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The Brauer Group of a Hopf Algebra

FREDDY VAN OYSTAEYEN AND YINHUO ZHANG

Abstract. Let H be a Hopf algebra with a bijective antipode over a
commutative ring k with unit. The Brauer group of H is defined as the
Brauer group of Yetter–Drinfel’d H-module algebras, which generalizes the
Brauer–Long group of a commutative and cocommutative Hopf algebra and
those known Brauer groups of structured algebras.

Introduction

The Brauer group is something like a mathematical chameleon, it assumes the
characteristics of its environment. For example, if you look at it from the point of
view of representation theory you seem to be dealing with classes of noncommu-
tative algebras appearing in the representation theory of finite groups, a purely
group theoretical point of view presents it as the second Galois-cohomology
group, over number fields it becomes an arithmetical tool related to the local
theory via complete fields, over an algebraic function field or some coordinate
rings it gets a distinctive geometric meaning and category theoretical aspects
are put in evidence when relating the Brauer group to K-theory, in particular
the K2-group. When looking at the vast body of theory existing for the Brauer
group one cannot escape to note the central role very often played by group
actions and group gradings. This is most evident for example in the appearance
of crossed products or generalizations of these.

Another typical case is presented by Clifford algebras and the Z2 (i.e., Z/2Z)
graded theory contained in the study of the well-known Brauer–Wall group [57],
as well as the generalized Clifford algebras in the Brauer–Long group for an
abelian group [29]. At that point the theory was ripe for an approach via Hopf
algebras where certain actions and co-actions (like the grading by a group) may
be adequately combined in one unifying theory [30], but for commutative cocom-
mutative Hopf algebras only. However, the cohomological interpretation for such
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Brauer–Long groups presented some technical problems that probably slowed
down the development of a general theory. The cohomological description was
obtained years later by S. Caenepeel a.o. [6; 7; 8; 9] prompted by new interest
in the matter stemming from earlier work of Van Oystaeyen and Caenepeel, Van
Oystaeyen on another type of graded Brauer group. The problem of considering
noncommutative noncocommutative Hopf algebras remained and became more
fascinating because of the growing interest in quantum groups. The present au-
thors then defined and studied the Brauer group of a quantum group first in
terms of the category of Yetter–Drinfel’d modules, but quickly generalized it to
the Brauer group of a braided category [53], thus arriving at the final generality
one would hope for after [38]. The Brauer group of a quantum group or even
of a general Hopf algebra presents us with an interesting new invariant but a
warning is in place. Not only is this group non-abelian, it is even non-torsion
in general! Even restriction to cohomology describable or split parts does not
reduce the complexity much. On the other hand, at least for finite dimensional
Hopf algebras explicit calculations should be possible. Note that even the case
of the Brauer group of the group ring of a non-abelian group is a very new
and interesting object. Recently concrete calculations have been finalized for
Sweedler’s four dimensional Hopf algebra, group rings of dihedral groups and a
few more low dimensional examples [16; 54; 56].

The arrangement of this paper is as follows:

(i) Basic notions and conventions
(ii) Quaternion algebras
(iii) The definition of the Brauer group
(iv) An exact sequence for the Brauer group BC(k, H, R)
(v) The Hopf automorphism group
(vi) The second Brauer group

We do not repeat here a survey of main results because the paper is itself an
expository paper albeit somewhat enriched by new results at places. We have
adopted a very constructive approach starting with a concrete treatment of ac-
tions and coactions on quaternion algebras (Section 2), so that the abstractness
of the definition in Section 3 is well-motivated and is made look natural. We
shall not include the Brauer–Long group theory in this paper as the reader may
find a comprehensive introduction in the book [6].

1. Basic Notions and Conventions

Throughout k is a commutative ring with unit unless it is specified and
(H, ∆, ε, S) or simply H is a Hopf algebra over k where (H, ∆, ε) is the underly-
ing coalgebra and S is a bijective antipode. Since the antipode S is bijective, the
opposite Hop and the co-opposite Hcop are again Hopf algebras with antipode
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S−1. We will often use Sweedler’s sigma notation; for example, we will write,
for h ∈ H,
i. ∆h =

∑
h(1) ⊗ h(2),

ii. (1⊗∆)∆h = (∆⊗ 1)∆h =
∑

h(1) ⊗ h(2) ⊗ h(3)

etc. For more detail concerning the theory of Hopf algebras we refer to [1; 35; 47].

1.1. Dimodules and Yetter–Drinfel’d modules. A k-module is said to be
of finite type if it is finitely generated projective. If a k-module M of finite type
is faithful, then M is said to be faithfully projective

Let H be a Hopf algebra. We will take from [47] the theory of H-modules and
H-comodules for granted. Sigma notations such as

∑
m(0) ⊗ m(1) for the co-

module structure χ(m) of an element m of a left H-comodule M will be adapted
from [47]. In this paper we will use χ for comodule structures over Hopf algebras
and use ρ for comodule structures over coalgebras in order to distinguish two
comodule structures when they happen to be together.

Write HM for the category of left H-modules and H-module morphisms. If
M and N are H-modules the diagonal H-module structure on M ⊗N and the
adjoint H-module structure on Hom(M, N) are given by:
i. h · (m⊗ n) =

∑
h(1) ·m⊗ h(2) · n,

ii. (h · f)(m) =
∑

h(1) · f(S(h(2)) ·m),
for h ∈ H, n ∈ N, f : M −→ N . The category HM together with the tensor
product and the trivial H-module k forms a monoidal category (see [31]). If M

is left H-module, we have a k-module of invariants

MH = {m ∈ M | h ·m = ε(h)m.}
In a dual way, we have a monoidal category of right H-comodules, denoted

(MH ,⊗, k) or simply MH . For instance, if M and N are two right H-comodules,
the codiagonal H-comodule structure on M ⊗N is given by

χ(m⊗ n) =
∑

m(0) ⊗ n(0) ⊗m(1)n(1)

for m ∈ M and n ∈ N . If an H-comodule M is of finite type, then Hom(M, N) ∼=
N ⊗M∗ has a comodule structure:

χ(f)(m) =
∑

f(m(0))(0) ⊗ f(m(0))(1)S(m(1))

for f ∈ Hom(M, N) and m ∈ M . For a right H-comodule M the k-module

M coH = {m ∈ M | χ(m) = m⊗ 1}
is called the coinvariant submodule of M .

A k-module M which is both an H-module and an H-comodule is called
an H-dimodule if the action and the coaction of H commute, that is, for all
m ∈ M, h ∈ H,

∑
(h ·m)(0) ⊗ (h ·m)(1) =

∑
h ·m(0) ⊗m(1).
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Write DH for the category of H-dimodules. When the Hopf algebra H is
finite, we obtain equivalences of categories

MH⊗H∗ ∼= DH ∼=H∗⊗H M;

here H⊗H∗ and H∗⊗H are tensor Hopf algebras. For more details on dimodules,
we refer to [29; 30].

Recall that a Yetter–Drinfel’d H-module (simply a YD H-module) M is a left
crossed H-bimodule [58]. That is, M is a k-module which is a left H-module and
a right H-comodule satisfying the following equivalent compatibility conditions
[27, 5.1.1]:
i.

∑
h(1) ·m(0) ⊗ h(2)m(1) =

∑
(h(2) ·m)(0) ⊗ (h(2) ·m)(1)h(1)

ii. χ(h ·m) =
∑

(h(2) ·m(0))⊗ h(3)m(1)S
−1(h(1)).

Denote by QH ( HY DH in several references) the category of YD H-modules and
YD H-module morphisms. For two YD H-modules M and N , the diagonal H-
module structure and the codiagonal Hop-comodule structure on tensor product
M ⊗N satisfy the compatibility conditions of a YD H-module. So M ⊗N is a
YD H-module, denoted M⊗̃N . It is easy to see that the natural map

Γ : (X⊗̃Y )⊗̃Z −→ X⊗̃(Y ⊗̃Z)

is a YD H-module isomorphism, and the trivial YD H-module k is a unit with
respect to ⊗̃. Therefore (QH , ⊗̃, k) forms a monoidal category (for details con-
cerning monoidal categories we refer to [31; 58]).

Let M and N be YD H-modules. Then there exists a YD H-module isomor-
phism Ψ between M⊗̃N and N⊗̃M :

Ψ : M⊗̃N −→ N⊗̃M,m⊗̃n 7→
∑

n(0)⊗̃n(1) ·m

with inverse Ψ−1(n⊗̃m) =
∑

S(n(1)) · m⊗̃n(0). It is not hard to check that
(QH , ⊗̃, Γ, Ψ, k) is a braided monoidal (or quasitensor) category (see [31; 58]). If
in addition, H is a finite Hopf algebra, then there is a category equivalence:

D(H)M ∼ QH

where D(H) is the Drinfel’d double (Hop)∗ ./ H which is a finite quasitriangular
Hopf algebra over k as described in [23; 32; 40].

1.2. H-dimodule and YD H-module algebras. An algebra A is a (left) H-
module algebra if there is a measuring action of H on A, i.e., for h ∈ H, a, b ∈ A,
i. A is a left H-module,
ii. h · (ab) =

∑
(h(1) · a)(h(2) · b),

iii. h · 1 = ε(h)1.
Similarly, an algebra is called a (right) H-comodule algebra if A is a right H-
comodule with the comodule structure χ : A −→ A⊗H being an algebra map,
i.e., for a, b ∈ A,
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i. χ(ab) =
∑

a(0)b(0) ⊗ a(1)b(1),
ii. χ(1) = 1⊗ 1.

An H-dimodule algebra A is an H-dimodule and a k-algebra which is both an
H-module algebra and an H-comodule algebra. Suppose that H is both com-
mutative and cocommutative. Let A and B be two H-dimodule algebras. The
smash product A#B is defined as follows: A#B = A ⊗ B as a k-module and
the multiplication is given by

(a#b)(c#d) =
∑

a(b(1) · c)#b(0)d.

Then A#B furnished with the diagonal H-module structure and codiagonal
comodule structure A⊗B is again an H-dimodule algebra.

The H-opposite A of an H-dimodule algebra A is equal to A as an H-dimodule,
but with multiplication given by

a · b =
∑

(a(1) · b)a(0)

which is again an H-dimodule algebra.

A Yetter–Drinfel’d H-module algebra A is a YD H-module and a k-algebra which
is a left H-module algebra and a right Hop-comodule algebra. Note that here
we replace H by Hop when we deal with comodule algebra structures.

As examples pointed out in [11], (Hop, ∆, ad′) and (H,χ, ad) are regular
Yetter–Drinfel’d H-module algebras with H-structures defined as follows:

h ad′ x =
∑

h(2)xS−1(h(1))

∆(x) =
∑

x(1) ⊗ x(2)

h ad x =
∑

h(1)xS(h(2))

χ(x) =
∑

x(2) ⊗ S−1(x(1)).

Let A and B be two YD H-module algebras. We may define a braided product,
still denoted #, on the YD H-module A⊗̃B:

(a#b)(c#d) =
∑

ac(0)#(c(1) · b)d (1–1)

for a, c ∈ A and b, d ∈ B. The braided product # makes A#B a left H-module
algebra and a right Hop-comodule algebra so that A#B is a YD H-module
algebra. Note that the braided product # is associative.

Now let A be a YD H-module algebra. The H-opposite algebra A of A is the
YD H-module algebra defined as follows: A equals A as a YD H-module, with
multiplication given by the formula

a ◦ b =
∑

b(0)(b(1) · a)
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for all a, b ∈ A. In case the antipode of H is of order two, A is equal to A as a
YD H-module algebra.

Let M be a YD H-module such that M is of finite type. The endomorphism
algebra Endk(M) is a YD H-module algebra with the H-structures induced by
those of M , i.e., for h ∈ H, f ∈ Endk(M) and m ∈ M ,

(h · f)(m) =
∑

h(1) · f(S(h(2)) ·m),

χ(f)(m) =
∑

f(m(0))(0) ⊗ S−1(m(1))f(m(0))(1).
(1–2)

Recall from [11, 4.2] that the H-opposite of Endk(M) is isomorphic as an YD
H-algebra to Endk(M)op, where the latter has YD H-module structure given by

(h · f)(m) =
∑

h(2) · f(S−1(h(1)) ·m),

χ(f)(m) =
∑

f(m(0))(0) ⊗ f(m(0))(1)S(m(0))
(1–3)

for m ∈ M, h ∈ H and f ∈ Endk(M).

1.3. Quasitriangular and coquasitriangular Hopf algebras. A quasi-
triangular Hopf algebra is a pair (H, R), where H is a Hopf algebra with an
invertible element R =

∑
R(1) ⊗ R(2) ∈ H ⊗H satisfying the following axioms

(r = R):

(QT1)
∑

∆(R(1))⊗R(2) =
∑

R(1) ⊗ r(1) ⊗R(2)r(2),
(QT2)

∑
ε(R(1))R(2) = 1,

(QT3)
∑

R(1) ⊗∆(R(2)) =
∑

R(1)r(1) ⊗ r(2) ⊗R(2),
(QT4)

∑
R(1)ε(R(2)) = 1,

(QT5) ∆cop(h)R = R∆(h),

where ∆cop = τ∆ is the comultiplication of the Hopf algebra Hcop and τ is the
switch map.

Now let M be a left H-module. It is well-known that there is an induced
H-comodule structure on M as follows:

χ(m) =
∑

R(2) ·m⊗R(1) (1–4)

for m ∈ M such that the left H-module M together with (1–4) is a YD H-
module. When M is a left H-module algebra, then (1–4) makes M into a right
Hop-comodule algebra and hence a YD H-module algebra. It is easy to see that
HomH(M, N) = HomH

H(M, N) for any two YD H-modules M,N with comodule
structures (1–4) stemming from the left module structures. Thus the category
HM of left H-modules and H-morphisms can be embedded into the category QH

as a full subcategory, which we denote by HMR. Moreover HMR is a braided
monoidal subcategory of QH since the tensor product is closed in HM and the
braiding Ψ of QH restricts to the braiding of HMR which is nothing but ΨR

induced by the R-matrix:

ΨR(m⊗ n) =
∑

R(2) · n⊗R(1) ·m
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where m ∈ M, n ∈ N and M, N ∈ HMR.

A coquasitriangular Hopf algebra is a pair (H, R), where H is a Hopf algebra
and R ∈ (H ⊗H)∗ is a convolution invertible element and satisfies the following
axioms:

(CQT1) R(h⊗ 1) = R(1⊗ h) = ε(h)1H ,
(CQT2) R(ab⊗ c) =

∑
R(a⊗ c(1))R(b⊗ c(2)),

(CQT3) R(a⊗ bc) =
∑

R(a(1) ⊗ c)R(a(2) ⊗ b),
(CQT4)

∑
b(1)a(1)R(a(2) ⊗ b(2)) =

∑
R(a(1) ⊗ b(1))a(2)b(2).

