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On Quantum Algebras and Coalgebras, Oriented
Quantum Algebras and Coalgebras, Invariants of

1–1 Tangles, Knots and Links

DAVID E. RADFORD

Abstract. We outline a theory of quantum algebras and coalgebras and
their resulting invariants of unoriented 1–1 tangles, knots and links, we
outline a theory of oriented quantum algebras and coalgebras and their re-
sulting invariants of oriented 1–1 tangles, knots and links, and we show how
these algebras and coalgebras are related. Quasitriangular Hopf algebras
are examples of quantum algebras and oriented quantum algebras; likewise
coquasitriangular Hopf algebras are examples of quantum coalgebras and
oriented quantum coalgebras.

Introduction

Since the advent of quantum groups [4] many algebraic structures have been
described which are related to invariants of 1–1 tangles, knots, links or 3-mani-
folds. The purpose of this paper is to outline a theory for several of these
structures, which are defined over a field k, and to discuss relationships among
them. The structures we are interested in are: quantum algebras, quantum
coalgebras, oriented quantum algebras, oriented quantum coalgebras and their
“twist” specializations.

Quantum algebras and coalgebras account for regular isotopy invariants of un-
oriented 1–1 tangles. Twist quantum algebras and coalgebras, which are quan-
tum algebras and coalgebras with certain additional structure, account for regu-
lar isotopy invariants of unoriented knots and links. As the terminology suggests,
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oriented quantum algebras and coalgebras account for regular isotopy invariants
of oriented 1–1 tangles; twist oriented quantum algebras and coalgebras account
for regular isotopy invariants of oriented knots and links.

The notion of quantum algebra was described some time ago [10] whereas the
notion of quantum coalgebra (which is more general than dual quantum alge-
bra) was described somewhat later [19]. The notions of oriented quantum algebra
and oriented quantum coalgebra have been formulated very recently and initial
papers about them [16; 17] have just been circulated. This paper is basically
a rough overview of a rather extensive body of joint work by the author and
Kauffman [13; 15; 16; 17; 19; 20] on these and related structures. At the time of
this writing oriented quantum algebras account for most known regular isotopy
invariants of oriented links [20]; thus oriented quantum algebras are important
for that reason. Oriented quantum algebras and quantum algebras are related
in an interesting way. Every quantum algebra has an oriented quantum algebra
structure which is called the associated oriented quantum algebra structure. Not
every oriented quantum algebra is an associated oriented quantum algebra struc-
ture. However, a quantum algebra can always be constructed from an oriented
quantum algebra in a natural way.

A quasitriangular Hopf algebra has a quantum algebra structure and a ribbon
Hopf algebra has a twist quantum algebra structure. Hence there are close
connections between Hopf algebras, quantum algebras and oriented quantum
algebras. Quantum coalgebras and oriented quantum coalgebras are related
in the same ways that quantum algebras and oriented quantum algebras are.
Coquasitriangular Hopf algebras have a quantum coalgebra structure. There
are coquasitriangular Hopf algebras associated with a wide class of quantum
coalgebras; therefore there are close connections between Hopf algebras, quantum
coalgebras and oriented quantum coalgebras.

In this paper we focus on the algebraic theory of quantum algebras and the
other structures listed above and we focus on the algebraic theory of their asso-
ciated invariants. For a topological perspective on these theories, in particular
for a topological motivation of the definitions of quantum algebra and oriented
quantum algebra, the reader is encouraged to consult [17; 21]. Here we do not
calculate invariants, except to provide a few simple illustrations, nor do we clas-
sify them. For more extensive calculations see [12; 13; 14; 15; 18; 19] and [27].
We do, however, describe in detail how the Jones polynomial fits into the context
of oriented quantum algebras (and thus quantum coalgebras). A major goal of
this paper is to describe in sufficient detail an algebraic context which accounts
for many known regular isotopy invariants of knots and links and which may
prove to be fertile ground for the discovery of new invariants.

The paper is organized as follows. In Section 1 basic notations are discussed;
bilinear forms, the quantum Yang–Baxter and braid equations are reviewed. We
assume that the reader has a basic knowledge of coalgebras and Hopf algebras.
Good references are [1; 24; 31]. Section 2 deals with Yang–Baxter algebras and
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the dual concept of Yang–Baxter coalgebras. Yang–Baxter algebras or coalgebras
are integral parts of the algebraic structures we study in this paper. Yang–Baxter
coalgebras are defined in [2] and are referred to as coquasitriangular coalgebras
in [22].

The basic theory of quantum algebras is laid out in Section 3. We discuss
the connection between quantum algebras and quasitriangular Hopf algebras
and show how ribbon Hopf algebras give rise to oriented quantum algebras.
Likewise the basic theory of oriented quantum algebras is outlined in Section 4;
in particular we describe the oriented quantum algebra associated to a quantum
algebra.

Section 5 gives a rather detailed description of the construction of a quantum
algebra from an oriented quantum algebra. Sections 6 and 7 are about the
invariants associated to quantum algebras, oriented quantum algebras and their
twist specializations. These invariants are described in terms of a very natural
and intuitive bead sliding formalism. Section 8 makes the important connection
between the invariants computed by bead sliding with invariants computed by
the well-established categorical method [28; 29]. The reader is encouraged to
consult [13; 17; 28; 29] as background material for Sections 6–8.

The material of Section 8 motivates the notion of inner oriented quantum
algebra which is discussed in Section 9. The Hennings invariant, which a 3-
manifold invariant defined for certain finite-dimensional ribbon Hopf algebras,
can be explained in terms of the bead sliding formalism. We comment on aspects
of computation of this invariant in Section 10.

Sections 11–13 are the coalgebras versions of Sections 3–5. In Section 14 our
paper ends with a discussion of invariants constructed from quantum coalgebras,
oriented quantum coalgebras and their twist specializations. There may be a
practical advantage to computing invariants using coalgebra structures instead
of algebra structures.

Throughout k is a field and all algebras, coalgebras and vector spaces are over
k. Frequently we denote algebras, coalgebras and the like by their underlying
vector spaces and we denote the set of non-zero elements of k by k?. Finally, the
author would like to thank the referee for his or her very thoughtful suggestions
and comments. Some of the comments led to additions to this paper, namely
Propositions 1, 4, Corollary 2 and Section 9.

1. Preliminaries

For vector spaces U and V over k we denote the tensor product U⊗kV by
U⊗V , the identity map of V by 1V and the linear dual Homk(V, k) of V by
V ∗. If T is a linear endomorphism of V then an element v ∈ V is T -invariant if
T (v) = v. The twist map τU,V : U⊗V −→ V⊗U is defined by τU,V (u⊗v) = v⊗u

for all u ∈ U and v ∈ V . If V is an algebra over k we let 1V also denote the unit
of k. The meaning 1V should always be clear from context.
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By definition of the tensor product U⊗V of U and V over k there is a bijective
correspondence between the set of bilinear forms b : U×V −→ k and the vector
space (U⊗V )∗ given by b 7→ blin, where blin(u⊗v) = b(u, v) for all u ∈ U and
v ∈ V . We refer to bilinear forms b : U×U −→ k as bilinear forms on U .

Let b : U×V −→ k be a bilinear form and regard U∗⊗V ∗ as a subspace of
(U⊗V )∗ in the usual way. Then b is of finite type if blin ∈ U∗⊗V ∗ in which case
we write ρb for blin. Thus when b is of finite type ρb(u⊗v) = b(u, v) for all u ∈ U

and v ∈ V . Observe that b is of finite type if and only if one of b` : U −→ V ∗ and
br : V −→ U∗ has finite rank, where b`(u)(v) = b(u, v) = br(v)(u) for all u ∈ U

and v ∈ V . Consequently if one of U or V is finite-dimensional b is of finite type.
The bilinear form b is left non-singular if b` is one-one, is right non-singular if br

is one-one and is non-singular if b is both left and right non-singular.
Suppose that ρ is an endomorphism of U⊗U and consider the endomorphisms

ρ(i,j) of U⊗U⊗U for 1 ≤ i < j ≤ 3 defined by

ρ(1,2) = ρ⊗1U , ρ(2,3) = 1U⊗ρ and ρ(1,3) = (1U⊗τU,U )◦(ρ⊗1U )◦(1U⊗τU,U ).

The quantum Yang–Baxter equation is

ρ(1,2)◦ρ(1,3)◦ρ(2,3) = ρ(2,3)◦ρ(1,3)◦ρ(1,2) (1–1)

and the braid equation is

ρ(1,2)◦ρ(2,3)◦ρ(1,2) = ρ(2,3)◦ρ(1,2)◦ρ(2,3). (1–2)

Observe that ρ satisfies (1–1) if and only if ρ◦τU,U satisfies (1–2) or equivalently
τU,U◦ρ satisfies (1–2). If ρ is invertible then ρ satisfies (1–1) if and only if ρ−1

does and ρ satisfies (1–2) if and only if ρ−1 does.
Let (C, ∆, ε) be a coalgebra over k. We use the notation ∆(c) = c(1)⊗c(2)

for c ∈ C, a variation of the Heyneman–Sweedler notation, to denote the co-
product. Generally we write ∆(n−1)(c) = c(1)⊗ · · ·⊗c(n), where ∆(1) = ∆ and
∆(n) = (∆⊗1C⊗ · · ·⊗1C)◦∆(n−1) for n ≥ 2. We let Ccop denote the coalgebra
(C, ∆cop, ε) whose coproduct is given by ∆cop(c) = c(2)⊗c(1) for all c ∈ C. If
(M,ρ) is a right C-comodule we write ρ(m) = m<1>⊗m(2) for m ∈ M .

Let the set of bilinear forms on C have the algebra structure determined by
its identification with the dual algebra (C⊗C)∗ given by b 7→ blin. Observe that
b, b′ : C×C −→ k are inverses if and only if

b(c(1), d(1))b′(c(2), d(2)) = ε(c)ε(d) = b′(c(1), d(1))b(c(2), d(2))

for all c, d ∈ C. In this case we write b−1 = b′.
For an algebra A over k we let Aop denote the algebra whose ambient vector

space is A and whose multiplication is given by a·b = ba for all a, b ∈ A. An
element tr of A∗ is tracelike if tr(ab) = tr(ba) for all a, b ∈ A. The trace function
on the algebra Mn(k) of n×n matrices over k is a primary example of a tracelike
element.
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For a vector space V over k and ρ ∈ V⊗V we define

V(ρ) = {(u∗⊗1V )(ρ) + (1V⊗v∗)(ρ) |u∗, v∗ ∈ V ∗}.
For an algebra A over k and invertible ρ ∈ A⊗A we let Aρ be the subalgebra of A

generated by A(ρ) +A(ρ−1). The following lemma will be useful in our discussion
of minimal quantum algebras.

Lemma 1. Let V be a vector space over k and ρ ∈ V⊗V .

(a) ρ ∈ V(ρ)⊗V(ρ) and V(ρ) is the smallest subspace U of V such that ρ ∈ U⊗U .
(b) Suppose that t is a linear endomorphism of V which satisfies (t⊗t)(ρ) = ρ.

Then t(V(ρ)) = V(ρ).

Proof. Part (a) follows by definition of V(ρ). For part (b), we may assume
that ρ 6= 0 and write ρ =

∑r
ı=1 uı⊗vı, where r is as small as possible. Then

{u1, . . . , ur}, {v1, . . . , vr} are linearly independent and the uı’s together with
the vı’s span V(ρ). Since (t⊗t)(ρ) = ρ, or equivalently

∑r
ı=1 t(uı)⊗t(vı) =∑r

ı=1 uı⊗vı, it follows that the sets {t(u1), . . . , t(ur)} and {t(v1), . . . , t(vr)} are
also linearly independent, that {u1, . . . , ur}, {t(u1), . . . , t(ur)} have the same
span and that {v1, . . . , vr}, {t(v1), . . . , t(vr)} have the same span. Thus t(V(ρ)) =
V(ρ). ¤

2. Yang–Baxter Algebras and Yang–Baxter Coalgebras

Let A be an algebra over the field k and let ρ =
∑r

ı=1 aı⊗bı ∈ A⊗A. We set

ρ1 2 =
r∑

ı=1

aı⊗bı⊗1, ρ1 3 =
r∑

ı=1

aı⊗1⊗bı and ρ2 3 =
r∑

ı=1

1⊗aı⊗bı.

The quantum Yang–Baxter equation for ρ is

ρ1 2ρ1 3ρ2 3 = ρ2 3ρ1 3ρ1 2, (2–1)

or equivalently
r∑

ı,,`=1

aıa ⊗ bıa` ⊗ bb` =
r∑

,ı,`=1

aaı ⊗ a`bı ⊗ b`b. (2–2)

Observe that (2–1) is satisfied when A is commutative. The pair (A, ρ) is called
a Yang–Baxter algebra over k if ρ is invertible and satisfies (2–1).

Suppose that (A, ρ) and (A′, ρ′) are Yang–Baxter algebras over k. Then
(A⊗A′, ρ′′) is a Yang–Baxter algebra over k, called the tensor product of (A, ρ)
and (A′, ρ′), where ρ′′ = (1A⊗τA,A′⊗1A′)(ρ⊗ρ′). A morphism f : (A, ρ) −→
(A′, ρ′) of Yang–Baxter algebras is an algebra map f : A −→ A′ which satisfies
ρ′ = (f⊗f)(ρ). Note that (k, 1⊗1) is a Yang–Baxter algebra over k. The cat-
egory of Yang–Baxter algebras over k with their morphisms under composition
has a natural monoidal structure.
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Since ρ is invertible and satisfies (2–1) then ρ−1 does as well as (ρ−1)ı  =
(ρı )−1 for all 1 ≤ ı <  ≤ 3. Thus (A, ρ−1) is a Yang–Baxter algebra over
k. Note that (Aop, ρ) and (A, ρop) are Yang–Baxter algebras over k also, where
ρop =

∑r
ı=1 bı⊗aı.

An interesting example of a Yang–Baxter algebra for us [16, Example 1] is
the following where A = Mn(k) is the algebra of all n×n matrices over k. For
1 ≤ ı,  ≤ n let Eı  ∈ Mn(k) be the n×n matrix which has a single non-zero
entry which is 1 and is located in the ith row and th column. Then {Eı }1≤ı,≤n

is the standard basis for Mn(k) and Eı E` m = δ `Eı m for all 1 ≤ ı, , `, m ≤ n.

Example 1. Let n ≥ 2, a, bc ∈ k? satisfy a2 6= bc, 1 and let

B = {bı  | 1 ≤ ı <  ≤ n}, C = {c ı | 1 ≤ ı <  ≤ n}
be indexed subsets of k? such that bı c ı = bc for all 1 ≤ ı <  ≤ n. Then
(Mn(k), ρa,B,C) is a Yang–Baxter algebra over k, where

ρa,B,C =
∑

1≤ı<≤n

((
a− bc

a

)
Eı⊗Eı + bıEıı⊗E + cıE⊗Eıı

)
+

n∑
ı=1

aEıı⊗Eıı.

That ρa,B,C satisfies (2–1) follows by [27, Lemma 4 and (37)]. The notation for
the scalar bc is meant to suggest a product. We point out that ρa,B,C can be
derived from βq,P (A`) of [6, Section 5]. See [8] also.

Representations of Yang–Baxter algebras determine solutions to the quan-
tum Yang–Baxter equation. Suppose that A is an algebra over k and ρ =∑r

ı=1 aı⊗bı ∈ A⊗A. For a left A-module M let ρM be the endomorphism of
M⊗M defined by ρM (m⊗n) =

∑r
ı=1 aı·m⊗bı·n for all m,n ∈ M . Then (A, ρ)

is a Yang–Baxter algebra over k if and only if ρM is an invertible solution to the
quantum Yang–Baxter equation (1–1) for all left A-modules M .

The notions of minimal quantum algebra and minimal oriented quantum al-
gebra are important for theoretical reasons. These notions are based on the
notion of minimal Yang–Baxter algebra. A minimal Yang–Baxter algebra is a
Yang–Baxter algebra (A, ρ) over k such that A = Aρ. Observe that only Aρ is
involved in the definition of ρM of the preceding paragraph.

Let (A, ρ) be a Yang–Baxter algebra over k. A Yang–Baxter subalgebra of
(A, ρ) is a pair (B, ρ) where B is a subalgebra of A such that ρ, ρ−1 ∈ B⊗B; thus
Aρ ⊆ B. Consequently (A, ρ) has a unique minimal Yang–Baxter subalgebra
which is (Aρ, ρ). Observe that a Yang–Baxter algebra (B, ρ′) is a Yang–Baxter
subalgebra of (A, ρ) if and only if B is a subalgebra of A and the inclusion
ı : B −→ A induces a morphism of Yang–Baxter algebras ı : (B, ρ′) −→ (A, ρ).

Let I be an ideal of A. Then there is a (unique) Yang–Baxter algebra structure
(A/I, ρ) on the quotient A/I such that the projection π : A −→ A/I determines
a morphism π : (A, ρ) −→ (A/I, ρ) of Yang–Baxter algebras. If K is a field
extention of k then (A⊗K, ρ⊗1K) is a Yang–Baxter algebra over K where we
make the identification ρ⊗1K =

∑r
ı=1(aı⊗1K)⊗(bı⊗1K).
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We now turn to Yang–Baxter coalgebras. A Yang–Baxter coalgebra over k is
a pair (C, b), where C is a coalgebra over k and b : C×C −→ k is an invertible
bilinear form, such that

b(c(1), d(1))b(c(2), e(1))b(d(2), e(2)) = b(c(2), d(2))b(c(1), e(2))b(d(1), e(1))

for all c, d, e ∈ C. Observe that this equation is satisfied when C is cocommuta-
tive.

