) be the corresponding matched pair

structure on (f, g), which gives rise to a matched pair structure on (U f, Ug), by

Proposition 5.2. Since B: g ⊗ f → f is nilpotent, B: Ug ⊗ U f → U f is locally

nilpotent. Since locally nilpotent module-actions Ug⊗U f→ U f are in natural 1-1

correspondence with comodule coactions U f→ U f⊗ (Ug)′, a comodule coaction

ρ′ arises from the last B. Suppose gl B f = 0, and write I = (Ug)+. It

follows by induction on n (≥ l) that In−1 C f ⊂ In−l, and so that the transpose

⇀′: U f ⊗ (Ug)∗ → (Ug)∗ of C satisfies f ⇀′ (Ug/In−l)∗ ⊂ (Ug/In−1)∗; this

implies that ⇀′ stabilizes (Ug)′. One sees as in the proof of [M, Lemma 4.1]

that the pair (⇀′, ρ′), where ⇀′ is the restricted action on (Ug)′, is in (b).

Let (⇀′, ρ′) be in (b). Reversing the procedure, we obtain a coaction ρ : f→

f⊗g∗ from ρ′. Write K = (Ug)′. Since it follows from [Ho2, Thm. XVI 4.2] that

the restriction map K+ → g∗ induces an isomorphism K+/(K+)2 ∼= g∗, one sees

as in the proof of [M, Prop. 4.3] that ⇀′ induces an action ⇀: f⊗ g∗ → g∗, and

that (⇀,ρ) is in (a).

We see easily that the correspondences thus defined are inverses of each other.

˜

Choose such (⇀,ρ), (⇀′, ρ′) respectively from (a), (b) that correspond to each

other. Let (A) be in
���������

(U f, (Ug)′,⇀′, ρ′). Since the restriction K+ → g∗ is

a surjection as was seen above, we can construct (lA) in
�	���
���

(f, g∗,⇀, ρ) in the

same way as in the preceding section.

Theorem 7.3. Suppose g is nilpotent . The assignment (A) 7→ (lA) gives a

symmetric monoidal equivalence
���������

(U f, (Ug)′,⇀′, ρ′)
≈
−→

���������
(f, g∗,⇀, ρ).

A proof will be given in the next section in a more general context.

The induced isomorphisms between theK0,K1 groups together with Corollary

5.9 prove the following.

Corollary 7.4. The groups Opext(U f, (Ug)′), Aut((Ug)′ #U f) associated with

a Singer pair (U f, (Ug)′,⇀, ρ) are both trivial if f is semisimple, g is nilpotent

and ⇀ is trivial .

Example 7.5. Let f = ka, g = kx be 1-dimensional (abelian) Lie algebras.

Then

U f = k[a], Ug = k[x], (Ug)′ = k[t],
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polynomial Hopf algebras with a, x, t primitive. Here t is the element in (Ug)∗

determined by 〈t, xn〉 = δ1,n (n = 0, 1, . . .); see [Mo, Example 9.1.7]. For arbi-

trary ξ, η in k, the actions C, B determined by

x C a = ξx, x B a = ηa

make (f, g) matched. The action B is nilpotent if and only if η = 0. The action

⇀: k[a]⊗ k[t]→ k[t] arising from C is determined by

a ⇀ tn = nξtn (n = 0, 1, . . .).

Hence this⇀ together with the trivial coaction k[a]→ k[a]⊗k[t] gives all possible

Singer pair structures on (k[a], k[t]). Moreover, for each such pair the group

Opext(k[a], k[t]) is trivial since obviously H1(TotC ··
0 ) = 0. Thus the equivalence

classes of all cleft extensions of k[a] by k[t] are in 1-1 correspondence with the

elements ξ in k.