Let M be a right H-comodule. There is an induced left H-module structure on
M given by

h .1 a =
∑

a(0)R(h⊗ a(1)) (1–5)

for all a ∈ A, h ∈ H, such that M is a YD H-module. The right H-comodule
category MH can be embedded into QH as a full braided monoidal subcategory.
We denote by MH

R the braided subcategory of QH .
It is easy to check that an Hop-comodule algebra A with the H-module struc-

ture described in (1–5) is a YD H-module algebra.

2. Quaternion Algebras

Let k be a field. Quaternion algebras play a very important role in the study
of the Brauer group Br(k) of k. On the other hand, quaternion algebras also
represent elements in the Brauer–Wall group BW(k) of Z2-graded algebras. The
natural Z2-gradings of quaternion algebras are obtained from certain involutions
related to the canonical quadratic forms of quaternion algebras. However, one
may find that the same quaternion algebra will represent two different elements
in BW(k). When one turns to the Brauer–Long group BD(k,Z2) of Z2-dimodule
algebras where actions of Z2 commute with the Z2-gradings, the quaternion al-
gebras now represent four different elements of order two. Now if we add a
differential on the Z2-graded algebras such that they become differential super-
algebras, we may form the Brauer group of differential superalgebras, and the
quaternion algebras are now differential superalgebras. If we mimic the process
used by C.T.C. Wall, we obtain a Brauer group BDS(k) of differential superalge-
bras. A new interesting fact now shows, i.e., a quaternion algebra may represent
an element of infinite order in BDS(k). As a consequence, the Brauer group
BDS(k) is a non-torsion infinite group if k has characteristic zero.

Recall the definition of a quaternion algebra. For α, β ∈ k• = k\0, define
a 4-dimensional algebra with basis {1, u, v, w} by the following multiplication
table:

uv = w, u2 = α1, v2 = β1, vu = −w.

Here 1 denotes the unit. We denote this algebra by
(

α,β
k

)
. The elements in

the subspace ku + kv + kw are called pure quaternions. The subspace of pure
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quaternions is independent of the choice of standard basis and is determined by
the algebra structure of

(
α,β
k

)
.

There exists a canonical linear involution given by

− :
(

α, β

k

)
−→

(
α, β

k

)
, x = x0 + x1 = x0 − x1

where x0 ∈ k and x1 ∈ ku + kv + kw. It follows that
(

α,β
k

)
is isomorphic to its

opposite algebra
(

α,β
k

)
op. One may easily calculate that the center of

(
α,β
k

)
is k

and that
(

α,β
k

)
has no proper ideals except {0}. An algebra is called a central

simple algebra if its center is canonically isomorphic to k and it has no proper
non-zero ideals. Any n×n-matrix algebra Mn(k) is a central simple algebra. The
opposite algebra of a central simple algebra is obviously a central simple algebra.
The tensor product of two central simple algebras is still a central simple algebra.
There are several characterizations of a central simple algebra [19; 39]:

Proposition 2.1. Let A be a finite dimensional algebra over a field k. The
following are equivalent :

(1) A is a central simple algebra.
(2) A is a central separable algebra (here A is separable if mult : A ⊗ A −→ A

splits as an A-bimodule map).
(3) A is isomorphic to a matrix algebra Mn(D) over a skew field D where the

center of D is k.
(4) The canonical linear algebra map can : A⊗Aop −→ End(A) given by can(a⊗

b)(c) = acb for a, b, c ∈ A is an isomorphism.

A finite dimensional algebra satisfying one of the above equivalent conditions is
called an Azumaya algebra. Let B(k) be the set of all isomorphism classes of
Azumaya algebras. Then B(k) is a semigroup with the multiplication induced
by the tensor product and with the unit represented by the one dimensional
algebra k.

Define an equivalence relation ∼ on B(k) as follows: Two central simple algebras
A and B are equivalent, denoted A ∼ B, if there are two positive integers m and
n such that

A⊗Mn(k) ∼= B ⊗Mm(k)

as algebras. Then the quotient set of B(k) modulo the equivalence relation ∼ is
a group and is called the Brauer group of k, denoted Br(k).

The Brauer group Br(k) can be defined more intuitively as the quotient
B(k)/M(k), where M(k) is a sub-semigroup generated by the isomorphism
classes of matrix algebras over k. If [A] is an element in Br(k) represented
by a central simple algebra A, then the inverse [A]−1 is represented by the oppo-
site algebra Aop because A⊗Aop is isomorphic to a matrix algebra. The Brauer
group Br(k) can be generalized to the Brauer group of a commutative ring by
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making use of the equivalent condition (2) or (4) of Proposition 2.1. That is, an
Azumaya algebra A over a commutative ring is a faithfully projective algebra
such that the condition (2) or (4) of Proposition.2.1 holds. One may refer to
[2; 19] for the details on the Brauer group of a commutative ring. However, in
this section we restrict our attention to the case where k is a field.

Let us return to the consideration of quaternion algebras. We know that a
quaternion algebra is a central simple algebra and it is isomorphic to its opposite
algebra due to the canonical involution map. Thus [

(
α,β
k

)
] is an element of

order not greater than two. Actually any element of order two in Br(k) can be
represented by a tensor product of quaternion algebras (see [39]).

The quaternion algebra
(

α,β
k

)
has a canonical Z2-grading defined as follows:

(
α, β

k

)
= A0 + A1, A0 = k + kw, A1 = ku + kv. (2–1)

In [57], Wall introduced the notion of a Z2-graded Azumaya algebra which is a
graded central and a graded separable algebra A in the following sense:

i. the graded center Zg(A) = {a ∈ A | ab = ba0 + b0a1 − b1a1, ∀b ∈ A} = k.

ii. A is a simple graded algebra, i.e., A has no proper non-zero graded ideals.

As in Proposition 2.1, we may replace ‘graded simplicity’ by ‘graded separability’
if the characteristic of k is different from 2. That is, condition ii can be replaced
by

iii. A ⊗ A −→ A splits as a Z2-graded A-bimodule map, where the grading on
A⊗A is the diagonal one.

Given two graded algebras A and B. The product A⊗̂B of two graded algebras
A and B is defined as follows:

(a⊗̂b)(c⊗̂d) = (−1)∂(b)∂(c)ac⊗̂bd (2–2)

where b and c are homogeneous elements and ∂(b), ∂(c) are the graded degrees of
b and c respectively. If A and B are graded Azumaya algebras, then the product
A⊗̂B is a graded Azumaya algebra. Now one may repeat the definition of Br(k)
by adding the term ‘(Z2−) graded’ to obtain the Brauer group of graded algebras
which is referred to as the Brauer–Wall group, denoted BW(k). Notice that in
the definition of the equivalence∼, the grading of any matrix algebra Mn(k) must
be ‘good’, namely, Mn(k) ∼= End(M) as graded algebras for some n-dimensional
graded module M . The Brauer–Wall group BW(k) can be completely described
in terms of the usual Brauer group Br(k) and the group of graded quadratic
extensions:

1 −→ Br(k) −→ BW(k) −→ Q2(k) −→ 1

where Q2(k) = Z2 × k•/k•2 with multiplication given by

(e, d)(e′, d′) = (e + e′, (−1)ee′dd′)
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for e, e′ ∈ Z2 and d, d′ ∈ k•/k•2. One may write down the multiplication rule
for the product Br(k) × Q2(k) so that BW(k) is isomorphic to Br(k) × Q2(k)
(for details see [18; 46]).

Again let us look at the quaternion algebras
(

α,β
k

)
, α, β ∈ k•. Let k〈√α〉 be

the graded algebra k⊕ ku and k〈√β〉 be the graded algebra k⊕ kv. It is easy to
show that k〈√α〉 is a graded Azumaya algebra and that

(
α,β
k

)
is isomorphic to

the graded product k〈√α〉⊗̂k〈√β〉. It follows that
(

α,β
k

)
is a graded Azumaya

algebra. We denote by
〈

α,β
k

〉
the graded Azumaya algebra

(
α,β
k

)
in order to

make the difference between
〈

α,β
k

〉
and

(
α,β
k

)
. Since [k〈√α〉] ∈ BW(k) is an

element of order two (or one) if α 6∈ k•2 (or α ∈ k•2), [
(

α,β
k

)
] is of order equal or

less than two. Though
(

α,β
k

)
and

〈
α,β
k

〉
are the same algebra, they do represent

two different elements of order two in BW(k) when
(

α,β
k

)
is a division algebra.

Furthermore, the quaternion algebras are no longer the ‘smallest’ nontrivial
graded Azumaya algebras in terms of dimension. Here the smallest ones are
quadratic extensions of k. This prompts the idea that the more extra structures
you put on algebras, the more classes of such structured Azumaya algebras you
will get, and the richer the corresponding Brauer group will be. So we look
again at quadratic extensions and quaternion algebras. For a quadratic extension
k〈√α〉, there is a natural k-linear Z2-action on it:

σ(1) = 1, σ(u) = −u (2–3)

where σ is the generator of the group Z2 and u is the generator of the field k〈√α〉.
It is easy to see that the action (2–3) commutes with the canonical grading on
k〈√α〉. The action (2–3) extends to any quaternion algebra

(
α,β
k

)
in the way of

diagonal group action. In fact, to any graded algebra A = A0 ⊕ A1, one may
associate a natural Z2-action on A as follows:

σ(ai) = (−1)iai (2–4)

where ai ∈ Ai is a homogeneous element of A.
A Z2-graded algebra with a Z2-action that commutes with the grading is a

Z2-dimodule algebra. The notion of a dimodule algebra for a finite abelian group
was introduced by F. W. Long in 1972 [29], it is extended for a commutative
and cocommutative Hopf algebra in [30]. Let A be a Z2-graded algebra. Having
the canonical Z2-action (2–4), A is a Z2-dimodule algebra. The product (2–2)
respects the action (2–4). In this case, we may forget the action (2–4). However,
if we take any two Z2-dimodule algebras A and B, the graded product (2–2) may
not respect actions of Z2. For instance, A is a graded Azumaya algebra with the
action (2–4) and B is a graded Azumaya algebra with the trivial Z2-action (i.e.,
σ acts as the identity map). Both A and B are dimodule algebras, but A⊗̂B is
not a dimodule algebra.

In order to have a product for dimodule algebras, we have to modify the
product (2–2) such that the action of Z2 is involved. This is the situation dealt



THE BRAUER GROUP OF A HOPF ALGEBRA 447

with by F.W. Long. Let A and B be two dimodule algebras. Long defined a
product # on A⊗B as follows:

(a#b)(c#d) = ac#σ∂(c)(b)d (2–5)

where c is a homogeneous element. The product (2–5) preserves the dimodule
structures, and restricts to the product (2–2) when the dimodule algebras have
the canonical action (2–4). With this product (2–5) Long was able to define
the Brauer group of dimodule algebras which is now referred to as the Brauer–
Long group of Z2 and is denoted BD(k,Z2). The definition of an Azumaya
Z2-dimodule algebra is similar to the definition of a graded Azumaya algebra.

Suppose that the characteristic of the field k is different from two. A Z2-
dimodule algebra is called an Azumaya dimodule algebra if A satisfies the fol-
lowing two conditions:
i. A is Z2-central, namely, {a ∈ A | ab = bσi(a),∀b ∈ Ai} = {a ∈ A | ba =
a0b + a1σ(b),∀b ∈ A} = k.
ii. the multiplication map A#A −→ A splits as A-bimodule and Z2-dimodule
map.

Note that the foregoing definition is not the original definition given by Long,
but it is equivalent to that if the characteristic of k is different from two. The
equivalence relation ∼ is defined as follows: for two Azumaya dimodule algebras
A and B, A ∼ B if and only if there exists two finite dimensional dimodules M

and N such that

A#End(M) ∼= B#End(N)

as dimodule algebras. The Brauer–Long group BD(k,Z2) contains the Brauer
Wall-group BW(k) as a subgroup.

Let us investigate the role played by quaternion algebras in BD(k,Z2). If(
α,β
k

)
is a quaternion algebra, then there are eight types of dimodule structures

on
(

α,β
k

)
:

(1) the trivial action and the trivial grading,
(2) the trivial action and the canonical grading (2–1),
(3) the canonical action (2–4) and the trivial grading,
(4) the action (2–4) and the grading (2–1), i.e., the dimodule structure of

〈
α,β
k

〉
,

(5) the action (2–4) and the grading A0 = k ⊕ ku, A1 = kv ⊕ kw,
(6) the grading (2–1) and the action given by σ(u) = u, σ(v) = −v.

If we switch the roles of u and v in (5) and (6), we will obtain two more
dimodule structures on

(
α,β
k

)
. One may take a while to check that the first four

types of dimodule structures make
(

α,β
k

)
into Z2-Azumaya dimodule algebras.

However, though
(

α,β
k

)
is an Azumaya algebra the dimodule algebra

(
α,β
k

)
of

type five or six is not a Z2-Azumaya algebra because it is not Z2-central. For
instance, the left center

{a ∈ A | ab = bσi(a),∀b ∈ Ai} = k ⊕ ku.
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is not trivial in the case of type five.
Nevertheless, the

(
α,β
k

)
of type (1)–(4) represent four different elements of

order two in BD(k,Z2) when
(

α,β
k

)
is a division algebra. Let

(
α,β
k

)
i be the

Z2-Azumaya dimodule algebra of type (i), where i = 1, 2, 3, 4. Since the multi-
plication of the group is induced by the braided product (2–5), [

(
α,β
k

)
1] commutes

with [
(

α,β
k

)
i], but in general [

(
α,β
k

)
2][

(
α,β
k

)
3] 6= [

(
α,β
k

)
3][

(
α,β
k

)
2] (pending on k,

see [18, Thm]). For example, when k = R, the real number field, we have

[H2][H3] = (1,−1, 1,−1)(1, 1,−1,−1) = (1,−1,−1, 1),

[H3][H2] = (1, 1,−1,−1)(1,−1, 1,−1) = (1,−1,−1,−1),

where H =
(−1,−1

k

)
and BD(R,Z2) = Z2×Z2×Z2×Br(R) (Br(R) = Z2) with

multiplication rules given by [18, Thm] or [7, 13.12.14]. In fact, BD(R,Z2) ∼= D8,
the dihedral group of 16 elements and BW(R) ∼= Z8, the cyclic group of 8
elements (see [29] or [7, 13.12.15]). Thus BD(k,Z2) may not be an abelian group
though BW(k) is an abelian group. Nonetheless, both BW(k) and BD(k,Z2)
are torsion groups (see [18]). This will not be the case for the Brauer group of
differential superalgebras introduced hereafter.

For convenience we call a Z2-graded algebra a super algebra. Let A = A0⊕A1

be a superalgebra. A linear endomorphism δ of A is called a super-derivation of
A if δ is a degree one graded endomorphism and satisfies the following condition:

δ(ab) = aδ(b) + (−1)∂(b)δ(a)b

where b is homogeneous and a is arbitrary. A super-derivation δ is called a
differential if δ2 = 0.