Let (C, b) and (C ′, b′) be Yang–Baxter coalgebras over k. Then (C⊗C ′, b′′)
is a Yang–Baxter coalgebra over k, where b′′(c⊗c′, d⊗d′) = b(c, d)b′(c′, d′) for
all c, d ∈ C and c′, d′ ∈ C ′. A morphism f : (C, b) −→ (C ′, b′) of Yang–Baxter
coalgebras over k is a coalgebra map f : C −→ C ′ which satisfies b(c, d) =
b′(f(c), f(d)) for all c, d ∈ C. Observe that (k, b) is a Yang–Baxter coalgebra
over k where b(1, 1) = 1. The category of all Yang–Baxter coalgebras over k

with their morphisms under composition has a natural monoidal structure.
Since (C, b) is a Yang–Baxter coalgebra over k it follows that (Ccop, b), (C, b−1)

and (C, bop) are as well, where bop(c, d) = b(d, c) for all c, d ∈ C.
The notions of Yang–Baxter algebra and Yang–Baxter coalgebra are dual as

one might suspect. Let (A, ρ) be a Yang–Baxter algebra over k. Then (Ao, bρ) is a
Yang–Baxter coalgebra over k, where bρ(ao, bo) = (ao⊗bo)(ρ) for all ao, bo ∈ Ao,
and the bilinear form bρ is of finite type. Suppose that C is a coalgebra over k

and that b : C×C −→ k is a bilinear form of finite type, which is the case if C

is finite-dimensional. Then (C, b) is a Yang–Baxter coalgebra over k if and only
if (C∗, ρb) is a Yang–Baxter algebra over k.

Let I be a coideal of C which satisfies b(I, C) = (0) = b(C, I). Then there is
a (unique) Yang–Baxter coalgebra structure (C/I, b) on the quotient C/I such
that the projection π : C −→ C/I defines a morphism π : (C, b) −→ (C/I, b)
of Yang–Baxter coalgebras. Now let I the sum of all coideals J of C which
satisfy b(J,C) = (0) = b(C, J). Set Cr = C/I and define br : Cr×Cr −→ k by
br(c+I, d+I) = b(c, d) for all c, d ∈ C. Then (Cr, br) is a Yang–Baxter coalgebra
over k. This construction is dual to the construction (Aρ, ρ) for Yang–Baxter
algebras (A, ρ) over k.

Rational representations of Yang–Baxter coalgebras over k determine solu-
tions to the quantum Yang–Baxter equation just as representations of Yang–
Baxter algebras do. Suppose that C is a coalgebra over k and that b : C×C −→ k

is a bilinear form. For a right C-comodule M let τM be the endomorphism of
M⊗M defined by τM (m⊗n) = m<1>⊗n<1>b(m(2), n(2)) for all m,n ∈ M . Then
(C, b) is a Yang–Baxter coalgebra over k if and only if τM is an invertible solution
to the quantum Yang–Baxter equation (1–1) for all right C-comodules M .

Note that τM for a Yang–Baxter coalgebra (C, b) can be defined in terms
(Cr, br). For let (M, ρ) be a right C-comodule and let π : C −→ Cr be the
projection. Then (M,ρr) is a right Cr-comodule, where ρr = (1M⊗π)◦ρ, and
τM defined for (M, ρ) is the same as τM defined for (M,ρr).
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Let D be a subcoalgebra of C. Then (D, b|D×D) is a Yang–Baxter coalgebra
which we call a Yang–Baxter subcoalgebra of (C, b). Observe that Yang–Baxter
subcoalgebras of (C, b) are those Yang–Baxter coalgebras (D, b′) such that D

is a subcoalgebra of C and the inclusion ı : D −→ C induces a morphism ı :
(D, b′) −→ (C, b) of Yang–Baxter coalgebras over k. Let K be a field extension of
k. Then (C⊗K, bK) is a Yang–Baxter coalgebra over K, where bK(c⊗α, d⊗β) =
αβb(c, d) for all c, d ∈ C and α, β ∈ K.

3. Quantum Algebras and Quasitriangular Hopf Algebras

Quantum algebras determine regular isotopy invariants of 1–1 tangles and
twist quantum algebras determine regular isotopy invariants of knots and links.
The notion of quantum algebra arises in the consideration of the algebra of
unoriented knot and link diagrams; see Section 6 for an indication of how the
axioms for quantum algebras are related to the diagrams.

In this section we recall the definitions of quantum algebra and twist quan-
tum algebra, discuss basic examples and outline some fundamental results about
them. The reader is referred to [19].

A quantum algebra over k is a triple (A, ρ, s), where (A, ρ) is a Yang–Baxter
algebra over k and s : A −→ Aop is an algebra isomorphism, such that

(QA.1) ρ−1 = (s⊗1A)(ρ) and

(QA.2) ρ = (s⊗s)(ρ).

Observe that (QA.1) and (QA.2) imply

(QA.3) ρ−1 = (1A⊗s−1)(ρ);

indeed any two of (QA.1)–(QA.3) imply the third.
Quasitriangular Hopf algebras are a basic source of quantum algebras. A

quasitriangular Hopf algebra over k is a pair (A, ρ), where A is a Hopf algebra
with bijective antipode s over k and ρ =

∑r
ı=1 aı⊗bı ∈ A⊗A, such that:

(QT.1)
∑r

ı=1 ∆(aı)⊗bı =
∑r

ı,=1 aı⊗a⊗bıb,

(QT.2)
∑r

ı=1 ε(aı)bı = 1,

(QT.3)
∑r

ı=1 aı⊗∆cop(bı) =
∑r

ı,=1 aıa⊗bı⊗b,

(QT.4)
∑r

ı=1 aıε(bı) = 1 and

(QT.5)(∆cop(a))ρ = ρ(∆(a)) for all a ∈ A.

Our definition of quasitriangular Hopf algebra is another formulation of the def-
inition of quasitriangular Hopf algebra [4, page 811] in the category of finite-
dimensional vector spaces over a field. Observe that (QT.1) and (QT.2) im-
ply that ρ is invertible and ρ−1 = (s⊗1A)(ρ); apply (m⊗1A)◦(s⊗1A⊗1A) and
(m⊗1A)◦(1A⊗s⊗1A) to both sides of the equation of (QT.1). Using (QT.3)
and (QT.4) it follows by a similar argument that ρ−1 = (1A⊗s−1)(ρ). See [23,
page 13].
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Observe that ρ satisfies (2–1) by (QT.1) and (QT.5), or equivalently by (QT.3)
and (QT.5). Thus:

Example 2. If (A, ρ) is a quasitriangular Hopf algebra over k then (A, ρ, s) is a
quantum algebra over k, where s is the antipode of A.

A fundamental example of a quasitriangular Hopf algebra is the quantum double
(D(A),ρ) of a finite-dimensional Hopf algebra A with antipode s over k defined
in [4]. As a coalgebra D(A) = A∗ cop⊗A. The multiplicative identity for the
algebra structure on D(A) is ε⊗1 and multiplication is determined by

(p⊗a)(q⊗b) = p(a(1)⇀q↼s−1(a(3)))⊗a(2)b

for all p, q ∈ A∗ and a, b ∈ A; the functional a⇀q↼b ∈ A∗ is defined by
(a⇀q↼b)(c) = q(bca) for all c ∈ A. We follow [26] for the description of the
quantum double.

Let {a1, . . . , ar} be a linear basis for A and let {a1, . . . , ar} be the dual basis
for A∗. Then (D(A),ρ) is a minimal quasitriangular Hopf algebra, where ρ =∑r

ı=1(ε⊗aı)⊗(aı⊗1). The definition of ρ does not depend on the choice of basis
for A.

Coassociativity is not needed for Example 2. A structure which satisfies the
axioms for a Hopf algebra over k with the possible exception of the coassociative
axiom is called a not necessarily coassociative Hopf algebra.

A very important example of a quantum algebra, which accounts for the Jones
polynomial when k = C is the field of complex numbers, is one defined on the
algebra A = M2(k) of 2×2 matrices over k. The Jones polynomial and its
connection with this quantum algebra is discussed in detail in Section 8.

Example 3. Let k be a field and q ∈ k?. Then (M2(k), ρ, s) is a quantum
algebra over k, where

ρ = q−1(E1 1⊗E1 1 +E2 2⊗E2 2)+q(E1 1⊗E2 2 +E2 2⊗E1 1)+(q−1−q3)E1 2⊗E2 1

and

s(E1 1) = E2 2, s(E2 2) = E1 1, s(E1 2) = −q−2E1 2, s(E2 1) = −q2E2 1.

Let (A, ρ, s) and (A′, ρ′, s′) be quantum algebras over k. The tensor prod-
uct of (A, ρ, s) and (A′, ρ′, s′) is the quantum algebra (A⊗A′, ρ′′, s⊗s′), where
(A⊗A′, ρ′′) is the tensor product of the Yang–Baxter algebras (A, ρ) and (A′, ρ′).
A morphism f : (A, ρ, s) −→ (A′, ρ′, s′) of quantum algebras is a morphism
f : (A, ρ) −→ (A′, ρ′) of Yang–Baxter algebras which satisfies f◦s = s′◦f . Ob-
serve that (k, 1⊗1, 1k), is a quantum algebra over k. The category of quantum
algebras over k and their morphisms under composition has a natural monoidal
structure.

Let (A, ρ, s) be a quantum algebra over k. Then (A, ρ) is a Yang–Baxter
algebra over k and thus (Aop, ρ), (A, ρ−1) and (A, ρop) are also as we have noted.
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It is not hard to see that (Aop, ρ, s), (A, ρ−1, s−1) and (A, ρop, s−1) are quantum
algebras over k.

Certain quotients of A have a quantum algebra structure. Let I be an ideal
of A which satisfies s(I) = I. Then there exists a (unique) quantum alge-
bra structure (A/I, ρ, s) on the quotient algebra A/I such that the projection
π : A −→ A/I determines a morphism π : (A, ρ, s) −→ (A/I, ρ, s) of quantum
algebras over k. If f : (A, ρ, s) −→ (A′ρ′, s′) is a morphism of quantum alge-
bras, and f is onto, then (A/I, ρ, s) and (A′, ρ′, s′) are isomorphic. We let the
reader formulate and prove fundamental homomorphism theorems for quantum
algebras.

We say that (A, ρ, s) is a minimal quantum algebra over k if A = Aρ. Let B

be a subalgebra of A such that ρ ∈ B⊗B and s(B) = B. Then (B, ρ, s|B) is a
quantum algebra over k which is called a quantum subalgebra of (A, ρ, s). Since
ρ = (s⊗s)(ρ) it follows that s(Aρ) = Aρ by Lemma 1. Thus (Aρ, ρ, s|Aρ

) is a
quantum subalgebra of (A, ρ, s). Observe that Aρ is generated as an algebra by
A(ρ) + A(ρ−1) = A(ρ) since ρ−1 = (s⊗1A)(ρ).

If (B, ρ, s|B) is a quantum subalgebra of (A, ρ, s) then Aρ ⊆ B; thus (A, ρ, s)
has a unique minimal quantum subalgebra which is (Aρ, ρ, s|Aρ). Notice that the
quantum subalgebras of (A, ρ, s) are the quantum algebras of the form (B, ρ′, s′),
where B is a subalgebra of A and the inclusion ı : B −→ A induces a morphism
ı : (B, ρ′, s′) −→ (A, ρ, s).

Quantum algebras account for regular isotopy invariants of (unoriented) 1–
1 tangles and twist quantum algebras account for regular isotopy invariants of
knots and links. See Section 6.2 for details. A twist quantum algebra over k is a
quadruple (A, ρ, s, G), where (A, ρ, s) is a quantum algebra over k and G ∈ A is
invertible, such that

s(G) = G−1 and s2(a) = GaG−1

for all a ∈ A. Twist quantum algebras arise from ribbon Hopf algebras and
from quantum algebras defined on A = Mn(k). It is important to note that an
essential ingredient for the construction of a knot or link invariant from a twist
quantum algebra is an s∗-invariant tracelike functional tr ∈ A∗.

As the referee has observed, every quantum algebra can be embedded in a twist
quantum algebra. Specifically, given a quantum algebra (A, ρ, s) over k there is a
twist quantum algebra (A, ρ, s, G) over k and an algebra embedding ı : A −→ A

which induces a morphism of quantum algebras ı : (A, ρ, s) −→ (A, ρ, s).
We construct (A, ρ, s, G) as follows. As a vector space over A = ⊕`∈ZA`,

where A` = {(`, a) | a ∈ A} is endowed with the vector space structure which
makes the bijection A −→ A` defined by a 7→ (`, a) a linear isomorphism. The
rule (`, a)·(m, b) = (` + m, s−2m(a)b) for all `,m ∈ Z and a, b ∈ A gives A an
associative algebra structure. The linear endomorphism S of A determined by
S((`, a)) = (−`, s2`+1(a)) is an algebra isomorphism S : A −→ Aop. The reader
can easily check that (A, ρ, s,G) is the desired twist quantum algebra, where



QUANTUM ALGEBRAS AND INVARIANTS OF LINKS 273

ı : A −→ A is defined by ı(a) = (0, a), ρ = (ı⊗ı)(ρ) and G = (1, 1). The reader
is left to supply the few remaining details of the proof of the following result
which describes the pair (ı, (A,ρ, s, G)).

Proposition 1. Let (A, ρ, s) be a quantum algebra over the field k. Then the
pair (ı, (A,ρ, s, G)) satisfies the following :

(a) (A, ρ, s, G) is a twist quantum algebra over k and ı : (A, ρ, s) −→ (A,ρ, s)
is a morphism of quantum algebras.

(b) If (A′, ρ′, s′, G′) is a twist quantum algebra over k and f : (A, ρ, s) −→
(A′, ρ′, s′) is a morphism of quantum algebras then there exists a morphism F :
(A,ρ, s,G) −→ (A′, ρ′, s′, G′) of twist quantum algebras uniquely determined
by F◦ı = f . ¤

Recall that a ribbon Hopf algebra over k is a triple (A, ρ, v), where (A, ρ) is a
quasitriangular Hopf algebra with antipode s over k and v ∈ A, such that

(R.0) v is in the center of A,

(R.1) v2 = us(u),

(R.2) s(v) = v,

(R.3) ε(v) = 1 and

(R.4) ∆(v) = (v⊗v)(ρopρ)−1 = (ρopρ)−1(v⊗v).

Ribbon Hopf algebras were introduced and studied by Reshetikhin and Turaev
in [29]. The element v is referred to as a special element or ribbon element in
the literature. See [11] also.

Let (A, ρ, v) be a ribbon Hopf algebra over k, write ρ =
∑r

ı=1 aı⊗bı and let u =∑r
ı=1 s(bı)aı be the Drinfel’d element of the quasitriangular Hopf algebra (A, ρ).

Then u is invertible, s2(a) = uau−1 for all a ∈ A and ∆(u) = (u⊗u)(ρopρ)−1 =
(ρopρ)−1(u⊗u) by the results of [3]. Since u is invertible it follows by (R.1) that
v is invertible. Thus G = uv−1 is invertible, is a grouplike element of A and
s2(a) = GaG−1 for all a ∈ A. Since G is a grouplike element of A it follows that
s(G) = G−1. Collecting results:

Example 4. Let (A, ρ, v) be a ribbon Hopf algebra with antipode s over k.
Then (A, ρ, s, uv−1) is a twist quantum algebra over k, where u is the Drinfel’d
element of the quasitriangular Hopf algebra (A, ρ).

For a detailed explanation of the relationship between ribbon and grouplike
elements the reader is referred to [11].

Any algebra automorphism t of Mn(k) has the form t(a) = GaG−1 for all
a ∈ Mn(k), where G ∈ Mn(k) is invertible, by the Norther–Skolem Theorem.
See the corollary to [7, Theorem 4.3.1]. Such a G is unique up to scalar multiple.
Let at be the transpose of a ∈ Mn(k).

Lemma 2. Let (Mn(k), ρ, s) be a quantum algebra over k.
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(a) There exists an invertible M ∈ Mn(k) such that s(a) = MatM−1 for all
a ∈ Mn(k).

(b) (Mn(k), ρ, s, M(M t)−1) is a twist quantum algebra over k.

Proof. First observe that t(a) = s(at) for all a ∈ Mn(k) defines an algebra
automorphism t of Mn(k). Thus t(a) = MaM−1 for all a ∈ Mn(k) for some
invertible M ∈ Mn(k) by the preceding remarks. Since s(a) = t(at) for all
a ∈ Mn(k) part (a) follows. Part (b) is the result of a straightforward calculation.

¤

For the quantum algebra of Example 3 we may take M = q−1E1 2 − qE2 1 and
thus G = −(q−2E1 1 + q2E2 2).

4. Oriented Quantum Algebras

Just as the notion of quantum algebra arises in the consideration of algebra
associated with diagrams of unoriented knots and links, the notion of oriented
quantum algebra arises in connection with diagrams of oriented knots and links
[17]. In Section 7 the reader will begin to see the relationship between the
axioms for an oriented quantum algebra and oriented diagrams. For a detailed
explanation of the topological motivation for the concept of oriented quantum
algebra the reader is referred to [17]. An expanded version of most of what
follows is found in [16].