Example 7.6. Let sl2 denote the special linear algebra of 2× 2 matrices, with

standard (Chevalley) basis x, y, h. The decomposition

sl2 = f⊕ g

into the Lie subalgebras f := kh + ky and g := kx gives rise to a matched pair

structure on (f, g), in which the action B is nilpotent. We have (Ug)′ = k[t] as

above, so 〈tm, xn/n!〉 = δm,n. The matched pair structure corresponds to the

Singer pair structure on (U f, (Ug)′) given by

yl

l!
hm ⇀ tn =







(

n− 1

l

)

(−1)l+m2m(n− l)mtn−l (l < n)

0 (l ≥ n),

ρ

(

yl

l!
hm

)

=

l
∑

i=0

yl−i

(l − i)!

(

h− l + i

i

)

hm ⊗ ti,

where l, m and n are non-negative integers, since we see from [Hum, Lemma

26.2] that in U(sl2),

xn

n!

yl

l!
hm =

min(l,n)
∑

i=0

yl−i

(l − i)!

(

h− l − n+ 2i

i

)

(h− 2(n− i))m xn−i

(n− i)!
.

By using the Kac exact sequence we compute

Opext(U f, (Ug)′) ∼= H3(sl2, k) = k,

since it is easy to see Hn(f, k) = Hn(g, k) = 0 for n = 2, 3.
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Remark 7.7. In their new paper [VV], Vaes and Vainerman study the same

subject as this Part II in the framework of operator algebras, and especially give

many examples. The computation of an Opext group given in [VV, Remark 5.7]

(without detailed proof) seems essentially the same as our result in the preceding

example.

8. Generalization by Introducing Topology

To unify and generalize the results in the preceding two sections, we let I be a

set of (two-sided) ideals in Ug of cofinite dimension which satisfies the following

conditions.

(i) For any I1, I2 ∈ I, there exists I ∈ I such that I ⊂ I1 ∩ I2;

(ii) For any I ∈ I, there exists I ′ ∈ I such that ∆(I ′) ⊂ Ug ⊗ I + I ⊗ Ug,

S(I ′) ⊂ I;

(iii) There exists I ∈ I such that ε(I) = 0.

Definition 8.1. Let (Ug)◦I denote the subset of (Ug)∗ consisting of the elements

f such that f(I) = 0 for some I ∈ I. We see easily that this is a Hopf subalgebra

of (Ug)◦.

Example 8.2. (1) Suppose that I consists of only one ideal (Ug)+. Then,

(Ug)◦I = k.

(2) Suppose that I consists of all ideals of cofinite dimension. Then, (Ug)◦I =

(Ug)◦.

(3) Suppose that I consists of the powers I, I2, · · · of I = (Ug)+. Then,

(Ug)◦I = (Ug)′.

By a topological vector space [T2, p.507], we mean a vector space V with a topol-

ogy such that for each w ∈ V , the translation v 7→ v + w, V → V is continuous,

and V has a basis of neighborhoods of 0 consisting of vector subspaces, which

we call a topological basis.

Every vector space is a topological vector space with the discrete topology.

We regard k as a discrete topological vector space.

The direct sum
⊕

λ Vλ of topological vector spaces Vλ is a topological vector

space with the direct sum topology [T2, 1.2]; it has a topological basis consisting

of all
⊕

λWλ, where Wλ is in a fixed topological basis of Vλ. For a vector space

X, we denote by V ⊗ (X) or (X) ⊗ V the topological vector space V ⊗ X or

X ⊗ V which is given the direct sum topology, identified with the direct sum of

dimX copies of V .

By Condition (i), Ug is a topological vector space with topological basis I.

Conditions (ii) and (iii) are equivalent to that the structure maps ∆, S and

ε are continuous, where Ug ⊗ Ug is given the (tensor product) topology with

topological basis consisting of all Ug⊗I+I⊗Ug with I ∈ I. We see that (Ug)◦I
equals the vector space Homc(Ug, k) of continuous linear maps Ug→ k.
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We regard U f as a discrete vector space, and Ug⊗ (U f) as a topological vector

space so as defined above.

Theorem 8.3. Fix a Singer pair (f, g∗,⇀, ρ) of Lie bialgebras, which by defini-

tion corresponds to a matched pair (f, g,C,B) of Lie algebras. Suppose that the

unique extensions

Ug
C
←− Ug⊗ (U f)

B
−→ U f

of the actions g
C
←− g ⊗ f

B
−→ f which make (U f, Ug) matched (see Proposition

5.2) are both continuous.