A graded algebra A with a differential δ is called a differential superalgebra
(simply DS algebra), denoted (A, δ) or just A if there is no confusion. Two DS
algebras (A, δA) and (B, δB) can be multiplied by means of the graded product
(2–2). So we obtain a new DS algebra (A⊗̂B, δA⊗̂B), where δA⊗̂B is given by

δA⊗̂B(a⊗̂b) = a⊗̂δB(b) + (−1)iδA(a)⊗̂b

for a ∈ A and b ∈ Bi.
Let M be a graded module. M is called a differential graded module if there

exists a degree one graded linear endomorphism δM of M such that δ2
M = 0

(in the sequel δM will be called a differential on M). The endomorphism ring
End(M) is a DS algebra. The grading on End(M) is the induced grading and
the differential δ on End(M) is induced by δM , namely,

δ(f)(m) = f(δM (m)) + (−1)∂(m)δ(f(m)) (2–6)

for any homogeneous element m ∈ M and f ∈ End(M).
Now let A be the graded Azumaya algebra

〈
α,β
k

〉
. There is a natural differ-

ential on A given by Doi and Takeuchi [22]:

δ(1) = δ(u) = 0, δ(v) = 1, δ(w) = u. (2–7)
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So any quaternion algebra is a DS algebra. As mentioned before, the graded
Azumaya algebra

〈
α,β
k

〉
represents an element of order not greater than two in

BW(k). This means that the product graded Azumaya algebra A⊗̂A is a graded
4 × 4-matrix algebra. So there is a 4-dimensional graded module M such that
A⊗̂A ∼= End(M) as graded algebras. Is this the same when we add the canonical
differential (2–7) to

〈
α,β
k

〉
? In other words, does there exist a graded module M

with a differential δM such that A⊗̂A is isomorphic to End(M) as a DS algebra?
The answer is even negative for the graded matrix algebra

〈
1,−1

k

〉
. Before we

answer the question let us first define the Brauer group of DS algebras.

Definition 2.2. A DS algebra A is called a DS Azumaya algebra if A is a
graded Azumaya algebra. Two DS Azumaya algebras A and B are said to be
equivalent, denoted A ∼ B, if there are two differential graded module M and
N such that A⊗̂End(M) ∼= B⊗̂End(N) as DS algebras.

Let B(k) be the set of isomorphism classes of DS Azumaya algebras. It is a
routine verification that the quotient set of B(k) modulo the equivalence relation
∼ is a group and is called the Brauer group of DS algebras, denoted BDS(k). If
A represents an element [A] of BDS(k), then the graded opposite A represents
the inverse of [A] in BDS(k), where A and A share the same differential. The
unit of the group BDS(k) is represented by matrix DS algebras which are the
endomorphism algebras of some finite dimensional differential graded modules.
In other words, if A is a DS Azumaya algebra such that [A] = 1, then A is
isomorphic to End(M) as a DS algebra for some finite dimensional differential
graded module M . This follows from the fact that the Brauer equivalence ∼
is the same as the differential graded Morita equivalence which can be done
straightforward by adding the ‘differential’ to graded Morita equivalence. We
would rather wait till next section to see a far more general H-Morita theory.

Following Definition 2.2 all quaternion algebras
〈

α,β
k

〉
, α, β ∈ k•, are DS

Azumaya algebras. We show first that the DS matrix algebra
〈

α,−α
k

〉
does not

represents the unit of BDS(k). In order to prove this, we need to consider the
associated automorphism σ given by (2–4) of a differential graded module M .
Since the differential δ of M is a degree one graded endomorphism, it follows
that δ anti-commutes with σ, namely, σδ + δσ = 0.

Lemma 2.3. For any α ∈ k•, the DS algebra [
〈

α,−α
k

〉
] 6= 1 in BDS(k).

Proof. Let A be
〈

α,−α
k

〉
and assume that [

〈
α,−α

k

〉
] = 1 in BDS(k). Then

there exists a two dimensional differential graded module M such that
〈

α,−α
k

〉 ∼=
End(M). Since the differential δE and the automorphism σE of End(M) are
induced by the differential δM and automorphism σM of M respectively (see
(2–6) for the differential), A ∼= End(M) implies that there exist two elements ν

and ω in A such that the canonical differential δ given by (2–7) is induced by ν

and the automorphism σA given by (2–4) is the inner automorphism induced by



450 FREDDY VAN OYSTAEYEN AND YINHUO ZHANG

ω, i.e.,
δ(a) = aν − (−1)∂(a)νa, σ(b) = ωbω−1

where a, b ∈ A and a is homogeneous. Furthermore, ν and ω satisfy the relations
that δM and σM obey, i.e.,

ν2 = 0, ω2 = 1, νω + ων = 0.

Let u, v be the two generators of
〈

α,−α
k

〉
. Then we have the following relations:

δ(u) = uν + νu = 0,

δ(v) = vν + νv = 1,

σ(u) = ωuω−1 = −u,

σ(v) = ωvω−1 = −v.

It follows that ν = −α−1

2 v + suv for some s ∈ k and ω = α−1uv. Since ν2 = 0,
we have

0 = (−α−1

2
v + suv)2 = −α−1

4
+ s2α2

So s cannot be zero. However, the anti-commutativity of ν with ω implies that

0 = νω + ων

= (− 1
2α−1v + suv)α−1uv + α−1uv(− 1

2

α−1

v
+ suv)

= 2sα.

So s must be zero. Contradiction! Thus we have proved that it is impossible to
have

〈
α,−α

k

〉 ∼= End(M) for some 2-dimensional differential graded module M ,
and hence [

〈
α,−α

k

〉
] 6= 1. ¤

From Lemma 2.3 we see that a DS matrix algebra
〈

α,−α
k

〉
(α ∈ k•) representing

the unit in BW(k) now represents a non-unit element in BDS(k). In the following
we show that

〈
α,−α

k

〉
represents an element of infinite order in BDS(k) if the

characteristic of k is zero. In fact:

Proposition 2.4 [54, Prop. 7]. Let (k, +) be the additive group of k. Then

τ : (k, +) −→ BDS(k), α 7→
[〈

α−1,−α−1

k

〉]
, α 6= 0, 0 7→ 1

is a group monomorphism.

Proof. By Lemma 2.3 it is sufficient to show that τ is a group homomor-
phism. Consider the product

〈
α−1,−α−1,0

k

〉⊗̂〈
β−1,−β−1,0

k

〉
. If α + β = 0, then〈

β−1,−β−1,0
k

〉
=

〈
α−1,−α−1,0

k

〉
and

〈
α−1,−α−1, 0

k

〉
⊗̂

〈
β−1,−β−1, 0

k

〉
∼= End

〈
α−1,−α−1, 0

k

〉
,
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which represents the unit in BDS(k).
Assume that α+β 6= 0. Let {u, v} and {u′, v′} be the generators of

〈
α−1,−α−1

k

〉

and of
〈

β−1,−β−1

k

〉
respectively. Let

U =
αβ

α + β
(u⊗̂w′ + w⊗̂u′), V =

α

α + β
v⊗̂1 +

β

α + β
1⊗̂v′ .

Then
U2 = (α + β)−1, V 2 = −(α + β)−1, UV + V U = 0.

Thus U and V generate the matrix algebra
(

σ−1,−σ−1

k

)
, where σ = α + β. One

may further check that the induced Z2-grading and the induced differential on(
σ−1,−σ−1

k

)
are given by (2–1) and (2–7). Thus U and V generate a DS quater-

nion subalgebra
〈 (α+β)−1,−(α+β)−1

k

〉
in

〈
α−1,−α−1

k

〉⊗̂〈
β−1,−β−1

k

〉
. Applying the

commutator theorem for Azumaya algebras (see [19]), we obtain
〈

α−1,−α−1

k

〉
⊗̂

〈
β−1,−β−1

k

〉
=

〈
σ−1,−σ−1

k

〉
⊗M2(k)

as algebras, where σ = α+β. We leave it to readers to check that they are equal
as DS algebras (or see [55, Coro.2]). It follows that

τ(α)τ(β) =

[〈
α−1,−α−1

k

〉
⊗̂

〈
β−1,−β−1

k

〉]
=

[〈 (α + β)−1,−(α + β)−1

k

〉]

= τ(α + β)

in the Brauer group BDS(k). So we have proved that τ is a group homomor-
phism. ¤

Note that when the characteristic of k is 0, (k, +) is not a torsion group. The el-
ement represented by the matrix algebra

〈
1,−1

k

〉
in BDS(k) generates a subgroup

which is isomorphic to Z. In this case any quaternion algebra
〈

α,β
k

〉
with the

canonical grading and the canonical differential represents an element of infinite
order in the Brauer group BDS(k). If the characteristic of k is p 6= 2, then

〈
α,β
k

〉
represents an element of order not greater than p in BDS(k). The group (k, +)
indicates the substantial difference between the Brauer–Wall group BW(k) and
the Brauer group BDS(k) of DS algebras. Actually, this subgroup comes only
from extra differentials added to graded Azumaya algebras.

Theorem 2.5 [54, Thm. 8]. BDS(k) = BW(k)× (k, +).

Proof. By definition of a DS Azumaya algebra, we have a well-defined group
homomorphism

γ : BDS(k) −→ BW(k), [A] −→ [A]

by forgetting the differential on the latter A. It is clear that γ is a surjective map
as a graded Azumaya algebra with a trivial differential is a DS Azumaya algebra.
Since the graded Azumaya algebra

〈
α−1,−α−1

k

〉
represents the unit in BW(k), we

have τ(k, +) ⊆ Ker(γ). To prove that Ker(γ) ⊆ τ(k, +), we need to use the
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associated automorphism σ given by (2–4) of a graded algebra. Let A be a DS
Azumaya algebra representing a non-trivial element in Ker(γ). Since [A] = 1
in BW(k), A is a graded matrix algebra. Since A is Azumaya, the associated
automorphism σ is an inner automorphism induced by some invertible element
u ∈ A such that u2 = 1. Similarly, the differential δ is an inner super-derivation
induced by some element v ∈ A in the sense that

δ(a) = va− (−1)∂(a)va

for any homogeneous element a ∈ A. Note that v2 6= 0 by the proof of Lemma 2.3.
Now one may apply the properties that δ2 = 0, σδ+δσ = 0 and σ2 = 1 to obtain
that u and v generate a quaternion subalgebra

(
α,β
k

)
for some α, β ∈ k• with α

being a square number. Here u, v are not necessarily the canonical generators of(
α,β
k

)
(see [54, Thm. 8] for more detail). Thus

(
α,β
k

)
is a matrix algebra and A is

a tensor product
(

α,β
k

)⊗Mn(k) of two matrix algebras for some integer n. Since
u and v generate

(
α,β
k

)
and Mn(k) commutes with

(
α,β
k

)
, σ and δ act on Mn(k)

trivially and
(

α,β
k

)
is a DS subalgebra of A. It follows that A =

(
α,β
k

)⊗̂Mn(k).
Finally one may take a while to check that there is a pair of new generators
u′, v′ of

(
α,β
k

)
such that the DS algebra

(
α,β
k

)
can be written as

〈
α,β
k

〉
with u′, v′

being the canonical generators. So [A] = [
〈

α,β
k

〉⊗̂Mn(k)] = [
〈

α,β
k

〉
] ∈ τ(k, +).

Finally, since γ is split by the inclusion map, the Brauer group BDS(k) is a direct
product of BW(k) with (k, +). ¤

DS algebras may be generalized to differential Z2-dimodule algebras adding one
differential to a dimodule algebra such that the action of the differential anti-
commutes with the action of the non-unit element of Z2. The Brauer group
BDD(k,Z2) of differential dimodule algebras can be defined and computed. Once
again quaternion algebras play the same roles as they do in the Brauer group of
DS algebras. As an exercise for readers, the Brauer group BDD(k,Z2) is isomor-
phic to the group (k, +)× BD(k,Z2) [56]. Other exercises include adding more
differentials, say n differentials δ1, · · · , δn, to graded Azumaya algebras or dimod-
ule Azumaya algebras. For instance, one may obtain the Brauer group BDSn(k)
of n-differential superalgebras which is isomorphic to the group (k, +)n×BW(k).

From the proofs of Lemma 2.3 and Theorem 2.5 one may find that the argu-
ment there is actually involved with actions of an automorphism and a differential
which satisfy the relations:

σ2 = 1, δ2 = 0, σδ + δσ = 0

where σ is the non-unit element of Z2. In fact, the four dimensional algebra
generated by σ and δ is a Hopf algebra with comultiplication given by

∆(σ) = σ ⊗ σ, ∆(δ) = 1⊗ δ + δ ⊗ σ
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and counit given by ε(σ) = 1 and ε(δ) = 0. This Hopf algebra is called Sweedler
Hopf algebra, denoted H4. The two generators σ and δ are usually replaced by
g and h. Thus a DS algebra is nothing else but an H4-module algebra.

Conversely if A is an H4-module algebra, there is a natural Z2-grading on A

given by

A0 = {x ∈ A | g(x) = x}, A1 = {x ∈ A | g(x) = −x}. (2–8)

With respect to the grading (2–8), the action of h is a differential on A so that A

is a DS algebra. Moreover, the H4-module algebra is a YD H4-module algebra
with the coaction given by the grading (2–8).

In this way we may identify DS algebras with YD H4-module algebras with
coactions given by the grading (2–8). This is the reason why the Brauer group
of DS algebras can be defined. The elements in the Brauer group of DS algebras
are eventually represented by those so called YD H4-Azumaya algebras which
will be introduced in the next section. In particular, quaternion algebras are YD
H4-Azumaya algebras.

3. The Definition of the Brauer Group

Throughout this section H is a flat k-Hopf algebra with a bijective antipode
S, and all k-modules (except H) are faithfully projective over k. Let A be a YD
H-module algebra. The two YD H-module algebras A#A and A#A are called
the left and right H-enveloping algebras of A (see (1–1) for definition of #). We
are now able to define the concept of an H-Azumaya algebra, and construct the
Brauer group of the Hopf algebra H.

Definition 3.1. A YD H-module algebra A is called an H-Azumaya algebra
if it is faithfully projective as a k-module and if the following YD H-module
algebra maps are isomorphisms:

F : A#A −→ End(A), F (a⊗̂b)(x) =
∑

ax(0)(x(1) · b),
G : A#A −→ End(A)op, G(a#b)(x) =

∑
a(0)(a(1) · x)b.

where the YD H-structures of End(A) and End(A)op are given by (1–2) and
(1–3).

It follows from the definition that a usual Azumaya algebra with trivial H-
structures is an H-Azumaya algebra. One may take a while to check (or see
[11]) that the H-opposite algebra A of an H-Azumaya algebra A and the braided
product A#B of two H-Azumaya algebras A and B are H-Azumaya algebras.
In particular, the YD H-module algebra End(M) of any faithfully projective YD
H-module M is an H-Azumaya algebra. An H-Azumaya algebra of the form
End(M) is called an elementary H-Azumaya algebra. As usual we may define an
equivalence relation on the set B(k, H) of isomorphism classes of H-Azumaya
algebras.



454 FREDDY VAN OYSTAEYEN AND YINHUO ZHANG

Definition 3.2. Let A and B be two H-Azumaya algebras. A and B are said
to be Brauer equivalent, denoted A ∼ B, if there exist two faithfully projective
YD H-modules M and N such that A#End(M) ∼= B#End(N) as YD H-module
algebras.

