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Introduction

The notion of quantum matrices has interesting and important connections
with various topics in mathematics such as quantum group theory, Hopf algebra
theory, braided tensor categories, knot and link invariants, the Yang–Baxter
equation, representation theory and so on.

This course is an introduction to quantum groups. I have made an effort
to have the exposition as elementary as possible. I intended to talk in some
informal way, and did not intend to give detailed proofs. The present notes
have somewhat more formal and rigorous flavor than the actual lectures, in

These notes are based on a course given at University of Munich in Summer, 1997 with
arrangements by H.-J. Schneider and financial support from the Humboldt Foundation and
the Graduiertenkolleg of University of Munich.
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which I tried to visualize and illustrate connections with knot theory by using
transparency sheets.

I begin with introducing 2×2 q-matrices in Section 1. They are characterized
in two ways, one by the q-adjoint matrix (Proposition 1.3) and the other by the R-
matrix Rq (Proposition 1.6). Each of them admits an interesting interpretation
in the theory of knot invariants, and this is illustrated in Section 2 by talking
about a basic knot invariant, called Kauffman’s bracket polynomial.

The 2× 2 q-matrices have the remarkable property that their n-th powers are
qn-matrices. This fact was found around 1991 by several physicists. I reproduce
Umeda and Wakayama’s elegant proof in Section 3. The first characterization
(Proposition 1.3) plays a role in the proof.

General q-matrices of degree n are introduced in Section 4 as well as a brief
exposition of fundamental facts involving the R-matrix Rq, the q-symmetric and
q-exterior algebras, the q-determinant, the q-adjoint matrix and so on. The q-
matrix bialgebra Oq(M(n)) and the coordinate Hopf algebras Oq(GL(n)) and
Oq(SL(n)) of quantum GL and SL are also considered in this section.

The material of Section 4 leads to a q-analogue of linear algebra. In Section 5,
I reproduce J. Zhang’s result on a q-analogue of the Cayley–Hamilton theorem
which will be one of the most interesting topics in this area.

The R-matrix Rq introduced in Section 4 plays a remarkable role in the con-
struction of the so-called Homfly polynomial which is a two-variable invariant of
oriented links. This is illustrated in Section 6 following Kauffman’s idea.

In Sections 7 to 9, we talk about some Hopf algebraic properties of Oq(GL(n))
and Oq(SL(n)). In Section 7, we talk about the duality of two quantum Hopf
algebras Oq(SL(n)) and Uq(sln). Details are exposed in case n = 2 and q is not
a root of unity.

We show how to determine all group-like and skew-primitive elements of
Oq(GL(n))◦, the dual Hopf algebra of Oq(GL(n)), in Section 8. This technical
result is used to describe all quantum group homomorphisms SLq(n) → GLq(m)
in Section 9. We explain the main result (Theorem 9.13) when q is not a root of
unity, since this case is very easy to handle. However, we note that the result is
also valid at roots of unity.

These nine sections were delivered in six consecutive lectures in Munich, while
the remaining part came out from my rough draft written in Japanese with
translation into English by A. Masuoka.

In Section 10, we introduce 2-parameter quantum matrices and construct
the bialgebra Oα,β(M(n)) and the Hopf algebra Oα,β(GL(n)) as generalizations
of Oq(M(n)) and Oq(GL(n)). If we take (α, β) = (1, q), the Hopf algebra
O1,q(GL(n)) defines the Dipper–Donkin quantum GL whose polynomial rep-
resentations become equivalent with comodules for O1,q(M(n)). This idea leads
to a q-analogue of the Schur algebra which is discussed in Section 11 as well as
the Hecke algebra.
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Y. Doi has introduced the idea of cocycle deformations of a bialgebra through
his study of braided and quadratic bialgebras. The notion of a braided bialge-
bra is dual to Drinfeld’s quasi-triangular bialgebras. These items are explained
briefly in Section 12 and I reproduce my own result on determining all cocycle
deformations of the bialgebra Oα,β(M(n)).

This course ends with a short remark on 2 × 2 R-matrices in Section 13
including my student Suzuki’s new results.

These lecture notes were written up by B. Strüber who has made an excellent
job, especially when he made my rough drafts and transparency sheets into a
formal and rigorous exposition. I thank him most warmly for his efforts. I would
also like to thank H.-J. Schneider who invited me to Munich and arranged my
lectures.

Section 14 was added after acceptance of this exposition in this publication
in order to update the contents. I introduce E. Müller’s and E. Letzter’s cur-
rent results concerning the quantum Frobenius map in this addendum. Finally,
Section 15 is a short annotated bibliography.

1. (2 × 2) q-Matrices

Throughout this paper, let k be a fixed base field, k× := k \ {0} and q ∈ k×.

Definition 1.1 (q-matrices). Let A =
(

a b
c d

)
be a (2 × 2)-matrix over some

k-algebra. We call A a q-matrix if its entries satisfy the following relations:

ba = qab, dc = qcd,

ca = qac, db = qbd,

cb = bc, da− ad = (q − q−1)bc.

(The last relation implies ad − q−1bc = da − qbc.) We call this expression the
q-determinant of A and denote it by |A|q (for q = 1, this is just the usual
determinant).

Definition 1.2. The q-adjoint matrix of any matrix A is defined as

Ã :=
(

d −qb

−q−1c a

)
.

It is easily verified that Ã is a q−1-matrix, if A is a q-matrix.

Proposition 1.3. (a) For any q-matrix A, we have:

|Ã|q−1 = |A|q, Ã =
( q
−1

)
At

( −1

q−1

)
.

(b) A matrix A is a q-matrix , with δ = |A|q, if and only if AÃ = δI = ÃA.

Proof. Part (a) is immediate. Part (b) follows by comparing the matrix coef-
ficients of

AÃ =
(

ad− q−1bc ba− qab

cd− q−1dc da− qcb

)
, ÃA =

(
da− qbc db− qbd

−q−1ca + ac ad− q−1cb

)
.
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¤

Corollary 1.4. Let A,B be q-matrices over the same algebra.

(a) The q-determinant δ of A commutes with the entries of A.
(b) If δ is invertible then A is invertible and A−1 = δ−1Ã, which is a q−1-matrix ,

with determinant

|A−1|q−1 = δ−2|Ã|q−1 = δ−1 = |A|−1
q .

(c) If every entry of A commutes with every entry of B, then AB is a q-matrix ,
with |AB|q = |A|q|B|q.

Proof. Part (a) follows from δA = AÃA = Aδ. Part (b) is easily obtained
from Proposition 1.3. To show (c), observe that

(ÃB) =
( q
−1

)
(AB)t

( −1

q−1

)
=

( q
−1

)
BtAt

( −1

q−1

)
= B̃Ã.

Hence, writing δ := |A|q and δ′ := |B|q, we get:

ABÃB = ABB̃Ã = Aδ′Ã = AÃδ′ = δδ′I.

Similarly, ÃBAB = δδ′I. This proves the claim. ¤

We give an equivalent description of q-matrices, in terms of “R-matrices”.

Definition 1.5. In the following, we identify M4(k) with M2(k)⊗M2(k), by

E(ik),(j`) = Eij ⊗ Ek`.

For a (2× 2)-matrix A = (aij) over some k-algebra, we write

A(2) := (aijak`)(ik),(j`),

which is a (4 × 4)-matrix with rows and columns indexed by (11), (12), (21),
(22).

We write:

Rq :=




q 0 0 0
0 0 1 0
0 1 q − q−1 0
0 0 0 q


 .

Proposition 1.6 (The R-matrix Rq and q-matrices). (a) Rq is invertible
and satisfies the following equation in M2(k)⊗M2(k)⊗M2(k) (called the braid
relation or the Yang–Baxter equation):

(Rq ⊗ I)(I ⊗Rq)(Rq ⊗ I) = (I ⊗Rq)(Rq ⊗ I)(I ⊗Rq). (1–1)

(b) We have (Rq − qI)(Rq + q−1I) = 0.
(c) A (2× 2)-matrix A is a q-matrix if and only if A(2)Rq = RqA

(2).

The proof is easy and straightforward, but tedious, so we omit it.



A SHORT COURSE ON QUANTUM MATRICES 387

2. q-Matrices and Kauffman’s Bracket Polynomial

There is a close relation between R-matrices and polynomials associated to
diagrams of links.

It is not easy to give a formal definition of a link diagram, so we illustrate this
concept with some examples:

Trefoil Hopf link Figure 8 knot

Figure 1. Some link diagrams

Definition 2.1 (Kauffman’s bracket polynomial). Let L be a link dia-
gram. Kauffman’s bracket polynomial ­­

JJL JJ
­­ ∈ Z[t, t−1] is defined by the following

rules:

(a) ­­
JJ

\
/\

JJ
­­ = t ­­

JJ)( JJ
­­ + t−1 ­­

JJ
^
_

JJ
­­ ;

(b) ­­
JJ © . . .© JJ

­­ = dn, for d := −t2 − t−2 (for n circles).

It is an easy exercise to determine the bracket polynomial for a given link dia-
gram, using these rules. We have, for example

­­
JJHopf link JJ

­­ = (−t4 − t−4)d, ­­
JJTrefoil JJ

­­ = (−t5 − t−3 + t−9)d.

Kauffman’s polynomial is invariant under operations which transform a link
diagram in another diagram of “the same” link.

The operations shown in Figure 2 are called Reidemeister moves of type II
and III, respectively.

(II) (III)

Figure 2. Reidemeister moves of type II and III

Proposition 2.2. Kauffman’s bracket polynomial is invariant under Reidemeis-
ter moves of type II and III , i .e., under regular isotopy .

Proof. We give the proof for type II, the same method applies to type III.
By replacing successively the crossings ­­

JJ

\
/\

JJ
­­ by either ­­

JJ)( JJ
­­ or ­­

JJ
^
_

JJ
­­ , we get the

skein tree shown in Figure 3.
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U L’ U

L1 L2
L

U0

Figure 3. Skein tree for Reidemeister move II

Now we can apply the rules of Definition 2.1 to get the desired result:

­­
JJL JJ

­­ = t ­­
JJL1 JJ

­­ + t−1 ­­
JJL2 JJ

­­

= t(t ­­
JJU JJ

­­ + t−1 ­­
JJL

′ JJ
­­) + t−1(t ­­

JJU0 JJ
­­ + t−1 ­­

JJU JJ
­­)

= (t2 + t−2) ­­
JJU

JJ
­­ + ­­

JJL
′ JJ

­­ + d ­­
JJU

JJ
­­ = ­­

JJL
′ JJ

­­ . ¤

There is another method to compute ­­
JJL JJ

­­ , closely related to the R-matrix Rq.
Any link diagram L can be decomposed into elements of the form o (arc), ∩

(cap), ∪ (cup),
\
/\ ,

/
\/ (crossings). Consider the following example:

f

ed

b c

a

Figure 4. Decomposition of the link diagram of ∞

The bracket polynomial ­­
JJ∞ JJ

­­ can be calculated as

∑
­­
JJ a ∩b

JJ
­­

­­
JJ

a ∪d JJ
­­

­­
JJ

b
d

\
/\

c
e

JJ
­­

­­
JJ c ∩f

JJ
­­

­­
JJ

e ∪f JJ
­­ ,

where a, b, c, d, e, f range over {1, 2}, if one associates suitable values to the
factors ­­

JJC JJ
­­ , where C denotes a labelled element of the link diagram.

Theorem 2.3 (Kauffman). The bracket polynomial ­­
JJL JJ

­­ of a link diagram L

is

­­
JJL JJ

­­ =
∑ (∏

( ­­
JJC JJ

­­ | C is a labelled element of L) | all labels in {1, 2}
)

,
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where ­­
JJC JJ

­­ , for a labelled element C of L, is defined as

­­
JJ

a ob JJ
­­ : = δab,

­­
JJ a ∩b

JJ
­­ : = ­­

JJ
a ∪b JJ

­­ := Mab,

­­
JJ

a
c

\
/\

b
d

JJ
­­ : = tδacδbd + t−1MabMcd =: Rab

cd,

­­
JJ

a
c /
\/ b

d
JJ
­­ : = t−1δacδbd + tMabMcd =: R

ab

cd,

with M :=
(

0 it
−it−1 0

)
and i2 = −1.

Definition 2.4. Let R := (Rab
cd)(ab),(cd) denote the (4× 4)-matrix, with entries

in Z[t, t−1], defined by

Rab
cd := tδacδbd + t−1MabMcd = ­­

JJ
a
c

\
/\

b
d

JJ
­­ .

Hence,

R =




t 0 0 0
0 0 t−1 0
0 t−1 t− t−3 0
0 0 0 t


 ,

which means that for q := t2, we have (cf. Definition 1.5)

R = t−1Rq. (2–1)

Recall that a matrix A is a q-matrix if and only if A(2) commutes with Rq

(Proposition 1.6(c)). This can be interpreted as a certain compatibility condition
with link diagrams. In the following, we allow link diagrams to contain “nodes”,
labelled with matrices in some algebra.

Definition 2.5. Let A = (Aij) be a (2×2)-matrix with entries in some algebra
K. By defining

A A
∑

i,j,k,l∈{1,2}

〈 | |
i k
j `
| |

〉
AijAk`, (2–2)

we associate a bracket polynomial (in K[t, t−1]) to link diagrams which may
contain nodes with the matrix A.

We examine the invariance conditions given on Figure 5.

Proposition 2.6. Let q := t2 and let A be any matrix with entries in some
k-algebra.

(a) Conditions (1) and (2) are satisfied if and only if A is a q-matrix , with
|A|q = 1.