An oriented quantum algebra over the field k is a quadruple (A, ρ, td, tu), where
(A, ρ) is a Yang–Baxter algebra over k and td, tu are commuting algebra auto-
morphisms of A, such that

(qa.1) (1A⊗tu)(ρ) and (td⊗1A)(ρ−1) are inverses in A⊗Aop, and

(qa.2) ρ = (td ⊗ td)(ρ) = (tu ⊗ tu)(ρ).

Suppose that (A, ρ, td, tu) and (A′, ρ′, t′d, t
′
u) are oriented quantum algebras over k.

Then (A⊗A′, ρ′′, td⊗t′d, tu⊗t′u) is an oriented quantum algebra over k, which we
refer to as the tensor product of (A, ρ, td, tu) and (A′, ρ′, t′d, t

′
u), where (A⊗A′, ρ′′)

is the tensor product of the Yang–Baxter algebras (A, ρ) and (A′, ρ′). A mor-
phism f : (A, ρ, td, tu) −→ (A′, ρ′, t′d, t

′
u) of oriented quantum algebras is a mor-

phism f : (A, ρ) −→ (A′, ρ′) of Yang–Baxter algebras over k which satisfies
t′d◦f = f◦td and t′u◦f = f◦tu. Note that (k, 1⊗1, 1k, 1k) is an oriented quantum
algebra over k. The category of oriented quantum algebras over k together with
their morphisms under composition has a natural monoidal structure.

An oriented quantum algebra (A, ρ, td, tu) over k is standard if td = 1A and
is balanced if td = tu, in which case we write (A, ρ, t) for (A, ρ, td, tu), where
t = td = tu.

Standard oriented quantum algebras play an important role in the theory
of oriented quantum algebras. There is always a standard oriented quantum
algebra associated with an oriented quantum algebra.
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Proposition 2. If (A, ρ, td, tu) is an oriented quantum algebra over k then
(A, ρ, tu◦td, 1A) and (A, ρ, 1A, td◦tu) are also.

Proof. Apply the algebra automorphisms tu⊗1A and 1A⊗td of A⊗Aop to both
sides of the equations of (qa.1). ¤

The oriented quantum algebra (A, ρ, 1A, td◦tu) is the standard oriented quantum
algebra associated with (A, ρ, td, tu).

The Yang–Baxter algebra of Example 1 has a balanced oriented quantum
algebra structure.

Example 5. Let n ≥ 2, a, bc ∈ k? satisfy a2 6= bc, 1 and suppose ω1, . . . , ωn ∈ k?

satisfy

ω2
ı =

(
a2

bc

)ı−1

ω2
1

for all 1 ≤ ı ≤ n. Then (Mn(k), ρa,B,C, t) is a balanced oriented quantum algebra,
where

t(Eı ) =
(

ωı

ω

)
Eı 

for all 1 ≤ ı,  ≤ n.

Example 5 is considered in more generality in [16, Theorem 2].
Suppose that (A, ρ, td, tu) is an oriented quantum algebra over k and write

ρ =
∑r

ı=1 aı⊗bı, ρ
−1 =

∑s
=1 α⊗β ∈ A⊗A. Then axioms (qa.1) and (qa.2) can

be formulated
r∑

ı=1

s∑
=1

aıtd(α)⊗βtu(bı) = 1⊗1 =
s∑

=1

r∑
ı=1

td(α)aı⊗tu(bı)β (4–1)

and
r∑

ı=1

aı⊗bı =
r∑

ı=1

td(aı)⊗td(bı) =
r∑

ı=1

tu(aı)⊗tu(bı). (4–2)

respectively. Alterations to the structure of A determine other oriented quantum
algebras.

Observe that (Aop, ρ, td, tu) is an oriented quantum algebra over k in light
of (2–2) and (4–1), which we denote by Aop as well. We have noted that
(A, ρ−1) is a quantum Yang–Baxter algebra over k. Let t = td or t = tu.
Since t⊗t is an algebra automorphism of A⊗A and ρ = (t⊗t)(ρ) we have
ρ−1 = (t⊗t)(ρ−1). By applying t−1

d ⊗t−1
u to both sides of the equations of (4–1)

we see that (A, ρ−1, t−1
d , t−1

u ) is an oriented quantum algebra over k. Notice that
(A, ρop, t−1

u , t−1
d ) is an oriented quantum algebra over k.

Let K be a field extension of k and A⊗K be the algebra over K obtained by
extension of scalars. Then (A⊗K, ρ⊗1K , td⊗1K , tu⊗1K) is a unoriented quan-
tum algebra structure over K, where (A⊗K, ρ⊗1K) is the Yang–Baxter algebra
described in Section 2.
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Certain quotients of A have an oriented quantum algebra structure. Let I

be an ideal of A and suppose that td(I) = tu(I) = I. Then there is a unique
oriented quantum algebra structure (A/I, ρ, td, tu) on the quotient algebra A/I

such that π : (A, ρ, td, tu) −→ (A/I, ρ, td, tu) is a morphism, where π : A −→ A/I

is the projection. Furthermore, if f : (A, ρ, td, tu) −→ (A′, ρ′, t′d, t
′
u) is a morphism

of oriented quantum algebras and f : A −→ A′ is onto, then (A/kerf, ρ, td, tu)
and (A′, ρ′, t′d, t

′
u) are isomorphic oriented quantum algebras. The reader is left to

formulate and prove fundamental homomorphism theorems for oriented quantum
algebras.

The oriented quantum algebra (A, ρ, td, tu) is a minimal oriented quantum
algebra over k if A = Aρ. As in the case of quantum algebras, the notion of
minimal oriented quantum algebra is theoretically important.

Let B be a subalgebra of A which satisfies ρ, ρ−1 ∈ B⊗B and td(B) =
tu(B) = B. Then (B, ρ, td|B , tu|B) is an oriented quantum algebra over k which
is called an oriented quantum subalgebra of (A, ρ, td, tu). Since ρ = (td⊗td)(ρ) =
(tu⊗tu)(ρ) it follows that td(Aρ) = tu(Aρ) = Aρ by Lemma 1. Therefore
(Aρ, ρ, td|Aρ , tu|Aρ) is an oriented quantum subalgebra of (A, ρ, td, tu).

If (B, ρ, td|B , tu|B) is an oriented quantum subalgebra of (A, ρ, td, tu) then
Aρ ⊆ B; thus (A, ρ, td, tu) has a unique minimal oriented quantum subalgebra
which is (Aρ, td|Aρ , tu|Aρ). Oriented quantum subalgebras of (A, ρ, td, tu) are
those oriented quantum algebras (B, ρ′, t′d, t

′
u) over k, where B is a subalgebra

of A and the inclusion ı : B −→ A determines a morphism ı : (B, ρ′, t′d, t
′
u) −→

(A, ρ, td, tu) of oriented quantum algebras.
Minimal Yang–Baxter algebras over k support at most one standard oriented

quantum algebra structure. Observe that if (A, ρ) is a Yang–Baxter algebra
over k and A is commutative, then (A, ρ, 1A, 1A) is an oriented quantum algebra
over k.

Proposition 3. Let (A, ρ) be a minimal Yang–Baxter quantum algebra over k.

(a) There is at most one algebra automorphism t of A such that (A, ρ, 1A, t) is
a standard oriented quantum algebra over k.

(b) Suppose that (A, ρ, td, tu) and (A, ρ, t′d, t
′
u) are oriented quantum algebras over

k. Then td◦tu = t′d◦t′u.
(c) Suppose that A is commutative and (A, ρ, 1A, t) is a standard oriented quan-

tum algebra over k. Then t = 1A.

Proof. Part (b) follows from part (a) and Proposition 2. We have noted that
(A, ρ, 1A, 1A) is an oriented quantum algebra over k when A is commutative.
Thus part (c) follows from part (a) also.

To show part (a), suppose that (A, ρ, 1A, t) and (A, ρ, 1A, t′) are standard
oriented quantum algebras over k. Then (1A⊗t)(ρ) = (1A⊗t′)(ρ) since both
sides of the equation are left inverses of ρ−1 in A⊗Aop. This equation together
with (qa.2) implies (t⊗1A)(ρ) = (t′⊗1A)(ρ) as well. These two equations im-
ply t|A(ρ) = t′|A(ρ) . Now the first two equations also imply (1A⊗t)(ρ−1) =
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(1A⊗t′)(ρ−1) and (t⊗1A)(ρ−1) = (t′⊗1A)(ρ−1) since the maps involved are alge-
bra automorphisms of A⊗Aop. Therefore t|A(ρ−1)

= t′|A(ρ−1)
. Since A(ρ)+A(ρ−1)

generates A as an algebra it now follows that t = t′. ¤

Every quantum algebra accounts for a standard oriented quantum algebra.

Theorem 1. Suppose that (A, ρ, s) is a quantum algebra over the field k. Then
(A, ρ, 1A, s−2) is an oriented quantum algebra over k.

Proof. Write ρ =
∑r

ı=1 aı⊗bı. Now (A, ρ) is a Yang–Baxter algebra over k

since (A, ρ, s) is a quantum algebra over k. Since (QA.2) holds for s and ρ it
follows that (qa.2) holds for s−2 and ρ. The fact that ρ−1 =

∑r
ı=1 s(aı)⊗bı

translates to
r∑

ı,=1

s(aı)a⊗bıb = 1⊗1 =
r∑

,ı=1

as(aı)⊗bbı.

Applying s⊗1A to both sides of these equations yields
r∑

,ı=1

s(a)s2(aı)⊗bıb = 1⊗1 =
r∑

ı,=1

s2(aı)s(a)⊗bbı.

Since ρ = (s2⊗s2)(ρ) it follows that
r∑

,ı=1

s(a)aı⊗s−2(bı)b = 1⊗1 =
r∑

ı,=1

aıs(a)⊗bs
−2(bı);

that is ρ−1 and (1A⊗s−2)(ρ) are inverses in A⊗Aop. ¤

As a consequence of part (c) of Proposition 3 and the preceding theorem:

Corollary 1. If (A, ρ, s) is a minimal quantum algebra over k and A is com-
mutative then s2 = 1A. ¤

Let (A, ρ, s) be a quantum algebra over k. Then (A, ρ, 1A, s−2) and (A, ρ, s−2, 1A)
are oriented quantum algebras over k by Theorem 1 and Proposition 2. It may
very well be the case that these are the only oriented quantum algebra structures
of the form (A, ρ, td, tu). Sweedler’s 4-dimensional Hopf algebra A when the
characteristic of k is not 2 illustrates the point. We recall that A is generated
as a k-algebra by a, x subject to the relations a2 = 1, x2 = 0, xa = −ax and the
coalgebra structure of A is determined by ∆(a) = a⊗a, ∆(x) = x⊗a + 1⊗x.

Example 6. Let A be Sweedler’s 4-dimensional Hopf algebra with antipode s

over k, suppose that the characteristic of k is not 2 and for α ∈ k? let

ρα =
1
2
(1⊗ 1 + 1⊗ a + a⊗ 1− a⊗ a) +

α

2
(x⊗ x + x⊗ ax + ax⊗ ax− ax⊗ x).

Then (A, ρα, s) is a minimal quantum algebra over k; moreover, (A, ρα, 1A, s−2)
and (A, ρα, s−2, 1A) are the only oriented quantum algebra structures of the form
(A, ρα, td, tu).
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If (A, ρ, 1A, t) is a standard oriented quantum algebra over k then there may be
no quantum algebra of the form (A, ρ, s).

Example 7. There is no quantum algebra of the form (Mn(k), ρa,B,C, s), where
n > 2 and (Mn(k), ρa,B,C, t) is the balanced oriented quantum algebra of Exam-
ple 5.

However, when n = 2 we have the important connection:

Example 8. Let (M2(k), ρq−1,{q},{q}, t) be the balanced quantum algebra of
Example 5 where n = 2 and ω1 = q, ω2 = q−1. Then the associated standard
oriented quantum algebra

(M2(k), ρq−1,{q},{q}, 1M2(k), t
2) = (M2(k), ρ, 1M2(k), s

−2),

where (M2(k), ρ, s) is the quantum algebra over k of Example 3.

Let A be a finite-dimensional Hopf algebra with antipode s over k. The quasitri-
angular Hopf algebra (D(A),ρ) admits an oriented quantum algebra structure
(D(A),ρ, 1D(A), s

∗ 2⊗s−2) by Theorem 1. If t is a Hopf algebra automorphism of
A which satisfies t2 = s−2 then (D(A), ρ, t∗−1⊗t) is a balanced oriented quantum
algebra over k.

An oriented quantum algebra defines a regular isotopy invariant of oriented 1–
1 tangles as well shall see in Section 7. An oriented quantum algebra (A, ρ, td, tu)
with the additional structure of an invertible G ∈ A which satisfies

td(G) = tu(G) = G and td◦tu(a) = GaG−1

for all a ∈ A accounts for regular isotopy invariants of knots and links. The
quintuple (A, ρ, td, tu, G) is called a twist oriented quantum algebra over k. We
note that an important ingredient for the definition of these invariants is a td, tu-
invariant tracelike element tr ∈ A∗.

Let (A, ρ, td, tu, G) and (A′, ρ′, t′d, t
′
u, G

′) be twist oriented quantum algebras
over k. Then (A⊗A′, ρ′′, td⊗t′d, tu⊗t′u, G⊗G′) is a twist oriented quantum algebra
over k, called the tensor product of (A, ρ, td, tu, G) and (A′, ρ′, t′d, t

′
u, G

′), where
(A⊗A′, ρ′′, td⊗t′d, tu⊗t′u) is the tensor product of (A, ρ, td, tu) and (A′, ρ′, t′d, t

′
u).

A morphism f : (A, ρ, td, tu, G) −→ (A′, ρ′, t′d, t
′
u, G

′) of twist quantum oriented
algebras over k is a morphism f : (A, ρ, td, tu) −→ (A′, ρ′, t′d, t

′
u) of oriented

quantum algebras which satisfies f(G) = G′. The category of twist oriented
quantum algebras over k and their morphisms under composition has a natural
monoidal structure.

Suppose that (A, ρ, td, tu, G) is a twist oriented quantum algebra over k. Then
(A, ρ, 1A, td◦tu, G) is as well. There are two important cases in which a standard
oriented quantum algebra over k has a twist structure.

Let (A, ρ) be a quasitriangular Hopf algebra with antipode s over k, write
ρ =

∑r
ı=1 aı⊗bı and let u =

∑r
ı=1 s(bı)aı be the Drinfel’d element of A. Then

(A, ρ, 1A, s−2, u−1) is a twist oriented quantum algebra over k.
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Now suppose A = Mn(k) and that (A, ρ, td, tu) is a standard, or balanced,
oriented quantum algebra over k. We have noticed in the remarks preced-
ing Lemma 2 that any algebra automorphism t of A is described by t(a) =
GaG−1 for all a ∈ A, where G ∈ A is invertible and is unique up to scalar
multiple. Thus (A, ρ, td, tu, G) is a twist oriented quantum algebra over k for
some invertible G ∈ A. For instance the balanced oriented quantum algebra
(Mn(k), ρa,B,C, t) of Example 5 has a twist balanced oriented quantum algebra
structure (Mn(k), ρa,B,C, t, t, G), where G =

∑n
ı=1 ω2

ı Eı ı.
Just as a quantum algebra can be embedded into a twist quantum algebra,

an oriented standard quantum algebra can be embedded into a twist oriented
standard quantum algebra. The construction of the latter is a slight modification
of the construction of (A,ρ, s, G) which precedes the statement of Proposition 1.
Here (`, a)·(m, b) = (`+m, t−m(a)b) and s is replaced by t defined by t((`, a)) =
(`, t(a)).

Proposition 4. Let (A, ρ, 1A, t) be a standard oriented quantum algebra over
the field k. The pair (ı, (A, ρ, 1A, t,G)) satisfies the following :

(a) (A, ρ, 1A, t, G) is a standard twist oriented quantum algebra over k and ı :
(A, ρ, 1A, t) −→ (A,ρ, 1A, t) is a morphism of oriented quantum algebras.

(b) If (A′, ρ′, 1A′ , t
′, G′) is a twist standard oriented quantum algebra over k and

f : (A, ρ, 1A, t) −→ (A′, ρ′, 1A′ , t
′) is a morphism of quantum algebras there

exists a morphism F : (A,ρ, 1A, t, G) −→ (A′, ρ′, 1A′ , t
′, G′) of twist standard

oriented quantum algebras uniquely determined by F◦ı = f . ¤
We end this section with a necessary and sufficient condition for a Yang–Baxter
algebra over k to have a twist oriented quantum algebra structure.

Proposition 5. Let (A, ρ) be a Yang–Baxter algebra over the field k, write
ρ =

∑r
ı=1 aı⊗bı and ρ−1 =

∑s
=1 α⊗β, suppose G ∈ A is invertible and let t

be the algebra automorphism of A defined by t(a) = GaG−1 for all a ∈ A. Then
(A, ρ, 1A, t, G) is a twist oriented quantum algebra over k if and only if

(a) G⊗G and ρ are commuting elements of the algebra A⊗A,
(b)

∑r
ı=1

∑s
=1 aıGα⊗βbı = G⊗1 and

(c)
∑s

=1

∑r
ı=1 αG

−1aı⊗bıβ = G−1⊗1. ¤
When A is finite-dimensional the conditions of parts (b) and (c) of the proposition
are equivalent.