As expected the quotient set of B(k, H) modulo the Brauer equivalence is a group
with multiplication induced by the braided product # and with inverse operator
induced by the H-opposite ¯ . Denote by BQ(k,H) the group B(k,H)/ ∼ and
call it the Brauer group of the Hopf algebra H or the Brauer group of Yetter–
Drinfel’d H-module algebras. Since a usual Azumaya algebra with trivial YD
H-module structures is H-Azumaya and the Brauer equivalence restricts to the
usual Brauer equivalence, the classical Brauer group Br(k) of k is a subgroup of
BQ(k,H) sitting in the center of BQ(k,H).

Let E be a commutative ring with unit. Suppose that we have a ring homo-
morphism f : k −→ E. By usual base change HE = H⊗k E is a E-Hopf algebra.
Now in a way similar to [30, 4.7, 4.8] we obtain an induced group homomorphism
on the Brauer group level.

Proposition 3.3. The functor M 7→ M ⊗k E induces a group homomorphism
BQ(k,H) −→ BQ(E, HE), mapping the class of A to the class of AE .

The kernel of the foregoing homomorphism, denoted by BQ(E/k, H), is called
the relative Brauer group of H w.r.t. the extension E/k. Denote by BQs(k, H)
the union of relative Brauer groups BQ(E/k, H) of all faithfully flat extensions
E of k. BQs(k, H) is called the split part of BQ(k,H). In [12], BQs(k, H) was
described in a complex:

1 −→ BQs(k, H) −→ BQ(k, H) −→ O(E(H))

where O(E(H)) is a subgroup of the automorphism group Aut(E(H)) and E(H)
is the group of group-like elements of the dual Drinfel’d double D(H)∗ of H (see
[12, 3.11-3.14] for details).

Now let H be a commutative and cocommutative Hopf algebra. In this situation,
a YD H-module (algebra) is an H-dimodule (algebra). But an H-Azumaya
algebra in the sense of Definition 3.1 is not an Azumaya H-dimodule algebra in
the sense of Long (see [30] for detail on the Brauer group of dimodule algebras
we refer to [6; 30]). The reason for this is that the braided product we choose in
QH is the inverse product of DH when H is commutative and cocommutative.
However we have the following:

Proposition 3.4 [12, Prop.5.8]. Let H be a commutative and cocommutative
Hopf algebra. If A is an H-Azumaya algebra, then Aop is an H-Azumaya dimod-
ule algebra. Moreover , BQ(k, H) is isomorphic to BD(k, H). The isomorphism
is given by [A] 7→ [Aop]−1.
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When H is a commutative and cocommutative Hopf algebra, the Brauer–Long
group BD(k, H) has two subgroups BM(k, H) and BC(k, H) (see [30, 1.10,
2.13]). The subgroup BM(k,H) consists of isomorphism classes represented
by H-Azumaya dimodule algebras with trivial H-comodule structures, and the
subgroup BC(k, H) consists of isomorphism classes represented by H-Azumaya
dimodule algebras with trivial H-module structures. These two subgroups were
calculated by M. Beattie in [3] which are completely determined by the groups
of Galois objects of H and H∗ respectively (e.g., see Corollary 4.3.5).

If H is not cocommutative (or not commutative) an H-module (or comod-
ule) algebra with the trivial Hop-comodule (or the trivial H-module) structure
does not need to be YD H-module algebra. In general, we do not have sub-
groups like BM(k, H) or BC(k, H) in the Brauer group BQ(k, H) when H is
non-commutative or non-cocommutative. However, when H is quasitriangular
or coquasitriangular, we have subgroups similar to BM(k, H) or BC(k, H).

It is well known that the notion of a quasitriangular Hopf algebra is the
generalization of the notion of a cocommutative Hopf algebra. If (H, R) is a
quasitriangular Hopf algebra, an H-module algebra is automatically a YD H-
module algebra with the freely granted Hop-comodule structure (1–4). Since
HMR is a braided subcategory of QH and the braided product # given by (1–1)
commutes (or is compatible) with the Hop-coaction (1–4), the canonical H-
linear map F and G in Definition 3.1 are automatically Hop-colinear. Thus the
subset of BQ(k, H) consisting of isomorphism classes represented by H-Azumaya
algebras with Hop-coactions of the form (1–4) stemming from H-actions is a
subgroup, denoted BM(k, H, R). We now have the following inclusions for a QT
Hopf algebra.

Br(k) ⊆ BM(k, H, R) ⊆ BQ(k, H).

Similarly if (H, R) is a coquasitriangular Hopf algebra, the Brauer group
BQ(k,H) possesses a subgroup BC(k, H, R) consisting of isomorphism classes
represented by H-Azumaya algebras with H-actions (1–5) stemming from the
Hop-coactions. In this case we have the following inclusions of groups for a CQT
Hopf algebra:

Br(k) ⊆ BC(k,H, R) ⊆ BQ(k, H)

When H is a finite commutative and cocommutative Hopf algebra, a CQT
structure can be interpreted by a Hopf algebra map from H into H∗. As a matter
of fact, there is one-to-one correspondence between the CQT structures on H

and the Hopf algebra maps from H to H∗ which form a group Hopf(H,H∗) with
the convolution product. The correspondence is given by

{CQT structures on H} −→ Hopf(H, H∗), R 7→ θR, θR(h)(l) = R(h⊗ l)

for any h, l ∈ H. In this case the Brauer group BC(k, H,R) is Orzech’s Brauer
group Bθ(k, H) of BD(k, H) consisting of classes of θ-dimodule algebras. For
θ-dimodule algebras one may refer to [36] in the case that H is a group Hopf
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algebra with a finite abelian group and to [6, § 12.4] in the general case. In a
special case that H = kG is a finite abelian group algebra, γ : G × G −→ k• a
bilinear map, we may view γ as a coquasitriangular structure on H. Then the
Brauer group Bγ(k,G) of graded algebras investigated by Childs, Garfinkel and
Orzech (see [14; 15]) is isomorphic to BC(k, H, γ).

Note that a cocommutative Hopf algebra with a coquasitriangular structure is
necessarily commutative. Similarly, a commutative quasitriangular Hopf algebra
is cocommutative.

Now let us consider the finite case. Suppose that H is a faithfully projective
Hopf algebra. Then the Drinfel’d double D(H) is a quasitriangular Hopf algebra
with the canonical QT structure R represented by a pair of dual bases of H and
H∗, e.g., [23; 40], and there is a one-to-one correspondence between left D(H)-
module algebras and Yetter–Drinfel’d H-module algebras, [32]. It follows that
BQ(k,H) = BM(k, D(H), R). So

BQ(k,H) ⊆ BQ(k, D(H)).

Now write Dn(H) for D(Dn−1(H)), the n-th Drinfel’d double. Then we have the
following chain of inclusions:

BQ(k, H) ⊆ BQ(k, D(H)) ⊆ BQ(k, D2(H)) ⊆ · · · ⊆ BQ(k, Dn(H)) ⊆ · · ·

A natural question arises: when is the foregoing ascending chain finite?
To end this section, let us look once again at Definition 3.1 and the defini-

tion of the Brauer equivalence. It is not surprising that these definitions are
essentially categorical in nature. This means that an H-Azumaya algebra can
be characterized in terms of monoidal category equivalences. The Brauer equiv-
alence is in essence the Morita equivalence. In particular, the unit in the Brauer
group BQ(k,H) is only represented by elementary H-Azumaya algebras.

Let A be a YD H-module algebra. A left A-module M in QH is both a left
A-module and a YD H-module satisfying the compatibility conditions:
i. h · (am) =

∑
(h(1) · a)(h(2) ·m),

ii. χ(am) =
∑

a(0)m(0) ⊗m(1)a(1).
That is, M is a left A#H-module and a right Hopf module in AMHop

. Here
A#H is the usual smash product rather than the braided product. Denote by
AQH the category of left A-modules in QH and A-module morphisms in QH .
Similarly, we may define a right A-module M in QH as a right A-module and a
YD H-module such that the following two compatibility conditions hold:
i. h · (ma) =

∑
(h(1) ·m)(h(2) · a),

ii. χ(ma) =
∑

m(0)a(0) ⊗ a(1)m(1).
Denote by QH

A the category of right A-modules in QH and their morphisms. Now
let A and B be two YD H-module algebras. An (A-B)-bimodule M in QH is an
(A-B)-bimodule which belongs to AQH and QH

B . Denote by AQH
B the category

of (A-B)-bimodules. View k as a trivial YD H-module algebra. Then AQH is
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just the category of (A-k)-bimodules in QH . Similarly QH
A is the category of

(k-A)-bimodules in QH .

Definition 3.5. A (strict) Morita context (A,B, P,Q, ϕ, ψ) is called a (strict)
H-Morita context in QH if the following conditions hold:

(1) A and B are YD H-module algebras,
(2) P is an (A-B)-bimodule in QH and Q is an (B-A)-bimodule in QH ,
(3) ϕ and ψ are (surjective) YD H-module algebra maps: ϕ : P ⊗̃BQ −→ A and

ψ : Q⊗̃AP −→ B.

An H-Morita context in QH is a usual Morita context if one forgets the H-
structures. When one works with the base category QH , the usual Morita theory
applies fully and one obtains an H-Morita theory in QH . Here are few basic
properties of H-Morita contexts.

Proposition 3.6. (1) If P is a faithfully projective YD H-module, then

(End(P ), k, P, P ∗, ϕ, ψ)

is a strict H-Morita context in QH . Here ϕ and ψ are given by ϕ(p⊗ f)(x) =
pf(x) and ψ(f ⊗ p) = f(p).

(2) Let B be a YD H-module algebra. If P ∈ QH
B is a B-progenerator , then

(A = EndB(P ), B, P,Q = HomB(P, B), ϕ, ψ) is a strict H-Morita context in
QH . Here ϕ and ψ are given by ϕ(p⊗ f)(x) = pf(x) and ψ(f ⊗ p) = f(p),

where EndB(P ) is a YD H-module algebra with adjoint H-structures given in
Subsection 1.1. Like usual Morita theory , if (A,B, P, Q, ϕ, ψ) is a strict H-
Morita context , then the pairs of functors

Q⊗̃A− : AQH −→ BQH and P ⊗̃B− : BQH −→ AQH ,

−⊗̃AP : QH
A −→ QH

B and − ⊗̃BQ : QH
B −→ QH

A

define equivalences between the categories of bimodules in QH .

Let A be a YD H-module algebra, A is the H-opposite of A. Write Ae for A#A

and eA for A#A. Then A may be regarded as a left Ae-module and a right
eA-module as follows:

(a#b) · x =
∑

ax(0)(x(1) · b), and x · (a#b) =
∑

a(0)(a(1) · x)b. (3–1)

It is clear that A with foregoing Ae and eA-module structures is in AeQH and QH
eA

respectively. Now consider the categories AeQH and QH
eA. To a left Ae-module

M in AeQH we associate a YD H-submodule

MA = {m ∈ M | (a#1)m = (1#a)m,∀a ∈ A}.
This correspondence gives rise to a functor (−)A from AeQH to QH . On the
other hand, we have an induction functor A⊗̃− from QH to AeQH . It is easy to
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see that
A⊗̃− : QH −→ AeQH , N 7→ A⊗̃N,

(−)A : AeQH −→ QH , M 7→ MA.
(3–2)

is an adjoint pair of functors. Similarly we have an adjoint pair of functors
between categories QH and QH

eA:

−⊗̃A : QH −→ QH
eA, N 7→ N⊗̃A,

A(−) : QH
eA −→ QH , M 7→ AM

(3–3)

where AM = {m ∈ M | m(1#a) = m(a#1),∀a ∈ A}.
Proposition 3.7 [12, Prop.2.6]. Let A be a YD H-module algebra. Then A is
H-Azumaya if and only if (3–2) and (3–3) define equivalences of categories.

In fact, (3–2) and (3–3) define the equivalences between the braided monoidal
categories if A is H-Azumaya (see [12]).

With the previous preparation one is able to show that the ‘Brauer equiva-
lence’ is equivalent to the ‘H-Morita equivalence’ in QH . We denote by A

m∼B that
A is H-Morita equivalent to B, and denote by A

b∼B that A is Brauer equivalent
to B, i.e., [A] = [B] ∈ BQ(k, H).

Theorem 3.8 [12, Thm. 2.10]. Let A,B be H-Azumaya algebras. A
b∼B if and

only if A
m∼B.

As a direct consequence, we have that if [A] = 1 in BQ(k,H), then A ∼= End(P )
for some faithfully projective YD H-module P .

4. An Exact Sequence for the Brauer Group BC(k, H, R)

As we explained in Section 3, when a Hopf algebra H is finite, the Brauer
group BQ(k, H) of H is equal to the Brauer group BC(k, D(H)∗, R). So in the
finite case, it is sufficient to consider the Brauer group BC(k,H, R) of a finite
coquasitriangular Hopf algebra. We present a general approach to the calculation
of the Brauer group BC(k,H, R). The idea of this approach is basically the one
of Wall in [57] where he introduced the first Brauer group of structured algebras,
i.e., the Brauer group of super (or Z2-graded) algebras which is now called the
Brauer–Wall group, denoted BW(k). He proved that the Brauer group of super
algebras over a field k is an extension of the Brauer group Br(k) by the group
Q2(k) of Z2-graded quadratic extensions of k, i.e., there is an exact sequence of
group homomorphisms:

1 - Br(k) - BW(k) - Q2(k) - 1

In 1972, Childs, Garfinkel and Orzech studied the Brauer group of algebras
graded by a finite abelian group [14], and Childs (in [15]) generalized Wall’s
sequence by constructing a non-abelian group Galz(G) of bigraded Galois objects
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replacing the graded quadratic group of k in Wall’s sequence. They obtained an
exact group sequence:

1 −→ Br(k) −→ BC(k,G, φ) −→ Galz(G)

where Galz(G) may be described by another exact sequence when G is a p-group.
The complexity of the group Galz(G) is evident. An object in Galz(G) involves

both two-sided G-gradings and two-sided G-actions such that the actions and
gradings commute. In 1992, K. Ulbrich extended the exact sequences of Childs
to the case of the Brauer–Long group of a commutative and cocommutative Hopf
algebra (see [48]). The technique involved is essentially the Hopf Galois theory
of a finite Hopf algebra. However, when the Hopf algebra is not commutative, a
similar group of Hopf Galois objects does not exists although one still obtains a
group of Hopf bigalois objects with respect to the cotensor product (see [42; 55]).
The idea of this section is to apply the Hopf quotient Galois theory. This requires
the deformation of the Hopf algebra H. Throughout, (H,R) is a finite CQT Hopf
algebra.

4.1. The algebra HR. We start with the definition of the new product ? on
the k-module H:

h ? l =
∑

l(2)h(2)R(S−1(l(3))l(1) ⊗ h(1))

=
∑

h(2)l(1)R(l(2) ⊗ S(h(1))h(3))

where h and l are in H. (H, ?) is an algebra with unit 1. We denote by HR

the algebra (H, ?). It is easy to see that the counit map ε of H is still an
augmentation map from HR to k.