(1) The extended actions give rise to an action ⇀′: U f⊗ (Ug)◦I → (Ug)◦I and a

coaction ρ′ : U f→ U f⊗ (Ug)◦I such that (U f, (Ug)I)◦,⇀′, ρ′) is a Singer pair .

(2) There exist natural group maps

κ0 : Opext(U f, (Ug)◦I)→ Opext(f, g∗),

κ1 : Aut((Ug)◦I #U f) → Aut(g∗ IC f)

between the K0, K1 groups of
���������

(U f,(Ug)◦I ,⇀
′,ρ′) and of

���������
(f,g∗,⇀,ρ).

(3) Suppose H1(g, (Ug)◦I) = 0, where (Ug)◦I is a left (or equivalently right) g-Lie

module with the transposed action of the right (or left) multiplication on Ug.

Then, κ1 is an isomorphism.

(4) If in addition H2(g, (Ug)◦I) = 0, then κ0 is also an isomorphism.

(5) If in addition I ∩ g = 0 for some I ∈ I, there exists a symmetric monoidal

equivalence
������� �

(U f, (Ug)◦I ,⇀
′, ρ′)

≈
−→

������� �
(f, g∗,⇀, ρ)

which induces the isomorphisms κ0, κ1.

Remark 8.4. We see that the following conditions including the assumption in

Part 5 above are equivalent to each other.

(a) I ∩ g = 0 for some I ∈ I;

(b)
⋂

I∈I I = 0, or the topological space Ug is Hausdorff;

(c) The restriction map (Ug)◦I → g∗ is a surjection;

(d) The canonical algebra map Ug→ [(Ug)◦I ]∗ is an injection.

To prove Part 1 of the theorem, we generalize the situation as follows. Let H, J

be cocommutative Hopf algebras. Suppose we are given a set I of ideals in J of

cofinite dimension which satisfies the same conditions as (i)–(iii) given above for

Ug; J is thus a topological vector space with topological basis I. Let K = J ◦
I

denote the commutative Hopf algebra consisting of all continuous linear maps

J → k. We regard H as a discrete vector space. Suppose we are given also

continuous actions

J
C
←− J ⊗ (H)

B
−→ H

which make (H,J) matched.
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Note that H ⊗K = Homc(J,H), the subspace of Hom(J,H) consisting of all

continuous linear maps J → H. Since B is continuous, the image of the linear

map ρ : H → Hom(J,H) defined by

ρ(a)(x) = x B a (a ∈ H, x ∈ J)

is included in H ⊗K, so that we have a coaction ρ : H → H ⊗K. Since C is

continuous, C a : J → J is continuous for each a ∈ H. By applying Homc( , k),

we obtain a map a ⇀: K → K, and hence also an action ⇀: H ⊗K → K.

Lemma 8.5. (H,K,⇀, ρ) forms a Singer pair .

This follows easily as in the proof of [M, Lemma 4.1]. If J is Hausdorff, the

correspondence (C,B) 7→ (⇀,ρ) between the sets of structures, given as above, is

injective since then C is recovered from the transpose of ⇀ through the canonical

injection J → K∗; see the proof of [M, Cor. 4.2].

Part 1 of Theorem 8.3 follows from the last lemma. ˜

Let (H,J,C,B), (H,K,⇀, ρ) be as above. From the matched pair, the Hopf

algebra H BC J and its module category H BC J-Mod are constructed. From

the Singer pair, the category C = C(H,K,⇀, ρ) is defined by Definition 2.3.

Generalizing the observation given above that the continuous action B gives

rise to ρ, we see that for a discrete vector space M , there is a natural 1-1

correspondence between the continuous module actions J ⊗ (M) → M and the

comodule coactions M →M ⊗K. This proves the following.

Lemma 8.6. C is regarded as a full subcategory of H BC J-Mod which consists

of the H BC J-modules M such that the restricted action J ⊗ (M)→M by J is

continuous.