5. Quantum Algebras Constructed from Standard
Oriented Quantum Algebras

By Theorem 1 a quantum algebra (A, ρ, s) accounts for a standard oriented
quantum algebra (A, ρ, 1A, s−2). By virtue of Example 7 if (A, ρ, 1A, t) is a
standard oriented quantum algebra over k there may be no quantum algebra of
the form (A, ρ, s).
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Let (A, ρ, 1A, t) be a standard oriented quantum algebra over k. In this section
we show that there is a quantum algebra structure (A, ρ, s) on the direct product
A = A⊕Aop such that the projection π : A −→ A onto the first factor deter-
mines a morphism of standard oriented quantum algebras π : (A, ρ, 1A, s−2) −→
(A, ρ, 1A, t). Our result follows from a construction which starts with an oriented
quantum algebra (A, ρ, td, td) and produces a quantum algebra (A,ρ, s) and ori-
ented quantum algebra (A,ρ, td, tu) which are related by td◦tu = s−2. We follow
[15, Section 3].

Let A be an algebra over k and let A = A⊕Aop be the direct product of
the algebras A and Aop. Denote the linear involution of A which exchanges the
direct summands of A by ( ). Thus a⊕b = b⊕a for all a, b ∈ A. Think of A

as a subspace of A by the identification a = a⊕0 for all a ∈ A. Thus a = 0⊕a

and every element of A has a unique decomposition of the form a + b for some
a, b ∈ A. Note that

(a) = a, ab = ba and ab = 0 = ab (5–1)

for all a, b ∈ A.

Lemma 3. Let (A, ρ, 1A, t) be a standard oriented quantum algebra over k, let
A = A⊕Aop be the direct product of A and Aop and write ρ =

∑r
ı=1 aı⊗bı,

ρ−1 =
∑s

=1 α⊗β. Then (A, ρ, s) is a quantum algebra over k, where

ρ =
r∑

ı=1

(aı⊗bı + aı⊗bı) +
s∑

=1

(α⊗β + α⊗t−1(β))

and s(a⊕b) = b⊕t−1(a) for all a, b ∈ A.

Proof. Since t is an algebra automorphism of A it follows that t−1 is also.
Thus s : A −→ Aop is an algebra isomorphism. By definition s(a) = t−1(a) and
s(a) = a for all a ∈ A. We have noted in the discussion following (4–2) that
ρ−1 = (t−1⊗t−1)(ρ−1). At this point it is easy to see that ρ = (s⊗s)(ρ), or
(QA.2) is satisfied for ρ and s. Using the equation ρ−1 = (t−1⊗t−1)(ρ−1) we
calculate

(s⊗1A)(ρ) =
r∑

ı=1

(
t−1(aı)⊗bı + aı⊗bı

)
+

s∑
=1

(
α⊗β + α⊗β

)
.

Using (5–1), the equation (t−1⊗1A)(ρ) = (1A⊗t)(ρ), which follows by (qa.2),

ρ((s⊗1A)(ρ)) = 1⊗1 + 1⊗1 + 1⊗1 + 1⊗1 = 1A⊗1A = ((s⊗1A)(ρ))ρ.

Therefore ρ is invertible and ρ−1 = (s⊗1A)(ρ). We have shown that (QA.1)
holds for ρ and s.

The fact that ρ satisfies (2–1) is a rather lengthy and interesting calculation.
Using the formulation (2–2) of (2–1) one sees that (2–1) for ρ is equivalent
to a set of eight equations. With the notation convention (ρ−1)ı  = ρ−1

ı  for
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1 ≤ ı <  ≤ 3, this set of eight equations can be rewritten as set of six equations
which are:

ρ1 2ρ1 3ρ2 3 = ρ2 3ρ1 3ρ1 2, (5–2)

ρ1 2ρ
−1
2 3ρ−1

1 3 = ρ−1
1 3ρ−1

2 3ρ1 2, (5–3)

ρ−1
1 3ρ−1

1 2ρ2 3 = ρ2 3ρ
−1
1 2ρ−1

1 3 , (5–4)
r∑

`=1

s∑
,m=1

a`α⊗βαm⊗t−1(βm)b` =
s∑

,m=1

r∑

`=1

αa`⊗αmβ⊗b`t
−1(βm), (5–5)

s∑
,m=1

r∑

`=1

αa`⊗αmt−1(β)⊗b`βm =
r∑

`=1

s∑
,m=1

a`α⊗t−1(β)αm⊗βmb` (5–6)

and
s∑

,`=1

r∑

`=1

αα`⊗amt−1(β)⊗bmt−1(β`) =
s∑

`,=1

r∑
m=1

α`α⊗t−1(β)am⊗t−1(β`)bm.

(5–7)
By assumption (5–2) holds. Since ρı  is invertible and (ρı )−1 = (ρ−1)ı  = ρ−1

ı  ,
equations (5–3)–(5–4) hold by virtue of (5–2).

Now t−1 is an algebra automorphism of A and ρ−1 = (t−1⊗t−1)(ρ−1). Thus
applying 1A⊗t−1⊗1A to both sides of the equation of (5–5) we see that (5–5) and
(5–6) are equivalent; applying t−1⊗1A⊗1 to both sides of (5–7) we see that (5–7)
is equivalent to ρ2 3ρ

−1
1 2ρ−1

1 3 = ρ−1
1 3ρ−1

1 2ρ2 3, a consequence of (5–2). Therefore to
complete the proof of the lemma we need only show that (5–5) holds.

By assumption (1A⊗t)(ρ) and ρ−1 are inverses in A⊗Aop. Consequently ρ and
(1A⊗t−1)(ρ) are inverses in A⊗Aop since 1A⊗t−1 is an algebra endomorphism
of A⊗Aop. Recall that ρ−1 satisfies (2–1). Thus

s∑
,m=1

r∑

`=1

αa`⊗αmβ⊗b`t
−1(βm)

=
r∑

v,`=1

s∑
u,,m=1

(avαu)αa`⊗αmβ⊗b`t
−1(βm)(t−1(βu)bv)

=
r∑

v,`=1

s∑
u,,m=1

av(αuα)a`⊗αmβ⊗b`t
−1(βmβu)bv

=
r∑

v,`=1

s∑
u,,m=1

av(ααu)a`⊗βαm⊗b`t
−1(βuβm)bv

=
r∑

v,`=1

s∑
u,,m=1

avα(αua`)⊗βαm⊗(b`t
−1(βu))t−1(βm)bv

=
r∑

v=1

s∑
,m=1

avα⊗βαm⊗t−1(βm)bv.

which establishes (5–5). ¤
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Theorem 2. Let (A, ρ, td, tu) be an oriented quantum algebra over the field k,
let A = A⊕Aop be the direct product of A and Aop and write ρ =

∑r
ı=1 aı⊗bı,

ρ−1 =
∑s

=1 α⊗β. Then:

(a) (A,ρ, s) is a quantum algebra over k, where

ρ =
r∑

ı=1

(aı⊗bı + aı⊗bı) +
s∑

=1

(α⊗β + α⊗t−1
d ◦t−1

u (β))

and s(a⊕b) = b⊕t−1
d ◦t−1

u (a) for all a, b ∈ A.
(b) (A, ρ, td, tu) is an oriented quantum algebra over k, td, tu commute with s

and td◦tu = s−2, where td(a⊕b) = td(a)⊕td(b) and tu(a⊕b) = tu(a)⊕tu(b) for
all a, b ∈ A.

(c) The projection π : A −→ A onto the first factor determines a morphism
π : (A,ρ, td, tu) −→ (A, ρ, td, tu) of oriented quantum algebras.

Proof. Since (A, ρ, 1A, td◦tu) is a standard quantum algebra over k by Propo-
sition 2, part (a) follows by Lemma 3. Part (b) is a straightforward calculation
which is left to the reader and part (c) follows by definitions. ¤

Let Cq be the category whose objects are quintuples (A, ρ, s, td, tu), where (A, ρ, s)
is a quantum algebra over k and (A, ρ, td, tu) is an oriented quantum algebra
over k such that td, tu commute with s and td◦tu = s−2, and whose mor-
phisms f : (A, ρ, s, td, tu) −→ (A′, ρ′, s′, t′d, t

′
u) are algebra maps f : A −→ A′

which determine morphisms f : (A, ρ, s) −→ (A′, ρ′, s′) and f : (A, ρ, td, tu) −→
(A′, ρ′, t′d, t

′
u). The construction (A, ρ, s, td, td) of Theorem 2 is a cofree object

of Cq. Let π : A −→ A be the projection onto the first factor.

Proposition 6. Let (A, ρ, td, tu) be an oriented quantum algebra over the field
k. Then the pair ((A,ρ, s, td, tu), π) satisfies the following properties:

(a) (A,ρ, s, td, tu) is an object of Cq and π : (A, ρ, td, tu) −→ (A, ρ, td, tu) is a
morphism of oriented quantum algebras.

(b) Suppose that (A′, ρ′, s′, t′d, t
′
u) is an object of Cq and that f : (A′, ρ′, t′d, t

′
u) −→

(A, ρ, td, tu) is a morphism of oriented quantum algebras. Then there is a
morphism F : (A′, ρ′, s′, t′d, t

′
u) −→ (A, ρ, s, td, tu) uniquely determined by

π◦F = f . ¤

6. Invariants Constructed from Quantum Algebras
Via Bead Sliding

We describe a regular isotopy invariant of unoriented 1–1 tangle diagrams
determined by a quantum algebra and show how the construction of this tangle
invariant is modified to give a regular isotopy invariant of unoriented knot and
link diagrams when the quantum algebra is replaced by a twist quantum algebra.
Our discussion is readily adapted to handle the oriented case in Section 7; there
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quantum algebras and twist quantum algebras are replaced by oriented quantum
algebras and twist oriented quantum algebras respectively. In both cases the
invariants of diagrams determine invariants of 1–1 tangles, knots and links.

What follows is based on [19, Sections 6, 8]. Throughout this section all
diagrams are unoriented.

6.1. Invariants of 1–1 tangles arising from quantum algebras. We
represent 1–1 tangles as diagrams in the plane situated with respect to a fixed
vertical. On the left below is a very simple 1–1 tangle diagram

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

which we refer to as Tcurl. We require that 1–1 tangle diagrams can be drawn in
a box except for two protruding line segments as indicated by the figure on the
right above. Let Tang be the set of all 1–1 tangle diagrams in the plane situated
with respect to the given vertical.

All 1–1 tangle diagrams consist of some or all of the following components:

• crossings;

over crossings
¡¡ @

@
@ ¡¡

under crossings
¡

¡
¡@@

@@

• local extrema;

local maxima

'$
local minima &%

and

• “vertical” lines.

There is a natural product decomposition of 1–1 tangle diagrams in certain
situations. When a 1–1 tangle diagram T can be written as the union of two 1–1
tangle diagrams T1 and T2 such that the top point of T1 is the base point of T2,
and the line passing through this common point perpendicular to the vertical
otherwise separates T1 and T2, then T is called the product of T1 and T2 and
this relationship is expressed by T = T1?T2. For example,
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½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

½ ¼

¾ »

¡
¡

¡

@@

@@

©©©

HHH
can be split into two parts

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

½ ¼

¾ »

¡
¡

¡

@@

@@

©©©

HHH

and thus

½ ¼

¾ »

¡
¡

¡

@@

@@

©©©

HHH

?

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

=

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

½ ¼

¾ »

¡
¡

¡

@@

@@

©©©

HHH

Multiplication is an associative operation. Those T ∈ Tang which consist only of
a vertical line can be viewed as local neutral elements with respect multiplication
in Tang.

Let (A, ρ, s) be a quantum algebra over k. We will construct a function
InvA : Tang −→ A which satisfies the following axioms:

(T.1) If T,T′ ∈ Tang are regularly isotopic then InvA(T) = InvA(T′),

(T.2) If T ∈ Tang has no crossings then InvA(T) = 1, and

(T.3) InvA(T?T′) = InvA(T)InvA(T′) whenever T, T′ ∈ Tang and T?T′ is
defined.

The first axiom implies that InvA defines a regular isotopy invariant of 1–1 tan-
gles.

Regular isotopy describes a certain topological equivalence of 1–1 tangle dia-
grams (and of knot and link diagrams). For the purpose of defining invariants
we may view regular isotopy in rather simplistically: T, T′ ∈ Tang are regularly
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isotopic if T can be transformed to T′ by a finite number of local substitutions
described in (M.1)–(M.4) below and (M.2rev)–(M.4rev). The symbolism A ≈ B

in the figures below means that configuration A can be substituted for configu-
ration B and vice versa.

(M.1)
l

l
l

l
l

l¾ »

½ ¼≈ and
,

,
,

,
,

,
½ ¼

¾ »

≈

(M.2)

¡
¡

¡@@

@@

¡¡

¡¡@
@

@
≈

(M.3)

¡¡

¡¡@
@

@

¡¡

¡¡@
@

@

¡¡

¡¡@
@

@ ≈ ¡¡

¡¡

@
@

@

¡¡

¡¡

@
@

@

¡¡

¡¡

@
@

@

(M.4)

´
´

´
´́

@
@

@
@@

¡
¡

¡@@

@@

¾ »

≈

Q
Q

Q
QQ

¡
¡

¡

¡¡

@
@

@¡¡

¡¡

¾ »

and

Q
Q

Q
QQ

¡
¡

¡
¡¡

@
@

@¡¡

¡¡

½ ¼
≈ ´

´
´

´́

@@

@
@

@ ¡
¡

¡@@

@@

½ ¼
.
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(M.2rev)–(M.4rev) are (M.2)–(M.4) respectively with over crossing lines replaced
by under crossing lines and vice versa.

The substitutions of (M.1), (M.2) and (M.3) are known as the Reidemeister
moves 0, 2 and 3 respectively. The substitutions described in (M.4) and (M.4rev)
are called the slide moves.

What is not reflected in our simplistic definition of regular isotopy is the
topological fluidity in the transformation of one diagram into another. Subsumed
under regular isotopy is contraction, expansion and bending of lines in such a
manner that no crossings or local extrema are created. These diagram alterations
do not affect the invariants we describe as the reader will see.

The twist moves, which are the substitutions of

(M.5)
@

@
@

@
@

@

@
@

@

@
@

@

¾ »

½ ¼
¡¡

@
@

@

¡¡
≈ ¡

¡
¡@@

@@ ≈

¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

½ ¼

¾ »

¡¡

@
@

@

¡¡

and (M.5rev), are consequences of (M.1), (M.4) and (M.4rev). Observe that
crossing type is changed in a twist move.

Let T ∈ Tang. We describe how to construct InvA(T) in a geometric, formal
way which will be seen to be a blueprint for manipulation of certain 2n-fold
tensors.

If T has no crossings set InvA(T) = 1. Suppose that T has n ≥ 1 crossings.
Represent ρ ∈ A⊗A by e⊗e′, f⊗f ′, . . . . Decorate each crossing of T in the
following manner

@
@

@ • e′

¡¡

e • ¡¡
or ¡

¡
¡

s(e) • @@• e′
@@

(6–1)

according to whether or not the crossing is an over crossing (left diagram) or
an under crossing (right diagram). Thus ρ is associated with an over crossing
and ρ−1 is associated with an under crossing. Our decorated crossings are to be
interpreted as flat diagrams [21] which encode original crossing type.

Think of the diagram T as a rigid wire and think of the decorations as labeled
beads which can slide around the wire. Let us call the bottom and top points of
the diagram T the starting and ending points.

Traverse the diagram, beginning at the starting point (and thus in the upward
direction), pushing the beads so that at the end of the traversal the beads are
juxtaposed at the ending point. As a labeled bead passes through a local extrema
its label x is altered: if the local extremum is traversed in the counter clockwise
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direction then x is changed to s(x); if the local extremum is traversed in the
clockwise direction then x is changed to s−1(x).

The juxtaposition of the beads with modified labels is interpreted as a formal
product WA(T) which is read bottom to top. Write ρ =

∑r
ı=1 aı⊗bı ∈ A⊗A.

Substitution of aı and bı for e and e′, a and b for f and f ′, . . . results in an
element wA(T) ∈ A. To illustrate the calculation of WA(T) and wA(T) we use
the 1–1 tangle diagram Ttrefoil depicted on the left below.

¾ » ¾ »

½ ¼ ½ ¼
¡

¡
¡

@@

@@

@
@

@¡¡

¡¡

¡
¡

¡@@

@@©©©

(((((((((

¾ » ¾ »

½ ¼ ½ ¼
¡

¡
¡

s(g)• @@

@@

•g′

@
@

@

•f

¡¡

¡¡
•f ′

¡
¡

¡

s(e)•
@@

@@•e′©©©

(((((((((

The crossing decorations are given in the diagram on the right above. Traversal
of Ttrefoil results in the formal word

WA(Ttrefoil) = s2(e′)s2(f)s(g′)s(e)s−1(f ′)g

and thus

wA(Ttrefoil) =
r∑

ı,,k=1

s2(bı)s2(a)s(bk)s(aı)s−1(b)ak.