(b) Condition (3), condition (4) and the condition that A is a q-matrix are equiv-
alent .
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A A

a b

a b

a b

A A

a b

c d c d

a b a b

c d

a b
(3) (4)

A A

A A

A A

A A

c

a b

d

(1) (2)

Figure 5. Invariance conditions for link diagrams with nodes

Proof. (a) Using (2–2) and Kauffman’s theorem, the left hand side of condition
(1) is ∑

i,j∈{1,2}
AiaMijAjb = (AtMA)ab.

Hence, (1) is satisfied if and only if AtMA = M . Now M2 is the identity matrix
and Ã = MAtM . Therefore, condition (1) is equivalent to ÃA = I.

It is shown similarly that (2) is equivalent to AÃ = I. Now part (a) follows
from Proposition 1.3 (b).

(b) It easy to check that (3) is equivalent to the condition that A(2) commutes
with R, and that (4) is equivalent to R = R−1. Recall that R = t−1Rq, by (2–1).
Now (b) follows from Proposition 1.6(c). ¤

Proposition 2.6 means that the bracket polynomial is invariant under the action
of the quantum group SLq(2), with q := t2.

3. Powers of (2 × 2) q-Matrices

Theorem 3.1 (Powers of (2 × 2) q-matrices). If A is a (2 × 2) q-matrix
then An is a qn-matrix , and its qn-determinant is:

|An|qn = |A|nq .

Proof (Umeda, Wakayama, 1993). Let A =
(

a b
c d

)
be a (2 × 2) q-matrix and

J :=
(

1
q

)
. Writing τ := a + q−1d and δ := |A|q, it is easy to check that

A2 = τJA− q−1δJ2. (3–1)

Since the transpose At is a q-matrix as well, with the same q-determinant, it
follows that

(At)2 = τJAt − q−1δJ2. (3–2)

We show by induction that for all n ≥ 0:

(At)n = Jn−1(An)tJ1−n. (3–3)
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The cases n = 0, 1 are obvious. Assume (3–3) is true for n, n + 1. Then

(At)n+2 (3–2)
= τJ(At)n+1 − q−1δJ2(At)n

(3–3)
= τJn+1(An+1)tJ−n − q−1δJn+1(An)tJ1−n

= Jn+1(τ(An+1)tJ− q−1δ(An)tJ2

︸ ︷︷ ︸
(∗)

)J−1−n. (3–4)

From (3–1), it follows that

An+2 = τJAn+1 − q−1δJ2An.

Hence, the expression (∗) is equal to (An+2)t and (3–4) implies

(At)n+2 = Jn+1(An+2)tJ−1−n,

which proves the induction step.
By Proposition 1.3, we have AÃ = ÃA = δI. Since δ commutes with the

entries of A, we get

AnÃn = ÃnAn = δnI. (3–5)

It follows that

Ãn =
( q
−1

)
(At)n

( −1

q−1

)

(3–3)
=

( q
−1

)
Jn−1(An)tJ1−n

( −1

q−1

)

=
(

qn

−1

)
(An)t

( −1

q−n

)
= (̃An).

Using (3–5), this implies

An(̃An) = (̃An)An = δnI,

which means An is a qn-matrix, with qn-determinant δn (cf. Proposition 1.3(b)).
¤

4. The Quantum Linear Groups GLq(n) and SLq(n)

Definition 4.1 ((n × n) q-matrices). Let A = (aij) be an (n × n)-matrix,
with entries in some k-algebra. We call A a q-matrix, if every (2 × 2)-minor of
A is a q-matrix.

A (2× 2)-minor of A is a (2× 2)-matrix obtained from A by removing some
rows and columns.

Similar to Proposition 1.6, we can describe (n×n) q-matrices using an R-matrix.
The next definition generalizes Definition 1.5.
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Definition 4.2. We identify Mn2(k) with Mn(k)⊗Mn(k), by

E(ik),(j`) = Eij ⊗ Ek`.

For an (n× n)-matrix A = (aij) over some k-algebra, we write

A(2) := (aijak`)(ik),(j`),

which is an (n2 × n2)-matrix.
The matrix Rq ∈ Mn(k)⊗Mn(k) is given by

Rq := q
∑

i

Eii ⊗ Eii +
∑

i 6=j

Eij ⊗ Eji + (q − q−1)
∑

i<j

Ejj ⊗ Eii.

Proposition 4.3 (The R-matrix Rq and q-matrices). (a) Rq is invertible
and satisfies the Yang–Baxter equation (1–1).

(b) We have (Rq − qI)(Rq + q−1I) = 0.
(c) An (n× n)-matrix A is a q-matrix if and only if A(2)Rq = RqA

(2).

We omit the proof since it is easy but tedious.

Corollary 4.4. Let A, B be (n× n) q-matrices (over the same algebra), such
that every entry of A commutes with every entry of B. Then AB is again a
q-matrix .

Proof. Since (AB)(2) = A(2)B(2), the claim follows from Proposition 4.3. ¤

Definition 4.5 (The q-matrix bialgebra). Let M := Oq(M(n)) denote the
k-algebra generated by elements xij (1 ≤ i, j ≤ n), subject to the relations that
X := (xij)i,j is a q-matrix. We call M the q-matrix bialgebra.

Proposition 4.6. The following algebra maps make M a bialgebra:

∆ : M → M ⊗M, xij 7→
∑n

s=1 xis ⊗ xsj ,

ε : M → k, xij 7→ δij .

Proof. The matrices A := (xij ⊗1)i,j and B := (1⊗xij)i,j are both q-matrices
over M⊗M . Since every entry of A commutes with every entry of B, the product
AB = (∆(xij))i,j is also a q-matrix. Hence, ∆ is a well-defined algebra map.

Since the identity matrix is a q-matrix, ε is well-defined, too. The bialgebra
axioms are easily checked on the generators. ¤

Proposition 4.7 (The algebraic structure of M). The algebra M is an
integral domain, which is non-commutative, if n > 1 and q 6= 1.

It is a polynomial algebra in x11, . . . , xnn, i .e. the ordered monomials in
x11, . . . , xnn (with respect to any total ordering) form a basis of M .

The proof is not easy and requires some calculations. We omit it here.



A SHORT COURSE ON QUANTUM MATRICES 393

Let Vn be an n-dimensional vector space with basis {e1, . . . , en}. It becomes a
right M -comodule by

% : Vn → Vn ⊗M, ej 7→
n∑

i=1

ei ⊗ xij . (4–1)

The tensor algebra T (Vn) is a right M -comodule algebra by the algebra map
extension of % : T (Vn) → T (Vn)⊗M ,

%(ej1 · . . . · ejr ) :=
∑

i1,...ir

ei1 · . . . · eir ⊗ xi1,j1 · . . . · xir,jr . (4–2)

The appropriate restriction of % makes Vn ⊗ Vn into an M -comodule. (For a
general survey of comodules and comodule algebras, see for example Section 4 of
Montgomery’s book Hopf algebras and their actions on rings, CBMS Regional
Conference Series in Mathematics 82, AMS, 1993.)

Lemma 4.8 (The R-matrix induces a colinear map). The linear map
Rq : Vn ⊗ Vn → Vn ⊗ Vn defined by Rq ∈ Mn(k)⊗Mn(k) is given as follows:

ei ⊗ ej 7→




ej ⊗ ei, if i < j,

qei ⊗ ei, if i = j,

ej ⊗ ei + (q − q−1)ei ⊗ ej , if i > j.

It is an M -comodule map.

Proof. The ((ik), (j`))-component of X(2) is, by definition, xijxk`. Since

%(ej ⊗ e`) =
∑

i,k

(ei ⊗ ek)⊗ xijxk`,

the relation X(2)Rq = RqX
(2) implies the claim. ¤

It follows that the kernel and the image of (Rq − qI) are M -subcomodules of
Vn ⊗ Vn. They are given explicitly as follows:

Im(Rq − qI) = k{ej ⊗ ei − qei ⊗ ej | i < j},
Ker(Rq − qI) = k{ei ⊗ ei, ei ⊗ ej + qej ⊗ ei | i < j}.

This motivates the following definition:

Definition 4.9 (Deformed symmetric and exterior algebras). Let IS

denote the ideal of the tensor algebra T (Vn) generated by the image of (Rq−qI),
and I∧ the ideal generated by the kernel of (Rq−qI). We call Sq(Vn) := T (Vn)/IS

the q-symmetric algebra and
∧

q(Vn) := T (Vn)/I∧) the q-exterior algebra.

It is not difficult to show that Sq(Vn) has the basis

{es1
1 · . . . · esn

n | all si ≥ 0},
and

∧
q(Vn) has the basis

{ei1 · . . . · eim | 1 ≤ i1 < · · · < im ≤ n}.
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They are made into graded algebras by defining the degree of all ei to be 1.

Corollary 4.10 (The coaction of M and the q-determinant). (a) The
algebras Sq(Vn) and

∧
q(Vn) are right M -comodule algebras by the coaction

induced by %.
(b) There is a unique g ∈ M such that %(e1 · . . . · en) = e1 · . . . · en ⊗ g, where

e1 · . . . · en ∈
∧

q(Vn), namely

g =
∑

σ∈Sn

(−q)−`(σ)xσ(1),1 · . . . · xσ(n),n

(where `(σ) denotes the number of inversions of a permutation σ).

Proof. The ideals IS , I∧ considered in Definition 4.9 are M -subcomodules by
Lemma 4.8. This implies (a).

All homogeneous components of Sq(Vn) and
∧

q(Vn) are M -subcomodules. In
particular, the n-th component of

∧
q(Vn), which is k·e1·. . .·en, is a 1-dimensional

M -subcomodule. Hence, there is a group-like element g ∈ M with the required
property. Uniqueness is clear, since e1 · . . . · en 6= 0 in

∧
q(Vn).

To calculate g, observe that in
∧

q(Vn), we have

eσ(1) · . . . · eσ(n) = (−q)−`(σ)e1 · . . . · en,

for all σ ∈ Sn. From (4–2), we obtain the required result:

%(e1 · . . . · en) =
∑

i1,...in

ei1 · . . . · ein ⊗ xi1,1 · . . . · xin,n

(!)
=

∑

σ∈Sn

eσ(1) · . . . · eσ(n) ⊗ xσ(1),1 · . . . · xσ(n),n

=
∑

σ∈Sn

(−q)−`(σ)e1 · . . . · en ⊗ xσ(1),1 · . . . · xσ(n),n

(for “(!)”, notice that ei1 · . . . · eir = 0 in
∧

q(Vn), if ij = i` for some j 6= `). ¤

Definition 4.11 (The quantum determinant). The element g ∈ M is
called the q-determinant (or quantum determinant) of X and denoted by |X|q.
Note that for n = 2, we obtain the q-determinant as defined in Section 1 (see
Definition 1.1).

Definition 4.12 (The quantum adjoint matrix). Let Xij denote the (n−
1)× (n−1) minor of X, obtained by removing the i-th row and the j-th column.
Note that Xij is again a q-matrix. The q-adjoint matrix of X is defined as

X̃ := ((−q)j−i|Xji|q)i,j .

Proposition 4.13 (Quantum adjoint matrix, quantum determinant).

We have
XX̃ = X̃X = |X|qI.
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Proof. Writing êi := e1 · . . . · ei−1ei+1 · . . . · en ∈
∧

q(Vn), it is easily checked
that

%(êj) =
n∑

i=1

êi ⊗ |Xij |q. (4–3)

It follows from the relations in
∧

q(Vn) that

êiej = δij(−q)i−ne1 · . . . · en. (4–4)

The last two equations imply

δjk(−q)j−ne1 · . . . · en ⊗ g
(4–4)
= %(êjek)

(4–3)
=

n∑

i=1

êiei ⊗ |Xij |qxik

(4–4)
=

n∑

i=1

e1 · . . . · en ⊗ (−q)i−n|Xij |qxik.

Comparison of the coefficients of e1 · . . . · en yields

δjk(−q)j−ng =
∑

i

(−q)i−n|Xij |qxik,

which means that gI = X̃X. Similarly, one sees gI = XX̃ by using the fact that
|X|q = |Xt|q. ¤

Since gX = XX̃X = Xg, we get:

Corollary 4.14. The quantum determinant |X|q is central in M .

Theorem 4.15 (The quantized general linear group). Suppose that
M := Oq(M(n)) and let H := M [g−1]. Then H is a Hopf algebra.

Proof. We denote the images in H of the generators xij ∈ M again by xij .
By Proposition 4.13, the matrix X is invertible in Mn(H), with inverse

X−1 = g−1X̃ = X̃g−1.

In the opposite algebra Hop of H, we have

(X−1)(2) = ((X−1)k`(X−1)ij)(ik),(j`) = (X(2))−1.

This matrix commutes with Rq, since so does X(2) (cf. Proposition 4.3). This
shows that X−1 is a q-matrix with entries in Hop.

Hence, there is an algebra map S′, defined by

S′ : M → Hop, X 7→ X−1(componentwise).

This induces an anti-algebra map S : M → H.
We show that S factors through H. Let C : M → H denote the canonical

map (xij 7→ xij). It is easy to check that the relation

S ∗ C = uε = C ∗ S (4–5)
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holds on the generators xij . (Here “∗” denotes the convolution product and u,
resp. ε the unit of H, resp. the counit of M .)

It is not difficult to deduce that (4–5) holds (everywhere). We apply (4–5) to
g and obtain, since g is group-like:

S(g)g = 1 = gS(g).

Hence, S(g) = g−1, and we can extend S to an anti-algebra map

S : H → H, g 7→ g−1, g−1 7→ g.

This is the antipode of H (it suffices to verify the axiom for the antipode on
generators, which is easily done). ¤

Definition 4.16. The category of quantum groups is, by definition, the opposite
category of the category of Hopf algebras. The Hopf algebra associated to the
quantum group G is denoted by O(G).