There is a double Hopf algebra for a CQT Hopf algebra (H, R) (not necessarily
finite). This double Hopf algebra, denoted D[H] due to Doi and Takeuchi (see
[21]), is equal to H ⊗H as a coalgebra with the multiplication given by

(h⊗ l)(h′ ⊗ l′) =
∑

hh′(2) ⊗ l(2)l
′R(h′(1) ⊗ l(1))R(S(h′(3))⊗ l(3))

for h, l, h′ and l′ ∈ H. The antipode of D[H] is given by

S(h⊗ l) = (1⊗ S(l))(S(h)⊗ 1)

for all h, l ∈ H. The counit of D[H] is ε⊗ ε.
Since H is finite, the canonical Hopf algebra homomorphism Θl : H −→ H∗op

given by Θl(h)(l) = R(h⊗ l) induces an Hopf algebra homomorphism from D[H]
to D(H), the Drinfel’d quantum double H∗op ./ H.

Φ : D[H] −→ D(H), Φ(h ./ l) = Θl(h) ./ l.

When Θl is an isomorphism, we may identify D[H] with D(H). Thus a YD
H-module is automatically a left D[H]-module. Moreover, the following algebra
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monomorphism φ shows that HR can be embedded into D[H].

φ : HR −→ D[H], φ(h) =
∑

S−1(h(2)) ./ h(1).

Thus we may view HR as a subalgebra of the double D[H]. Moreover, one may
check that the image of φ in D[H] is a left coideal of D[H]. We obtain the
following:

Proposition 4.1.1. HR is a left D[H]-comodule algebra with the comodule
structure given by

χ : HR −→ D[H]⊗HR, χ(h) =
∑

(S−1(h(3)) ./ h(1))⊗ h(2).

The left D[H]-comodule structure of HR in Proposition 4.1.1 demonstrates that
HR can be embedded into D[H] as a left coideal subalgebra. In fact, HR can be
further embedded into D(H) as a left coideal subalgebra.

Corrollary 4.1.2. The composite algebra map

HR
φ - D[H]

Φ- D(H)

is injective, and HR is isomorphic to a left coideal subalgebra of D(H).

Let us now consider Yetter–Drinfel’d H-modules and HR-bimodules. Let M

be a Yetter–Drinfel’d module over H, or a left D(H)-module. The following
composite map:

HR ⊗M
φ⊗ι−→D[H]⊗M

Φ⊗ι−→D(H)⊗M

makes M into a left HR-module. If we write −. for the above left action, then
we have the explicit formula:

h −. m =
∑

(h(2) ·m(0))R(S−1(h(4))⊗ h(3)m(1)S
−1(h(1))) (4–1)

for h ∈ HR and m ∈ M .
Since there is an augmentation map ε on HR, we may define the HR-invariants

of a left HR-module M which is

MHR = {m ∈ M | h −. m = ε(h)m,∀h ∈ HR}.
When a left HR-module comes from a YD H-module we have

MHR = {m ∈ M | h ·m = h .1 m =
∑

m(0)R(h⊗m(1)), ∀h ∈ H}.
Now we define a right HR-module structure on a YD H-module M . Observe

that the right H-comodule structure of M induces two left H-module structures.
The first one is (1–5), and the second one is given by

h .2 m =
∑

m(0)R(S(m(1))⊗ h) (4–2)

for h ∈ H and m ∈ M . With this second left H-action (4–2) on M , M can be
made into a right D[H]-module.
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Lemma 4.1.3. Let M be a Yetter–Drinfel’d H-module. Then M is a right
D[H]-module defined by

m ↽ (h ./ l) = S(l) .2 (S(h) ·m)

for h, l ∈ H and m ∈ M . Moreover , if A is a YD H-module algebra, then A is
a right D[H]cop-module algebra.

The right D[H]-module structure in Lemma 4.1.3 does not match the canonical
left D[H]-module structure induced by the Hopf algebra map Φ so as to yield a
D[H]-bimodule structure on M . However the right HR-module structure on M

given by

M ⊗HR
ι⊗φ−→M ⊗D[H] −→ M,

more precisely:

m /− h =
∑

(h(3) ·m(0))R(h(4)m(1)S
−1(h(2))⊗ h(1)) (4–3)

for m ∈ M and h ∈ HR, together with the left HR-module structure (4–1),
defines an HR-bimodule structure on M .

Proposition 4.1.4. Let M be a YD H-module. Then M is an HR-bimodule
via (4–1) and (4–3).

If A is a YD H-module algebra, then Proposition 4.1.4 implies that A is an
HR-bimodule algebra in the sense that:

h −. (ab) =
∑

(h(−1) · a)(h(0) −. b)
(ab) /− h =

∑
(a · h(0))(b /− h(−1))

(4–4)

for a, b ∈ A and h ∈ HR, where χ(h) =
∑

h(−1) ⊗ h(0) ∈ D[H]⊗HR.

To end this subsection we present the dual comodule version of (4–4) which is
needed in the next subsection. Observe that the dual coalgebra H∗

R is a left
D[H]∗-module quotient coalgebra of the dual Hopf algebra D[H]∗ in the sense
that the following coalgebra map is a surjective D[H]-comodule map:

φ∗ : D[H]∗ −→ H∗
R, p ./ q 7→ qS−1(p).

Thus a left (or right) D[H]-comodule M is a left (or right) H∗
R-comodule

in the natural way through φ∗. In order to distinguish D[H] or H∗
R-comodule

structures from the H-comodule structures (e.g., a YD H-module has all three
comodule structures) we use different uppercase Sweedler sigma notations:
i.

∑
x[−1] ⊗ x[0],

∑
x[0] ⊗ x[1] stand for left and right D[H]∗-comodule

structures,
ii.

∑
x(−1) ⊗ x(0),

∑
x(0) ⊗ x(1) stand for left and right H∗

R-comodule
structures,
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where x is an element in a due comodule. Now let A be a YD H-module algebra.
Then A is both a left and right D[H]-module algebra, and therefore an HR-
bimodule algebra in the sense of (4–4). Thus the dual comodule versions of the
formulas in (4–4) read as follows:

∑
(ab)(0) ⊗ (ab)(1) =

∑
a[0]b(0) ⊗ a[1] ⇁ b(1),∑

(ab)(−1) ⊗ (ab)(0) =
∑

b[−1] ⇁ a(−1) ⊗ a(0)b[0]
(4–5)

for a, b ∈ A, where ⇁ is the left action of D[H]∗ on H∗
R. We will call A a right

(or left) H∗
R-comodule algebra in the sense of (4–5).

Finally, for a YD H-module M , we will write M¦ (or ¦M) for the right (or
left) H∗

R-coinvariants. For instance,

M¦ = {m ∈ M |
∑

m(0) ⊗m(1) = m⊗ ε.}
It is obvious that M¦ = MHR .

4.2. The group Gal(HR). We are going to construct a group Gal(HR) of
‘Galois’ objects for the deformation HR. The group Gal(HR) plays the vital
role in an exact sequence to be constructed.

Definition 4.2.1. Let A be a right D[H]∗-comodule algebra. A/A¦ is said to
be a right H∗

R-Galois extension if the linear map

βr : A⊗A¦ A −→ A⊗H∗
R, βr(a⊗ b) =

∑
a(0)b⊗ a(1)

is an isomorphism. Similarly, if A is a left D[H]∗-comodule algebra, then A/¦A
is said to be left Galois if the linear map

βl : A⊗¦A A −→ H∗
R ⊗A, βl(a⊗ b) =

∑
b(−1) ⊗ ab(0)

is an isomorphism. If in addition the subalgebra ¦A (or A¦) is trivial, then A is
called a left (or right) H∗

R-Galois object. For more detail on Hopf quotient Galois
theory, readers may refer to [33; 44; 45].

The objects we are interested in are those H∗
R-bigalois objects which are both

left and right H∗
R-Galois such that the left and right H∗

R-coactions commute.
Denote by E(HR) the category of YD H-module algebras which are H∗

R-bigalois
objects. The morphisms in E(HR) are YD H-module algebra isomorphisms. We
are going to define a product in the category E(HR). Let #R be the braided
product in the category MH

R to differ from the braided product in QH . This
makes sense when a YD H-module algebra A can be treated as an algebra in
MH

R forgetting the H-module structure of A and endowing with the induced
H-module structure (1–5).

Given two objects X and Y in E(HR), we define a generalized cotensor product
X ∧ Y (in terms of H∗

R-bicomodules) as a subset of X#RY :
{∑

xi#yi ∈ X#RY |
∑

xi /− h#yi =
∑

xi#h −. yi, ∀h ∈ HR.

}
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In the foregoing formula we may change the actions /− and −. of HR into the
actions of H which are easier to check.

X ∧ Y = {∑ xi#yi ∈ X#RY |∑ h(1) · xi#h(2) .1 yi

=
∑

h(1) .2 xi#h(2) · yi,∀h ∈ H}. (4–6)

The formula (4–6) allow us to define a left H-action on X ∧ Y :

h ·
∑

(xi#yi) =
∑

h(1) · xi#h(2) .1 yi =
∑

h(1) .2 xi#h(2) · yi (4–7)

whenever
∑

xi#yi ∈ X ∧ Y and h ∈ H. The left H-action is YD compatible
with the right diagonal H-coaction, so we obtain:

Proposition 4.2.2. If X, Y are two objects of E(HR), then X ∧ Y with the
H-action (4–7) and the H-coaction inherited from X#RY is a YD H-module
algebra. Moreover , X ∧ Y is an object of E(HR).

Let H∗ be the convolution algebra of H. There is a canonical YD H-module
structure on H∗ such that H∗ is a YD H-module algebra:

h · p =
∑

p(1) < p(2), h >, H-action

h∗ · p =
∑

h∗(2)pS−1(h∗(1)), H-coaction
(4–8)

for h∗, p ∈ H∗ and h ∈ H. One may easily check that H∗ with the YD H-module
structure (4–8) is an object in E(HR), denoted I. Moreover I is the unit object
of E(H) with respect to the product ∧. It follows that the category E(HR) is a
monoidal category.

Denote by E(HR) the set of the isomorphism classes of objects in E(HR).
The fact that E(HR) is a monoidal category implies that the set E(HR) is a
semigroup. In general, E(HR) is not necessarily a group. However, it contains
a subgroup of a nice type.

Recall that a YD H-module algebra A is said to be quantum commutative
(q.c.) if

ab =
∑

b(0)(b(1) · a) (4–9)

for any a, b ∈ A. That is, A is a commutative algebra in QH .
Let X be a q.c. object in E(HR). Let X be the opposite algebra in MH

R . That
is, X = X as a right Hop-comodule, but with the multiplication given by

x ◦ y =
∑

y(0)x(0)R(y(1) ⊗ x(1))

where x, y ∈ X. Since the H-action on X does not define an H-module algebra
structure on X, we have to define a new H-action on X such that X together
with the inherited Hop-comodule structure is a YD H-module algebra. Let H

act on X as follows:

h ⇀ x =
∑

hu
(3) · (h(2) .2 (h(5) .1 x))R(S(h(4))⊗ h(1)) (4–10)
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where h ∈ HR, x ∈ X, hu =
∑

S(h(2))u−1(h(1)) and u =
∑

S(R(2))R(1) ∈ H∗

is the Drinfel’d element of H∗.

Proposition 4.2.3. Let X be an object in E(HR) such that X is q .c. Then:

(1) X together with the H-action (4–10) is a YD H-module algebra.
(2) X is a q .c. object in E(HR) and X ∧X ∼= I = X ∧X.

Since the proof is lengthy, we refer reader to [59] for the complete proof. Denote
by Gal(HR) the subset of E(HR) consisting of the isomorphism classes of objects
in E(HR) such that the objects are quantum commutative in QH . We have

Theorem 4.2.4 [59, Thm. 3.12]. The set Gal(HR) is a group with product
induced by ∧ and inverse operator induced by H-opposite .

4.3. The exact sequence. For convenience we will call an H-Azumaya algebra
A an R-Azumaya algebra if the H-action on A is of form (1–5). That is, A

represents an element of BC(k,H, R). In this subsection we investigate the R-
Azumaya algebras which are Galois extensions of the coinvariants, and establish
a group homomorphism from BC(k,H, R) to the group Gal(HR) constructed in
the previous subsection.

In the sequel, we will write:

M0 = {m ∈ M |
∑

m(0) ⊗m(1) = m⊗ 1}

for the coinvariant k-submodule of a right H-comodule M , in order to make a
difference between H∗

R-coinvariants and H-coinvariants. We start with a special
elementary R-Azumaya algebra.

Lemma 4.3.1. Let M = Hop be the right Hop-comodule, and let A be the
elementary R-Azumaya algebra End(M). Then A ∼= H∗op#Hop, where the left
Hop-action on H∗op is given by h · p =

∑
p(1)〈p(2), S

−1(h)〉 = S−1(h) ⇀ p,
whenever h ∈ Hop and p ∈ H∗op.

Let A be an R-Azumaya algebra. We have [A#End(Hop)] = [A] since End(Hop)
represents the unit of BC(k, H, R). Now the composite algebra map

Hop λ−→End(Hop) ↪→ A#End(Hop)

is Hop-colinear. It follows that A#End(Hop) is a smash product algebra B#Hop

where B = (A#End(Hop))0. Thus we obtain that any element of BC(k,H, R)
can be represented by an R-Azumaya algebra which is a smash product. Since
any smash product algebra is a Galois extension of its coinvariants, we have that
any element of BC(k, H, R) can be represented by an R-Azumaya algebra which
is an Hop-Galois extension of its coinvariants. Moreover, one may easily prove
that if A is an R-Azumaya algebra such that it is an Hop-Galois extension of
A0, then A is a Hop-Galois extension of (A0)op.
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An R-Azumaya algebra A is said to be Galois if it is a right Hop-Galois extension
of its coinvariant subalgebra A0. Let A be a Galois R-Azumaya algebra. Denote
by π(A) the centraliser subalgebra CA(A0) of A0 in A. It is clear that π(A0)
is an Hop-comodule subalgebra of A. The Miyashita–Ulbrich–Van Oystaeyen
(MUVO) action (see [34; 48; 50; 51]; the last author mentioned considered it
first in the situation of purely inseparable splitting rings in [50]) of H on π(A)
is given by

h ⇀ a =
∑

Xh
i aY h

i (4–11)

where
∑

Xh
i ⊗ Y h

i = β−1(1 ⊗ h), for h ∈ H and β is the canonical Galois map
given by β(a ⊗ b) =

∑
ab(0) ⊗ b(1). It is well-known (e.g., see [48; 11]) that

π(A) together with the MUVO action (4–11) is a new YD H-module algebra.
Moreover, π(A) is quantum commutative in the sense of (4–9) [48; 52].

Recall that when a Galois Hop-comodule algebra A is an Azumaya algebra, the
centraliser π(A) is a right H∗-Galois extension of k with respect to the MUVO
action (4–11); compare [48]. This is not the case when A is an R-Azumaya
algebra. However, π(A) turns out to be an H∗

R-Galois object, instead of an
H∗-Galois object.