The preceding expression can be reformulated in several ways. Since ρ =
(s⊗s)(ρ) there is no harm in introducing the rule

WA(T) = · · · sp(x) · · · sq(y) · · · = · · · sp+`(x) · · · sq+`(y) · · · (6–2)

where ` is any integer and x⊗y or y⊗x represents ρ. Under this rule we have

WA(Ttrefoil) = s(e′)s3(f)s(g′)ef ′g

and thus

wA(Ttrefoil) =
r∑

ı,,k=1

s(bı)s3(a)s(bk)aıbak

as well.
We now give a slightly more detailed description of WA(T) which will be useful

in our discussion of knots and links. Label the crossing lines of the diagram T

by 1, 2, . . . , 2n in the order encountered on the traversal of T. For 1 ≤ ı ≤ 2n let
u(ı) be the number of local extrema traversed in the counter clockwise direction
minus the number of local extrema traversed in the clockwise direction during
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the portion of the traversal of the diagram from crossing line ı to the ending
point. Let xı be the decoration on crossing line ı. Then

WA(T) = su(1)(x1) · · · su(2n)(x2n). (6–3)

We emphasize that each crossing contributes two factors to the formal product
WA(T). Let χ be a crossing of T and ı <  be the labels of the crossing lines of
χ. Then χ contributes the ıth and th factors to WA(T) according to

WA(T) = · · · su(ı)(xı) · · · su()(x) · · · .

Notice that (6–3) describes a blueprint for computing wA(T) in three steps: first,
application of a certain permutation of the 2n tensorands of ρ⊗ · · ·⊗ρ; second,
application of su(1)⊗ · · ·⊗su(2n) to the result of the first step; third, application
of the multiplication map a1⊗ · · ·⊗a2n 7→ a1 · · · a2n to the result of the second
step. The reader is left with the exercise of formulating the permutation.

We shall set

InvA(T) = wA(T)

for all T ∈ Tang. It is an instructive exercise to show that if T, T′ ∈ Tang are
regularly isotopic then InvA(T) = InvA(T′); that is (T.1) holds. By definition
(T.2) holds, and in light of (6–2) it is clear that (T.3) holds. Observe that
InvA(T) is s2-invariant.

We end this section with a result on the relationship between InvA and mor-
phisms. To do this we introduce some general terminology for comparing invari-
ants.

Suppose that f : X −→ Y and g : X −→ Z are functions with the same
domain. Then f dominates g if x, x′ ∈ X and f(x) = f(x′) implies g(x) = g(x′).
If f dominates g and g dominates f then f and g are equivalent.

Proposition 7. Let f : A −→ A′ be a morphism of quantum algebras over k.
Then f(InvA(T)) = InvA′(T) for all T ∈ Tang. ¤

Thus when f : A −→ A′ is a morphism of quantum algebras over k it follows
that InvA dominates InvA′ .

6.2. Invariants of knots and links arising from twist quantum algebras.
We now turn to knots and links. In this section (A, ρ, s, G) is a twist quantum
algebra over k and tr is a tracelike s∗-invariant element of A∗.

Let Link be the set of (unoriented) link diagrams situated with respect to our
fixed vertical and let Knot be the set of knot diagrams in Link, that is the set
of one component link diagrams in Link. If L ∈ Link is the union of two link
diagrams L1, L2 ∈ Link such that the components of L1 and L2 do not intersect we
write L = L1?L2. We shall construct a scalar valued function InvA, tr : Link −→ k

which satisfies the following axioms:
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(L.1) If L, L′ ∈ Link are regularly isotopic then InvA, tr(L) = InvA, tr(L′),

(L.2) If L ∈ Link is a knot with no crossings then InvA, tr(L) = tr(G), and

(L.3) InvA, tr(L?L′) = InvA, tr(L)InvA, tr(L′) whenever L, L′ ∈ Link and L?L′ is
defined.

The first axiom implies that InvA, tr defines a regular isotopy invariant of unori-
ented links.

We first define InvA, tr(K) for knot diagrams K ∈ Knot. One reason we do this
is to highlight the close connection between the function InvA and the restriction
InvA, tr|Knot.

Let K ∈ Knot. We first define an element w(K) ∈ A. If K has no crossings
then w(K) = 1.

Suppose that K has n ≥ 1 crossings. Decorate the crossings of K according to
(6–1) and choose a point P on a vertical line of K. We refer to P as the starting
and ending point. (There is no harm, under regular isotopy considerations, in
assuming that K has a vertical line. One may be inserted at an end of a crossing
line or at an end of a local extrema.) Traverse the diagram K, beginning at the
starting point P in the upward direction and concluding at the ending point
which is P again. Label the crossing lines 1, 2, . . . , 2n in the order encountered
on the traversal. For 1 ≤ ı ≤ 2n let u(ı) be defined as in the case of 1–1
tangle diagrams and let xı be the decoration on crossing line ı. Let W (K) =
su(1)(x1) · · · su(2n)(x2n) and let w(K) ∈ A be computed from W (K) in the same
manner that wA(T) is computed from WA(T) in Section 6.1. Then

InvA, tr(K) = tr(Gdw(K)), (6–4)

where d is the Whitney degree of K with orientation determined by traversal be-
ginning at the starting point in the upward direction. In terms of local extrema,
2d is the number of local extrema traversed in the clockwise direction minus the
number of local extrema traversed in the counter clockwise direction.

Using a different starting point P ′ results in the same value for InvA, tr(K).
This boils down to two cases: P and P ′ separated by m ≥ 1 crossing lines and
no local extrema; P and P ′ separated by one local extrema and no crossing lines.
The fact that tr is tracelike is used in the first case and the s∗-invariance of tr is
used in the second.

The function InvA, tr|Knot can be computed in terms of InvA. For T ∈ Tang

let K(T) ∈ Knot be given by

½ ¼

¾ »

T
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Every K ∈ Knot is regularly isotopic to K(T) for some T ∈ Tang.

Proposition 8. Let (A, ρ, s, G) be a twist quantum algebra over the field k and
suppose that tr is a tracelike s∗-invariant element of A∗. Then

InvA, tr(K(T)) = tr(GdInvA(T))

for all T ∈ Tang, where d is the Whitney degree of K(T) with the orientation
determined by traversal beginning at the base of T in the upward direction. ¤

For example, with ρ =
∑r

ı=1, observe that

InvA, tr(K(Ttrefoil)) =
r∑

ı,,k=1

tr(G−2s(bı)s3(a)s(bk)aıbak)

and

InvA, tr(K(Tcurl)) =
r∑

ı=1

tr(G0aıs(bı)) =
r∑

ı=1

tr(aıs(bı)).

We now define InvA, tr(L) for L ∈ Link with components L1, . . . , Lr. Decorate
the crossings of L according to (6–1). Fix 1 ≤ ` ≤ r. We construct a formal
word W (L`) in the following manner. If L` does not contain a crossing line then
W (L`) = 1.

Suppose that L` contains m` ≥ 1 crossing lines. Choose a point P` on a
vertical line of L`. We shall refer to P` as the starting point and the ending
point. As in the case of knot diagrams we may assume that L` has a vertical
line. Traverse the link component L` beginning at the starting point P` in the
upward direction and concluding at the ending point which is also P`. Label the
crossing lines contained in L` by (`:1), . . . , (`:m`) in the order encountered. Let
u(`:ı) be the counterpart of u(ı) for Knot and let x(`:ı) be the decoration on the
crossing line (`:ı). Then we set

W (L`) = su(`:1)(x(`:1)) · · · su(`:m`)(x(`:m`))

and
W (L) = W (L1)⊗ · · ·⊗W (Lr).

Replacing the formal copies of ρ in W (L) with ρ as was done in the case of 1–1
tangle and knot diagrams, we obtain an element w(L) = w(L1)⊗ · · ·⊗w(Lr) ∈
A⊗ · · ·⊗A. The scalar we want is

InvA, tr(L) = tr(Gd1w(L1)) · · · tr(Gdrw(Lr)) (6–5)

which is the evaluation of tr⊗ · · ·⊗tr on Gd1w(L1)⊗ · · ·⊗Gdrw(Lr), where d` is
the Whitney degree of L` with orientation determined by the traversal which
starts at P` in the upward direction.

The argument that InvA, tr(K) does not depend on the starting point P for
K ∈ Knot is easily modified to show that InvA, tr(L) does not depend on the
starting points P1, . . . , Pr. The argument that (T.1) holds for InvA shows that
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(L.1) holds for InvA, tr since we may assume that the starting points are not in
the local part of L under consideration in (M.1)–(M.4) and (M.2rev)–(M.4rev).
That (L.2) and (L.3) hold for InvA, tr is a straightforward exercise. Note that
(6–5) generalizes (6–4).

For example, consider the Hopf link LHopf depicted below left. The compo-
nents of L are L1 and L2, reading left to right. The symbol ◦ designates a starting
point.
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¡¡
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@

@

f • • f ′

e • • e′
◦ ◦

Observe that W (LHopf) = f ′e⊗fe′ and

InvA, tr(LHopf) =
r∑

ı,=1

tr(G−1bıa)tr(Gaıb).

We end this section by noting how InvA, tr and morphisms are related and
revisiting the construction of Proposition 1.

Proposition 9. Let f : (A, ρ, s, G) −→ (A′, ρ′, s′, G′) be a morphism of twist
quantum algebras over k and suppose that tr′ is a tracelike s′∗-invariant element
of A′∗. Then tr = tr′◦f is a tracelike s∗-invariant element of A∗ and

InvA, tr(L) = InvA′, tr′(L)

for all L ∈ Link. ¤

Let (A, ρ, s) be a quantum algebra over k and let (A, ρ, s,G) be the twist quan-
tum algebra of Proposition 1 associated with (A, ρ, s). In light of the preceding
proposition it would be of interest to know what the s∗-invariant tracelike ele-
ments Tr of A∗ are.

First note that A is a free right A-module with basis {Gn}n∈Z . Let {trn}n∈Z

be a family of functionals of A∗ which satisfies trn◦s = tr−n and trn(ba) =
trn(as2n(b)) for all n ∈ Z and a, b ∈ A. Then the functional Tr ∈ A∗ determined
by Tr(Gna) = trn(a) for all n ∈ Z and a ∈ A is an s∗-invariant and tracelike.
All s∗-invariant tracelike functionals of A∗ are described in this manner.
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7. Invariants Constructed from Oriented Quantum Algebras
Via Bead Sliding

This section draws heavily from the material of the preceding section. The
reader is directed to [16; 17] for a fuller presentation of the ideas found in this
section.

Let Tang be the set of all oriented 1–1 tangle diagrams situated with respect
to a fixed vertical; that is the set of all diagrams in Tang with a designated
orientation which we indicate by arrows. For example

½ ¼

¾ »

6

6

¡
¡

¡

@@

@@

HHH

©©©

and

½ ¼

¾ »

?

?

¡
¡

¡

@@

@@

HHH

©©©

are elements of Tang whose underlying unoriented diagram is

½ ¼

¾ »

¡
¡

¡

@@

@@

HHH

©©©

.

We let u : Tang −→ Tang be the function which associates to each T ∈ Tang
its underlying unoriented diagram u(T). For T ∈ Tang we let Top be T with
its orientation reversed.

Likewise we let Link be the set of all oriented link diagrams situated with
respect to the fixed vertical; that is the set of all diagrams of Link whose com-
ponents have a designated orientation. By slight abuse of notation we also let
u : Link −→ Link be the function which associates to each L ∈ Link its un-
derlying unoriented diagram u(L). For L ∈ Link we let Lop be L with the
orientation on its components reversed.

In this section we redo Section 6 by making minor adjustments which result in
a regular isotopy invariant InvA : Tang −→ A of oriented 1-1 tangle diagrams,
when (A, ρ, td, tu) is an oriented quantum algebra over k, and in a regular isotopy
invariant InvA, tr : Link −→ k of oriented link diagrams, when (A, ρ, td, tu, G)
is a twist oriented quantum algebra over k and tr is a tracelike t∗d, t∗u-invariant
element of A∗.

Regular isotopy in the oriented case is regular isotopy in the unoriented case
with all possible orientations taken into account. For example, the one diagram
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of (M.2) in the unoriented case is replaced by four in the oriented case, two of
which are

6 6

¡
¡

¡@@
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¡¡

¡¡@
@

@
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6 6

and

6

?¡
¡

¡@@

@@

¡¡

¡¡@
@

@
≈

6

?.

In Section 7.3 we relate invariants of a quantum algebra and invariants of its
associated oriented quantum algebra.

7.1. Invariants of oriented 1–1 tangles arising from oriented quantum
algebras. Oriented 1–1 tangle diagrams consist of some or all of the following
components:

• oriented crossings;

under crossings
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• oriented local extrema;

local maxima ?

'$
?

'$

local minima
6
&%

6
&%

and

• oriented “vertical” lines.

If an oriented 1–1 tangle diagram
6

6
T

(respectively ?

?

T
) can be decomposed

into two oriented 1–1 tangle diagrams
6

6
T1

6
T2

(respectively ?

?

T2

?

T1

) then we write
T = T1?T2.
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Now suppose that (A, ρ, td, tu) is an oriented quantum algebra over k and let
T ∈ Tang. To define InvA : Tang −→ A we will construct formal product
WA(T) which will determine an element wA(T) ∈ A. In order to do this we
need to describe crossing decorations and conventions for sliding labeled beads
across local extrema. The sliding conventions are:

?

'$
x • to ?

'$
• t−1

u (x)

and

6
&%

• x
to

6
&%

t−1
d (x) •

for clockwise motion;

?

'$
• x to ?

'$
td(x) •

and

6
&%

x •
to

6
&%

• tu(x)

for counterclockwise motion. We refer to the oriented local extrema

?

'$
6

&% ?

'$
6
&%

as having type (u−), (u+), (d+) and (d−) respectively.
There are two crossing decorations

¡¡ @
@

@ ¡¡E • • E′I µ
and

¡
¡

¡@@

@@e • • e′
I µ

(7–1)

from which all other crossing decorations are derived. Here E⊗E′ and e⊗e′

represent ρ−1 and ρ respectively. Compare (7–1) with (6–1). Starting with (7–1),
using the above conventions for passing labeled beads across local extrema and
requiring invariance under (M.4), crossings are decorated as follows:
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Now to define WA(T). If T has no crossings then WA(T) = 1. Suppose
that T has n ≥ 1 crossings. Traverse T in the direction of orientation and label
the crossing lines 1, 2, . . . , 2n in the order in which they are encountered. For
1 ≤ ı ≤ 2n let ud(ı) be the number of local extrema of type (d+) minus the
number of type (d−) encountered on the portion of the traversal from line ı to
the end of the traversal of T. We define uu(ı) in the same way where (u+) and
(u−) replace (d+) and (d−) respectively. Then

WA(T) = t
ud(1)
d ◦tuu(1)

u (x1) · · · tud(2n)
d ◦tuu(2n)

u (x2n),

where xı is the decoration on the crossing line ı. Replacing the formal represen-
tations of ρ and ρ−1 in WA(T) by ρ and ρ−1 respectively we obtain an element
wA(T) ∈ A.

Set

InvA(T) = wA(T)

for all T ∈ Tang. Observe that InvA(T) is invariant under td and tu. It can be
shown that the oriented counterparts of (T.1)–(T.3) hold for InvA; in particular
InvA defines a regular isotopy invariant of oriented 1–1 tangles. We have noted
that (Aop, ρ, td, tu) is an oriented quantum algebra over k which we simply refer
to as Aop. By Theorem 1 that (A, ρ, 1A, td◦tu) is a standard oriented quantum
algebra over k which we denote by As. We collect some basic results on the
invariant of this section.

Proposition 10. Let A be an oriented quantum algebra over k. Then

(a) InvA(Top) = InvAop(T) and
(b) InvA(T) = InvAs(T)

for all T ∈ Tang.

(c) Suppose that f : A −→ A′ is a morphism of oriented quantum algebras.
Then f(InvA(T)) = InvA′(T) for all T ∈ Tang.

¤

Part (b) of the proposition shows that standard oriented quantum algebras ac-
count for the invariants of this section. Part (c) shows that InvA dominates
InvA′ whenever there is a morphism of oriented quantum algebras f : A −→ A′.
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Corollary 2. Suppose that (A, ρ, s) is a quantum algebra over the field k.
Then Inv(A,ρ,1A,s−2)(Top) = s(Inv(A,ρ,1A,s−2)(T)) for all T ∈ Tang.

Proof. Since s : (Aop, ρ, 1A, s−2) −→ (A, ρ, 1A, s−2) is a morphism of oriented
quantum algebras the corollary follows by parts (a) and (c) of Proposition 10. ¤

7.2. Invariants of oriented knots and links arising from twist oriented
quantum algebras. Throughout this section (A, ρ, td, tu, G) is a twist oriented
quantum algebra over k and tr is a tracelike t∗d, t∗u-invariant element of A∗.
The scalar InvA, tr(L) for L ∈ Link is defined much in the same manner that
InvA, tr(L) is defined for L ∈ Link in Section 6.2.

Let L ∈ Link have components L1, . . . ,Lr. Decorate the crossings of L
according to the conventions of Section 7.1. For each 1 ≤ ` ≤ r let d` be the
Whitney degree of the link component L`. We define a formal product W(L`)
as follows. If L` contains no crossing lines then W(L`) = 1. Suppose that L`

contains m` ≥ 1 crossing lines. Choose a point P` on a vertical line of L`. We
may assume that L` has a vertical line for the reasons cited in Section 6.2.