Definition 4.17. We write

Oq(GL(n)) := H, Oq(SL(n)) := H/(g − 1).

The associated quantum groups GLq(n) and SLq(n) are called the quantized
general and special linear groups.

5. A q-Analogue of the Cayley–Hamilton Theorem

This section discusses a quantized version of the Cayley–Hamilton theorem,
found by J. Zhang (1991). We start with a few notations:

Definition 5.1. Let A = (aij) be an (n × n) q-matrix with entries in some
k-algebra. We use the abbreviation

qij :=





q for i < j,
1 for i = j,
q−1 for i > j.

For elements i1 < · · · < im and j1 < · · · < jm of [1, n] := {1, 2, . . . , n}, we write

D(i1, . . . , im | j1, . . . , jm) := |A{i1,...,im}{j1,...,jm}|q, (5–1)

and define, for j,m ∈ [1, n]:

trm
j :=

∑

1≤i1<···<im≤n

qi1,j · . . . · qim,jD(i1, . . . , im | i1, . . . , im),

Trm :=

(
trm

1 0
. . .

0 trm
n

)
.

In particular, tr1
j =

∑n
i=1 qijaii and trn

j = q1j · . . . · qnj |A|q.
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Theorem 5.2 (The q-Cayley–Hamilton theorem). For any q-matrix A,
we have:

An − Tr1An−1 + · · ·+ (−1)n−1Trn−1A + (−1)nTrn = 0.

Proof. (1) Take any i1, . . . , im, j1, . . . , jm ∈ [1, n]. Writing i := (i1, . . . , im),
j := (j1, . . . , jm), and iσ := (iσ(1), . . . , iσ(m)) (for a permutation σ ∈ Sm), we
put (in accordance with (5–1), if i1 < · · · < im and j1 < · · · < jm):

D(i | j) :=
∑

σ∈Sm

(−q)`(i)−`(iσ)aiσ(1),j1 · . . . · aiσ(m),jm ,

and this term vanishes, unless i1, . . . , im are distinct and j1, . . . , jm are distinct.
(Here `(i) denotes the number of inversions in (i1, . . . , im).)

(2) When i1, . . . , im are distinct and j1, . . . , jm are distinct, put {i′1, . . . , i′m}
:= {i1, . . . , im}, such that i′1 < · · · < i′m, and define j′1 < · · · < j′m similarly.
Writing i′ := (i′1, . . . , i

′
m) and j′ := (j′1, . . . , j

′
m), we obtain:

D(i | j) = (−q)`(i)−`(j)D(i′ | j′). (5–2)

For any k ∈ [1,m], we write

Sk
m := {σ ∈ Sm | σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(m)}.

Then the following Laplace expansion formula can be shown (for all 1 ≤ k ≤ m):

D(i | j) =
∑

σ∈Sk
m

(−q)`(i)−`(iσ)D(iσ(1), . . . , iσ(k) | j1, . . . , jk)

·D(iσ(k+1), . . . , iσ(m) | jk+1, . . . , jm).

For (m+1,m) instead of (m, k), we obtain, in particular, for all i0, j0 ∈ [1, n]:

D(i0, i | i, j0)
= (−q)`(i0,i)−`(i,i0)D(i | i)ai0,j0

+
m∑

t=1

(−q)`(i0,i)−`(i0,...,bit,...,im,it)D(i0, . . . , ît, . . . , im | i) ait,j0

= (−qi1,i0) · . . . · (−qim,i0)D(i | i) ai0,j0

+
m∑

t=1

D(i0, . . . , ît, . . . , im | i1, . . . , ît, . . . , im, it) ait,j0 . (5–3)

(3) For any i, j ∈ [1, n], we write

bm
ij :=

∑

1≤i1<···<im≤n

D(i, i1, . . . , im | i1, . . . , im, j),

Bm := (bm
ij )i,j .

It follows from (5–3) that

Bm = (−1)mTrmA + Bm−1A
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for all 1 ≤ m ≤ n− 1, where B0 = A. It follows immediately, by induction, that

Bm = (−1)mTrmA + (−1)m−1Trm−1A2 + . . . + (−1)Tr1Am + Am+1,

hence

Bn−1 = (−1)n−1Trn−1A + (−1)n−2Trn−2A2 + . . . + (−1)Tr1An−1 + An.

It remains to verify that Bn−1 = (−1)n−1Trn.
Because of step (1), we have

bn−1
ij =

∑

1≤i1<···<in−1≤n

D(i, i1 . . . , in−1 | i1, . . . , in−1, j) = 0,

unless i = j. If i = j, however, we get:

bn−1
ii = D(i, 1, . . . , î, . . . , n | 1, . . . , î, . . . , n, i)

(5–2)
= (−q)`(i,1,...,̂i,...,n)−`(1,...,̂i,...,n,i)|A|q
= (−1)n−1(q1i · . . . · qni)|A|q
= (−1)n−1trn

i ,

where we have used that `(i, 1, . . . , î, . . . , n) = i−1 and `(1, . . . , î, . . . , n, i) = n−i.
Hence, Bn−1 = (−1)n−1Trn. ¤

6. The R-Matrix Rq and the Homfly Polynomial

The Homfly polynomial can be associated to every oriented link diagram and
is invariant under regular isotopy. The name comes from the initials of Hoste,
Ocneanu, Millett, Freyd, Lickorish and Yetter.

In this section, we use the following abbreviations for parts of oriented link
diagrams:

X+ X- ) ( O+ O- L+ L-

Figure 6. Types of crossings and loops

Definition 6.1 (The Homfly polynomial). Let K be an oriented link dia-
gram. The Homfly polynomial of K, denoted by HK(α, z) ∈ Z[α, α−1, z, z−1] is
characterized by the following properties:

(a) If K is regularly isotopic to K ′ (denoted as K ≈ K ′), then HK = HK′ ;
(b) HO+ = 1;
(c) HX+ −HX− = zH)(;
(d) HL+ = αH→,HL− = α−1H→.
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Using these rules, one can calculate HK , using so-called skein trees. We illustrate
this procedure with the trefoil.

T T’

S

U

Figure 7. A skein tree for the trefoil

Using (c), (d) of Definition 6.1, it is an easy exercise to show that, for any K:

HO+K = δHK ,

with δ := (α− α−1)z−1. Hence, in particular, HU = HO+O+ = δ.
Now we can calculate the Homfly polynomial of the trefoil T as follows:

HT
(c)
= HS + zHT ′

(c)
= HS + z(zHS + HU )

= α + z2α + zδ = 2α− α−1 + z2α.

In general, many skein trees derive from a given K. But the computation always
yields the same polynomial HK , which is, hence, well-defined.

We prove this using the R-matrix Rq introduced in Definition 4.2.

Let q be an indeterminate and Rq have size (n + 1)2 × (n + 1)2. Recall that

Rq = q
∑

i

Eii ⊗ Eii +
∑

i6=j

Eij ⊗ Eji + (q − q−1)
∑

i<j

Ejj ⊗ Eii.

Here, we let i, j range over the set of indices J := {−n,−n + 2, . . . , n− 2, n}.
We associate Rq (resp. R−1

q ) to crossings X+ (positive crossing), resp. X−

(negative crossing).
We write

Ejj ⊗ Eii =: ­­
JJ

j)(i JJ
­­ ,

Eij ⊗ Eji =: ­­
JJ

i ↙↘j JJ
­­ .
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Thus the summands of Rq have the following form (we omit the summation sign
in our symbolic notation)

∑

j>i

Ejj ⊗ Eii = ­­
JJ)

>( JJ
­­ ,

∑

i

Eii ⊗ Eii = ­­
JJ)

=( JJ
­­ ,

∑

i6=j

Eij ⊗ Eji = ­­
JJ

6=
↙↘ JJ

­­ .

We aim to show that these identifications are compatible with the defining equa-
tions of the Homfly polynomial. Firstly observe that

Rq = ­­
JJX

+ JJ
­­ = (q − q−1) ­­

JJ)
>( JJ

­­ + q ­­
JJ)

=( JJ
­­ + ­­

JJ

6=
↙↘ JJ

­­ ,

R−1
q = ­­

JJX
− JJ

­­ = (q−1 − q) ­­
JJ)

<( JJ
­­ + q−1 ­­

JJ)
=( JJ

­­ + ­­
JJ

6=
↙↘ JJ

­­ ,

since

R−1
q = q−1

∑

i

Eii ⊗ Eii +
∑

i 6=j

Eij ⊗ Eji + (q−1 − q)
∑

i<j

Eii ⊗ Ejj .

The coefficients (q − q−1), q, (q−1 − q), q−1, 1 are called vertex weights.

Remark 6.2. For z := q − q−1, the equation in Definition 6.1 (c) is satisfied:

­­
JJX

+ JJ
­­ − ­­

JJX
− JJ

­­ = (q − q−1)
(

­­
JJ)

>( JJ
­­ + ­­

JJ)
<( JJ

­­ + ­­
JJ)

=( JJ
­­

)

= (q − q−1) ­­
JJ)( JJ

­­ .

We apply the following procedures (S1) and (S2) to a given oriented link diagram
K.

(S1) Replace each crossing X+, X− in K by ↙↘ or )(.
For the trefoil, there are three possible results shown in Figure 8.

T (1) (2) (3)

Figure 8. Procedure (S1) applied to the trefoil

From this step, we obtain oriented link shadows. We only admit link shadows
that have no self-intersection. In Figure 8, this still allows (1) and (2), but rules
out (3).

Let σ be any admissible link shadow obtained from K by (S1).
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(S2) Label an element of J (called spin) to each component of σ, such that
a) Two components of the same spin do not intersect;
b) If a)(b in σ comes from X+ (resp. X−) in K, then a ≥ b (resp. a ≤ b).
In the example above, we must have a > b for a)(b in shadow (1) and a ≥ b

for a)(b in shadow (2).

Definition 6.3 (States of a link diagram). A state of a link diagram is an
admissible link shadow, with spins labelled to its components according to (S2).

The trefoil has three kinds of states of type (1) and states of type (2).

Definition 6.4. Let σ be a state of K. Let ­­
JJK | σ JJ

­­ be the product of vertex
weights of σ at the crossings of K, i.e. the product of the following values:

­­
JJX

+ | ­­
JJ)

>( JJ
­­

JJ
­­ = q − q−1,

­­
JJX

+ | ­­
JJ)

=( JJ
­­

JJ
­­ = q,

­­
JJX

+ |
6=
↙↘ JJ

­­ = 1,

­­
JJX

− | ­­
JJ)

<( JJ
­­

JJ
­­ = q−1 − q,

­­
JJX

− | ­­
JJ)

=( JJ
­­

JJ
­­ = q−1,

­­
JJX

− |
6=
↙↘ JJ

­­ = 1

(the left hand side symbols the type of the crossing in K, the right hand side
indicates the relation between the spins in σ).

Note that conditions (a) and (b) in (S2) imply that always (precisely) one of the
cases in Definition 6.4 holds.

In the example of the trefoil, we obtain (cf. Figure 8):

­­
JJT | σ(1)

JJ
­­ = q − q−1, since a > b,

­­
JJT | σ(2)

JJ
­­ =

{
(q − q−1)3, if a > b,
q3, if a = b.

Definition 6.5. For a state σ of an oriented link diagram K, define

‖σ‖ :=
∑

(not(`)label(`) | ` is a component of σ),

where not(O+) := 1, not(O−) := −1, and label(`) ∈ J denotes the spin labelled
to `.

Definition 6.6 (The Kauffman polynomial). For an oriented link diagram
K, define Kauffman’s polynomial ­­

JJK JJ
­­ as

­­
JJK JJ

­­ :=
∑

( ­­
JJK | σ JJ

­­q
‖σ‖ | σ is a state of K),

which is a polynomial in Z[q, q−1], depending on n.

Remark 6.7. The polynomial associated to the circle can be calculated as
follows:

­­
JJO

+ JJ
­­ =

∑

a∈J

­­
JJO

+ | O+a JJ
­­︸ ︷︷ ︸

=1

q‖O
+a‖ =

∑

a∈J

qa

=
qn+1 − q−n−1

q − q−1
= δ,
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if one puts α := qn+1 (and δ and z as before; cf. the beginning of this section
and Remark 6.2).

Let K denote any oriented link diagram containing a part of the form L+ (cf.
Figure 6). By (S1) and (S2), any part of K of the form L+ is transformed into
a state of the form

σ(a, b) :=→a
O+b, where a ≤ b.

Let ­­
JJL

+ JJ
­­ denote the polynomial associated to K and let ­­

JJ → JJ
­­ denote the

polynomial of the diagram obtained from K by replacing one occurrance of L+

by “→”. Then we get

­­
JJL

+ | σ(a, b) JJ
­­ = ­­

JJ →|→a JJ
­­ ·

{
q if a = b,
q − q−1 if a < b,

‖σ(a, b)‖ = b + ‖ →a ‖,
which implies

­­
JJL

+ JJ
­­ =

∑

a≤b

­­
JJL

+ | σ(a, b) JJ
­­q
‖σ(a,b)‖

=
∑

a

(
qqa +

∑

b>a

(q − q−1)qb

)

︸ ︷︷ ︸
=qn+1

­­
JJ →|→a JJ

­­q
‖→a‖

= qn+1
∑

a

­­
JJ →|→a JJ

­­q
‖→a‖ = qn+1 ­­

JJ → JJ
­­ .

Remark 6.8. This coincides with Definition 6.1 (d), for α = qn+1 (as above).
Similarly, one sees the analogue relation for ­­

JJL
− JJ

­­ .