Proposition 4.3.2 [59, Prop. 4.5]. Let A be a Galois R-Azumaya algebra. Then
π(A)/k is an H∗

R-biextension and π(A) is an object in Gal(HR).

It is natural to expect the functor π to be a monoidal functor from the monoidal
category of Galois R-Azumaya algebras to the monoidal category E(HR). This
is indeed the case.

Proposition 4.3.3. π is a monoidal functor . That is:

(1) If A and B are two Galois R-Azumaya algebras, then π(A#B) = π(A) ∧
π(B); and

(2) If M is a finite right Hop-comodule, and A = End(M) is the elementary R-
Azumaya algebra such that A is a Galois R-Azumaya algebra, then π(A) ∼= I.

It follows that π induces a group homomorphism π̃ from the Brauer group
BC(k, H,R) to the group Gal(HR) sending element [A] to element [π(A)], where
A is chosen as a Galois R-Azumaya algebra.

In order to describe the kernel of π̃, one has to analyze the H-coactions on
the Galois R-Azumaya algebras. We obtain that the kernel of π̃ is isomorphic
to the usual Brauer group Br(k). Thus we obtain the following exact sequence:

Theorem 4.3.4 [59, Thm. 4.11]. We have an exact sequence of group homo-
morphisms:

1 - Br(k)
ι- BC(k,H, R)

π̃- Gal(HR). (4–12)

Note that the exact sequence (4–12) indicates that the factor group

BC(k,H, R)/Br(k)
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is completely determined by the H∗
R-bigalois objects. In particular, when k is

an algebraically closed field BC(k, H, R) is a subgroup of Gal(HR).

Now let us look at some special cases. First let H be a commutative Hopf
algebra. H has a trivial coquasitriangular structure R = ε⊗ ε. In this case. HR

is equal to H as an algebra and D[H] = H⊗H is the tensor product algebra. An
R-Azumaya algebra is an Azumaya algebra which is a right H-comodule algebra
with the trivial left H-action. On the other hand, the HR-bimodule structures
(4–1) and (4–3) of a YD H-module M coincide and are exactly the left H-module
structure of M . So in this case an object in the category E(HR) is nothing but
an H∗-Galois object which is automatically an H∗-bigalois object since H∗ is
cocommutative. So the group Gal(HR) is the group E(H∗) of H∗-Galois objects
with the cotensor product over H∗. So we obtain the following exact sequence
due to Beattie.

Corrollary 4.3.5 [3]. Let H be a finite commutative Hopf algebra. Then the
following group sequence is exact and split :

1 - Br(k)
ι- BC(k, H)

π̃- E(H∗) −→ 1

where the group map π̃ is surjective and split because any H∗-Galois object B is
equal to π(B#H) and the smash product B#H is a right H-comodule Azumaya
algebra which represents an element in BC(k, H).

Secondly we let R be a non-trivial coquasitriangular structure of H, but let H be
a commutative and cocommutative finite Hopf algebra over k. In this case, HR

is isomorphic to H as an algebra and becomes a Hopf algebra. In this case, an
object in Gal(HR) is an H∗-bigalois object. It is not difficult to check that YD
H-module (or H-dimodule) structures commute with both H∗-Galois structures.

Let θ be the Hopf algebra homomorphism corresponding to the coquasitrian-
gular structure R, that is,

θ : H −→ H∗, θ(h)(l) = R(l ⊗ h)

for h, l ∈ H. Let ⇀ be the induced H-action on a right H-comodule M :

h ⇀ m =
∑

m(0)θ(h)(m(1)) =
∑

m(0)R(m(1) ⊗ h)

for h ∈ H and m ∈ M . In [49], Ulbrich constructed a group D(θ, H∗) consisting
of isomorphism classes of H∗-bigalois objects which are also H-dimodule algebras
such that all H and H∗ structures commute, and satisfy the following additional
conditions interpreted by means of R [49, (14), (16)]:

h −. a =
∑

a(0) /− h(1)R(a(1) ⊗ S(h(2)))R(S(h(3))⊗ a(2))∑
x(0)(a /− x(1)) =

∑
(x(1) ⇀ a)x(0),

(4–13)
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Let us check that any object A in the category E(HR) satisfies the condi-
tions (4–13) so that A represents an element of D(θ, H∗). Indeed, since H is
commutative and cocommutative, we have

h −. a =
∑

(h(2) · a(0))R(S−1(h(4))⊗ h(3)a(1)S
−1(h(1)))

=
∑

(h(1) · a(0))R(S(h(2))⊗ a(1))

=
∑

(h(2) · a(0))R(a(1) ⊗ h(1))R(a(2) ⊗ S(h(3)))R(S(h(4))⊗ a(3))

=
∑

(a(0) /− h(1))R(a(1) ⊗ S(h(2)))R(S(h(3))⊗ a(2)),

and
∑

x(0)(a /− x(1)) =
∑

x(0)(x(1) · a(0))R(a(1) ⊗ x(1))

=
∑

a(0)x(0)R(a(1) ⊗ x(1)) (by q.c.)

=
∑

(x(1) ⇀ a)x(0)

for any a, x ∈ A and h ∈ H. It follows that the group Gal(HR) is contained in
D(θ, H∗). As a consequence, we obtain Ulbrich’s exact sequence [49, 1.10]:

1 −→ Br(k) −→ BD(θ,H∗) πθ−→D(θ,H∗)

for a commutative and cocommutative finite Hopf algebra with a Hopf algebra
homomorphism θ from H to H∗.

4.4. An example. Let k be a field with characteristic different from two.
Let H4 be the Sweedler four dimensional Hopf algebra over k. That is, H4 is
generated by two elements g and h satisfying

g2 = 1, h2 = 0, gh + hg = 0.

The comultiplication, the counit and the antipode are as follows:

∆(g) = g ⊗ g, ∆(h) = 1⊗ h + h⊗ g,

ε(g) = 1, ε(h) = 0,

S(g) = g, S(h) = gh.

There is a family of CQT structures Rt on H4 parameterized by t ∈ k as follows:

Rt 1 g h gh

1 1 1 0 0
g 1 −1 0 0
h 0 0 t −t

gh 0 0 t t
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It is not hard to check that the Hopf algebra homomorphisms Θl and Θr

induced by Rt are as follows:

Θl : Hcop
4 −→ H∗

4 , Θl(g) =, 1− g, Θl(h) = t(h− gh),

Θr : Hop
4 −→ H∗

4 , Θr(g) = 1− g, Θr(h) = t(h + gh).

When t is non-zero, Θl and Θr are isomorphisms, so that H4 is a self-dual Hopf
algebra.

We have that HRt is a 4-dimensional algebra generated by two elements u

and v such that u and v satisfy the relations:

u2 = 1, uv − vu = 0, v2 = t(1− u),

which is isomorphic to the commutative algebra k[y]/〈y4 − 2ty2〉 when t is not
zero.

The double algebra D[H4] with respect to Rt is generated by four elements,
g1, g2, h1 and h2 such that

g2
i = 1, h2

i = 0, gihj + hjgi = 0,

g1g2 = g2g1, h1h2 + h2h1 = t(1− g1g2).

The comultiplication of D[H4] is easy because the Hopf subalgebras generated
by gi, hi, i = 1, 2, are isomorphic to H4. Thus the algebra embedding φ reads as
follows:

HRt −→ D[H4], φ(u) = g1g2, φ(v) = g1(h2 − h1).

Let us consider the triangular case (H4, R), where R = R0. In this case, an
algebra A is an H4-module algebra if and only if it a DS-algebra (see section
2), and A is R-Azumaya algebra if and only if A is a DS-Azumaya algebra.
From Theorem 2.5 we know that the Brauer group BC(k, H4, R) is isomorphic
to (k, +)×BW(k). Let us work out the group Gal(HR) and calculate the Brauer
group BC(k, H4, R) using the sequence (4–12).

First of all we have the following structure theorem of bigalois objects in
E(HR) [59].

Theorem 4.4.1 [59, Thm. 5.7]. Let A be a bigalois object in E(HR). Then A is
either of type (A) or of type (B):
Type (A): A is a generalized quaternion algebra

(
α,β
k

)
, α 6= 0, with the following

YD H-module structures:

g · u = −u, g · v = −v,

h · u = 0, h · v = 1,

ρ(u) = u⊗ 1− 2uv ⊗ gh, ρ(v) = v ⊗ g + 2β ⊗ h.
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Type (B): A is a commutative algebra k(
√

α) ⊗ k(
√

β) with the following YD
H-module structures:

g · u = u, g · v = −v,

h · u = 0, h · v = 1,

ρ(u) = u⊗ 1 + 2uv ⊗ h, ρ(v) = v ⊗ g + 2β ⊗ h,

where k(
√

α) and k(
√

β) are generated by elements u and v respectively , and u,
v satisfy the relations: u2 = α, uv = vu and v2 = β.

As a consequence of Theorem 4.4.1, we have the group structure of the group
Gal(HR):

Proposition 4.4.2 [59, 5.8–5.9]. The group Gal(HR) is equal to k× (k•/k•2)×
Z2 as a set . The multiplication rule on the set is given by

(β, α, i)(β′, α′, j) = (β + β′, (−1)ijαα′, i + j).

The foregoing multiplication rule of Gal(HR) shows that Gal(HR) is a direct
product of (k, +) and the group k•/k•2 >/ Z2 which is isomorphic to the group
Q2(k) of graded quadratic extensions of k (see [57]).

Notice that an object of type (A) in Gal(HR) is some generalized quaternion
algebra

(
α,β
k

)
with the H4-action and coaction given in Theorem 4.4.1, where

α ∈ k• and β ∈ k. When β 6= 0,
(

α,β
k

)
is a Galois R-Azumaya algebra if we

forget the left H4-module structure. Since the coinvariant subalgebra of
(

α,β
k

)
is

trivial, we have π(
(

α,β
k

)
) =

(
α,β
k

)
if β 6= 0. To get an object

(
α,0
k

)
in Gal(HR),

where α ∈ k•, we consider the Galois R-Azumaya algebra
(

α,1
k

)
#

(
1,−1

k

)
. Since

π is monoidal, we have

π

((
α, 1
k

)
#

(1,−1
k

))
=

(
α, 1
k

)
∧

(1,−1
k

)
=

(
α, 0
k

)

for any α ∈ k•.
For an object k(

√
α) ⊗ k(

√
β) of type (B) in Gal(HR), we choose a Galois

R-Azumaya algebra A such that π(A) =
(

α,β
k

)
(assured by the foregoing argu-

ments). Then it is easy to check that

π(A#k(
√

1)) = k(
√

α)⊗ k(
√

β)

for α ∈ k• and β ∈ k. Thus we have shown that the homomorphism π̃ is
surjective and we have an exact sequence:

1 −→ Br(k) −→ BC(k,H4, R) π̃−→Gal(HR) −→ 1. (4–14)

Recall that the Brauer–Wall group BW(k) is BC(k, kZ2, R
′), where kZ2 is

the sub-Hopf algebra of H4 generated by the group-like element g ∈ H4, and
R′ is the restriction of R to kZ2. The following well-known exact sequence is a
special case of (4–12):

1 −→ Br(k) −→ BW(k) π̃−→Q2(k) −→ 1, (4–15)
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where Q2(k) is nothing but Gal(HR′) and HR′ ∼= kZ2, here H = kZ2.
The sequence (4–15) can be also obtained if we restrict the homomorphism π̃

in (4–14) to the subgroup BW(k) of BC(k, H4, R). The subgroup π̃(BW(k)) of
Gal(HR) consists of all objects of forms:

(
α,0
k

)
of type (A) and k(

√
α)⊗ k(

√
0)

of type (B), which is isomorphic to Q2(k) (see [59] for details). In fact we have
the following commutative diagram:

1 - Br(k) ∩K - K
π̃ - (k, +) - 1

1 - Br(k)
?

- BC(k, H4, R)
? π̃- Gal(HR0)

ι

?
- 1

1 - Br(k)
?

- BW(k)

γ

? π̃ - Q2(k)

p

?
- 1,

where γ is the canonical map defined in Theorem 2.5, K is the kernel of γ, ι

is the inclusion map and p is the projection from (k, +) × Q2(k) onto Q2(k).
Here π̃(K) = (k, +) because π̃ ◦ γ = p ◦ π̃ (which can be easily checked on
Galois R-Azumaya algebras

(
α,β
k

)
and

(
α,β
k

)
#k(

√
1)). By definition of γ we

have Br(k) ∩ K = 1. It follows that K ∼= (k, +). Since γ is split, we obtain
that the Brauer group BC(k, H4, R) is isomorphic to the direct product group
(k, +)× BW(k), which coincides with Theorem 2.5.

Recently, G. Carnovale proved in [13] that the Brauer group BC(k, H4, Rt) is
isomorphic to BC(k, H4, R0) for any t 6= 0 although (H4, Rt) is not coquasitri-
angularly isomorphic to (H4, R0) when t 6= 0 [40].

5. The Hopf Automorphism Group

Let H be a faithfully projective Hopf algebra over a commutative ring k. As
we have seen from the previous section, the Brauer group BQ(k,H) may be ap-
proximated by computing the group Gal(HR), where HR is a deformation of the
dual D(H)∗ of the quantum double D(H). However, to compute explicitly the
group BQ(k, H) is a hard task. On the other hand, there are some subgroups
of BQ(k,H) which are (relatively) easier to calculate. For instance, when H is
commutative and cocommutative, various subgroups of the Brauer–Long group
could more easily be studied [3; 4; 7; 8; 10; 17]. One of these subgroups is Dee-
gan’s subgroup introduced in [17] which involves the Hopf algebra structure of
H itself and in fact turns out to be isomorphic to the Hopf algebra automor-
phism group Aut(H) [17; 8]. The connection between Aut(H) and BD(k, H) for
some particular commutative and cocommutative Hopf algebra H was probably
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first studied by M.Beattie in [3] where she established the existence of an exact
sequence:

1 −→ BC(k, G)/Br(k)× BM(k, G)/Br(k) −→ B(k, G)/Br(k)
β−→Aut(G) −→ 1

where B(k,G) is the subgroup of BD(k, G) consisting of the classes represented by
G-dimodule Azumaya algebras whose underlying algebras are Azumaya, Aut(G)
is the automorphism group of G, G is a finite abelian group and k is a con-
nected ring. Based on Beattie’s construction of the map β, Deegan constructed
his subgroup BT(k,G) which is then isomorphic to Aut(G); the resulting em-
bedding of Aut(G) in the Brauer–Long group (group case) is known as Dee-
gan’s embedding theorem. In [8], S.Caenepeel looked at the Picard group of a
Hopf algebra, and extended Deegan’s embedding theorem from abelian groups
to commutative and cocommutative Hopf algebras. But if H is a quantum
group (i.e., a (co)quasitriangular Hopf algebra) or just any non-commutative
non-cocommutative Hopf algebra then it seems that the method of Deegan and
Caenepeel cannot be extended to obtain a group homomorphism from some sub-
group of BQ(k, H) to the automorphism group Aut(H). In fact, Aut(H) can no
longer be embedded into BQ(k,H). On the other hand, the idea of Deegan’s con-
struction can still be applied to our non-commutative and non-cocommutative
case.