Traverse L` in the direction of orientation beginning and ending at P`. Label
the crossing lines (`:1), . . . , (`:m`) in the order encountered on the traversal.
For 1 ≤ ı ≤ m let ud(`:ı) denote the number of local extrema of type (d+)
minus the number of type (d−) which are encountered during the portion of the
traversal of L` from the line labeled ı to its conclusion. Define uu(`:ı) in the
same manner, where (u+) and (u−) replace (d+) and (d−) respectively. Let x(`:ı)

be the decoration on the line (`:ı). Set

W(L`) = t
ud(`:1)
d ◦tuu(`:1)

u (x(`:1)) · · · tud(`:m)
d ◦tuu(`:m)

u (x(`:m)),

set W(L) = W(L1)⊗ · · ·⊗W(Lr) and replace formal copies of ρ and ρ−1 in
W(L) to obtain an element w(L) = w(L1)⊗ · · ·⊗w(Lr) ∈ A⊗ · · ·⊗A. We
define

InvA, tr(L) = tr(Gd1w(L1)) · · · tr(Gdrw(Lr)).

One can show that the oriented counterparts of (L.1)–(L.3) hold for InvA, tr; in
particular InvA, tr defines a regular isotopy invariant of oriented links.

There is an analog of Proposition 8 which we do not state here and there is
an analog of part (b) of Proposition 10 and of Proposition 9 which we do record.
Let As denote the standard twist oriented quantum algebra (A, ρ, 1A, td◦tu, G)
associated with (A, ρ, td, tu, G) which we denote by A.

Proposition 11. Let (A, ρ, td, tu, G) be a twist oriented quantum algebra over
the field k and let tr be a tracelike t∗d, t∗u-invariant element of A∗. Then

InvA, tr(L) = InvAs, tr(L) for all L ∈ Link. ¤

Thus the invariants of oriented links described in this section are accounted for
by standard twist oriented quantum algebras.
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Proposition 12. Suppose that f : (A, ρ, td, tu, G) −→ (A′, R′, t′d, t
′
u, G

′) is a
morphism of twist oriented quantum algebras over k and that tr′ ∈ A

′∗ is a
t′∗d , t′∗u -invariant tracelike element . Then tr ∈ A∗ defined by tr = tr′◦f is a t∗d, t

∗
u-

invariant tracelike element and InvA, tr(L) = InvA′, tr′(L) for all L ∈ Link. ¤

Let (A, ρ, 1A, t) be a standard oriented quantum algebra over k and let

(A, ρ, 1A, t, G)

be the twist standard quantum algebra of Proposition 4 associated with (A, ρ, s).
We describe the tracelike elements Tr of A∗.

Observe A is a free right A-module with basis {Gn}n∈Z . Let {trn}n∈Z be a
family of functionals of A∗ which satisfies trn◦t = trn and trn(ba) = trn(atn(b))
for all n ∈ Z and a, b ∈ A. Then the functional Tr ∈ A∗ determined by
Tr(Gna) = trn(a) for all n ∈ Z and a ∈ A is an t∗-invariant and tracelike;
all t∗-invariant tracelike functionals of A∗ are described in this manner.

7.3. Comparison of invariants arising from quantum algebras and
their associated oriented quantum algebras. Let (A, ρ, s) be a quantum
algebra over the field k and let (A, ρ, 1A, s−2) be the associated standard oriented
quantum algebra. In this brief section we compare the invariants defined for each
of them.

Theorem 3. Let (A, ρ, s) be a quantum algebra over k. Then:

(a) The equations

Inv(A,ρ,1A,s−2)(T) = Inv(A,ρ−1,s−1)(u(T))

and
Inv(A,ρ,s)(u(T)) = Inv(A,ρ−1,1A,s2)(T)

hold for all T ∈ Tang whose initial vertical line is oriented upward .
(b) Suppose further (A, ρ, s, G−1) is a twist quantum algebra and tr is a tracelike

s∗-invariant element of A∗. Then

Inv(A,ρ,1A,s−2,G), tr(L) = Inv(A,ρ−1,s−1,G), tr(u(L))

and
Inv(A,ρ,s,G−1), tr(u(L)) = Inv(A,ρ−1,1A,s2,G−1), tr(L)

for all L ∈ Link.

Proof. We need only establish the first equations in parts (a) and (b). Gener-
ally to calculate a regular isotopy invariant of oriented 1–1 tangle, knot or link
diagrams we may assume that all crossing lines are directed upward by virtue of
the twist moves, and we may assume that diagrams have vertical lines oriented
in the upward direction. We can assume that traversals begin on such lines.

As usual represent ρ by e⊗e′ and ρ−1 by E⊗E′. Since ρ−1 = (s⊗1A)(ρ)
it follows that e⊗e′ = s−1(E)⊗E′. Thus the over crossing and under crossing
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labels E⊗E′ and e⊗e′ of (7–1) are the over crossing and under crossing labels
E⊗E′ and s−1(E)⊗E′ of (6–1). These are the decorations associated with the
quantum algebra (A, ρ−1, s−1).

For a crossing decoration representing x⊗y, traversal of the oriented 1–1 tangle
or link diagram results in the modification

tud

d ◦tuu
u (x)⊗t

u′d
d ◦tu

′
u

u (y) = s−2uu(x)⊗s−2u′u(y)

with (A, ρ, 1A, s−2) and traversal in the underlying unoriented diagram results
in the modification

s−(ud+uu)(x)⊗s−(u′d+u′u)(y) = s−2uu(x)⊗s−2u′u(y)

with (A, ρ−1, s−1); the last equation holds by our assumptions on the crossings
and traversal. ¤

8. Bead Sliding Versus the Classical Construction
of Quantum Link Invariants

We relate the method of Section 7 for computing invariants of oriented knot
and link diagrams to the method for computing invariants by composition of
certain tensor products of (linear) morphisms associated with oriented crossings,
local extrema and vertical lines. We will see how invariants produced by the
composition method are related to those which arise from representations of twist
oriented quantum algebras. For a more general discussion of the composition
method, which has a categorical setting, the reader is referred to [28; 29]. This
section is a reworking of [17, Sections 3, 6] which explicates its algebraic details.

In this section we confine ourselves to the category Veck of all vector spaces
over k and their linear transformations under composition. We begin with a
description of the composition method in this special case.

Let V be a finite-dimensional vector space over the field k, let {v1, . . . , vn} be
a basis for V and suppose that {v1, . . . , vn} is the dual basis for V ∗. Observe
that

n∑
ı=1

vı(v)vı = v and
n∑

ı=1

v∗(vı)vı = v∗ (8–1)

for all v ∈ V and v∗ ∈ V ∗. Let CV be the full subcategory of Veck whose objects
are k and tensor powers U1⊗ · · ·⊗Um, where m ≥ 1 and Uı = V or Uı = V ∗ for
all 1 ≤ ı ≤ m.

The first step of the composition method is to arrange an oriented link (or
knot) diagram L ∈ Link so that all crossing lines are directed upward, which
can be done by the twist moves, and so that L is stratified in such a manner
that each stratum consists of a juxtaposition of oriented crossings, local extrema
and vertical lines, which we refer to as components of the stratum. One such
example is Ktrefoil depicted below.



QUANTUM ALGEBRAS AND INVARIANTS OF LINKS 299

½ ¼ ½ ¼6 6

½ ¼
? ?

6 6 6
¡

¡
¡

@@

@@

? ?

I µ

?

6

¾ »
? ?

6

?

6
³³³³³³³³³

PPPPP

PPPPP

? ?

i 1

½ ¼
? ?

6 6 6
¡

¡
¡

@@

@@ ¾ »
? ?

I µ

?

¾ »
? ?

6

¾ »
?

The broken lines indicate the stratification and are not part of the diagram.
The next step is to associate certain morphisms of CV to the components of

each stratum. Let R : V⊗V −→ V⊗V be an invertible solution to the braid
equation and let D, U be commuting linear automorphisms of V . We associate

R : V⊗V −→ V⊗V to
¡
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@@I µ

R−1 : V⊗V −→ V⊗V to
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¾ »
?

D− : k −→ V⊗V ∗ to ½ ¼6

U− : V⊗V ∗ −→ k to
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U+ : k −→ V ∗⊗V to ½ ¼6
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where D+(v∗⊗v) = v∗(D(v)) and U−(v⊗v∗) = v∗(U−1(v)) for all v∗ ∈ V ∗,
v ∈ V and

D−(1) =
n∑

ı=1

D−1(vı)⊗vı, U+(1) =
n∑

ı=1

vı⊗U(vı),

and finally we associate 1V and 1V ∗ to the vertical lines

6

and ?respectively.
Associate to each stratum the tensor product of the morphisms associated to

each of its components, reading left to right. The composition of these tensor
products of morphisms, starting with the tensor product associated with the
bottom stratum and moving up, determines an endomorphism INVR,D,U (L) of
k, which we identify with its value at 1k. The scalar valued function INVR,D,U

determines a regular isotopy invariant of oriented link diagrams if and only if
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6

6

6

6

6

6

6

6

6

∼ ¡
¡

¡

@@

@@

6

6

6

6

I µ

(8–4)

and

½ ¼

½ ¼

¾ »

¾ »

¡
¡

¡

@@

@@

6

6

6

6

6

6

6

6

6

ª

?

?

?

?

R

6

6

6

6

6

6

6

∼ ¡
¡

¡@@

@@
6

6

6

6

I µ

(8–5)
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where ∼ means that the compositions associated with the diagrams are equal

and R∗ : V ∗⊗V ∗ −→ V ∗⊗V ∗ is associated to ¡
¡

¡@@

@@ª R . Compare with [29].
Showing that INV = INVR,D,U is a regular isotopy invariant by evaluating com-
positions of morphisms directly is an instructive exercise. For example, to show
that INV(L) is unaffected by the substitution

½ ¼

¾ »

6

?
6 6

6

6

∼

6

in L we need to show that the composition of morphisms associated with the
diagram on the left above is the identity map 1V . Using (8–1) it follows that the
composition in question

V

1V

- V = V⊗k

1V ⊗U+

- V⊗V ∗⊗V

U−⊗1V

- k⊗V = V

1V

- V

is in fact 1V . We will show that (8–2)–(8–5) are equivalent to (qa.1)–(qa.2) for
a certain oriented quantum algebra structure on End(V )op.

The evaluation of INV(Ktrefoil) is partially indicated by

k = k⊗k

U+⊗U+

- (V ∗⊗V )⊗(V ∗⊗V ) = V ∗⊗k⊗V⊗V ∗⊗V

1V ∗⊗U+⊗1V ⊗1V ∗⊗1V

- V ∗⊗V ∗⊗V⊗V⊗V ∗⊗V

1V ∗⊗1V ∗⊗R⊗1V ∗⊗1V

- V ∗⊗V ∗⊗V⊗V⊗V ∗⊗V

...

D+

- k.

The reader is encouraged to complete the calculation.
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When the minimal polynomial of R has degree 1 or 2 there is a way of relating

INV

¡
¡

¡

@@

@@I µ
(L), INV

¡¡

¡¡@
@

@

I µ
(L) and INV

66
(L),

for L ∈ Link, where the three preceding expressions are INV(L), INV(L′) and

INV(L′′) respectively, where L′ is L with a crossing of the type ¡
¡

¡

@@

@@I µ

replaced

by ¡¡

¡¡@
@

@

I µ

and L′′ is L with the same crossing of replaced by

66

.
Suppose that αR2− γR−β1V⊗V = 0, where α, β, γ ∈ k. Then αR−βR−1 =

γ1V⊗V which implies that

αINV

¡
¡

¡

@@

@@I µ
(L) − βINV

¡¡

¡¡@
@

@

I µ
(L) = γINV

66
(L) . (8–6)

The preceding equation is called a skein identity and is the basis of a recursive
evaluation of INV when α, β 6= 0. As we shall see the link invariant associated
to Example 1 satisfies a skein identity.

In order to relate the composition method to the bead sliding method of
Section 7 we introduce vertical lines decorated by endomorphisms of V . Let
T ∈ End (V ). We associate

T to
6• T and T ∗ to

?
• T

There is a natural way of multiplying decorated vertical lines. For S, T ∈ End (V )
set S·T = T◦S. We define

6

6

• S

• T

=

6

• S·T and ?

?
• T

• S

=

?

• S·T

which is consistent with the composition rule for stratified diagrams.
Let tD, tU be the algebra automorphisms of End(V ) defined by tD(T ) =

D◦T◦D−1 and tU (T ) = U◦T◦U−1 for all T ∈ End(V ). Then we have the
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analogs for sliding labeled beads across local extrema:

6

?

?

¾ »

• T ∼ 6

?

?

¾ »

• t−1
U (T )

?

?
6

¾ »

• T ∼
?

?
6

¾ »
?

tD(T ) •

6

6

?

½ ¼

• T ∼
6

6

?

½ ¼

t−1
D (T ) •

?
6

6

½ ¼

• T ∼ ?
6

6

½ ¼

• tU (T )

or in terms of composition formulas:

U−◦(T⊗1V ∗) = U−◦(1V⊗t−1
U (T )∗), D+◦(1V ∗⊗T ) = D+◦(tD(T )∗⊗1V )

and

(1V⊗T ∗)◦D− = (t−1
D (T )⊗1V ∗)◦D−, (T ∗⊗1V )◦U+ = (1V ∗⊗tU (T ))◦U+ .

Regard End(V⊗V ) as End(V )⊗End(V ) in the usual way, let R =
∑r

ı=1 eı⊗e′ı
and R−1 =

∑s
=1 E⊗E′

. Set ρ = τV,V ◦R. Then ρ and ρ−1 satisfy the quantum
Yang–Baxter equation (1–1). Observe that

ρ(u⊗v) =
r∑

ı=1

e′ı(v)⊗eı(u) and ρ−1(u⊗v) =
s∑

=1

E(v)⊗E′
(u)

for all u, v ∈ V . By the multilinearity of the tensor product, to compute

INV(L) we may replace
¡

¡
¡

@@

@@I µ
and

¡¡ @
@

@ ¡¡I µ
in the diagram L by

¡
¡

¡

@@

@@I µ

eı • • e′ı
and

¡¡ @
@

@ ¡¡I µE • • E′
 respectively, where the crossing lines of the

last two configurations are regarded as vertical lines decorated by the indicated

morphisms. The result of this procedure is indicated by
¡

¡
¡@

@
@

I µ

eı • • e′ı
and

@
@

@ ¡
¡

¡

I µE • • E′


.

The diagram L with crossings replaced by these configurations

is referred to as a flat diagram; see [17, Section 2.1] for example. Usually eı and
e′ı are denoted by e and e′; likewise E and E′

 are denoted by E and E′.
From this point until the end of the section oriented lines, crossings and

local extrema will be components of strata. To evaluate INV(L), first choose
an upward directed vertical line (not a crossing line) in each of the components
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L1, . . . ,Lr of L and apply the analogs of the rules for sliding beads across local
extrema described above so that the only decorated lines are the chosen verticals
and each of these has a single decoration w(Lı). This can be done by bead sliding.
Again, we may assume without loss of generality that each component has such a
vertical line. Next label the intersections of the diagram L and the stratification
lines by indices (which run over the values 1, . . . , n).

For a linear endomorphism T of V we write T (v) =
∑n

ı=1 T ı
 vı, where T ı

 ∈ k.
Thus for endomorphisms S, T of V we have (T◦S)ı

 =
∑n

`=1 T ı
`S

`
 . Observe that

D+(vı⊗v) = Dı
 and D−(1) =

n∑
ı,=1

(D−1)ı
vı⊗v,

U+(1) =
n∑

ı,=1

v⊗U ı
vı and U−(v⊗vı) = (U−1)ı

.

We associate matrix elements to the vertical lines, the crossing lines and to the
local extrema of L whose endpoints are now labeled by indices as follows:

δı
 to



ı

6
or

ı



? ,

that is to vertical lines with no line label or crossing lines;

T ı
 to



ı

6• T

Dı
 to

¾ »
?
ı 

and (D−1)ı
 to ½ ¼

6
ı 

;

U ı
 to ½ ¼6

 ı

and (U−1)ı
 to

¾ »
?

 ı
.

The scalar INV(L) is obtained by multiplying all of the matrix elements and
summing over the indices. It is a product of contributions of the components of
L. Each component Lı contributes a factor which is described as follows. Start
at the base of the only decorated vertical line in Lı and let 1, . . . , m be the
indices of Lı associated to the intersections of Lı and the stratum lines of L in
the order encountered on a traversal of Lı in the direction of orientation. Observe
that 1 and 2, 2 and 3, . . . , m−1 and m, m and 1 label the endpoints of
stratum components whose associated matrix elements we will call (T1)2

1 , (T2)3
2 ,
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. . . , (Tm−1)m
m−1

, (Tm)1
m

respectively. The contribution which the component
Lı makes to INV(L) is

n∑
1,...,m=1

(T1)2
1(T2)3

2 · · · (Tm−1)m
m−1

(Tm)1
m

= tr(Tm◦ · · · ◦T1) = tr(G−dw(L1)),

where G = D◦U and d is the Whitney degree of Lı. If (End(V ), tD, tU ) is
an oriented quantum algebra over k we note (End(V ), tD, tU , D◦U) is a twist
oriented quantum algebra over k.

Theorem 4. Let V be a finite-dimensional vector space over k. Suppose that
D,U are commuting linear automorphisms of V and R is a linear automorphism
of V⊗V which is a solution to the braid equation (1–2). Let ρ = τV,V ◦R and let
tD, tU be the algebra automorphisms of End(V ) which are defined by tD(X) =
D◦X◦D−1 and tU (X) = U◦X◦U−1 for all X ∈ End(V ). Then:

(a) (End(V )op, ρ, tD, tU ) is an oriented quantum algebra over k if and only if
(8–2)–(8–5) hold for R, D and U .