Theorem 6.9 (Kauffman). The polynomial ­­
JJK JJ

­­ is invariant under regular
isotopy and satisfies

­­
JJO

+ JJ
­­ = δ =

qn+1 − q−n−1

q − q−1
, (6–1)

­­
JJX

+ JJ
­­ − ­­

JJX
− JJ

­­ = (q − q−1) ­­
JJ)( JJ

­­ , (6–2)
­­
JJL

+ JJ
­­ = qn+1 ­­

JJ → JJ
­­ , (6–3)

­­
JJL

− JJ
­­ = q−n−1 ­­

JJ → JJ
­­ . (6–4)

Proof. We have shown Equations (6–1)–(6–1) in Remarks 6.7, 6.2 and 6.8.
We leave it to the reader to verify that ­­

JJK JJ
­­ is invariant under Reidemeister

moves (II) and (III) for oriented diagrams (Figure 2). This gives invariance under
regular isotopy. ¤

Corollary 6.10. Kauffman’s polynomial and the Homfly polynomial satisfy

­­
JJK JJ

­­ = ­­
JJO

+ JJ
­­HK(qn+1, q−q−1).
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Since the map Z[α, α−1, z, z−1] → Q(q) defined by α 7→ qn+1, z 7→ q − q−1 is
injective, the Homfly polynomial is well-defined.

It is an easy exercise to verify that Kauffman’s polynomial of the trefoil T is
indeed

­­
JJT JJ

­­ = ((q2 + q−2)qn+1 − q−n−1)δ = HT (qn+1, q − q−1)δ.

7. Duality with the Quantized Enveloping Algebra Uq(sln)

In this section, we examine the duality of the Hopf algebra Oq(SL(n)) and the
quantized enveloping algebra of the Lie algebra sln.

Definition 7.1 (The quantized enveloping algebra of sl2). For q2 6= 1,
the algebra Uq(sl2) is generated by elements K, K−1, E, F , subject to the
following relations:

KK−1 = K−1K = 1,

KEK−1 = q2E,

KFK−1 = q−2F,

EF − FE =
K −K−1

q − q−1
.

Proposition 7.2. The algebra Uq(sl2) has a basis {F iKsEj | i, j ≥ 0, s ∈ Z}.
It carries a Hopf algebra structure as follows:

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF.

The proof is not easy and involves tedious computations. We omit it here (see
Section 15).

We examine the relationship of the dual Hopf algebra Uq(sl2)◦ with Oq(GL(n)).
Recall the definition of the dual of a Hopf algebra:

Definition 7.3. Let H be a Hopf algebra. Let π : H → Mn(k) be a finite
dimensional representation of H and π∗ : (Mn(k))∗ → H∗ be the dual map. The
dual of H is defined as

H◦ :=
∑

(Im(π∗) | π : H → Mn(k), as above, n ≥ 1) .

Definition 7.4 (Tensor products and transposes of representations).

Let π : H → Mn(k) and π′ : H → Mm(k) be representations of a Hopf algebra H.

(a) The tensor product π⊗π′ is defined as the representation

H
∆→ H ⊗H

π⊗π′−→ Mn(k)⊗Mm(k)
∼=→ Mnm(k).
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(b) The transpose πt is defined as the representation

H
S→ H

π→ Mn(k)
transpose−→ Mn(k).

This definition implies that

Im((π⊗π′)∗) = Im(π∗)Im(π′∗), Im((πt)∗) = S∗(Im(πt)).

Using the tensor product and the transpose of representations, one can show,
successively:

Proposition 7.5. (a) There is precisely one coalgebra structure on H◦, such
that π∗ is a coalgebra map, for all finite dimensional representations π of H.

(b) H◦ is a subalgebra of H∗ (with the convolution product).
(c) H◦ is S∗ invariant .
(d) H◦ is a Hopf algebra with antipode S∗.
(e) Assume all finite dimensional representations of H are completely reducible.

Let {πλ | λ ∈ Λ} be a complete set of (pairwise non-isomorphic) finite dimen-
sional representations of H. Then

H◦ =
⊕

λ∈Λ

Im(π∗λ)

(cf. the Peter–Weyl theorem in the theory of Lie groups).

We assume q is not a root of unity and char(k) 6= 2 up to 7.11.

Theorem 7.6 (Representations of Uq(sl2)) (Rosso). (a) All finite dimen-
sional representations of Uq(sl2) are completely reducible.

(b) all finite dimensional irreducible representations of Uq(sl2) are exhausted by

πn : Uq(sl2) → Mn+1(k), π′n : Uq(sl2) → Mn+1(k),

which are defined as follows:

πn(K) :=




qn 0

qn−2

...
0 q−n


 ,

[6pt]πn(E) :=




0 [n] 0
... ...... [1]

0 0


 , πn(F ) :=




0 0

[1]
... ...
... ...

0 [n] 0


 ,

[6pt]π′n(K) := −πn(K), π′n(E) := πn(E), π′n(F ) := −πn(F ),

where [i] :=
qi − q−i

q − q−1
.

Corollary 7.7 (The dual of Uq(sl2)). The dual Hopf algebra of Uq(sl2) is

Uq(sl2)◦ =
∞⊕

n=0

(Im(π∗n)⊕ Im((π′n)∗)).

Proposition 7.8. The following equivalences hold for representations of Uq(sl2):
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(a) π′n ∼= πn⊗π′0 ∼= π′0⊗πn;
(b) π′n ∼= πn;
(c) (Clebsch–Gordan rule) πm⊗πn

∼= πm+n ⊕ πm+n−2 ⊕ . . .⊕ π|m−n|.

In particular, π′0 : Uq(sl2) → k, K 7→ −1, E, F 7→ 0 defines an algebra map and,
hence, corresponds to a group-like element γ ∈ Uq(sl2)◦. This element γ has
order 2.

It follows from Proposition 7.8 (a) that

Im(π′n
∗) = γIm(π∗n) = Im(π∗n)γ.

Hence, the following sub-coalgebra is normalized by γ:

A :=
∞⊕

n=0

Im(π∗n).

Because of (b), A is S∗-invariant. For the case n = 1, we have

πt
1 = inn

(
−1

q

)
◦ π1, (7–1)

which is easily checked on the generators of Uq(sl2). (Here, inn(P ) denotes
the inner automorphism induced by an invertible matrix P , that is, inn(P ) :
Mn(k) → Mn(k), Y 7→ PY P−1.)

The Clebsch–Gordan rule implies that A is a subalgebra (hence a Hopf sub-
algebra), which is generated, as algebra, by Im(π∗1).

Theorem 7.9 (Oq(SL(2)) as a Hopf subalgebra of Uq(sl2)◦). Let π1 :
Uq(sl2) → M2(k) and A ⊂ Uq(sl2) be as above and define a, b, c, d ∈ Uq(sl2)◦ by

(
a(x) b(x)

c(x) d(x)

)
:= π1(x) for all x ∈ Uq(sl2).

Then there is a unique isomorphism of Hopf algebras, given by

ϕ : Oq(SL(2)) → A, X 7→ (
a b
c d

)
.

Proof. We only prove that ϕ is a well-defined, surjective Hopf algebra map
(injectivity can be shown by tedious computational arguments, for which we
refer to the references).

By definition, (a, b, c, d) is a basis of Im(π∗1). Since π∗1 is a coalgebra map, it
follows that (

∆(a) ∆(b)

∆(c) ∆(d)

)
=

(
a⊗1 b⊗1
c⊗1 d⊗1

)(
1⊗a 1⊗b
1⊗c 1⊗d

)
. (7–2)

From the definition of transposed representations, we get for all x ∈ Uq(sl2):

πt
1(x) =

(
a(S(x)) b(S(x))

c(S(x)) d(S(x))

)t

=
(

S(a) S(c)

S(b) S(d)

)
(x).

From (7–1), it follows that
(

S(a) S(c)

S(b) S(d)

)
=

(
−1

q

) (
a b
c d

) (
q−1

−1

)
.
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Now we obtain, using the transpose of this equation at “(!)”, that
(

a b
c d

)−1
=

(
S(a) S(b)

S(c) S(d)

)
(!)
=

( −1

q−1

)
( a c

b d )
( q
−1

)

=
( q
−1

)
( a c

b d )
( −1

q−1

)
= ˜(

a b
c d

)

(cf. Definition 1.2). It follows from Proposition 1.3 that
(

a b
c d

)
is a q-matrix with

q-determinant 1. Hence, ϕ is a (well-defined) algebra map.
It follows from (7–2) that ϕ respects the comultiplication as well and is, hence,

a Hopf algebra map (any bialgebra map between Hopf algebras automatically
respects the antipode).

As shown before, (a, b, c, d) is a basis of Im(π∗1), which generates A as an
algebra. Therefore, ϕ is surjective. ¤

In the following, we identify Oq(SL(2)) with the Hopf subalgebra A of Uq(sl2)◦.
The conjugation with γ on A can be computed as

γ
(

a b
c d

)
γ−1 =

(
a −b
−c d

)
. (7–3)

Corollary 7.10 (The Hopf algebra structure of Uq(sl2)◦). If q is
not a root of unity and char(k) 6= 2, the dual of Uq(sl2) can be considered as
semi-direct product

Uq(sl2)◦ = Oq(SL(2)) >¢ Z2

with respect to the action of γ ∈ Z2 on Oq(SL(2)) given in (7–3).

These results may be generalized to Oq(SL(n)).

Definition 7.11 (The algebra Uq(sln)). For q2 6= 1, the algebra Uq(sln)
is generated by elements Ki, K−1

i , Ei, Fi, (i ∈ {1, . . . , n − 1}), subject to the
following relations:

KiK
−1
i = K−1

i Ki = 1,

KiKj = KjKi,

KiEjK
−1
i = qαij Ej ,

KiFjK
−1
i = q−αij Fj ,

EiFj − FjEi = δij
Ki −K−1

i

q − q−1
,

EiEj = EjEi, if |i− j| ≥ 2,

FiFj = FiFj , if |i− j| ≥ 2,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, if |i− j| = 1,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0, if |i− j| = 1.

Here, α = (αij)i,j denotes the Cartan matrix of the Lie algebra sln:

αij = 2,−1, 0 if |i− j| = 0, 1,≥ 2 respectively.
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Proposition 7.12. The algebra Uq(sln) carries a Hopf algebra structure, such
that the subalgebras k ­­

JJK
±1
i , Ei, Fi

JJ
­­ are isomorphic to Uq(sl2).

The proof requires several computations, which are omitted here.

Theorem 7.13 (Representations of Uq(sln)) (Rosso). If q is not a root of
unity and char(k) 6= 2 then all finite dimensional representations of Uq(sln) are
completely reducible.

The irreducible representations can be given explicitly, but this is rather com-
plicated and we omit it here.

Definition 7.14. The basic representation π : Uq(sln) → Mn(k) of Uq(sln) is
defined as the algebra map given by

Ki 7→ I + (q − 1)Eii + (q−1 − 1)Ei+1,i+1, Ei 7→ Ei,i+1, Fi 7→ Ei+1,i.

It is easy, but tedious, to verify that this is indeed a well-defined algebra map.
(For n = 2, it is the map π1 defined in Theorem 7.6.)

Theorem 7.9 generalizes to the case n ≥ 2.

Theorem 7.15 (Oq(SL(n)) as a Hopf subalgebra of Uq(sln)◦). Define
aij ∈ Uq(sln)◦, for i, j ∈ [1, n] by

(aij(x))i,j := π(x) for all x ∈ Uq(sln).

Then there is an injective Hopf algebra map given by

ϕ : Oq(SL(n)) → Uq(sln)◦, xij 7→ aij for all i, j ∈ [1, n].

Proof. As before, we only show that ϕ is a (well-defined) Hopf algebra map
(injectivity is not trivial and requires several computations).

As in the case n = 2, the family (aij)i,j is a basis of Im(π∗), such that

∆(aij) =
n∑

`=1

ai` ⊗ a`j . (7–4)

It remains to show that (aij)i,j is an (n × n) q-matrix of q-determinant 1. Its
entries are in Uq(sln)◦.

Let Vn be an n-dimensional k-vector space, with basis {e1, . . . en}. In a natural
way, Vn is a left Mn(k)-module; and it becomes a left Uq(sln)-module via π.
Hence, Vn ⊗ Vn is a left Uq(sln)-module as well, via the comultiplication ∆.

It is easy (but tedious) to verify that

Rq : Vn ⊗ Vn → Vn ⊗ Vn

is Uq(sln)-linear (it suffices to do the calculations for generators of Uq(sln) and
basis elements of Vn ⊗ Vn).

Hence, the q-exterior algebra
∧

q(Vn) = T (Vn)/Ker(Rq − qI) and the q-
symmetric algebra Sq(Vn) are Uq(sln)-module algebras (cf. Definition 4.9).
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Now, Vn is a right Uq(sln)◦-comodule via

ej 7→
n∑

i=1

ei ⊗ aij ,

and the above implies that Rq is a Uq(sln)◦-comodule map. If we put A = (aij),
this means A(2) commutes with Rq (cf. Lemma 4.8). Hence, A is a q-matrix by
Proposition 1.6.

The subspace k · e1 · . . . · en ⊂ ∧
q(Vn) is a one-dimensional submodule (cf.

Section 4), and it is not difficult to check that Uq(sln) acts trivially on it (i.e.
u · e1 · . . . · en = ε(u)e1 · . . . · en), it suffices to verify this for generators. In
other words, it is a trivial Uq(sln)◦-comodule. This implies that (aij) has q-
determinant 1.

Therefore, ϕ defines an algebra map. By (7–4), the map ϕ respects the
comultiplication as well and is, hence, a Hopf algebra map. ¤

Theorem 7.15 allows us to identify Oq(SL(n)) with a Hopf subalgebra of Uq(sln)◦.
Also Corollary 7.10 generalizes to the case n ≥ 2. Firstly, note that algebra

maps γi are defined (for i ∈ [1, n− 1]) by

γi : Uq(sln) → k, Ej , Fj 7→ 0, Kj 7→
{

1, if i 6= j,
−1, if i = j.