Recall from (2.17), (2.19) the (co)simplicial objects Φ·(k), Ψ·(k) in C. The

normalized (co)chain complexes associated with these objects coincide with the

standard (co)free resolutions of k, if we forget K-coactions or H-actions. By

removing the 0th terms H, K from them, we obtain (co)chain complexes

X·(H) = 0← H ⊗H+ ← H ⊗H⊗2
+ ← · · · ,

Y ·(K) = 0→ K+ ⊗K → K+⊗2 ⊗K → · · ·

in C, where H+ = H/k1.

Let HomK
H denote the vector space of H-linear and K-colinear maps. Form

the double complex B··
0 = HomK

H (X·(H), Y ·(K)). Here and in what follows when

we form a double complex, we resort such a sign trick that changes the sign of

differentials in even columns beginning with the 0th column. Note that each

term in X·(H) (resp., in Y ·(K)) is of the form F(P ) as given in (2.16) (resp.,

G(Q) as given in (2.18)). Since we have a natural isomorphism

HomK
H(F(P ),G(Q)) ∼= Hom(P,Q) (8.7)
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given in the same way of (2.20), B··
0 turns to be as follows.

B··
0 =

...
...

x





x





Hom(H+,K
+⊗2) −−−−→ Hom(H⊗2

+ ,K+⊗2) −−−−→ · · ·
x





x





Hom(H+,K
+) −−−−→ Hom(H⊗2

+ ,K+) −−−−→ · · ·

Proposition 8.8 [M, Prop. 3.14]. Suppose H = U f (f can be of infinite dimen-

sion). An isomorphism A··
0
∼= B··

0 between the double complexes of abelian groups

is given by

log : Reg+(H⊗p,K⊗q)→ Hom(H⊗p
+ ,K+⊗q), log f =

∞
∑

n=1

(−1)n−1

n
(f − ε)n,

where ε is the identity in Reg+(H⊗p,K⊗q) and (f − ε)n = (f − ε) · · · (f − ε)

denotes the convolution product .

To prove Part 2 of Theorem 8.3, suppose in particular H = U f, J = Ug, and so

K = (Ug)◦I . We may suppose that the Singer pair (H,K,⇀, ρ) given by Lemma

8.5 arises from the Singer pair (f, g∗,⇀, ρ) of Lie bialgebras fixed in the theorem.

Here we continue to denote the structure of the pair (H,K) by ⇀, ρ, instead of

⇀′, ρ′. The Singer pairs define the double complexes A··
0 , C ··

0 . We will define

natural group maps

κ1−n : Hn(TotA··
0 )→ Hn(TotC ··

0 ) (n = 0, 1),

which will prove Part 2 by Propositions 2.21 and 5.7.

We obtain from the Chevalley-Eilenberg complex V·(f), by removing its term

H, a chain complex

X·(f) = 0← H ⊗ f← H ⊗ ∧2f← · · ·

in H BC J-Mod, and so in C by Lemma 8.6. The well-known embedding ϕ· :

X·(f)→ X·(H) given by

ϕp−1 : Xp−1(f) = H ⊗ ∧pf→ H ⊗H⊗p
+ = Xp−1(H),

ϕp−1(u〈a1, . . . , ap〉) =
∑

σ∈Sp

(sgnσ)u⊗ aσ(1) ⊗ · · · ⊗ aσ(p)

is a map of complexes in C; see [M, Lemma 4.8]. The symmetric argument using

a mirror gives chain complexes

X ′
· (J) = 0← J+ ⊗ J ← J⊗2

+ ⊗ J ← · · · ,

X ′
· (g) = 0← g⊗ J ← ∧2g⊗ J ← · · ·
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of right H BC J-modules and an embedding ϕ′
· : X ′

· (g) → X ′
·(J). Through the

injection (K+)⊗q ⊗K ↪→ (J+)∗⊗q ⊗J∗ ⊂ (J⊗q
+ ⊗J)∗ induced from the inclusion

K ↪→ J∗, we can regard Y ·(K) as a subcomplex of the dual complex X ′
·(J)∗ in

H BC J-Mod.