Let M be a faithfully projective Yetter–Drinfel’d H-module. Then Endk(M)
is an H-Azumaya YD H-module algebra. However, if M is an H-bimodule, that
is, a left H-module and a right H-comodule, but not a YD H-module, it may
still happen that Endk(M) is a YD H-module algebra.

Take a non-trivial Hopf algebra isomorphism α ∈ Aut(H) (for example, if the
antipode S of H is not of order two, S2 is a non-trivial Hopf automorphism). We
define a left H-module and a right H-comodule Hα as follows: as a k-module
Hα = H; we equip Hα with the obvious H-comodule structure given by ∆, and
an H-module structure given by

h · x =
∑

α(h(2))xS−1(h(1))

for h ∈ H, x ∈ Hα. Since α is nontrivial Hα is not a YD H-module. Let
Aα = End(Hα) with H-structures induced by the H-structures of Hα, that is,

(h · f)(x) =
∑

h(1)f(S(h(2)) · x)

χ(f)(x) =
∑

f(x(0))(0) ⊗ S−1(x(1))f(x(0))(1)

for f ∈ Aα, x ∈ Hα.

Lemma 5.1 [12, 4.6, 4.7]. If H is a faithfully projective Hopf algebra and α is
a Hopf algebra automorphism of H, then Aα is an Azumaya YD-module algebra
and the following map defines a group homomorphism:

ω : Aut(H) −→ BQ(k, H), α 7→ [Aα−1 ].
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In the sequel, we will compute the kernel of the map ω. Let D(H) denote the
Drinfel’d double of H. Let A be an H-module algebra. Recall from [5] that the
H-action on A is said to be strongly inner if there is an algebra map f : H −→ A

such that
h · a =

∑
f(h(1))af(S(h(2))), a ∈ A, h ∈ H.

Lemma 5.2. Let M be a faithfully projective k-module. Suppose that End(M)
is a D(H)-Azumaya algebra. Then [End(M)] = 1 in BM(k, D(H)) if and only
if the D(H)-action on A is strongly inner .

The proof has its own interest. Suppose that the D(H)-action on A is strongly in-
ner. There is an algebra map f : D(H) → A such that t·a=

∑
f(t(1))af(S(t(2))),

t ∈ D(H), a ∈ A. This inner action yields a D(H)-module structure on M given
by

t ⇀ m = f(t)(m), t ∈ D(H),m ∈ M.

Since f is an algebra representation map the above action does define a module
structure. Now it is straightforward to check that the D(H)-module structure
on A is exactly induced by the D(H)-module structure on M defined above. By
definition [End(M)] = 1 in BM(k, D(H)).

Conversely, if [A] = 1, then there exists a faithfully projective D(H)-module
N such that A ∼= End(N) as D(H)-module algebras by [12, 2.11]. Now D(H)
acts strongly innerly on End(N). Let u : D(H) −→ End(N) be the algebra
representation map. Now one may easily verify that the strongly inner action
induced by the composite algebra map:

µ : D(H) u−→End(N) ∼= A

exactly defines the D(H)-module structure on A.

Lemma 5.3. For a faithfully projective k-module M , let u, v : H −→ End(M) de-
fine H-module structures on M , call them Mu and Mv. If End(Mu) = End(Mv)
as left H-modules via (1–2), then (v ◦S) ∗u is an algebra map from H to k, i .e.,
a grouplike element in H∗. Similarly , if M admits two H-comodule structures
ρ, χ such that the induced H-comodule structures on End(M) given by (1–2) co-
incide, then there is a grouplike element g ∈ G(H) such that χ = (1⊗ g)ρ, i .e.,
χ(x) =

∑
x(0) ⊗ gx(1) if ρ(x) =

∑
x(0) ⊗ x(1) for x ∈ M .

Proof. For any m ∈ M, h ∈ H,φ ∈ End(Mu) = End(Mv),
∑

u(h(1))[φ[u(S(h(2)))(m)]] =
∑

v(h(1))[φ[v(S(h(2)))(m)]],

or equivalently,
∑

v(S(h(1)))[u(h(2))(φ[u(S(h(3)))(m)])] = φ(v(S(h))(m)).

Let λ = (v ◦ S) ∗ u : H −→ End(M) with convolution inverse (u ◦ S) ∗ v.
Letting m = u(h(4))(x) for any x ∈ H in the equation above, we obtain λ(h) ∈
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Z(End(M)) = k for all h ∈ H. Since u, v are algebra maps, it is easy to see that
λ is an algebra map from H to k. ¤

Given a group-like element g ∈ G(H), g induces an inner Hopf automorphism of
H denoted g, i.e., g(h) = g−1hg, h ∈ H. Similarly, if λ is a group-like element
of H∗, then λ induces a Hopf automorphism of H, denoted by λ where λ(h) =∑

λ(h(1))h(2)λ
−1(h(3)), h ∈ H. Since G(D(H)) = G(H∗)×G(H) ([40, Prop.9])

and g commutes with λ in Aut(H), we have a homomorphism θ:

G(D(H)) −→ Aut(H), (λ, g) 7→ gλ.

Let K(H) denote the subgroup of G(D(H)) consisting of elements

{(λ, g) | g−1(h) = λ(h),∀h ∈ H}.
Lemma 5.4. Let H be a faithfully projective Hopf algebra. Then K(H) ∼=
G(D(H)∗).

Proof. By [40, Prop.10], an element g ⊗ λ is in G(D(H)∗) if and only if
g ∈ G(H), λ ∈ G(H∗) and g, λ satisfy the identity:

g(λ ⇀ h) = (h ↼ λ)g, ∀h ∈ H,

where, λ ⇀ h =
∑

h(1)λ(h(2)) and h ↼ λ =
∑

h(2)λ(h(1)). Let g ∈ G(H), λ ∈
G(H∗), for any h ∈ H, we have
∑

gh(1)λ(h(2)) =
∑

λ(h(1))h(2)g ⇐⇒
∑

h(1)λ(h(2)) =
∑

λ(h(1))g−1h(2)g

⇐⇒
∑

λ−1(h(1))h(2)λ(h(3)) =
∑

g−1hg.

This means g ⊗ λ is in G(D(H)∗) if and only if (λ, g) ∈ K(H). Therefore
K(H) = G(D(H)∗). ¤

Applying Lemmas 5.1–5.4, one may able to show that the group homomorphism
θ can be embedded into the following long exact sequence:

Theorem 5.5 [52, Thm. 5]. Let H be a faithfully projective Hopf algebra over
k. The following sequence is exact :

1 −→ G(D(H)∗) −→ G(D(H)) θ−→Aut(H) ω−→BQ(k, H), (5–1)

where θ(λ, g) = λg and ω(α) = Aα−1 = End(Hα−1).

As a consequence of the theorem, we rediscover the Deegan–Caenepeel’s embed-
ding theorem for a commutative and cocommutative Hopf algebra [8; 17].

Corrollary 5.6. Let H be a faithfully projective Hopf algebra such that G(H)
and G(H∗) are contained in the centers of H and H∗ respectively . Then the map
ω in the sequence (5–1) is a monomorphism. In particular , if H is a commutative
and cocommutative faithfully projective Hopf algebra over k, then Aut(H) can
be embedded into BQ(k, H).
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Note that in this case, G(D(H)∗) = G(D(H)). It follows that the homomor-
phism θ is trivial , and hence the homomorphism ω is a monomorphism.

In the following, we present two examples of the exact sequence (5–1).

Example 5.7. Let H be the Sweedler Hopf algebra over a field k in Subsection
4.4. H is a self-dual Hopf algebra, i.e., H ∼= H∗ as Hopf algebras. It is straight-
forward to show that the Hopf automorphism group Aut(H) is isomorphic to
k• = k\0 via:

f ∈ Aut(H), f(g) = g, f(h) = zh, z ∈ k•.

Considering the group G(D(H)) of group-like elements, it is easy to see that

G(D(H)) = {(ε, 1), (λ, 1), (ε, g), (λ, g)} ∼= Z2 × Z2

where λ = p1 − pg, and p1, pg is the dual basis of 1, g. One may calculate that
the kernel of the map θ is given by:

K(H) = {(ε, 1), (λ, g)} ∼= Z2

The image of θ is {1, g} which corresponds to the subgroup {1,−1} of k∗. Thus
by Theorem 5.5 we have an exact sequence:

1 −→ Z2 −→ Z2 × Z2 −→ k• −→ BQ(k, H),

It follows that k•/Z2 can be embedded into the Brauer group BQ(H). In par-
ticular, if k = R, the real field, then Br(R) = Z2 ⊂ BQ(R,H), and R•/Z2 is a
non-torsion subgroup of BQ(R,H).

In the previous example, the subgroup k•/Z2 of the Brauer group BQ(k, H) is
still an abelian group. The next example shows that the general linear group
GLn(k) modulo a finite group of roots of unity for any positive number n may
be embedded into the Brauer group BQ(k, H) of some finite dimensional Hopf
algebra H.

Example 5.8. Let m > 2, n be any positive numbers. Let H be Radford’s Hopf
algebra of dimension m2n+1 over C (complex field) generated by g, xi, 1 ≤ i ≤ n

such that
g2m = 1, xi

2 = 0, gxi = −xig, xixj = −xjxi.

The coalgebra structure ∆ and the counit ε are given by

∆g = g ⊗ g, ∆xi = xi ⊗ g + 1⊗ xi, ε(g) = 1, ε(xi) = 0, 1 ≤ i ≤ n.

By [40, Prop.11], the Hopf automorphism group of H is GLn(C). Now we
compute the groups G(D(H)) and G(D(H)∗). It is easy to see that G(H) = (g)
(see also [40, p353]) is a cyclic group of order 2m. Let ωi, 1 ≤ i ≤ m be the m-th
roots of 1, and let ζj be the m-th roots of −1. Define the algebra maps ηi and
λi from H to C as follows:

ηi(g) = ωig, ηi(xj) = 0, 1 ≤ i, j ≤ m,
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and

λi(g) = ζig, λi(xj) = 0, 1 ≤ i, j ≤ m.

One may check that {ηi, λi}n
i=1 is the group G(H∗). It follows that G(D(H)) =

G(H)×G(H∗) ∼= (g)×U , where U is the group of 2m-th roots of 1. To compute
G(D(H)∗) it is enough to calculate K(H). Since

gi =
{

id if i is even,
ν if i is odd,

where ν(g) = g, ν(xj) = −xj , 1 ≤ j ≤ n, and

ηi(g) = g, ηi(xj) = ωixj , 1 ≤ i, j ≤ n,

λi(g) = g, λi(xj) = ζixj , 1 ≤ i, j ≤ n.

It follows that

K(H) = {(ε, g2i), (ψ, g2i−1), 1 ≤ i ≤ m},
where ψ is is given by:

ψ(g) = −g, ψ(xi) = 0.

Consequently G(D(H)∗) ∼= U , Since the base field is C, (g) ∼= U , and we have
an exact sequence

1 −→ U −→ U × U −→ GLn(C) −→ BQ(C,H).

The two examples above highlight the interest of the study of the Brauer group
of a Hopf algebra. In Example 5.8, even though the classical Brauer group Br(C)
is trivial, the Brauer group BQ(C, H) is still large enough.

In the rest of this section, we consider a natural action of Aut(H) on BQ(k, H).
Let A be an H-Azumaya algebra, and α a Hopf algebra automorphism of H.
Consider the YD H-module algebra A(α), which equals A as a k-algebra, but
with H-structures of (A(α), ⇁, χ′) given by

h ⇁ a = α(h) · a and χ′(a) =
∑

a(0) ⊗ α−1(a(1)) = (1⊗ α−1)χ(a)

for all a ∈ A(α), h ∈ H.

Lemma 5.9. Let A, B be H-Azumaya algebras. If α is a Hopf algebra automor-
phism of H, then A(α) is an H-Azumaya algebra, and (A#B)(α) ∼= A(α)#B(α).

The action of Aut(H) on BQ(k, H) is an inner action. Indeed, we have:

Theorem 5.10 [12, Thm. 4.11]. Aut(H) acts innerly on BQ(k, H), more pre-
cisely , for any H-Azumaya algebra B and α ∈ Aut(H), we have [B(α)] =
[Aα][B][Aα−1 ].
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Theorem 5.10 yields the multiplication rule for two elements [B] and ω(α) = [Aα]
where B is any H-Azumaya algebra and α is in Aut(H). In particular, if T is a
subgroup such that T is invariant (or stable) under the action of Aut(H), then
the subgroup generated by T and ω(Aut(H)) is (ι⊗ω)(T >/ Aut(H)), where >/

is the usual semi-direct product of groups.

Example 5.11. Let (H4, R0) be the CQT Hopf algebra described in Subsection
4.4. The automorphism group Aut(H4) of H4 is isomorphic to k•. If A is an R0-
Azumaya algebra and α ∈ Aut(H4), then A(α) is still an R0-Azumaya algebra as
the automorphism α does not affect the induced action (1–5). Thus the subgroup
BC(k, H4, R0) is stable under the action of Aut(H4). By Example 5.7 we get a
non-abelian subgroup of BQ(k, H4) (see [56]):

(ι⊗ ω)(BC(k,H4, R0) >/ k•) ∼= BC(k, H4, R0) >/ (k•/Z2)
∼= BW(k)× (k, +) >/ (k•/Z2).

6. The Second Brauer Group

In the classical Brauer group theory of a commutative ring k, an Azumaya
algebra can be characterized as a central separable algebra over k. However
this is not the case when we deal with the Brauer group of structured algebras.
For instance, in the Brauer–Wall group of a commutative ring k, a representative
(i.e., a Z2-graded Azumaya algebra) is not necessarily a central separable algebra,
instead it is a graded central and graded separable algebra. Motivated by the
example of the Brauer–Wall group, one may be inspired to try to define the
Brauer group of a Hopf algebra H by using H-separable algebras in a natural way
as we did for the Brauer-long group of Z2-dimodule algebras in section 2. In 1974,
B. Pareigis for the first time defined two Brauer groups in a symmetrical category
(see [38]). The first Brauer group was defined in terms of Morita equivalence
whereas the second Brauer group was defined by so called ‘central separable
algebras’ in the category. The two Brauer groups happen to be equal if the
unit of the symmetrical category is a projective object. This is the case if the
category is the Z2-graded module category with the graded product (2–2).

However the dimodule category of a finite abelian group (or a finite com-
mutative cocommutative Hopf algebra) is not a symmetric category, instead a
braided monoidal category ([32]). Therefore, the definition of the second Brauer
group due to Pareigis can not be applied to the dimodule category. Nevertheless,
we are able to modify Pareigis’s definitions to get the proper definitions of the
two Brauer groups for a braided monoidal category (see [52]) so that they allow
to recover all known Brauer groups. We are not going into the details of the
categorical definitions given in [52]. Instead we will focus our attention on the
Yetter Drinfel’d module category of a Hopf algebra.