This means that all γi are group-like elements in Uq(sln)◦. It is easy to see that
they generate a group isomorphic to Zn−1

2 .
Conjugation with γi is given as follows:

γiastγ
−1
i =

{
ast, if i < s, t or s, t ≤ i,

−ast, if s ≤ i < t or t ≤ i < s.
(7–5)

In particular, the γi normalize the Hopf subalgebra Oq(SL(n)) of Uq(sln)◦.
Using the explicit description of all irreducible representations of Uq(sln), one

can prove the following result:

Theorem 7.16 (The Hopf algebra structure of Uq(sln)◦). If q is not a
root of unity and char(k) 6= 2, then

Uq(sln)◦ = Oq(SL(n)) >¢ Zn−1
2 ,

with respect to the action of Zn−1
2 = ­­

JJγ1, . . . , γn−1
JJ
­­ on Oq(SL(n)) given in (7–5).

8. Skew Primitive Elements

In this section, we determine all group-like and skew primitive elements of
Oq(GL(n))◦. We assume throughout that q is not a root of unity.

Recall from the last section, that we have an injective Hopf algebra map
ϕ : Oq(SL(n)) → Uq(sln)◦.
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One can show that the associated pairing Oq(SL(n)) ⊗ Uq(sln) → k is non-
degenerate, i.e., we obtain injective maps

Uq(sln) ↪→ Oq(SL(n))◦ ⊂−→ Oq(GL(n))◦.

In the sequel, we consider Uq(sln) as a sub Hopf algebra of Oq(GL(n))◦.
The basic representation π : Uq(sln) → Mn(k) extends to an algebra map

π̃ : Oq(GL(n))◦ → Mn(k), f 7→ (f(xij))i,j (8–1)

(where (xij) denotes the canonical set of generators of Oq(GL(n))).

Recall that the set of group-like elements of a Hopf algebra H is denoted by
G(H). Given g, h ∈ G(H), the set of (g, h)-skew primitive elements is

Pg,h(H) := {u ∈ H | ∆(u) = g ⊗ u + u⊗ h}.

In particular, P (H) := P1,1(H) is called the set of primitive elements of H. It
is always a Lie algebra (x, y ∈ P (H) implies xy − yx ∈ P (H)).

Note that, in any case, g − h ∈ Pg,h(H). We call Pg,h(H) trivial, if it is
spanned by this element.

To determine all skew primitive elements of H, it suffices to determine all
(1, g)-skew primitive elements for all g ∈ G(H), since for any γ ∈ G(H), we have

γPg,h(H) = Pγg,γh(H), Pg,h(H)γ = Pgγ,hγ(H).

In the following, we put H := Oq(GL(n))◦. We start with some examples of
group-like and skew primitive elements of H.

Remark 8.1. The elements K1, . . . Kn−1 are group-like in H and 1 −Ki, Ei,
KiFi are linearly independent (1,Ki)-skew primitive elements of H.

Note that

O(T ) := Oq(GL(n))/(xij | i 6= j)

is a factor Hopf algebra of Oq(GL(n)), which is naturally isomorphic to the group
Hopf algebra k ­­

JJZn JJ
­­ .

The corresponding quantum subgroup T ⊂ GLq(n) is called canonical maxi-
mal torus (cf. Definition 4.16).

The dual Hopf algebra O(T )◦ is isomorphic to the function algebra (k ­­
JJZn JJ

­­)◦

on the group Zn, hence has an n-dimensional space of primitive elements.
Since O(T )◦ ⊂ Oq(GL(n))◦ = H, the space P (H) is at least n-dimensional.

We will show that it has exactly this dimension.

The first aim is to determine all group-like elements of H.

Lemma 8.2 (q-Matrices with scalar entries). An invertible (n×n)-matrix
c = (cij) with entries in k is a q-matrix if and only if it is diagonal .
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Proof. Assume that c11 = 0. Since c is invertible, there are i, j > 1, such that
c1j , ci1 6= 0. By the q-relations for c, we get (q − q−1)c1jci1 = cij0 − 0cij = 0,
hence q2 = 1, contradicting our asumption on q.

Therefore, c11 6= 0. Since q 6= 1, the relation c1jc11 = qc11c1j implies that
c1j = 0, for all j > 1. Similarly, we obtain ci1 = 0, for all i > 1.

Since (cij)i,j≥2 is a q-matrix as well, it follows by induction that c is diagonal.
Conversely, a diagonal matrix over k is obviously a q-matrix. ¤

Proposition 8.3 (The group-like elements of H). The algebra map π̃ :
H → Mn(k) defined in (8–1) induces an isomorphism of groups π : G(H) →
T (k), where T (k) denotes the group of invertible diagonal matrices in Mn(k).

Proof. The group-like elements in H = Oq(GL(n))◦ are exactly the algebra
maps

g : Oq(GL(n)) → k,

and these are in one-to-one correspondence with the invertible (n×n) q-matrices
with entries in k. According to Lemma 8.2, these are exactly the invertible
diagonal matrices, which proves the claim. ¤
Now we determine all skew primitive elements of H.

Let C3 denote the 3-dimensional coalgebra, with basis (β, γ, δ), such that γ, δ

are group-like and β is (γ, δ)-skew primitive.
Fix two group-like elements g, h ∈ G(H) and let

diag(g1, . . . , gn) := π(g), diag(h1, . . . , hn) := π(h) (8–2)

denote the corresponding matrices in T (k).
The elements u ∈ Pg,h(H) are in one-to-one correspondence with the coalgebra

maps ϕ : C3 → H, such that (β, γ, δ) 7→ (u, g, h).
Note that the dual algebra C∗3 is isomorphic to the algebra M+

2 (k) of upper
triangular matrices in M2(k), via

C∗3 → M+
2 (k), f 7→

(
f(γ) f(β)

f(δ)

)
.

Since H = Oq(GL(n))◦, the coalgebra maps ϕ considered before give rise to
algebra maps of the following form

ψ : Oq(GL(n)) → C∗3 ∼= M+
2 (k), xij 7→

(
g(xij) u(xij)

h(xij)

)
. (8–3)

An algebra map is given by (8–3) if and only if (ψ(xij))i,j is an invertible q-
matrix (with entries in M+

2 (k)). Note that, by definition, we have g(xij) = δijgi

and h(xij) = δijhi; compare (8–2) and (8–1). The correspondence ϕ ↔ ψ is
one-to-one.

Take any u ∈ H, write cij := u(xij) and

C̃ := (c̃ij), c̃ij :=
(

δijgi cij

δijhi

)
.

By the observations before, u ∈ Pg,h(H) implies that C̃ is an invertible q-matrix.
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Lemma 8.4. Assume C̃ is a q-matrix .

(a) For all i < j, we have (hi − qgi)cij = (hi − qgi)cji = (gj − qhj)cij =
(gj − qhj)cji = 0.

(b) For all i < j, we have (gj − hj)cii = (gi − hi)cjj .
(c) If |i− j| ≥ 2 then cij = 0.
(d) If ci,i+1 6= 0 or ci+1,i 6= 0 then g−1h = Ki.

Proof. Suppose i < j. By the q-relations for C̃,
(

0 cij

0 0

) ( gi cii

0 hi

)
= c̃ij c̃ii = qc̃iic̃ij = q

( gi cii

0 hi

) (
0 cij

0 0

)
.

Comparing the matrix entries yields cijhi = qgicij , hence (hi − qgi)cij = 0. The
other relations in (a) are shown similarly.

Moreover, the q-relations for C̃ give

c̃jj c̃ii − c̃iic̃jj = (q − q−1)c̃ij c̃ji =
(

0 ∗
0 0

) (
0 ∗
0 0

)
= 0,

hence, c̃ii and c̃jj commute. Since

c̃jj c̃ii =
(

gj cjj

0 hj

) ( gi cii

0 hi

)
=

(
gigj gjcii+hicjj

0 hihj

)
,

it follows that gjcii + cjjhi = gicjj + ciihj , which implies (b).
To show (c), suppose i < j < k. We claim cik = 0. Using the q-relations for

C̃, we get

(q − q−1)c̃jj c̃ik = [c̃jk, c̃ij ] = [
(

0 ∗
0 0

)
,
(

0 ∗
0 0

)
] = 0.

Since q2 6= 1 and c̃jj is (by definition) invertible, it follows that c̃ik = 0, hence
cik = 0. It is checked similarly that cki = 0, so (c) is proved.

Now assume ci,i+1 6= 0. The relations in (a) imply hi = qgi and gi+1 = qhi+1.
It remains to show gj = hj for all j 6∈ {i, i + 1} (then π(g−1h) = π(Ki) and the
claim follows from Proposition 8.3).

By (c), we have c̃j,i+1 = 0 if j < i, and c̃ij = 0 if i + 1 < j. In both cases, the
q-relations for C̃ imply that c̃jj and c̃i,i+1 commute. One calculates

c̃jj c̃i,i+1 =
(

0 gjci,i+1
0 0

)
, c̃i,i+1c̃jj =

(
0 ci,i+1hj

0 0

)
.

Hence, gjci,i+1 = ci,i+1hj , which implies gj = hj (since ci,i+1 6= 0).
The case ci+1,i 6= 0 is treated similarly. ¤

Theorem 8.5 (The skew primitive elements of Oq(GL(n))◦). Let H :=
Oq(GL(n))◦ and g, h ∈ G(H).

(a) Pg,h(H) is trivial if and only if g−1h 6∈ {1,K1, . . .Kn−1}.
(b) If g−1h = Ki, then Pg,h(H) is 3-dimensional and spanned by g−h, gEi, hFi.
(c) P (H) is n-dimensional and equal to P (O(T )◦), considering O(T )◦ ⊂ H.
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Proof. The restriction of π̃ : H → Mn(k), f 7→ (f(xij)) to the set Pg,h(H) is
injective (since the algebra map ψ (8–3) is determined by its values on algebra
generators —but note that π̃ itself need not be injective).

Let u ∈ Pg,h(H) and cij := u(xij), which means c := (cij) = π̃(u).
(1) Suppose g−1h 6∈ {1,K1, . . . Kn−1}. Then, by (c) and (d) of Lemma 8.4,

the matrix c is diagonal. Moreover, (b) implies

(c11, . . . , cnn) = λ(g1 − h1, . . . , gn − hn),

for some scalar λ, which means c = π̃(λ(g − h)). Since π̃ is injective on skew
primitive elements, u = λ(g − h), so Pg,h(H) is trivial.

(2) Suppose g−1h = Ki, for some 1 ≤ i < n. By (c) and (d) of Lemma 8.4,
the non-zero off-diagonal entries of c are at most ci,i+1 and ci+1,i. As before, (b)
implies that

(c11, . . . , cnn) = λ(g1 − h1, . . . , gn − hn),

for some scalar λ.
It is easily checked that g−h, gEi, hFi are (g, h)-skew primitive. One calculates

π̃(gEi) = giEi,i+1,

π̃(hFi) = hi+1Ei+1,i,

π̃(g − h) = diag(g1 − h1, . . . gn − hn).

By injectivity, it follows that Pg,h(H) is spanned by (g − h, gEi, hFi).
(3) Let g = h. Then (c) and (d) of Lemma 8.4 imply that the matrix c is

diagonal. Hence, π̃ maps Pg,g(H) = gP (H) injectively to the set of diagonal
matrices in Mn(k). Therefore, Pg,g(H) is at most n-dimensional.

The claim now follows from the observations after Remark 8.1. ¤

The results of Theorem 8.5 still hold if we only assume q2 6= 1. However, the
considered map Uq(sln) → Oq(GL(n))◦ is injective only if q is not a root of unity.

9. Group Homomorphisms SLq(n) → GLq(m)

Recall that the category of quantum groups is the opposite category of the
category of Hopf algebras (Definition 4.16).

A morphism % : SLq(n) → GLq(m) of quantum groups is thus a Hopf algebra
map O(%) : Oq(GL(m)) → Oq(SL(n)). In this section, we determine all such
morphisms.

We assume that q is not a root of unity.

Definition 9.1 (The derived homomorphism). Let % : SLq(n) → GLq(m)
be a morphism of quantum groups. The dual map of

Oq(GL(m))
O(%)−→ Oq(SL(n)) ⊂ Uq(sln)◦

is called the derived morphism and denoted as ∂% : Uq(sln) → Oq(GL(m))◦.
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Remark 9.2. The map ∂% is determined by its values on all Ki, Ei, Fi; more-
over, ∂%1 = ∂%2 implies %1 = %2.

Proof. The first property is obvious. Now suppose % : SLq(n) → GLq(m). It
is straightforward to check that the following diagram commutes:

Oq(GL(m)) Oq(GL(m))◦◦

Oq(SL(n)) Uq(sln)◦

can

ϕ

O(%) (∂%)◦

-

-

? ?

where ϕ is as in Theorem 7.15 and can denotes the canonical map. Since ϕ is
injective, O(%) and, hence, % are uniquely determined by ∂%. ¤

A quantum group G can be considered, equivalently, as the functor

G : Algk → Set, R 7→ G(R) := Algk(O(G), R),

where Algk denotes the category of k-algebras and Set the category of sets.
We adopt this point of view in this section.

Lemma 9.3. There is no nontrivial morphism SLq(2) → Gm(:= GLq(1)).

Proof. The quantum group Gm corresponds to the group Hopf algebra k[Z].
The algebra maps from k[Z] to an algebra R are in 1-to-1 correspondence with
the invertible elements of R (this explains the name “Gm”: multiplicative group
of units).