In general, if Q is a right H-module of finite dimension, the right J-module

Q⊗ J is a right H BC J-module, where H acts by

(q ⊗ x)a =
∑

q(x1 B a1)⊗ (x2 C a2) (a ∈ H, q ⊗ x ∈ Q⊗ J),

so that (Q⊗J)∗ = Q∗⊗J∗ is a leftH BC J-module. The object G(Q∗) = Q∗⊗K

in C given by (2.18) is the largest H BC J-submodule of Q∗ ⊗ J∗ which is an

object in C. Therefore we have a cochain complex in C

Y ·(g∗) = 0→ g∗ ⊗K → (∧2g)∗ ⊗K → · · ·

which is a subcomplex of the dual complex X ′
· (g)∗ in H BC J-Mod.

Lemma 8.9. Y ·(g∗) is naturally isomorphic to the complex obtained by removing

the term K from the standard complex

0→ K → Hom(g,K)→ Hom(∧2g,K)→ · · ·

for computing the cohomology H ·(g,K) with coefficients in the right g-Lie module

K.

Proof. The canonical isomorphism HomJ(Q ⊗ J, J∗) ∼= Q∗ ⊗ J∗ induces

HomJ(Q ⊗ J,K) ∼= Q∗ ⊗ K, which gives rise to an isomorphism between the

complexes. ˜

Form the double complex HomK
H (X·(f), Y

·(g∗)), in which each term is of the

form Hom(∧pf, (∧qg)∗) by (8.7).

Lemma 8.10. The double complex just formed is naturally identified with C ··
0 .

Proof. Write P = ∧pf, Q = ∧qg. The natural maps

Hom(H ⊗ P,Q∗ ⊗K) ↪→ Hom(H ⊗ P, (Q⊗ J)∗) ∼= Hom((Q⊗ J)⊗ (H ⊗ P ), k)

are H BC J-linear, where H BC J acts on the Hom spaces by conjugation. By

taking H BC J-invariants we obtain Hom(P,Q∗) ∼= Hom(Q⊗ P, k), which gives

a natural identification between the double complexes. ˜

From the dual of the embedding ϕ′
· : X ′

· (g)→ X ′
·(J), a map ψ· : Y ·(K)→ Y ·(g∗)

of complexes in C is induced. Define a map of double complexes by

α··
0 = HomK

H (ϕ·, ψ
·) : B··

0 → C ··
0 .

Compose this with the isomorphism A··
0

∼=
−→ B··

0 given by Proposition 8.8 to

obtain a map A··
0 → C ··

0 of double complexes. As desired maps, we define κ1−n :

Hn(TotA··
0 ) → Hn(TotC ··

0 ) (n = 0, 1) to be the induced maps between the

cohomology groups. This proves Part 2. ˜
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We see that the maps just defined are so as described by Proposition 6.5 if

(Ug)◦ is replaced by (Ug)◦I .

To prove Parts 3 and 4 of Theorem 8.3, it suffices to show that the maps

Hn(TotB··
0 )→ Hn(TotC ··

0 ) (n = 0, 1) induced by α··
0 are isomorphisms.

Form the double complexes

B·· = Hom(X·(H), Y ·(K)), C ·· = Hom(X·(f), Y
·(g∗))

in H BC J-Mod, which look as follows.

B·· =

...
x





Hom(H⊗H+,K
+⊗2⊗K) −−−−→

... · · ·
x





x





Hom(H⊗H+,K
+⊗K) −−−−→ Hom(H⊗H⊗2

+ ,K+⊗K) −−−−→ · · ·

C ·· =

...
x





Hom(H⊗f, (∧2g)∗⊗K) −−−−→
... · · ·

x





x





Hom(H⊗f, g∗⊗K) −−−−→ Hom(H⊗∧2f, g∗⊗K) −−−−→ · · ·

Their subcomplexes of H BC J-invariants are precisely B ··
0 and C ··

0 , respectively.