(b) Suppose that (8–2)–(8–5) hold for R, D and U . Then INV = INVR,D,U is a
regular isotopy invariant of oriented link diagrams and

Inv(End(V )op,ρ,tD,tU ,(D◦U)−1),tr(L) = INV(L)

for all L ∈ Link.

Proof. Using bead sliding to evaluate compositions, we note that (8–4) is
equivalent to the equation (tU⊗tU )(ρ) = ρ and (8–5) is equivalent to the equation
(t−1

D ⊗t−1
D )(ρ) = ρ. Thus (8–4) and (8–5) are collectively equivalent to (qa.2) for

ρ, tD and tU .
Assume that (8–4) and (8–5) hold for ρ, tD and tU . Let A = End(V )op. Then

(8–2) is equivalent to

((tU⊗1)(ρ−1))((1⊗tD)(ρ)) = 1⊗1

in A⊗Aop and (8–3) is equivalent to

((1⊗tU )(ρ))((tD⊗1)(ρ−1)) = 1⊗1

in A⊗Aop. Applying the algebra automorphism tD⊗tU of A⊗Aop to both sides
of the first equation we see that (8–2) is equivalent to

((tD⊗1)(ρ−1))((1⊗tU )(ρ)) = 1⊗1

in A⊗Aop. We have shown part (a). Note that (8–2) and (8–3) are equivalent
since V is finite-dimensional. Part (b) follows from part (a) and the calculations
preceding the statement of the theorem. ¤
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Let (End(V ), ρ, tD, tU , G) be a twist oriented quantum algebra over k, where
G = D◦U . We relate the resulting invariant of oriented links with the one
described in Theorem 4.

First we identify End(V ) and Mn(k) via T 7→ (T ı
 ) and use this isomor-

phism to identify End(V⊗V ) ' End(V )⊗End(V ) with Mn(k)⊗Mn(k). Write
ρ =

∑n
ı,,k,`=1 ρı 

k `E
ı
k⊗E

` and let R(ρ) = τV,V ◦ρ be the solution to the braid
equation (1–2) associated to ρ. Then R(ρ) =

∑n
,ı,k,`=1 ρ ı

k `E
ı
k⊗E

` and R−1
(ρ) =∑n

,ı,k,`=1(ρ
−1)ı 

` kEı
k⊗E

`.
Let f : Mn(k)op −→ Mn(k) be the algebra isomorphism defined by f(x) = xτ ,

where xτ is the transpose of x ∈ Mn(k). Then (Mn(k)op, ρf , tD f , tU f , f(G))
is a twist oriented quantum algebra over k, where ρf = (f⊗f)(ρ), tD f =
f◦tD◦f−1 = t(D−1)τ , tU f = f◦tU◦f−1 = t(U−1)τ and G = D◦U . Furthermore
f : (Mn(k)op, ρ, tD, tU , G) −→ (Mn(k)op, ρf , tD f , tU f , f(G)) is an isomorphism
of twist oriented quantum algebras over k. Since tr = tr◦f we can use Proposition
12 to conclude that

Inv(Mn(k),ρ,tD,tU ,G),tr = Inv(Mn(k)op,ρf ,t(D−1)τ ,t(U−1)τ ,Gτ ),tr. (8–7)

We note that R(ρ) and R(ρτ ) have the same minimal polynomial. The algebra
automorphism of Mn(k)⊗Mn(k) defined by F = τMn(k),Mn(k)◦(f⊗f) satisfies
R(ρτ ) = F (R(ρ)) from which our assertion follows.

Consider the oriented quantum algebra of Example 5 which has a twist struc-
ture given by G =

∑n
ı=1 ω2

ı Eı
ı . The resulting invariant of oriented links satisfies

a skein identity whenever bc has a square root in k. In this case

1√
bc

R−
√

bcR−1 =

(
a√
bc
−
√

bc

a

)
1⊗1;

thus the invariant Inv = Inv(Mn(k),ρ,tD,tU ,G),tr satisfies the skein identity (8–6)
with α =

√
bc, β = 1/

√
bc and γ = a/

√
bc −

√
bc/a. See [16, Section 6] for an

analysis of this invariant.
Suppose that further that k = C, t ∈ C is transcendental, q ∈ C satisfies

t = q4, n = 2, a = q−1, b1 2 = q and
√

bc = q. Take ω1 = q and ω2 = q−1. In this
case the skein identity is the skein identity for the bracket polynomial [10, page
50]. Thus by [10, Theorem 5.2] the Jones polynomial VL(t) in is given by

VL(t) = VL(q4) =
(−q3)writheL

tr(G)
Inv(L) =

(
(−q3)writheL

q2 + q−2

)
Inv(L) (8–8)

for all L ∈ Link.
By virtue of the preceding formula, Example 8 and part (b) of Theorem 3 the

Jones polynomial can be computed in terms of the quantum algebra of Example
3. The calculation of the Jones polynomial in terms of Example 3 was done by
Kauffman much earlier; see [10, page 580] for example.
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9. Inner Oriented Quantum Algebras

The material of the last section suggests designation of a special class of
oriented quantum algebras which we will refer to as inner. Formally an inner
oriented quantum algebra is a tuple (A, ρ, D,U), where D, U ∈ A are commuting
invertible elements such that (A, ρ, td, tu) is an oriented quantum algebra with
td(a) = DaD−1 and tu(a) = UaU−1 for all a ∈ A. Observe that if (A, ρ,D, U)
is an inner oriented quantum algebra then (A, ρ, td, tu, DU) is a twist oriented
quantum algebra which we denote by (A, ρ, D, U,DU).

An inner oriented quantum algebra (A, ρ,D, U) is standard if D = 1A and
is balanced if D = U . Observe that any standard oriented quantum algebra
structure on A = Mn(k) arises from an inner oriented quantum algebra structure.

If (A, ρ, D, U) is an inner oriented quantum algebra (Aop, ρ, D−1, U−1),
(A,ρ−1,D−1, U−1) and (A,ρop, U−1,D−1) are as well. See the discussion which
follows Example 5.

A morphism f : (A, ρ, D, U) −→ (A′, ρ′, D′, U ′) of inner oriented quantum al-
gebras is an algebra map f : A −→ A′ which satisfies ρ′ = (f⊗f)(ρ), f(D) = D′

and f(U) = U ′; that is f : (A, ρ, td, tu) −→ (A′, ρ′, t′d, t
′
u) is a morphism of

the associated oriented quantum algebras. For inner oriented quantum algebras
(A, ρ,D, U) and (A′, ρ′, D′, U ′) over k we note that (A⊗A′, ρ′′, D⊗D′, U⊗U ′) is
an inner oriented quantum algebra over k, called the tensor product of (A, ρ,D, U)
and (A′, ρ′, D′, U ′), where (A⊗A′, ρ′′) is the tensor product of the quantum alge-
bras (A, ρ) and (A′, ρ′). Observe that (k, 1⊗1, 1, 1) is an inner oriented quantum
algebra. Inner oriented quantum algebras together with their morphisms under
composition form a monoidal category.

Let f : A −→ A′ be an algebra map. If (A, ρ, D,U) is an inner oriented
quantum algebra over k and then (A′, (f⊗f)(ρ), f(D), f(U)) is as well and f :
(A, ρ,D, U) −→ (A′, (f⊗f)(ρ), f(D), f(U)) is a morphism. In particular if V

is a finite-dimensional left A-module and f : A −→ End(V ) is the associated
representation

f : (Aop,ρ,D−1,U−1,(DU)−1)−→ (End(V )op,(f⊗f)(ρ),f(D)−1,f(U)−1,f(DU)−1)

is a morphism of twist oriented quantum algebras; the latter occurs in part (b)
of Theorem 4.

10. The Hennings Invariant

Let (A, ρ, v) be a finite-dimensional unimodular ribbon Hopf algebra with
antipode s over the field k and let (A, ρ, s, G) be the twist quantum algebra of
Example 4, where G = uv−1. Let λ ∈ A∗ be a non-zero right integral for A∗.
Then tr ∈ A∗ defined by tr(a) = λ(Ga) for all a ∈ A is a tracelike s∗-invariant
element of A∗.
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Suppose further that λ(v), λ(v−1) 6= 0. Then the Hennings invariant for 3-
manifolds is defined. It is equal to a normalization of InvA, tr(L) by certain powers
of λ(v) and λ(v−1), where L ∈ Link is associated with the 3-manifold.

In addition to providing a very rough description of the Hennings invariant, we
would like to comment here that Proposition 9 is of very little help in computing
this invariant. For suppose that f : (A, ρ, s, G) −→ (A′, ρ′, s′, G′) is a morphism
of twist quantum algebras over k, tr′ ∈ A′ is a tracelike s′∗-invariant element
of A′∗ and tr = tr′◦f . Then (0) = λ(Gker f). The only left or right ideal of A

on which λ vanishes is (0). Therefore ker f = (0), or equivalently f is one-one.
Thus the right hand side of InvA, tr(L) = InvA′, tr′(L) is no easier to compute than
the left hand side.

The Hennings invariant [5] was defined originally using oriented links and was
reformulated and conceptually simplified using unoriented links [13]. Calcula-
tions of the Hennings invariant for two specific Hopf algebras are made in [13],
and calculations which are relevant to the evaluation of the Hennings invariant
are made in [25].

11. Quantum Coalgebras and Coquasitriangular Hopf Algebras

To define quantum coalgebra we need the notion of coalgebra map with respect
to a set of bilinear forms. Let C,D be coalgebras over k and suppose that B is
a set of bilinear forms on D. Then a linear map T : C −→ D is a coalgebra map
with respect to B if ε◦T = ε,

b(T (c(1)), d)b′(T (c(2)), e) = b(T (c)(1), d)b′(T (c)(2), e)

and
b(d, T (c(1)))b′(e, T (c(2))) = b(d, T (c)(1))b′(e, T (c)(2))

for all c ∈ C and d, e ∈ D. A quantum coalgebra over k is a triple (C, b, S),
where (C, b) is a Yang–Baxter coalgebra over k and S : C −→ Ccop is a coalgebra
isomorphism with respect to {b}, such that

(QC.1) b−1(c, d) = b(S(c), d) and

(QC.2) b(c, d) = b(S(c), S(d))

for all c, d ∈ C. Observe that (QC.1) and (QC.2) imply

(QC.3) b−1(c, d) = b(c, S−1(d))

for all c, d ∈ C; indeed any two of (QC.1)–(QC.3) are equivalent to (QC.1) and
(QC.2).

A quantum coalgebra (C, b, S) is strict if S : C −→ Ccop is a coalgebra
isomorphism. Not every quantum coalgebra is strict. Let C be any coalgebra
over k and suppose that S is a linear automorphism of C which satisfies ε = ε◦S.
Then (C, b, S) is a quantum coalgebra over k, where b(c, d) = ε(c)ε(d) for all
c, d ∈ C. There are many quantum coalgebras of this type which are not strict.
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Just as quasitriangular Hopf algebras provide examples of quantum algebras,
coquasitriangular Hopf algebras provide examples of quantum coalgebras. Recall
that a coquasitriangular Hopf algebra over k is a pair (A, β), where A is a Hopf
algebra over k and β : A×A −→ k is a bilinear form, such that

(CQT.1) β(ab, c) = β(a, c(1))β(b, c(2)),

(CQT.2) β(1, a) = ε(a),

(CQT.3) β(a, bc) = β(a(2), b)β(a(1), c),

(CQT.4) β(a, 1) = ε(a) and

(CQT.5) β(a(1), b(1))a(2)b(2) = b(1)a(1)β(a(2), b(2))

for all a, b, c ∈ A. Let (A, β) be a coquasitriangular Hopf algebra over k. The
antipode S of A is bijective [30]. By virtue of (CQT.1)–(CQT.4) it follows
that β is invertible and β(S(a), b) = β−1(a, b) = β(a, S−1(b)) for all a, b ∈ A.
Consequently β(a, b) = β(S(a), S(b)) for all a, b ∈ A. (CQT.1) and (CQT.5)
imply that (qc.2) for A and β; apply β( , c) to both sides of the equation of
(CQT.5). We have shown:

Example 9. If (A, β) is a coquasitriangular Hopf algebra over k then (A, β, S)
is a quantum coalgebra over k, where S is the antipode of A.

Associativity is not necessary for the preceding example. A structure which
satisfies the axioms for a Hopf algebra over k with the possible exception of the
associative axiom is called a not necessarily associative Hopf algebra over k.

The notions of strict quantum coalgebra and quantum algebra are dual. Let
(A, ρ, s) be a quantum algebra over k. Then (Ao, bρ, s

o) is a strict quantum
coalgebra over k, and the bilinear form bρ is of finite type. Suppose that C is a
coalgebra over k, that b : C×C −→ k is a bilinear form of finite type and that
S is a linear automorphism of C. Then (C, b, S) is a strict quantum coalgebra
over k if and only if (C∗, ρb, S

∗) is a quantum algebra over k.
The dual of the quantum algebra described in Example 3 has a very simple

description. For n ≥ 1 let Cn(k) = Mn(k)∗ and let {eı }1≤ı,≤n be the basis
dual to the standard basis {Eı }1≤ı,≤n for Mn(k). Recall that

∆(eı ) =
n∑

`=1

eı `⊗e`  and ε(eı ) = δı,

for all 1 ≤ ı,  ≤ n.

Example 10. Let k be a field and q ∈ k?. Then (C2(k), b, S) is a quantum
coalgebra over k, where

b(e1 1, e1 1) = q−1 = b(e2 2, e2 2), b(e1 1, e2 2) = q = b(e2 2, e1 1),

b(e1 2, e2 1) = q−1 − q3
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and

S(e1 1) = e2 2, S(e2 2) = e1 1, S(e1 2) = −q−2e1 2, S(e2 1) = −q2e2 1.

Let (C, b, S) and (C ′, b′, S′) be quantum coalgebras over k. The tensor product
of (C, b, S) and (C ′, b′, S′) is the quantum coalgebra (C⊗C ′, b′′, S⊗S′) over k,
where (C⊗C ′, b′′) is the tensor product of the Yang–Baxter coalgebras (C, b) and
(C ′, b′). Observe that (k, b, 1k) is a quantum coalgebra over k, where (k, b) is the
Yang–Baxter coalgebra described in Section 2. The category of quantum coal-
gebras over k with their morphisms under composition has a natural monoidal
structure.

Suppose that (C, b, S) is a quantum coalgebra over k. Then (C, b) is a Yang–
Baxter coalgebra and thus (Ccop, b), (C, b−1) and (C, bop) are as well as noted in
Section 2. It is easy to see that (Ccop, b, S), (C, b−1, S−1) and (C, bop, S−1) are
quantum coalgebras over k.

Suppose that D is a subcoalgebra of C which satisfies S(D) = D. Then
(D, b|D×D, S|D) is a quantum coalgebra over k which is called a quantum sub-
coalgebra of (C, b, S). Observe that the quantum subcoalgebras of (C, b, S)
are the quantum coalgebras (D, b′, S′) over k, where D is a subcoalgebra of
C and the inclusion ı : D −→ C induces a morphism of quantum coalgebras
ı : (D, b′, S′) −→ (C, b, S).

If (C, b) is a Yang–Baxter coalgebra over k then (D, b|D×D) is also where
D is any subcoalgebra of C. Thus (C, b) is the sum of its finite-dimensional
Yang–Baxter subcoalgebras. There are infinite-dimensional quantum coalgebras
(C, b, S) over k such that the only non-zero subcoalgebra D of C which satisfies
S(D) = D is C itself; in this case (C, b, S) is not the union of its finite-dimensional
quantum subcoalgebras.

Example 11. Let C be the grouplike coalgebra on the set of all integers and
let q ∈ k?. Then (C, b, S) is a quantum coalgebra over k, where

b(m,n) =
{

q :if m + n is even
q−1:if m + n is odd

and S(m) = m + 1 for all integers m,n, and if D is a non-zero subcoalgebra of
C such that S(D) = D then D = C.

Suppose that I is a coideal of C which satisfies S(I) = I and b(I, C) = (0) =
b(C, I). Then the Yang–Baxter coalgebra structure (C/I, b) over k on C/I

extends to is a quantum coalgebra structure on (C/I, b, S) over k such that
the projection π : C −→ C/I determines a morphism of quantum coalgebras
π : (C, b, S) −→ (C/I, b, S). Now suppose that I is the sum of all coideals J of
C such that S(J) = J and b(J,C) = (0) = b(C, J). Then the Yang–Baxter coal-
gebra (Cr, br) extends to a quantum coalgebra structure (Cr, br, Sr) such that
the projection π : C −→ Cr determines a morphism π : (C, b, S) −→ (Cr, br, Sr)
of quantum coalgebras over k. The quantum coalgebra construction (Cr, br, Sr)
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is the dual of the construction of the minimal quantum algebra (Aρ, ρ, s|Aρ
)

associated to a quantum algebra (A, ρ, s) over k.
Let K be a field extension of k. Then (C⊗K, bK , S⊗1K) is a quantum coal-

gebra over K, where (C⊗K, bK) is the Yang–Baxter coalgebra described in Sec-
tion 2.

We have noted that quantum coalgebras are not necessarily strict. There are
natural conditions under which strictness is assured.

Lemma 4. A quantum coalgebra (C, b, S) over the field k is strict if b is left or
right non-singular . ¤

Quantum coalgebra structures pull back under coalgebra maps which are onto.