Suppose f : SLq(2) → Gm is a morphism (of quantum groups). There is an
embedding Gm ↪→ SLq(2), given by

Gm(R) → SLq(2)(R), a 7→ ( a
a−1

)
.

Consider Gm ↪→ SLq(2)
f→ Gm. There is some N ∈ Z, such that this morphism

is given by
Gm(R) → Gm(R), a 7→ aN .

It follows that ∂f :Uq(sl2)→O(Gm)◦ maps K —which corresponds to
(

q

q−1

)
—

to qN . (We identify group-like elements in O(Gm)◦ with non-zero elements in k;
see Proposition 8.3).

Since O(Gm)◦ is commutative and KEK−1 = q2E, it follows that ∂f(E) = 0,
similarly ∂f(F ) = 0. We obtain

qN − q−N = ∂f(K −K−1) = (q − q−1)∂f(EF − FE) = 0,

which implies N = 0, since q is not a root of unity. Hence, ∂f is trivial, so f is
trivial as well. ¤
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Proposition 9.4. Let % : SLq(2) → GLq(m) be a nontrivial morphism of
quantum groups (m > 1). Then there is some i < m and c ∈ k×, such that

∂%(K) = Ki, ∂%(E) = cEi, ∂%(F ) = c−1Fi.

Proof. Let T ⊂ GLq(m) denote the canonical maximal torus (Section 8).
By Proposition 8.3, O(T )◦ and Oq(GL(m))◦ have the same group-like elements.
Since ∂%(K) is group-like, ∂%(K) ∈ O(T )◦.

Assume ∂%(E) = ∂%(F ) = 0. Then the image of ∂% is contained in O(T )◦,
which means that Im(%) ⊂ T . But T is isomorphic to the direct product of n

copies of Gm. Hence, by Lemma 9.3, the morphism % is trivial, contradicting
the hypothesis.

Therefore, ∂%(E), ∂%(F ) are not both zero. Suppose ∂%(E) 6= 0. Then ∂%(E)
is a nontrivial (1, ∂%(K))-skew primitive element. It follows from Theorem 8.5
that ∂%(K) = Ki, for some i < m (it is impossible that ∂%(K) = 1, since
conjugation with ∂%(K) is not the identity on ∂%(E)).

The space of (1,Ki)-primitive elements is spanned by (1 −Ki, Ei,KiFi) (cf.
Theorem 8.5). Since

Ki∂%(E)K−1
i = ∂%(KEK−1) = q2∂%(E),

we get ∂%(E) = cEi, for some c ∈ k×.
The relation

0 6= Ki −K−1
i = (q − q−1)[∂%(E), ∂%(F )] (9–1)

implies ∂%(F ) 6= 0. Similarly as above, we get ∂%(F ) = c′Fi for some c′ ∈ k×,
and from (9–1) again, it follows that cc′ = 1. ¤

Conversely, there actually exist morphisms as described in Proposition 9.4:

Definition 9.5. Suppose m > 1. For 0 ≤ s < m − 1, the morphism η(s) :
SLq(2) → SLq(m) is defined as follows:

η(s)(R) : SLq(2)(R) → SLq(m)(R), A 7→
(

Is

A
Im−2−s

)

(for any algebra R, where In denotes the (n× n)-identity matrix).
For a, b ∈ k×, the morphism inn(a, b) : SLq(2) → SLq(2) is defined by

inn(a, b)(R) : SLq(2)(R) → SLq(2)(R), A 7→ ( a
b )A ( a

b )−1

(for any algebra R).

Remark 9.6. The derived maps are given as follows:

∂η(s) : K, E, F 7→ Ks+1, Es+1, Fs+1,

∂inn(a, b) : K, E, F 7→ K, ab−1E, a−1bF.

We summarize what has been proved so far:
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Proposition 9.7 (Morphisms SLq(2) → GLq(m)). Nontrivial morphisms of
quantum groups SLq(2) → GLq(m) exist only if m > 1. In this case, all of them
are exhausted by the compositions inn(a, b)η(s) for 0 ≤ s < m− 1 and a, b ∈ k×.

We now turn to the general case. Let % : SLq(n) → GLq(m) be a nontrivial
morphism.

By applying Proposition 9.7 to %η(s), for 0 ≤ s < m − 1, we obtain the
following result:

There is a non-empty set I ⊂ [1, n−1], a map σ : I → [1,m−1], and ci ∈ k×,
for i ∈ I, such that

∂% : Ki, Ei, Fi 7→
{

Kσ(i), ciEσ(i), c−1
i Fσ(i) if i ∈ I,

1, 0, 0 if i 6∈ I.

Lemma 9.8. Writing (αij) for the Cartan matrix of sln (Definition 7.11), we
have:

(a) I = [1, n− 1];
(b) αij = ασ(i),σ(j);
(c) σ is injective, in particular n ≤ m;
(d) if |i− j| = 1 then |σ(i)− σ(j)| = 1.

Proof. (a) Suppose j ∈ I and |i−j| = 1. Then KiEjK
−1
i = q−1Ej . Application

of ∂% yields
∂%(Ki)Eσ(j)∂%(K−1

i ) = q−1Eσ(j),

in particular, ∂%(Ki) 6= 1, which means i ∈ I. This proves I = [1, n− 1].
(b) By the relations of Uq(sln), we have KiEjK

−1
i = qαij Ej . We apply ∂%

and get
Kσ(i)Eσ(j)K

−1
σ(i) = qαij Eσ(j).

Since the left hand side is equal to qασ(i),σ(j)Eσ(j) and q is not a root of unity,
we get ασ(i),σ(j) = αij .

Parts (c) and (d) follow from (b), since i = j if and only if αij = 2, and
|i− j| = 1 if and only if αij = −1. ¤

It is easily checked that the maps σ : [1, n−1] → [1, m−1] of the form described
in Lemma 9.8 are precisely the maps of the form

σs, σ
′
s : [1, n−1] → [1, m−1], σs(i) := s + i, σ′s(i) := s + n− i,

for 0 ≤ s ≤ m− n. We have proved the following:

Proposition 9.9. Let % : SLq(n) → GLq(m) be a nontrivial morphism of
quantum groups. Then m ≥ n, and there are 0 ≤ s ≤ m − n and ci ∈ k×, for
1 ≤ i < n, such that

∂% : Ki, Ei, Fi 7→ Ks+i, ciEs+i, c−1
i Fs+i for 1 ≤ i < n,

or ∂% : Ki, Ei, Fi 7→ Ks+n−i, ciEs+n−i, c−1
i Fs+n−i for 1 ≤ i < n.
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We show that morphisms of the form descibed above do exist.

Definition 9.10. Suppose m ≥ n. For 0 ≤ s ≤ m − n, the morphism η(s) :
SLq(n) → SLq(m) is defined as follows:

η(s)(R) : SLq(n)(R) → SLq(m)(R), A 7→
(

Is

A
Im−n−s

)
.

For a1, . . . , an ∈ k×, the morphism inn(a1, . . . , an) : SLq(n) → SLq(n) is defined
by

inn(a1, . . . , an)(R) : SLq(n)(R) → SLq(n)(R),

A 7→ diag(a1, . . . , an)A diag(a1, . . . , an)−1

(for any algebra R).

Remark 9.11. The derived maps are given by

∂η(s) : Ki, Ei, Fi 7→ Ks+i, Es+i, Fs+i,

∂inn(a1, . . . , an) : Ki, Ei, Fi 7→ Ki, aia
−1
i+1Ei, a

−1
i ai+1Fi.

Lemma 9.12. There is exactly one automorphism Φ of the quantum group
SLq(n), such that

∂Φ : Ki, Ei, Fi 7→ Kn−i, En−i, Fn−i,

for all i ∈ [1, n−1]. If n = 2 then Φ is the identity , otherwise, Φ has order 2.

Proof. Let (xij) denote, as usual, the canonical generators of Oq(GL(n)).
There is an automorphism

I := inn diag(−q, (−q)2, . . . , (−q)n) : Oq(GL(n)) → Oq(GL(n)),

xij 7→ (−q)i−jxij ,
an anti-automorphism

Γ : Oq(GL(n)) → Oq(GL(n)), xij 7→ xn+1−j,n+1−i,

and the antipode (cf. Definition 4.12 and the proof of Theorem 4.15)

S : Oq(GL(n)) → Oq(GL(n)), xij 7→ (−q)j−i|Xji|q|X|−1
q .

It can be shown by checking on generators that Γ, I, S commute with one another.
Moreover, Γ2 = id, S2 = I−2 and Γ(|X|q) = I(|X|q) = |X|q, S(|X|q) = |X|−1

q .
It follows that the composite O(Φ) := SΓI is an automorphism of Oq(GL(n)),

given on generators by

O(Φ)(xij) = |Xn+1−i,n+1−j |q|X|−1
q .

Since O(Φ) maps the quantum determinant to its inverse, O(Φ) induces an au-
tomorphism of Oq(SL(n)). Direct calculation shows that ∂Φ has the described
form. ¤

Summarizing these results, we get the following main theorem:
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Theorem 9.13 (All morphisms SLq(n) → GLq(m)). Nontrivial morphisms
of quantum groups SLq(n) → GLq(m) exist only if n ≤ m. If this is the case, all
of them are exhausted by

inn(a1, . . . , an)η(s), inn(a1, . . . , an)Φη(s),

for 0 ≤ s ≤ m− n and a1, . . . , an ∈ k×.

In particular:

Corollary 9.14 (Endomorphisms and automorphisms of SLq(n)).
(a) Every nontrivial endomorphism of the quantum group SLq(n) is an automor-

phism.
(b) Every automorphism of SLq(n) is inner (by a diagonal matrix in k) or the

composite with Φ.

Theorem 9.13 is valid (more generally) if q2 6= 1 or q = −1, chark = 0.
The endomorphism theorem (Corollary 9.14(a)) is valid if q2 6= 1 or chark = 0.
The automorphism theorem (Corollary 9.14(b)) is valid for GLq(n) and SLq(n)

if q2 6= 1. It is valid for any q ∈ k×, if one replaces “diagonal matrix in k” by
“q-matrix with entries in k”.

10. The 2-Parameter Quantization

We now take invertible scalars α, β instead of the parameter q, and extend
the results for q-matrices to those for (α, β)-matrices.

Definition 10.1 (Two-parameter quantum matrices). A (2 × 2) matrix
A =

(
a b
c d

)
is called an (α, β)-matrix if the following relations hold:

ba = αab, dc = αcd,

ca = βac, db = βbd,

cb = βα−1bc, da− ad = (β − α−1)bc.

The quantum determinant of A is defined by

δ = ad− α−1bc = da− βbc,

and is denoted by |A|α,β or simply by |A|.
Many of the results on q-matrices stated so far will be extended to (α, β)-
matrices.

There are two analogues of the matrix Ã as follows:

A
(

d −αb

−α−1c a

)
=

(
d −βb

−β−1c a

)
A =

(
δ 0
0 δ

)
.

This implies
(

d −βb

−β−1c a

)
δ =

(
d −βb

−β−1c a

)
A

(
d −αb

−α−1c a

)
= δ

(
d −αb

−α−1c a

)
,
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so that δ commutes with a, d, but not with b, c. However, as in the one-parameter
case, A is invertible if δ is invertible.

Definition 10.2 (General two-parameter quantum matrices). An (n×
n) matrix A is called an (α, β)-matrix, if any (2 × 2) minor in A is an (α, β)-
matrix.

The matrix Rq (cf. Definition 4.2) is extended as follows:

Rα,β := αβ

n∑

i=1

Eii ⊗ Eii +
∑

i<j

(αEij ⊗ Eji + βEji ⊗ Eij + (αβ − 1)Ejj ⊗ Eii).

Note that Rq = q−1Rq,q.
We may regard Rα,β as a linear transformation Vn ⊗ Vn → Vn ⊗ Vn defined

by

Rα,β(ei ⊗ ej) =





βej ⊗ ei if i < j,

αβei ⊗ ei if i = j,

αej ⊗ ei + (αβ − 1)ei ⊗ ej if i > j.

The next proposition generalizes Proposition 4.3.

Proposition 10.3 (The R-matrix Rα,β and (α, β)-matrices).

(a) Rα,β is invertible and satisfies the braid condition (1–1).
(b) We have (Rα,β − αβI)(Rα,β + I) = 0.
(c) An (n × n) matrix A is an (α, β)-matrix if and only if A(2) commutes with

Rα,β .

As in the case of Oq(M(n)), part (c) of this proposition ensures that the algebra
Oα,β(M(n)) defined by n2 generators x11, x12, . . . , xnn and the relation that X =
(xij) is an (α, β)-matrix forms in a natural way a bialgebra over which Vn is a
right comodule (cf. Proposition 4.6 and Equation (4–1)).

Since Rα,β : Vn⊗Vn → Vn⊗Vn is a right Oα,β(M(n)) comodule isomorphism,
it follows, by considering the images Im(Rα,β − αβI) and Im(Rα,β + I), that
Sα(Vn) and

∧
β(Vn) are right Oα,β(M(n)) comodule algebras in a natural way

(cf. Definition 4.9). Similarly, Sβ(Vn) and
∧

α(Vn) are left Oα,β(M(n)) comodule
algebras.

The group-likes arising from the Oα,β(M(n)) coaction on each n-th component
of

∧
α(Vn) and of

∧
β(Vn) coincide with each other, and are equal to

g :=
∑

σ∈Sn

(−β)−`(σ)xσ(1),1 · . . . · xσ(n),n

=
∑

σ∈Sn

(−α)−`(σ)x1,σ(1) · . . . · xn,σ(n).

This is called the quantum determinant and is denoted by |X|α,β or simply by
|X|.
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We have

X
(
(−α)j−i|Xji|

)
i,j

=
(
(−β)j−i|Xji|

)
i,j

X = gI.