The map

α·· = Hom(ϕ·, ψ
·) : B·· → C ··

is restricted to α··
0 . Denote by

(B·, d·) = TotB··, (C ·, ∂·) = TotC ··, α· : B· → C ·

the two total complexes and the total map of α··. Then we have the following

commutative diagram in H BC J-Mod:

0 −−−−→ B0 d0

−−−−→ B1 d1

−−−−→ Im d1 −−−−→ 0 −−−−→ 0 −−−−→ · · ·




yα0





yα1





yα2





y





y

0 −−−−→ C0 ∂0

−−−−→ C1 ∂1

−−−−→ Im ∂1 −−−−→ 0 −−−−→ 0 −−−−→ · · ·

(8.11)
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We suppose H1(g,K) = 0 = H2(g,K), and claim the following.

Claim 8.12. α0, α1, α2, 0, . . . give a homotopy equivalence between the complexes

in H BC J-Mod.

If this is proved, we see by taking H BC J-invariants that κ0 and κ1 are isomor-

phisms, which proves Part 4. Under the assumption H1(g,K) = 0, Part 3 will

be proved by similar argument with the diagram (8.11) replaced by the reduced

one involving d0 : B0 → Im d0, ∂0 : C0 → Im ∂0 in its rows.

Since we have resolutions 0← H+ ← X·(H) and 0→ K+ → Y ·(K) in C, the

first row in (8.11) gives a resolution of Hom(H+,K+) in H BC J-Mod. Here the

augmentations are given by the product H ⊗H+ → H+, the coproduct K+ →

K+ ⊗ K and the map e : Hom(H+,K+) → B0 induced by them. By Lemma

8.9 together with the assumption of cohomologies vanishing, one forms an exact

sequence in C by splicing the first three terms g∗⊗K → (∧2g)∗⊗K → (∧3g)∗⊗K

in Y ·(g∗) with the injection 0 → K+ → g∗ ⊗ K induced by the coproduct

of K. Since also the product H ⊗ f → H+ makes 0 ← H+ ← X·(f) into a

resolution in C, the second row in (8.11) gives again a resolution of Hom(H+,K+)

in H BC J-Mod, whose augmentation η : Hom(H+,K+)→ C0 are induced from

the last injection and the product. Clearly we have η = α0 ◦ e.

To prove Claim 8.12, return to the general situation given after Remark 8.4, in

which we are given a matched pair (H,J,C,B) of cocommutative Hopf algebras

with continuous actions.

Definition 8.13 (cf. [M, Def. 6.8]). We define a category D as follows. An

object in D is an H BC J-module M , and so in particular an H- and J-module,

such that

(a) M is a topological vector space with topological basis consisting of J-sub-

modules,

(b) The action J ⊗ (M)→M is continuous and

(c) The action (H)⊗M →M is continuous.

A morphism in D is a continuous H BC J-linear map.

One sees that D is a k-additive category. Let M be an object in D, and suppose

N ⊂ M is an H BC J-submodule. Then, N and M/N are objects in D respec-

tively with the sub- and the quotient topologies (cf. [M, Prop. 6.9]), so that any

morphism in D has kernel and cokernel. However, D is not abelian in general,

since a monomorphism (an epimorphism) is not necessarily a (co)kernel.

Recall that the Singer pair (H,K = J◦
I ,⇀, ρ) arising from (H,J,C,B) defines

the category C; see Definition 2.3.

Lemma 8.14. C is regarded as a full subcategory of D which consists of the

discrete objects.

This is shown similarly by the idea to prove Lemma 8.6.
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For discrete vector spaces V and W , we regard Hom(V,W ) as a topological

vector space with topological basis consisting of Hom(V/Vλ,W ), where Vλ ranges

over all finite-dimensional subspaces of V . If M and N are in C, we see that

Hom(M,N) is an object in D with the conjugate action by H BC J ; cf. [M,

Lemma 6.10 1)]. Thus we have a k-linear functor

Hom( , ) : Cop × C → D,

so that (8.11) is a commutative diagram in D. In particular for the objects F(P ),

G(Q) in C given by (2.16), (2.18), L := Hom(F(P ),G(Q)) is an object in D. This

behaves like as an injective object as seen below.