Proposition 13. Let (C ′, b′, S′) be a quantum coalgebra over the field k and
suppose that f : C −→ C ′ is an onto coalgebra map. Then there is a quantum
coalgebra structure (C, b, S) on C such that f : (C, b, S) −→ (C ′, b′, S′) is a
morphism of quantum coalgebras. ¤

Every finite-dimensional coalgebra over k is the homomorphic image of Cn(k)
for some n ≥ 1. As a consequence of the proposition:

Corollary 3. Let (C ′, b′, S′) be a quantum coalgebra over k, where C ′ is
finite-dimensional . Then for some n ≥ 1 there is a quantum coalgebra struc-
ture (Cn(k), b, S) on Cn(k) and a morphism π : (Cn(k), b, S) −→ (C ′, b′, S′) of
quantum coalgebras such that π : Cn(k) −→ C ′ is onto. ¤

We have noted that coquasitriangular Hopf algebras have a quantum coalgebra
structure. In the other direction one can always associate a coquasitriangular
Hopf algebra to a quantum coalgebra (C, b, S) over k through the free coqua-
sitriangular Hopf algebra (ı,H(C, b, S), β) on (C, b, S) whose defining mapping
property is described in the theorem below. See [22, Exercise 7.4.4]. A map
f : (A, β) −→ (A′, β′) of coquasitriangular Hopf algebras is a Hopf algebra map
f : A −→ A′ which satisfies β(a, b) = β′(f(a), f(b)) for all a, b ∈ A.

Theorem 5. Let (C, b, S) be a quantum coalgebra over the field k. Then the
triple (ı,H(C, b, S), β) satisfies the following properties:

(a) The pair (H(C, b, S), β) is a coquasitriangular Hopf algebra over k and ı :
(C, b, S) −→ (H(C, b, S),β, S) is a morphism of quantum coalgebras, where
S is the antipode of H(C, b, S).

(b) If (A′, β′) is a coquasitriangular Hopf algebra over k and f : (C, b, S) −→
(A′, β′, S′) is a morphism of quantum coalgebras, where S′ is the antipode of
A′, then there exists a map F : (H(C, b, S), β) −→ (A′, β′) of coquasitriangular
Hopf algebras over k uniquely determined by F◦ı = f . ¤

Also see [2] in connection with the preceding theorem. The quantum coalgebra
(Cr, br, Sr) associated with a quantum coalgebra (C, b, S) plays an important
role in the theory of invariants associated with (C, b, S). We end this section



QUANTUM ALGEBRAS AND INVARIANTS OF LINKS 313

with a result on (Cr, br, Sr) in the strict case. Note that (Cr)r = Cr. Compare
part (a) of the following with Corollary 1.

Proposition 14. Let (C, b, S) be a quantum coalgebra over the field k and
suppose that (Cr, br, Sr) is strict .

(a) If Cr is cocommutative then S2
r = 1Cr

.
(b) S2(g) = g for all grouplike elements g of Cr.

Proof. We may assume that C = Cr. To show part (a), suppose that C

is cocommutative and let b′ be the bilinear form on C defined by b′(c, d) =
b(S2(c), d) for all c, d ∈ C. Then b′ and b−1 are inverses since S is a coalgebra
automorphism of C. Thus b′ = b, or b(S2(c), d) = b(c, d) for all c, d ∈ C. This
equation and (QC.2) imply that b(c, S2(d)) = b(c, d) for all c, d ∈ C also. Thus
the coideal I = Im (S2 − 1C) of C satisfies b(I, C) = (0) = b(C, I). Since S is
onto it follows that S(I) = I. Thus since C = Cr we conclude I = (0); that
is S2 = 1C . We have established part (a). The preceding argument can be
modified to give a proof of part (b). ¤

With the exception of Example 11 and Theorem 5 the material of this section is
a very slight expansion of material found in [19].

12. Oriented Quantum Coalgebras

In this very brief section we define oriented quantum coalgebra and related
concepts and discuss a few results about their structure. Most of the material of
Section 11 on quantum coalgebras have analogs for oriented quantum coalgebras.
The notions of oriented quantum algebra and twist oriented quantum algebra
are introduced in [17].

An oriented quantum coalgebra over k is a quadruple (C, b, Td, Tu), where
(C, b) is a Yang–Baxter coalgebra over k and Td, Tu are commuting coalgebra
automorphisms with respect to {b, b−1}, such that

(qc.1) b(c(1), Tu(d(2)))b−1(Td(c(2)), d(1)) = ε(c)ε(d),

b−1(Td(c(1)), d(2))b(c(2), Tu(d(1))) = ε(c)ε(d) and

(qc.2) b(c, d) = b(Td(c), Td(d)) = b(Tu(c), Tu(d))

for all c, d ∈ C. An oriented quantum coalgebra (C, b, Td, Tu) over k is strict if
Td, Tu are coalgebra automorphisms of C, is balanced if Td = Tu and is standard if
Td = 1C . We make the important observation that the T -form structures of [12]
are the standard oriented quantum coalgebras over k; more precisely (C, b, T ) is
a T -form structure over k if and only if (C, b, 1C , T−1) is an oriented quantum
coalgebra over k.

Let (C, b, Td, Tu) and (C ′, b′, T ′d, T
′
u) be oriented quantum coalgebras over k.

Then (C⊗C ′, b′′, Td⊗T ′d, Tu⊗T ′u) is an oriented quantum coalgebra over k, called
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the tensor product of (C, b, Td, Tu) and (C ′, b′, T ′d, T
′
u), where (C⊗C ′, b′′) is the

tensor product of the Yang–Baxter coalgebras (C, b) and (C ′, b′). A morphism
f : (C, b, Td, Tu) −→ (C ′, b′, T ′d, T

′
u) of oriented quantum coalgebras is a morphism

f : (C, b) −→ (C ′, b′) of Yang–Baxter coalgebras which satisfies f◦Td = T ′d◦f
and f◦Tu = T ′u◦f . Observe that (k, b, 1k, 1k) is an oriented quantum coalgebra
over k where (k, b) is the Yang–Baxter coalgebra of Section 2. The category of
oriented quantum coalgebras over k and their morphisms under composition has
a natural monoidal structure.

The notions of oriented quantum algebra and strict oriented quantum coal-
gebra are dual as the reader may very well suspect at this point. Suppose that
(A, ρ, td, tu) is an oriented quantum algebra over k. Then (Ao, bρ, t

o
d, t

o
u) is a strict

oriented quantum coalgebra over k and the bilinear form bρ is of finite type. Sup-
pose that C is a coalgebra over k, that b is a bilinear form on C of finite type
and that Td, Tu are commuting linear automorphisms of C. Then (C, b, Td, Tu)
is a strict oriented quantum coalgebra over k if and only if (C∗, ρb, T

∗
d , T ∗u ) is an

oriented quantum algebra over k.
There is an analog of Proposition 2 for oriented quantum coalgebras.

Proposition 15. If (C, b, Td, Tu) is an oriented quantum coalgebra over the field
k then (C, b, Td◦Tu, 1C) and (C, b, 1C , Td◦Tu) are oriented quantum coalgebras
over k. ¤

The oriented quantum coalgebra (C, b, 1C , Td◦Tu) of the proposition is called the
standard oriented quantum coalgebra associated with (C, b, Td, Tu). It may very
well be the case that the only oriented quantum coalgebra structures (C, b, Td, Tu)
which a Yang–Baxter coalgebra (C, b) supports satisfy Td = 1C or Tu = 1C ; take
the dual of the oriented quantum algebra of Example 6.

As in the case of quantum algebras:

Theorem 6. Let (C, b, S) be a quantum coalgebra over the field k. Then
(C, b, 1C , S−2) is an oriented quantum coalgebra over the field k. ¤

It may very well be the case that for a standard oriented quantum coalgebra
(C, b, 1C , T ) there is no quantum coalgebra structure of the form (C, b, S); con-
sider the dual of the oriented quantum algebra of Example 7.

To construct knot and link invariants from oriented quantum coalgebras we
need a bit more structure. A twist oriented quantum coalgebra over k is a quin-
tuple (C, b, Td, Tu, G), where (C, b, Td, Tu) is a strict oriented quantum coalgebra
over k and G ∈ C∗ is invertible, such that

T ∗d (G) = T ∗u (G) = G and Td◦Tu(c) = G−1⇀c↼G

for all c ∈ C, where c∗⇀c = c(1)c
∗(c(2)) and c↼c∗ = c∗(c(1))c(2) for all c∗ ∈ C∗

and c ∈ C. We let the reader work out the duality between twist oriented
quantum algebras and twist oriented quantum coalgebras.
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The notion of strict (and twist) oriented quantum coalgebra was introduced
in [16] and the general notion of quantum coalgebra was introduced in [17]. The
results of this section are found in [15, Sections 2, 4].

13. Quantum Coalgebras Constructed from Standard
Oriented Quantum Coalgebras

Let (C, b, Td, Tu) be an oriented quantum coalgebra over the field k. We con-
sider the dual of the construction discussed in Section 5. The essential part of
the construction we describe in this section was made in [12] before the concepts
of oriented quantum algebra and coalgebra were formulated. What follows is
taken from [15, Section 4].

Let (C, b, 1C , Td◦Tu) be the standard oriented quantum coalgebra associated
with (C, b, Td, Tu). Let C = C⊕Ccop be the direct sum of the coalgebras C and
Ccop and think of C as a subcoalgebra of C by the identification c = c⊕0 for all
c ∈ C. For c, d ∈ C define c⊕d = d⊕c, let β : C⊗C −→ k be the bilinear form
determined by

β(c, d) = β(c, d), β(c, d) = b−1(c, d) and β(c, d) = b−1(c, (Td◦Tu)−1(d))

and let S be the linear automorphism of C defined by

S(c⊕d) = (Td◦Tu)−1(d)⊕c.

Since (C, b, (Td◦Tu)−1) is a (Td◦Tu)−1-form structure, it follows by [12, Theo-
rem 1] that (C,β, S) is a quantum coalgebra over k. It is easy to see that
(C,β, T d,T u) is an oriented quantum coalgebra over k, where

T d(c⊕d) = Td(c)⊕Td(d) and T u(c⊕d) = Tu(c)⊕Tu(d)

for all c, d ∈ C. Observe that the inclusion ı : C −→ C determines a morphism
of oriented quantum coalgebras ı : (C, b, Td, Tu) −→ (C, β,T d,T u). Also observe
that T d, T u commute with S.

Let Ccq be the category whose objects are quintuples (C, b, S, Td, Tu), where
(C, b, S) is a quantum coalgebra over k, (C, b, Td, Tu) is an oriented quantum
coalgebra over k and Td, Tu commute with S, and whose morphisms

f : (C, b, S, Td, Tu) −→ (C ′, b′, S′, T ′d, T
′
u)

are morphisms of quantum coalgebras f : (C, b, S) −→ (C ′, b′, S′) and mor-
phisms of oriented quantum coalgebras f : (C, b, Td, Tu) −→ (C ′, b′, T ′d, T

′
u). Our

construction gives rise to a free object of Ccq.

Proposition 16. Let (C, b, Td, Tu) be an oriented quantum coalgebra over the
field k. Then the pair (ı, (C, β, S, T d, T u)) satisfies the following properties:

(a) (C, β, S, T d, T u) is an object of Ccq and ı : (C, b, Td, Tu) −→ (C,β, T d, T u) is
a morphism of oriented quantum coalgebras over k.
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(b) Suppose that (C ′, b′, S′, T ′d, T
′
u) is an object of Ccq and f : (C, b, Td, Tu) −→

(C ′, b′, T ′d, T
′
u) is a morphism of oriented quantum coalgebras over k. There is

a morphism F : (C, β, S, T d, T u) −→ (C ′, b′, S′, T ′d, T
′
u) uniquely determined

by F◦ı = f . ¤

14. Invariants Constructed from Quantum Coalgebras
and Oriented Quantum Coalgebras

The invariants of Section 6 associated with finite-dimensional quantum alge-
bras and twist quantum algebras can be reformulated in terms of dual structures
in a way which is meaningful for all quantum coalgebras and twist quantum coal-
gebras. In this manner regular isotopy invariants of unoriented 1–1 tangles can
be constructed from quantum coalgebras and regular isotopy invariants of un-
oriented knots and links can be constructed from twist quantum coalgebras. In
the same way reformulation of the invariants described in Section 7 leads to
the construction of regular isotopy invariants of oriented 1–1 tangles from ori-
ented quantum coalgebras and to the construction of regular isotopy invariants
of oriented knots and links from oriented twist quantum coalgebras.

14.1. Invariants constructed from quantum coalgebras and twist quan-
tum coalgebras. We assume the notation and conventions of Section 6 in the
following discussion. Detailed discussions of the functions InvC and InvC,tr are
found in [19, Sections 6, 8] respectively. For specific calculations of these func-
tions we refer the reader to [16; 15; 19].

Let (A, ρ, s) be a finite-dimensional quantum algebra over the field k. Then
(C, b, S) = (A∗, bρ, s

∗) is a finite-dimensional strict quantum coalgebra over k.
We can regard InvA(T) ∈ A = C∗ as a functional on C and we can describe
InvA(T) in terms of b = bρ and S = s∗. The resulting description is meaningful
for any quantum coalgebra over k.

Let (C, b, S) be a quantum coalgebra over k. We define a function InvC :
Tang −→ C∗ which determines a regular isotopy invariant of unoriented 1–1
tangles. If T ∈ Tang has no crossings then InvC(T) = ε.

Suppose that T ∈ Tang has n ≥ 1 crossings. Traverse T in the manner
described in Section 6.1 and label the crossing lines 1, 2, . . . , 2n in the order
encountered. For c ∈ C the scalar InvC(T)(c) is the sum of products, where each
crossing χ contributes a factor according to

InvC(T)(c) =
{
· · · b(Su(ı)(c(ı)), Su(ı′)(c(ı′))) · · · :χ an over crossing

· · · b−1(Su(ı)(c(ı)), Su(ı′)(c(ı′))) · · ·:χ an under crossing
(14–1)

where ı (respectively ı′) labels the over (respectively under) crossing line of χ.
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For example

InvC(Ttrefoil)(c) = b−1(c(4), S
2(c(1))b(S2(c(2), c(5))b−1(c(6), S

2(c(3))

and
InvC(Tcurl)(c) = b(c(1), S(c(2)).

When (C, b, S) = (A∗, bρ, s
∗) it follows that InvA(T) = InvC(T) for all T ∈

Tang. There is a difference, however, in the way in which InvA(T) and InvC(T)
are computed which may have practical implications. Computation of InvA(T)
according to the instructions of Section 6.1 usually involves non-commutative
algebra calculations in tensor powers of A. Computation of InvC(T) based on
(14–1) involves arithmetic calculations in the commutative algebra k. There is
an analog of Proposition 7 for quantum coalgebras. Thus by virtue of Corollary
3 we can further assume that C = Cn(k) for some n ≥ 1.

Final comments about the 1–1 tangle invariant described in (14–1). Even
the simplest quantum coalgebras, specifically ones which are pointed and have
small dimension, can introduce interesting combinatorics into the study of 1–1
tangle invariants. See [12] for details. Generally quantum coalgebras, and twist
quantum coalgebras, seem to provide a very useful perspective for the study of
invariants of 1–1 tangles, knots and links.

We now turn to knots and links. Let (C, b, S,G) be a twist quantum coalgebra
over k and suppose that c is a cocommutative S-invariant element of C. We
construct a scalar valued function InvC,c : Link −→ k which determines a regular
isotopy invariant of unoriented links.

Let L ∈ Link be a link diagram with components L1, . . . , Lr. Let d1, . . . , dr

be the associated Whitney degrees and set c(`) = c↼Gd` for all 1 ≤ ` ≤ r. Let
ω ∈ k be the product of the Gd`(c(`))’s such that L` contains no crossing lines;
if there are no such components set ω = 1. The scalar InvC,c(L) is ω times a sum
of products, where each crossing contributes a factor according to

InvC(T)(c) =

ω

{
· · · b(Su(`:ı)(c(`)(ı)), Su(`′:ı′)(c(`′)(ı′))) · · · :χ an over crossing

· · · b−1(Su(`:ı)(c(`)(ı)), Su(`′:ı′)(c(`′)(ı′))) · · ·:χ an under crossing
(14–2)

where (`:ı) (respectively (`′:ı′)) labels the over (respectively under) crossing line
of χ. We note that InvA,tr(L) = InvC,tr(L) when (A, ρ, s,G) is a finite-dimensional
twist quantum algebra over k and (C, b, S, G) = (A∗, bρ, s

∗, G).

14.2. Invariants constructed from oriented quantum coalgebras and
twist quantum coalgebras. There are analogs InvC : Tang −→ C∗ and
InvC,c : Link −→ k of the invariants InvC and InvC,c of Section 14.1 for oriented
quantum coalgebras and twist oriented quantum coalgebras respectively. There
is a version of Theorem 3 for the coalgebra construction of Section 5; see [15,
Section 8.3].
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The descriptions of InvC and InvC,c are fairly complicated since there are
eight possibilities for oriented crossings situated with respect to a vertical. If all
crossings of T ∈ Tang and L ∈ Link are oriented in the upward direction, which
we may assume by virtue of the twist moves, then the descriptions of InvC and
InvC,c take on the character of (14–1) and (14–2) respectively. See [15, Section
8.2] for details.
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