Like the Brauer–Wall group BW(k), the Brauer–Long group BD(k, H) of a
finite commutative and cocommutative Hopf algebra H over a commutative ring
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k can be defined by central separable algebras in the category when k is nice
(e.g., k is a field with characteristic 0. However, a counter example exists when
k is not so nice, e.g., BD(k,Z2) when 2 is not a unit in k (see [7]).

When a Hopf algebra is not commutative and cocommutaive, even if k is a
field with ch(k) = 0, the second Brauer group defined by H-separable algebras
turns out to be smaller than the Brauer group of H-Azumaya algebras. In other
words, an H-Azumaya algebra is not necessarily an H-separable algebra. Some
examples of this will be presented. Let H be a Hopf algebra over k and let Ae

(or eA) be the H-enveloping algebra A#A (or A#A).

Definition 6.1. Let A be a YD H-module algebra. A is said to be H-separable
if the following exact sequence splits in AeQH :

Ae π̃A−→A −→ 0.

In this section πA is the usual multiplication of A. We will often use M0 to
stand for MH

⋂
M coH , the intersection of the invariants and the coinvariants

of YD H-module M . A H-separable algebra can be described by separability
idempotent elements.

Proposition 6.2. Let A be a YD H-module algebra. The following statements
are equivalent:

(1) A is H-separable.
(2) There exists an element el ∈ Ae

0 such that πA(el) = 1 and (a#1)el = (1#a)el

for all a ∈ A.
(3) There exists an element e ∈ (A#A)0 such that πA(el) = 1 and (a#1)e =

e(1#a) for all a ∈ A.
(4) There exists an element er ∈ eA0 such that πA(er) = 1 and er(a#1) =

er(1#a) for all a ∈ A.
(5) πA : eA −→ A −→ 0 splits in QH

eA.

The proof of these statements is straightforward. We emphasize that H-separable
algebras are k-separable by the statement (3). However a separable YD H-
module algebra is not necessarily H-separable. For instance, the H4-Azumaya
algebra

〈
1,−1

k

〉
is a separable algebra and kZ2-separable, but not a H4-separable

algebra. We also have that H4 itself is an H4-Azumaya algebra, but it is certainly
not a separable algebra over any field.

If el =
∑

xi#yi is a separability idempotent in A#A, we may choose e =∑
xi#yi and er =

∑
xi#yi. Thus we may write eA for el and e′A for er without

ambiguity. Since eA is an idempotent element in each of the above cases, it
follows that if A is H-separable then MA = eA ⇀ M and AN = N ↼ e′A
for M ∈ AeQH and N ∈ QH

eA respectively. In particular, AA = eA ⇀ A and
AA = A ↼ e′A. For a YD H-module algebra A we shall call AA and AA the left
and the right H-center of A respectively. In case AA = k or AA = k we shall
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say that A is left or right central respectively, and A is H-central if A is both left
and right central.

Proposition 6.3. (1) Let f : A −→ B be an epimorphism of YD H-module
algebras. If A is H-separable then B is H-separable.

(2) Let E be a commutative k-algebra. If A is H-separable then E ⊗k A is an
E ⊗k H-separable E-algebra.

(3) If A is H-separable, then A is H-separable. If in addition, A is left (or right)
central then A is right (or left) central respectively.

(4) If A,B are H-separable, so is A#B. If in addition, A and B are left (or
right) central, then A#B is left (or right) central.

Like the classical case, the ground ring k is an H-direct summand of of a left (or
right) central H-separable algebra.

Lemma 6.4. Let A be a left or right H-central H-separable algebra. Then the
inclusion map embeds k as a direct summand of A in QH .

Proof. Let e be an H-separability idempotent of A. Then the map Te : A −→ k

given by Te(a) = e ⇀ a for a ∈ A is a YD H-module map. We have e ⇀ 1 =
πA(e) = 1. ¤

The map Te described above is a section for the inclusion map ι : k ↪→ A in QH ,
that is, Te ◦ ι = id. We will call a YD H-module map T : A −→ k an H-trace
map of a YD H-module algebra A if T (1) = 1. Notice that usually a trace map
is an onto map but does not necessarily carry the unit to the unit. We will show
later that an H-Azumaya algebra A is an H-central H-separable algebra if and
only if A has an H-trace map. It follows that H-trace maps in a one-to-one way
correspond to H-separability idempotents when A is an H-Azumaya algebra.

A YD H-module algebra A is said to be H-simple if A has no proper YD
H-module ideal (simply H-ideal). This is equivalent to A being simple in AeQH

or QH
eA.

Proposition 6.5. Let A be a left (or right) H-central H-separable algebra.
Then A is H-simple if and only if k is a field .

Proof. Suppose that A is H-simple and I is a non-zero ideal of k. IA is an
H-ideal of A and IA = A. Let t be the H-trace map described in Lemma 6.4.
Then t(IA) = t(A) implies I = k. It follows that k is a field.

Conversely, suppose that A is an H-separable algebra over a field k. Since
H-separability implies k-separability, A is semisimple artinian. Let M be an H-
ideal of A, then there exists a central idempotent c ∈ A such that M = cA = Ac.
c must be in A0. Now for any a ∈ A, we have

∑
a(0)(a(1) · c) = ac = ca,

∑
c(0)(c(1) · a) = ca = ac.

Thus c is in both AA and AA. Now if A is left or right H-central H-separable
algebra then c ∈ k, and hence M = cA = A. ¤
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Lemma 6.6. If A is a left or right H-central H-separable algebra, then for any
maximal H-ideal I of A there exists a maximal ideal α of k such that I = αA

and I ∩ k = α.

In view of Proposition 6.5 and Lemma 6.6, one may use an arqument similar to
the classical case [14, 2.8] to obtain that a H-central H-separable algebra is an
H-Azumaya algebra with an H-trace map. In fact, we have the following:

Theorem 6.7. A YD H-module algebra A is an H-central H-separable algebra
if and only if A is an H-Azumaya algebra with an H-trace map.

Proof. By the foregoing remark, it is sufficient to show that an H-Azumaya
algebra with an H-trace map is H-central and H-separable. Assume that A is
an H-Azumaya algebra with an H-trace map T . Since A is H-Azumaya we have
the isomorphism A#A ∼= End(A). In this way we may view T as an element in
A#A. In fact T is in (A#A)0 since T is H-linear and H-colinear. We now can
show that T is an H-separability idempotent of Ae. Now πA(T ) = T (1) = 1,
and for any a, x ∈ A,

(a#1)T (x) = aT (x) = (1#a)T (x),

because T (x) ∈ k. It follows from the foregoing equalities that we have (a#1)T =
(1#a)T for any a ∈ A. Therefore, A is H-separable. ¤

In general, an H-Azumaya algebra is not necessarily H-separable, in other words,
an H-Azumaya algebra need not have an H-trace map. For example, H4 is not
a separable algebra, but it is an H4-Azumaya algebra (see [56]). For this reason,
we call an H-central H-separable algebra a strongly H-Azumaya algebra (for
short we say that it is strong).

Corrollary 6.8. Let A,B be H-Azumaya algebras. If A#B is strong , so are
A and B.

Proof. By Theorem 6.7 it is enough to show that both A and B have an H-
trace map. This is the case since A#B has an H-trace map T and the restriction
map TA(a) = T (a#1) and TB are clearly H-trace maps of A and B respectively.

¤

This corollary indicates that even the trivial H-Azumaya algebra End(M), for
M a faithfully projective YD H-module, is not necessarily strong. For example,
if A is non-strongly H-Azumaya, e.g., A = H4, then A is not strong, and hence
End(A) ∼= A#A is not strong by Corollary 6.8. So a strongly H-Azumaya
algebra may be Brauer equivalent to a non-strongly H-Azumaya algebra. Now
a natural question arises. What condition has to be imposed on H so that any
H-Azumaya algebra is strongly H-Azumaya? We have a complete answer for
a faithfully projective Hopf algebra, and a partial answer for an infinite Hopf
algebra over a field with characteristic 0.
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Proposition 6.9. Let H be a faithfully projective Hopf algebra over k. The
following are equivalent :

(1) Any H-Azumaya algebra is strongly H-Azumaya.
(2) Any elementary H-Azumaya algebra is strongly H-Azumaya.
(3) There exist an integral t ∈ H and an integral ϕ ∈ H∗ such that ε(t) = 1 and

ϕ(1) = 1.
(4) k is a projective object in QH .

Proof. (1) ⇐⇒ (2) due to Corollary 6.8. To prove that (2) =⇒ (3), we take
the faithfully projective YD H-module M which is the left regular H-module
of H itself, with the H-comodule structure given by

ρ(h) =
∑

h(2) ⊗ h(3)S
−1(h(1))

for any h ∈ M . Now let A be the elementary H-Azumaya algebra End(M).
Since A is strong, A has an H-trace map, say, T : A −→ k. Since A is faithfully
projective, A∗ is a YD H-module. We may view T as an element in A∗0 as T is
H-linear and H-colinear. Identify A∗ with M⊗̃∗M as a YD H-module. One may
easily check that the k-module A∗H of H-invariants of A∗ consists of elements
of form {∑

t(1) ⊗ t(2) ⇀ f | t ∈
∫

l

, f ∈ ∗M

}

where
∫

l
is the rank one k-module of left integrals of H and (t(2) ⇀ f)(h) =

f(S−1(t(2))h) for any h ∈ M . It follows that T =
∑

t(1)⊗ t(2) ⇀ f for some left
integral t ∈ H and an element f in ∗M . Let {mi ⊗ pi} be a dual basis of M so
that

∑
mi ⊗ pi = 1A. Since T (1A) = 1k, we obtain:

T (1A) =
∑

pi(t(1))f(S−1(t(2))mi) =
∑

f(S−1(t(2))t(1)) = ε(t)f(1) = 1.

So ε(t) is a unit of k, and one may choose a left integral t′ to replace t so that
ε(t′) = 1.

Similarly, if we choose a faithfully projective YD H-module M as follows:
M = H as a right H-comodule with the comultiplication as the right comodule
structure and with the adjoint left H-action given by

h ·m =
∑

h(2)mS−1(h(1)),

then one may find a left integral ϕ ∈ H∗ such that ϕ(1) = 1.
(3) ⇐⇒ (4) is the Maschke theorem. Since H is a faithfully projective Hopf

algebra, the quantum double Hopf algebra D(H) is faithfully projective over k,
and D(H) is a projective object in QH . Assume that there are two left integrals
t ∈ H and ϕ ∈ H∗ such that ε(t) = 1 and ϕ(1) = 1. The counit of D(H) is a YD
H-module map which is split by the YD H-module map ι′ : k −→ D(H) sending
the unit 1 to the element ϕ ./ t. So k is a YD H-module direct summand of
D(H), and hence it is projective in QH . The converse holds as the foregoing
argument can be reversed.
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Finally, we show that (3) =⇒ (1). Assume ϕ ./ t is a left integral of D(H) such
that ε(t) = 1 = ϕ(1). If A is an H-Azumaya algebra, then the multiplication
map

π : A#A −→ A

splits as a left A#A-module. Let µ : A −→ A#A be the split map, and let
e = µ(1). Then (ϕ ./ t) · e is an H-separability element of A. So A is strongly
H-Azumaya. ¤

If H is not a faithfully projective Hopf algebra, we have a sufficient condition
which requires that the antipode of H be involutory.

Proposition 6.10. Let k be a field with ch(k) = 0 and let H be a Hopf algebra
over k. If the antipode S of H is involutory , then any H-Azumaya algebra is
strongly H-Azumaya.

Proof. By Corollary 6.8, it is enough to show that any elementary H-Azumaya
algebra is strong. Let M be a faithfully projective YD H-module, and let
A = End(M). We show that A has an H-trace map. Identify A with M⊗M∗ as
YD H-modules. Let tr be the normal trace map of A which sends the element
m ⊗m∗ to m∗(m). Since ch(k) = 0, we have that tr(1A) = n for some integer
is a unit. We show that tr is a YD H-module map, then the statement follows.
Indeed, if h ∈ H, m ∈ M and m∗ ∈ M∗, we have

tr(h · (m⊗m∗)) =
∑

tr(h(1) ·m⊗ h(2) ·m∗) =
∑

(h(2) ·m∗)(h(1) ·m)

=
∑

m∗(S(h(2))h(1) ·m) = ε(h) tr(m).

Similarly, tr is H-colinear as well. ¤

Note that when ch(k) = 0 the condition S2 = id is equivalent to the condition
(3) in Proposition 6.9 if H is finite dimensional (see [28]). However, this is not
the case when H is not finite. There is an example of a Hopf algebra that
is involutory (e.g., T (V ), the universal enveloping Hopf algebra), but without
integrals. Nevertheless, it remains open whether k is a projective object in QH

if and only if S2 = id in case ch(k) = 0.

As mentioned in the title of this section, we are able to define the second Brauer
group of strongly H-Azumaya algebras as a result of proposition 6.3. That is,
the second Brauer group, denoted BQs(k, H), consists of isomorphism classes of
strongly H-Azumaya algebras modulo the same Brauer equivalence, where the
elementary H-Azumaya algebras End(M) are required to be H-separable. It is
evident from Theorem 6.7 that the second Brauer group BQs(k,H) is a subgroup
of BQ(k, H), which contains the usual Brauer group Br(k) as a normal subgroup.
Let us summarize it as follows:

Corrollary 6.11. The subset BQs(k, H) represented by the strongly H-Azu-
maya algebras is a subgroup of BQ(k,H).
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Proof. The only thing left to check is the coincidence of the two Brauer equiv-
alence relations. Assume that A and B are two strongly H-Azumaya algebras
and [A] = [B] in BQ(k, H). Then A#B ∼= End(M) for some faithfully projective
YD H-module M . It follows that A#End(B) ∼= B#End(M). By Proposition
6.3, End(B) and End(M) are strongly H-Azumaya algebras, and we obtain that
[A] = [B] in BQs(k,H). ¤

Now the question arises: when is BQs(k,H) equal to BQ(k,H)? When a
Hopf algebra satisfies the assumption in Proposition 6.9 or Proposition 6.10,
BQ(k,H) = BQs(k, H). However, since a strongly H-Azumaya algebra may be
Brauer equivalent to a non-strongly H-Azumaya algebra, there is a possibility
that for some Hopf algebra H, any BQ(k, H) element can be represented by a
strongly H-Azumaya algebra, but at the same time there may exist non-strongly
H-Azumaya algebras.

Note that for a quasitriangular or coquasitriangular Hopf algebra H, The
H-central and H-separable or strongly H-Azumaya algebras are special cases
of those above. For example, If (H, R) is a cosemisimple-like coquasitriangular
Hopf algebra, then BCs(k,H, R) = BC(k, H,R). If G a finite abelian group,
H = kG with a bilinear map ϕ : G × G −→ k, Then H is a cosemisimple-
like coquasitriangular Hopf algebra. Thus all graded (H-) Azumaya algebra are
strongly H-Azumaya [14; 15].
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