Proposition 8.15. Suppose that a morphism f : M → N in D is strict in the

sense that the H BC J-linear isomorphism M/Ker f
∼=
−→ Im f induced from f

is a homeomorphism. Then for any g : M → L in D with g(Ker f) = 0, there

exists h : N → L in D such that g = h ◦ f .

This is essentially the same as [M, Cor. 6.14].

Let us return to the diagram (8.11). Since one sees as in the proof of

[M, Lemma 6.15] that the differentials d0, ∂0 and the augmentations e, η are

strict, the familiar argument for uniqueness of injective resolution proves that

α0, α1, α2, 0, . . . give a homotopy equivalence between the complexes in D, so in

H BC J-Mod. This proves Claim 8.12, and so Part 4 of Theorem 8.3. ˜

To prove Part 5 of the theorem, suppose that I ∩ g = 0 for some I ∈ I, or

equivalently that the restriction (Ug)◦I → g∗ is a surjection; see Remark 8.4.

Then we construct as in Section 6 the symmetric monoidal functor (A) 7→ (lA),���������
(U f, (Ug)◦I) →

���������
(f, g∗). Since we see that the induced maps between

the K0, K1 groups coincide with κ0, κ1, it follows that the functor is equivalent

if (and only if) these maps are isomorphisms; see the proof of Theorem 6.2. This

proves Part 5, and completes the proof of Theorem 8.3. ˜

Let us see that the theorem just proved implies Theorems 6.2 and 7.3. For

this, it suffices to prove that the cohomologies H1 and H2 vanish when I is as

in (2) or (3) in Example 8.2 (and g is nilpotent in the latter case).

To see H1 vanishes, note that in either case, I satisfies the following condition

which is stronger than (i).

(i’) For any I1, I2 ∈ I, there exists I ∈ I such that I ⊂ I1I2.

Then the desired result follows from the next proposition.

Proposition 8.16. If I satisfies Condition (i’ ), then we have H1(g, (Ug)◦I) = 0.

Proof. Write K = (Ug)◦I . Recalling H1(g,K) = Ext1Ug(k,K) by definition,

we will prove that any short exact sequence 0 → K → M → k → 0 of Ug-

modules splits. Note that K is injective as a K-comodule. Then we have only to

prove that the discrete Ug-module M is continuous in the sense that the action
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Ug ⊗ (M) → M is continuous, since then the short exact sequence is that of

K-comodules and hence splits. Given Ug-modules N ⊂ M , we will prove that,

if N and M/N are continuous, then M is, too. We may suppose M is finitely

generated. Then so is N as well as M/N , since Ug is noetherian. Since M/N is

continuous, I2M ⊂ N for some I2 ∈ I. Since N is continuous, I1N = 0 for some

I1 ∈ I. Take I ∈ I such that I ⊂ I1I2. Then, IM ⊂ I1I2M ⊂ I1N = 0, so that

M is continuous. ˜

The H2 vanishes since we have the following.

Theorem 8.17. (1) (Schneider [M, Thm. 5.2]) H2(g, (Ug)◦) = 0.

(2) (Koszul [Kos, Thm. 6]) If g is nilpotent , Hn(g, (Ug)′) = 0 for n > 0.

We remark that H3(g, (Ug)◦) 6= 0 if g is semisimple; see [M, Remark 5.9].

Note 8.18. Suppose (H,K) is a Singer pair (Definition 2.2) with K finite-

dimensional. Recall from Section 2 the double cosimplicial abelian group

RegK
H(Φ·(k),Ψ

·(k)),

and let D·· denote the associated, normalized double complex. After this paper

was accepted, I found explicit homotopy equivalences between the total com-

plex TotD·· and the standard complex for computing the Sweedler cohomology

Hn(H BC K∗, k). Obtained as a biproduct is a direct, homological proof of

the generalized Kac exact sequence due to Schauenburg; see Remark 1.11 (3).

The results are contained in my preprint “Cohomology and coquasi-bialgebra

extensions associated to a matched pair of bialgebras”.
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