Since this implies that

X diag((−α)−1, . . . , (−α)−n)(|Xji|)i,j diag(−β, . . . , (−β)n)X

= g diag(α−1β, . . . , (α−1β)n)X

= X diag(α−1β, . . . , (α−1β)n)g,

we have xijg = (βα−1)i−jgxij .
This allows us to define Oα,β(GL(n)) to be the localization Oα,β (M(n))[g−1].

If we let g−1 be a group-like element, then Oα,β(GL(n)) forms a Hopf algebra
including Oα,β(M(n)) as a sub-bialgebra.

The antipode S of Oα,β(GL(n)) satisfies:

S(xij) = (−β)j−ig−1|Xji| = (−α)j−i|Xji|g−1,

S2(xij) = (αβ)j−ixij .

The Hopf algebra Oα,β(GL(n)) defines the 2-parameter quantization GLα,β(n)
of GL(n).

11. The q-Schur Algebra and the Hecke Algebra

Fix a non-zero element q in k and a non-negative integer n.

Definition 11.1 (The Hecke algebra). The Hecke algebra H is the algebra
generated by n− 1 elements T1, . . . , Tn−1 with the relations

(Ti − q)(Ti + 1) = 0, (11–1)

TiTi+1Ti = Ti+1TiTi+1, (11–2)

TiTj = TjTi if |i− j| > 1. (11–3)

Proposition 11.2. Let π ∈ Sn and suppose that π = si1 · . . . · si`
is a reduced

expression with the transpositions sa = (a, a+1). (Thus ` = `(π), the length
of π.) Then

Tπ := Ti1 · . . . · Ti`

is independent of the choice of the reduced expression for π. Moreover , {Tπ | π ∈
Sn} is a basis of H.

If q = 1, then H = kSn, the group algebra of the symmetric group Sn.
If q = pr, a power of a prime p, then H = Hk(GLn(q), B), the Iwahori–Hecke

algebra, with B the Borel subgroup.
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Definition 11.3 (The q-Schur algebra). Suppose that q = αβ, where
α, β ∈ k×. The n-th component of Oα,β(M(d)) is denoted by A(d, n); it is a
subcoalgebra. The dual algebra

S(d, n) := A(d, n)∗

is determined by the product q, as we will see soon, so it is denoted by Sq(d, n)
and called the q-Schur algebra.

The vector space (Vd)⊗n is a right A(d, n)-comodule, with respect to the diagonal
coaction by Oα,β(M(d)), which is given by

(Vd)⊗n → (Vd)⊗n ⊗A(d, n),

ei1 ⊗ . . .⊗ ein 7→
∑

j1,...,jn

ej1 ⊗ . . .⊗ ejn ⊗ xj1,i1 · . . . · xjn,in .

Right A(d, n) comodules are interpreted as polynomial representations of
GLα,β(d) of degree n.

Proposition 11.4. The algebra S(d, n) (with d, n fixed) is determined , up to
isomorphism, by q (rather than α, β).

This allows us to write Sq(d, n) = S(d, n) and justifies the name “q”-Schur
algebra.

Proof. To see this, we first make (Vd)⊗n into a right H module by identifying

Ti = id(Vd)⊗(i−1) ⊗Rα,β ⊗ id(Vd)⊗(n−i−1) ,

a linear endomorphism of (Vd)⊗n, where Rα,β acts on Vd ⊗ Vd by left multipli-
cation (this action is well-defined, cf. Proposition 10.3 (b)).

By the construction of Oα,β(M(d)), the coalgebra A(d, n) is the “cocentralizer”
of T1, . . . , Tn−1, or in other words the largest quotient coalgebra of End((Vd)⊗n)∗,
over which T1, . . . , Tn−1 are all comodule endomorphisms.

This means that A(d, n)∗ is the centralizer of T1, . . . , Tn−1. Thus we have a
natural isomorphism

S(d, n)
∼=−→ EndH((Vd)⊗n).

Hence, it is enough to show that the right H module (Vd)⊗n is determined by q.
Let i = (i1, . . . , in) be an n-tuple of integers 1 ≤ ik ≤ d. Write ei = ei1⊗ . . .⊗

ein . All the ei’s form a basis of (Vd)⊗n. For the transposition s = (a, a + 1), it
follows from the definition of Ts (= Ta) that

eiTs =





qei if ia = ia+1,

βeis if ia < ia+1,

(q − 1)ei + αeis if ia > ia+1.

where Sn acts naturally on the set of the n-tuples i from the right.
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Define an equivalence relation among the n-tuples by

i ∼ j :⇔ ∃π ∈ Sn : j = iπ.

The equivalence classes are in one-to-one correspondence with the set Λ(d, n) of
the compositions λ = (λ1, . . . , λd) of n into d parts (i.e. λ1 + · · ·+λd = n, where
all λk ≥ 0). Here, i belongs to λ if and only if i ∼ iλ, where

iλ := (1, . . . , 1︸ ︷︷ ︸
λ1

, 2, . . . , 2︸ ︷︷ ︸
λ2

, . . . , d, . . . , d︸ ︷︷ ︸
λd

).

Clearly, the right H module (Vd)⊗n decomposes as

(Vd)⊗n =
⊕

λ∈Λ(d,n)

( ⊕

i∼iλ

kei

)
,

a direct sum of the H submodules
⊕

i∼iλ
kei.

Fix some λ = (λ1, . . . , λd) in Λ(d, n), and let Yλ(⊂ Sn) denote the stabilizer of
the d subsets {1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {λ1 + · · ·+ λd−1 + 1, . . . , n}.

Write xλ :=
∑

π∈Yλ
Tπ.

Proposition 11.5 (Dipper and James). There is a right H module isomorphism
⊕

i∼iλ

kei
∼= xλH, given by eiλ

7→ xλ.

Hence (Vd)⊗n ∼= ⊕
λ xλH, which implies that (Vd)⊗n, hence the algebra S(d, n)

also, is determined by q. ¤

Corollary 11.6. If αβ = α′β′, then Oα,β(M(n)) ∼= Oα′,β′(M(n)), as coalge-
bras.

The q-Schur algebra was introduced by Dipper and James, and its representations
have been investigated in detail.

Remark 11.7 (Du, Parshall, Wang). The isomorphism mentioned in the last
corollary is given explicitly as follows: Suppose αβ = α′β′ and set ξ := α′/α =
β/β′. Then there is a coalgebra isomorphism

ϕξ : Oα,β(M(n))
∼=−→ Oα′,β′(M(n)), xij 7→ ξ`(i)−`(j)x′ij ,

where xij := xi1,j1 · . . . · xir,jr , x′ij := x′i1,j1
· . . . · x′ir,jr

, denote the monomials
which span Oα,β(M(n)) and Oα′,β′(M(n)), respectively, and `(i) is the number
of inversions in i.

Furthermore, this isomorphism is extended uniquely to a coalgebra isomor-
phism

Oα,β(GL(n))
∼=−→ Oα′,β′(GL(n)).
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12. Cocycle Deformations

Definition 12.1 (2-Cocycles for a group). A 2-cocycle for a group G

(with coefficients in the trivial G-module k×) is a map σ : G × G → k×, which
satisfies

σ(x, y)σ(xy, z) = σ(y, z)σ(x, yz), x, y, z ∈ G.

Let us generalize this notion to a bialgebra A:

Definition 12.2 (2-Cocycles for a bialgebra). A 2-cocycle for a bialgebra
A is a bilinear form σ : A× A → k, that is invertible (in the algebra (A⊗ A)∗)
and that satisfies

∑
σ(x1, y1)σ(x2y2, z) =

∑
σ(y1, z1)σ(x, y2z2), x, y, z ∈ A.

A 2-cocycle σ for A is said to be normal, if it satisfies

σ(1, x) = ε(x) = σ(x, 1), x ∈ A.

For any 2-cocycle σ, the map σ−1(1, 1)σ is a normal 2-cocycle. In the following,
we assume that all 2-cocycles are normal.

Proposition 12.3 (Deformation of bialgebras by 2-cocycles) (Doi).
(a) Using a 2-cocycle σ, define a new multiplication on A as follows

x • y :=
∑

σ(x1, y1)x2y2σ
−1(x3, y3), x, y ∈ A.

This makes A into an algebra with the same unit element .
(b) With this new algebra structure and the original coalgebra structure, A forms

a bialgebra, which is denoted by Aσ. It is called the deformation of A by
cocycle σ.

(c) If A is a Hopf algebra, Aσ is also a Hopf algebra, with the antipode Sσ,
defined by

Sσ(x) =
∑

σ(x1, S(x2))S(x3)σ−1(S(x4), x5), x ∈ A.

Example 12.4 (The quantum double). Let H be a finite-dimensional Hopf
algebra and define A := H∗cop⊗H. The bilinear form σ : A×A → k determined
by

σ(p⊗ x, q ⊗ y) = ­­
JJp, 1 JJ

­­
­­
JJq, x JJ

­­
­­
JJε, y JJ

­­

is a 2-cocycle for A. The algebra Aσ is a bicrossed product of H with H∗cop

determined by the following relations:

(p⊗ 1) • (1⊗ x) = p⊗ x,

(1⊗ x) • (p⊗ 1) =
∑

­­
JJp3, x1

JJ
­­p2 ⊗ x2

­­
JJp1, S(x3) JJ

­­ ,

where p ∈ H∗, x ∈ H. Hence the Hopf algebra Aσ coincides with the quantum
double D(H) of H, which is due to Drinfeld.
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In the remainder of this section, we shall consider mainly cocycle deformations
of Oα,β(M(n)) and Oq(GL(n)).

We first generalize the construction of Oα,β(M(n)), following Doi’s method.

Definition 12.5 (The bialgebra M(C, σ)). Let C be a coalgebra, and let
σ : C × C → k be an invertible bilinear form. Let M(C, σ) denote the quotient
algebra of the tensor algebra T (C) by the relation

∑
σ(x1, y1)x2 ⊗ y2 =

∑
σ(x2, y2)y1 ⊗ x1, x, y ∈ C.

In fact, M(C, σ) is a quotient bialgebra of T (C), where T (C) has the unique
bialgebra structure making C a subcoalgebra.

Example 12.6 (The bialgebra Oα,β(M(n))). Define Cn = Mn(k)∗, and let
xij (∈ Cn) be the dual basis of the matrix units Eij (∈ Mn(k)). Define an
invertible bilinear form σα,β : Cn × Cn → k, where α, β ∈ k×, by

σα,β(xii, xjj) =





β, if i < j,

αβ, if i = j,

α, if i > j,

σα,β(xij , xji) = αβ − 1, if i < j,

σα,β(xij , xk`) = 0, otherwise.

This bilinear form is related with the linear transformation Rα,β (introduced
below Definition 10.2) as follows:

Rα,β(ek ⊗ e`) =
∑

i,j

σα,β(xjk, xi`)ei ⊗ ej .

One sees the defining relations for M(Cn, σα,β) are interpreted as X(2)Rα,β =
Rα,βX(2), so that we have (cf. Proposition 10.3 (c)):

M(Cn, σα,β) = Oα,β(M(n)).

Lemma 12.7. Let τ be a 2-cocycle for M(C, σ). Then there is a bialgebra
isomorphism

M(C, στ )
∼=−→ M(C, σ)τ ,

which is the identity on C, where στ : C × C → k is the invertible bilinear form
defined by

στ (x, y) =
∑

τ(y1, x1)σ(x2, y2)τ−1(x3, y3), (x, y, z ∈ C). (12–1)

Definition 12.8. Braided bialgebras
A braiding on a bialgebra A is an invertible bilinear form σ : A × A → k such
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that for all x, y, z ∈ A, we have:

σ(xy, z) =
∑

σ(x, z1)σ(y, z2),

σ(x, yz) =
∑

σ(x1, z)σ(x2, y),

σ(x1, y1)x2y2 =
∑

y1x1σ(x2, y2).

A braiding on A is a 2-cocycle for A. The last equation means that Aσ = Aop.
The first and the last equations imply the following Yang–Baxter condition (for
all x, y, z ∈ A):

∑
σ(x1, y1)σ(x2, z1)σ(y2, z2) =

∑
σ(y1, z1)σ(x1, z2)σ(x2, y2). (12–2)

If we regard σ as an element in (A⊗A)∗, then the last equation is rewritten as

σ12σ13σ23 = σ23σ13σ12

in the algebra (A⊗A⊗A)∗.
If σ is a braiding on A, then for any right A comodules V , W , it follows that

Rσ : V ⊗W → W ⊗ V, v ⊗ w 7→
∑

σ(v1, w1)w0 ⊗ v0

is a right A comodule isomorphism. The monoidal category of right A comodules
becomes a braided category with the structure Rσ.

Proposition 12.9 (A braiding on the bialgebra Oα,β(M(n))). If an in-
vertible bilinear form σ : C × C → k satisfies the Yang–Baxter condition, then
it is extended uniquely to a braiding on M(C, σ).

In particular , Oα,β(M(n)) has a natural braiding σα,β (the extension of σα,β

in Example 12.6).

Remark 12.10. If τ is a 2-cocycle for a bialgebra A and if σ is a braiding on
A, then στ as defined in (12–1) is a braiding on Aτ .

Proposition 12.11. Let α, β, α′, β′ ∈ k×. If α′β′ = αβ or (αβ)−1, then
Oα′,β′(M(n)) is a cocycle deformation of Oα,β(M(n)).

Proof. Let T ⊂ Mα,β(n) be the canonical maximal torus with the correspond-
ing bialgebra projection

Oα,β(M(n)) → O(T ) = k[t1, t−1
1 , . . . , tn, t−1

n ],

defined by xij 7→ δijti. For q ∈ k×, set

τq(t
e(1)
1 · . . . · te(n)

n , t
f(1)
1 · . . . · tf(n)

n ) =
∏

i<j

qe(i)f(j).

Then τq gives a 2-cocycle for O(T ), which may be regarded as a 2-cocycle for
Oα,β(M(n)) through the projection. Since one computes

(σα,β)τq = σqα,q−1β ,
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we get, using Lemma 12.7:

Oα,β(M(n))τq ∼= Oqα,q−1β(M(n)),

which yields the conclusion in the case where α′β′ = αβ.
For the assertion in the other case, it is enough to note that there is a bialgebra

isomorphism

Oα,β(M(n)) ∼= Oα−1,β−1(M(n)), xij 7→ xn+1−i,n+1−j . ¤

We claim that the converse of Proposition 12.11 holds true.

Theorem 12.12 (Cocycle deformations of Oα,β(M(n))). The bialgebra
Oα′,β′(M(n)) is a cocycle deformation of Oα,β(M(n)) if and only if α′β′ = αβ or
(αβ)−1.

Proof. It remains to show the “only if” part. Suppose that τ is a 2-cocycle for
Oα,β(M(n)) such that there exists a bialgebra isomorphism

ϕ : Oα′,β′(M(n))
∼=−→ Oα,β(M(n))τ ,

which may be regarded as

ϕ : M(Cn, σα′,β′)
∼=−→ M(Cn, (σα,β)τ ).

From a simple observation, it follows that the restriction of ϕ to Cn gives an
automorphism of Cn.

By the Noether–Skolem theorem, there exists a linear isomorphism ψ : Vn

∼=−→
Vn which is “semi-colinear” with respect to ϕ in the sense that the diagram

Vn Vn

Vn ⊗ Cn Vn ⊗ Cn

ψ

ψ ⊗ ϕ
% %

-

-
? ?

commutes, where % denotes the canonical comodule structure, i.e. %(ej) =
∑

i ei⊗
xij . Let σ denote the braiding on M(Cn, σα′,β′) which is the pull-back of (σα,β)τ

through ϕ. Then the last commutative diagram makes the following commute.

Vn ⊗ Vn Vn ⊗ Vn

Vn ⊗ Vn Vn ⊗ Vn

ψ ⊗ ψ

ψ ⊗ ψ
Rσ R(σα,β)τ

-

-
? ?

Note further that R(σα,β)τ = PτRα,βP−1
τ , where

Pτ (ek ⊗ e`) =
∑

i,j

τ(xik, xj`)ei ⊗ ej .
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Then we see that Rσ satisfies the following conditions:
(a) Rσ is a right Oα′,β′(M(n)) comodule automorphism;
(b) Rσ satisfies the braid condition;
(c) R2

σ = (αβ − 1)Rσ + αβ.

Condition (a) is equivalent to

Rσ ∈ EndS(n,2)(V ⊗2
n ),

where S(n, 2) is taken with respect to α′, β′ (Section 11). This means that Rσ

is in the double centralizer of Rα′,β′ . It is known that the double centralizer
of a linear transformation of a finite dimensional vector space consists of all
polynomials of the linear transformation.

Since Rα′,β′ satisfies a quadratic equation, this implies that
(a′) Rσ is a linear combination of 1, Rα′,β′ .

If we look for a linear map Rσ satisfying (a′), (b) and which can be extended
to a braiding on Oα′,β′(M(n)), we see that Rσ should be equal, up to non-zero
scalar multiplication, to Rα′,β′ or Rα′,β′ + 1− α′β′.

Suppose first Rσ = cRα′,β′ , with c ∈ k×. Then, by Proposition 10.3 (b),

R2
σ = c2R2

α′,β′ = c2(α′β′ − 1)Rα′,β′ + c2α′β′.

Since it follows from (c) that

R2
σ = (αβ − 1)Rσ + αβ = c(αβ − 1)Rα′,β′ + αβ,

we have c2(α′β′ − 1) = c(αβ − 1) and c2α′β′ = αβ, whence, by eliminating c,

(αβ − 1)2

αβ
=

(α′β′ − 1)2

α′β′

or (αβ − α′β′)(αβα′β′ − 1) = 0.
The same equation is obtained in the other case. ¤

Remark 12.13. The proof shows that the braidings on Oα,β(M(n)) are ex-
hausted essentially by the two of σα,β and the pull-back σ′α,β of σα−1,β−1 through
the isomorphism Oα,β(M(n)) ∼= Oα−1,β−1(M(n)) (cf. the proof of Proposition
12.11).

Note that Rσ′α,β
= Rα,β + 1− αβ.

In a similar way:

Corollary 12.14. If q2 6= 1, then Oq(GL(n)) cannot be a cocycle deformation
of any commutative Hopf algebra.
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13. (2 × 2) R-Matrices

By a (2 × 2) R-matrix, we mean an invertible matrix R in M2(k) ⊗ M2(k)
which satisfies the braid condition. We ask:

How many (2× 2) R-matrices exist?

For such a matrix R, we define the k-bialgebra OR(M(2)) generated by the entries
x11, x12, x21, x22 in X = (xij)i,j∈{1,2} with the relation X(2)R = RX(2).

Let C2 := M2(k)∗, as in Example 12.6. The (2 × 2) R-matrices R are in
one-to-one correspondence with the invertible bilinear forms σ : C2 × C2 → k,
which satisfy the Yang–Baxter condition (12–2), in such a way that

R(ij),(k`) = σ(xjk, xi`). (13–1)

Furthermore, we have OR(M(2)) = M(C2, σ). Hence, OR(M(2)) is a braided
bialgebra.

Kauffman classifies the R-matrices of the form:



n

r d

s `

p


 (13–2)

(where rows and columns are indexed by (11), (12), (21), (22)). This is invertible
if and only if p, n 6= 0 and r`− ds 6= 0.

Remark 13.1. (a) A matrix of the form (13–2) satisfies the braid condition if
and only if the following relations hold:

r`d = r`s = r`(r − `) = 0,

p2` = p`2 + `ds,

n2` = n`2 + `ds,

p2r = pr2 + rds,

n2r = nr2 + rds.

(b) The following are examples of R-matrices of this form:
( n

d
s

p

)
,

(
γ

α
β αβ−1

δ

)
, (13–3)

where γ, δ ∈ {αβ,−1} and α, β, n, p, d, s ∈ k× are arbitrary. For γ := δ := αβ,
we get Rα,β .

The bialgebras OR(M(2)) for these R-matrices are not yet investigated except
for Rα,β . However, for the following two examples of R-matrices, the bialgebras
OR(M(2)) have been investigated.
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Example 13.2 (Takeuchi–Tambara). Assume char(k) 6= 2. For q ∈ k×, the
matrix

R := 1/2




2− (q − 1)2 (q − 1)2

1− q2 1 + q2

1 + q2 1− q2

(q + 1)2 2− (q + 1)2




is invertible and satisfies the braid condition and the relation

(R− I)(R + q2I) = 0.

If q2 6= −1, then R is diagonalizable to diag(1, 1,−q2,−q2).

Example 13.3 (Suzuki). For α, β ∈ k×, write

R :=

(
α

β
β

α

)
.

The corresponding invertible form τα,β : C2 × C2 → k according to (13–1) is
given by

τα,β(xij , xk`) =





α if (ij, k`) ∈ {(12, 12), (21, 21)},
β if (ij, k`) ∈ {(12, 21), (21, 12)},
0 otherwise.

Suppose α2 6= β2. Then OR(M(2)) = M(C2, τα,β) is independent of the choice
of α, β. Denote by B this bialgebra. Then

(a) B is generated by x11, x12, x21, x22 with relations x2
11 = x2

22, x2
12 = x2

21, and
xijx`m = 0, for i− j 6≡ `−m mod 2;

(b) B is cosemisimple;
(c) the maps τα,β , for α, β ∈ k×, exhaust the braidings on B.

14. The Quantum Frobenius Map and Related Topics

The quantum Frobenius map for GLq(n) was introduced by Parshall–Wang
(1991) and independently by myself (1992). Assume q is a root of unity, let ` be
the order of q2 and put ε = q`2 . We have

` odd ` even
q` = 1 ε = 1 ×

q` = −1 ε = −1 ε = 1

Proposition 14.1. If X = (xij) is a q-matrix , then X(`) = (x `
ij ) is an ε-

matrix .
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By associating X(`) to X, we get a homomorphism of quantum groups

F : GLq(n) → GLε(n)

which is called the quantum Frobenius map. The corresponding Hopf algebra
map

O(F) : Oε(GL(n)) → Oq(GL(n))

is injective and free of rank `n2
. If q` = 1 (hence ` odd), then the image of O(F)

is contained in the center. Let GL′q(n) be the quantum subgroup of GLq(n) rep-
resented by the quotient Hopf algebra Oq(GL(n))/Oq(GL(n))O(GL(n))+ which
is `n2

-dimensional. We may think of it as the kernel of F, and we obtain an
exact sequence of quantum groups

1 → GL′q(n) → GLq(n) F→ GL(n) → 1. (14–1)

A finite quantum subgroup of GLq(n) means a finite dimensional quotient
Hopf algebra of Oq(GL(n)). If q has an odd order, GL′q(n) is such an example.
Recently, E. Müller has determined all finite subgroups of GLq(n). We describe
his results in the following.

If q is not a root of unity, all finite subgroups of GLq(n) are contained in the
canonical torus T . We assume q is a root of unity of odd order ` and k is an
algebraically closed field of characteristic 0.

Let I be a subset of I0 = {(i, i+1), (i+1, i) | i = 1, 2, . . . , n−1}. A quantum
subgroup Pq,I of GLq(n) is determined by the following condition: If i ≤ a, a+1 ≤
j for some (a, a+1) /∈ I of if j ≤ b, b+1 ≤ i for some (b+1, b) /∈ I, then the (i, j)
component is zero.

Example 14.2. n = 5, I = {(1, 2), (3, 4), (2, 1), (5, 4)}.

Pq,I =




∗ ∗ 0 0 0
∗ ∗ 0 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ 0
0 0 0 ∗ ∗




.

Let s be the number of i such that (i, i+1) /∈ I and (i+1, i) /∈ I. In the above
example, s = 2. Then Pq,I factors as the direct product of s blocks. By associ-
ating the q-determinant with each block, we get a homomorphism of quantum
groups

Dq : Pq,I → (Gm)s.

When q = 1, we write PI = P1,I and D = D1. Thus

D : PI → (Gm)s.
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We have the following commutative diagram of quantum groups with exact
rows:

1 - P ′q,I
- Pq,I

-F
PI

- 1

?

D′
q

?

Dq

?

D

1 - (`Gm)s - (Gm)s -`-th power
(Gm)s - 1

where P ′q,I = Pq,I ∩GL′q(n) and D′
q denotes the map induced by Dq.

Let G be a finite quantum subgroup of GLq(n). The image F(G) which is a
finite algebraic subgroup of GL(n) is identified with a finite (abstract) subgroup Γ
of GLn(k), since k is algebraically closed of characteristic 0. The exact sequence
(14–1) induces an exact sequence of finite quantum groups:

1 → G′ → G
F→ Γ → 1 (14–2)

The following are key results of Müller.

Proposition 14.3. If G′ is a quantum subgroup of GL′q(n), there are a subset
I of I0 and a quotient group Q′ of (`Gm)s such that

G′ = Ker
(
P ′q,I

D′q−→ Q′
)
.

Proposition 14.4. Let G be a finite quantum subgroup of GLq(n) and let I be
a subset of I0. Assume ` > n2/4. If G′ ⊂ P ′q,I , then G ⊂ Pq,I . In particular , we
have Γ ⊂ PI(k).

If we are in this situation, we have the following commutative diagram of quan-
tum groups with exact rows:

1 - G′ - G -F
Γ - 1

∩ ∩ ∩
1 - P ′q,I

- Pq,I
-F

PI
- 1

?

D′
q

?

Dq

?

D

1 - (`Gm)s - (Gm)s -`-th power
(Gm)s - 1

?

push out

?

∥∥∥∥∥

1 - Q′ - Q - (Gm)s - 1

(14–3)
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By an easy diagram-chasing, we conclude there is a homomorphism of (ab-
stract) groups αG : Γ → Q(k) such that the diagram

G - Γ

?

Dq

½
½

½
½

½=

αG

?

D

Q - (Gm)s

commutes.
Conversely, consider a set of data as follows:

I ⊂ I0

Q′ a quotient group of (`Gm)s,
G′ as in Proposition 14.3
Γ ⊂ PI(k) a subgroup,
Q as in (14–3),
α : Γ → Q(k) a group homomorphism such that

Γ

½
½

½
½

½=

α

?

D

Q - (Gm)s

commutes.

We have the following main result.

Theorem 14.5 (E. Müller). With the set of data above, let

G = Ker
(
F−1(Γ) ∩ Pq,I

αF−→−→
Dq

Q
)
.

Then G is a finite quantum subgroup of GLq(n) which fits the exact sequence (14–
2). If ` > n2/4, then these G for all possible previous sets of data exhaust all
finite quantum subgroups of GLq(n).

Finally, we mention the following result of E. Letzter concerning SpecOq(GL(n)),
the set of prime ideals of the non-commutative ring Oq(GL(n)). We assume q

is a root of unity of odd order `. Multiplication of a row or a column of a q-
matrix by a constant yields a q-matrix. Considering multiplication of all rows and
columns of the generating q-matrix by q, one obtains a group action of (Z/`)2n−1

on Oq(GL(n)) as ring automorphisms. The image of O(F) is contained in the
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invariants by this action. Hence the Frobenius map F induces a map

(Spec Oq(GL(n)))/(Z/`)2n−1 → Spec O(GL(n))

P 7→ O(F)−1(P ).

E. Letzter has shown that this map is bijective.
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